Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning

Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative inform...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 121; p. 108729
Main Authors Hong, Jin, Yu, Simon Chun-Ho, Chen, Weitian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation). •An unsupervised domain adaptation method via joint adversarial learning and self-learning for medical image segmentation.•A post-situ identification manner for adversarial learning to focus on alignment of task-related features.•A joint semantic-aware and shape-entropy-aware adversarial learning to align the distribution of low-level features.•A mean completer approach for pseudo-label generation and a low-signal augmentation function to improve the model robustness.•A novel self-learning mechanism named student-to-partner learning for further improving the segmentation results.
AbstractList Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation). •An unsupervised domain adaptation method via joint adversarial learning and self-learning for medical image segmentation.•A post-situ identification manner for adversarial learning to focus on alignment of task-related features.•A joint semantic-aware and shape-entropy-aware adversarial learning to align the distribution of low-level features.•A mean completer approach for pseudo-label generation and a low-signal augmentation function to improve the model robustness.•A novel self-learning mechanism named student-to-partner learning for further improving the segmentation results.
ArticleNumber 108729
Author Hong, Jin
Chen, Weitian
Yu, Simon Chun-Ho
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0002-8757-2700
  surname: Hong
  fullname: Hong, Jin
  email: hongj5@mail2.sysu.edu.cn
– sequence: 2
  givenname: Simon Chun-Ho
  surname: Yu
  fullname: Yu, Simon Chun-Ho
  email: simonyu@cuhk.edu.hk
– sequence: 3
  givenname: Weitian
  orcidid: 0000-0001-7242-9285
  surname: Chen
  fullname: Chen, Weitian
  email: wtchen@cuhk.edu.hk
BookMark eNp9kM1qwzAQhEVJoUnaF-hJL-BU8l9k6KWE_kGgl_Qs1tI6yNhSkBxD3r5KnV56yGmX2fkWZhZkZp1FQh45W3HGy6d2BcGpVcrSNApinVY3ZM7jTKpS8Fnci1IkeZWXd2QRQssiVKViTo7fNhwP6EcTUFPtejCWgobDAINxljbOU-VdCEnvNHRmONHOjOhpwH2P9uIaDdDWGTtENB4DeAMd7RC8NXZPwero75rkT7kntw10AR8uc0l2b6-7zUey_Xr_3LxsE5UxNiQCgfMCBK-zEhkiS3Gdg2iiJHKuWLbOVZVjIYoM6zoXyEWtM9Cs4GVa6WxJ0untbwKPjTx404M_Sc7kuTfZynNv8tybnHqLkPgHKTPFHDyY7jr6PKEYM40GvQzKoFWojUc1SO3MNfwH4zyOdQ
CitedBy_id crossref_primary_10_1007_s11227_025_06924_5
crossref_primary_10_1109_OJEMB_2024_3512932
crossref_primary_10_1002_ima_23220
crossref_primary_10_1016_j_jksuci_2024_102086
crossref_primary_10_1038_s41598_025_92423_9
crossref_primary_10_1002_ima_23222
crossref_primary_10_1016_j_bspc_2024_106977
crossref_primary_10_1016_j_bspc_2024_106415
crossref_primary_10_1016_j_cmpb_2024_108165
crossref_primary_10_1016_j_measurement_2024_114901
crossref_primary_10_12677_JISP_2022_114019
crossref_primary_10_1109_TETCI_2024_3369868
crossref_primary_10_1002_ima_70019
crossref_primary_10_1016_j_asoc_2023_110675
crossref_primary_10_1016_j_bspc_2024_106846
crossref_primary_10_3390_app13010084
crossref_primary_10_1016_j_bspc_2024_106290
crossref_primary_10_1007_s11548_024_03219_7
crossref_primary_10_3389_fcell_2024_1484880
crossref_primary_10_1016_j_bspc_2024_107391
crossref_primary_10_1016_j_cmpbup_2025_100180
crossref_primary_10_1016_j_bspc_2024_106028
crossref_primary_10_1016_j_bspc_2024_106669
crossref_primary_10_1016_j_cmpb_2024_108252
crossref_primary_10_1016_j_bspc_2024_107357
crossref_primary_10_1080_21681163_2025_2476702
crossref_primary_10_1016_j_cmpb_2025_108635
crossref_primary_10_1016_j_cmpb_2025_108599
crossref_primary_10_1016_j_asoc_2025_112868
crossref_primary_10_1016_j_cmpb_2025_108636
crossref_primary_10_1016_j_bspc_2024_107071
crossref_primary_10_3389_fnins_2022_1087176
crossref_primary_10_1016_j_bspc_2024_107122
crossref_primary_10_1016_j_engappai_2022_105532
crossref_primary_10_3390_bioengineering11070737
crossref_primary_10_1016_j_cmpb_2023_107729
crossref_primary_10_1007_s11042_024_18388_5
crossref_primary_10_1002_ima_23123
crossref_primary_10_1002_ima_23201
crossref_primary_10_1016_j_cmpb_2024_108141
crossref_primary_10_1002_ima_23126
crossref_primary_10_1007_s10489_024_05931_y
crossref_primary_10_1016_j_asoc_2023_110697
crossref_primary_10_1016_j_gande_2025_03_002
crossref_primary_10_1016_j_neunet_2025_107396
crossref_primary_10_3390_diagnostics12102475
crossref_primary_10_1016_j_bspc_2024_107339
crossref_primary_10_1016_j_knosys_2022_109155
crossref_primary_10_1007_s44230_024_00083_1
crossref_primary_10_1002_ima_70062
crossref_primary_10_1016_j_bspc_2024_106486
crossref_primary_10_1016_j_cmpb_2024_108199
crossref_primary_10_3389_fonc_2024_1415859
crossref_primary_10_1016_j_bspc_2024_107333
crossref_primary_10_1016_j_bspc_2024_107410
crossref_primary_10_1016_j_cmpb_2024_108398
crossref_primary_10_1016_j_bspc_2024_106840
crossref_primary_10_1177_15330338231173495
crossref_primary_10_1016_j_asoc_2023_110787
crossref_primary_10_1155_2022_2303733
crossref_primary_10_3390_diagnostics13213313
crossref_primary_10_1002_cpe_7837
crossref_primary_10_1007_s10462_024_10992_z
crossref_primary_10_3390_biomimetics7040195
crossref_primary_10_1016_j_jksuci_2024_102129
Cites_doi 10.1016/j.patrec.2020.03.035
10.1109/TMI.2020.2972701
10.1109/TIT.1976.1055554
10.1109/CVPR.2017.18
10.1109/CVPR.2019.01142
10.1109/ICCV.2015.123
10.1145/1015706.1015720
10.1109/CVPR42600.2020.00431
10.1016/j.neucom.2016.08.037
10.1007/978-3-030-01228-1_32
10.1109/ICCV.2017.220
10.1148/radiol.11091710
10.1109/CVPR.2017.316
10.1109/ICCV.2017.244
10.1016/j.media.2021.102039
10.1109/CVPR.2019.00200
10.1146/annurev.bioeng.1.1.211
10.1016/j.artmed.2021.102023
10.1109/MSP.2014.2347059
10.1102/1470-7330.2004.0011
10.1109/CVPR.2018.00454
10.1007/978-3-030-01219-9_18
10.1109/ICCVW.2019.00043
10.1016/j.neuroimage.2019.03.026
10.1109/TKDE.2009.191
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.108729
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_108729
S1568494622001788
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-8ea115a81b36e0ee02e74a8f5a8841c0374c94e5853ebb48e18bd3ad051629d3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:14 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Fri Feb 23 02:41:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unsupervised domain adaptation
Post-situ identification manner
Liver segmentation
Self-learning
Adversarial learning
Student-to-partner learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-8ea115a81b36e0ee02e74a8f5a8841c0374c94e5853ebb48e18bd3ad051629d3
ORCID 0000-0002-8757-2700
0000-0001-7242-9285
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_108729
crossref_citationtrail_10_1016_j_asoc_2022_108729
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References T.-H. Vu, H. Jain, M. Bucher, M. Cord, P. Pérez, Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2517–2526.
Ginneken, Schaefer-Prokop, Prokop (b10) 2011; 261
Milletari, Navab, Ahmadi (b37) 2016
Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, M. Sun, No more discrimination: Cross city adaptation of road scene segmenters, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1992–2001.
Kingma, Ba (b53) 2014
Tong, Gan, Wen, Li (b41) 2020; 135
Nair, Hinton (b36) 2010
Patel, Gopalan, Li, Chellappa (b7) 2015; 32
W.-L. Chang, H.-P. Wang, W.-H. Peng, W.-C. Chiu, All about structure: Adapting structural information across domains for boosting semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1900–1909.
He, Lian, Adeli, Huo, Gao, Zhang, Zhang, Shen (b39) 2021
Chen, Dou, Chen, Qin, Heng (b31) 2020; 39
J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232.
Hoffman, Wang, Yu, Darrell (b16) 2016
Tzeng, Hoffman, Zhang, Saenko, Darrell (b12) 2014
Bilic, Christ, Vorontsov, Chlebus, Chen, Dou, Fu, Han, Heng, Hesser (b50) 2019
Kavur, Selver, Dicle, Barı CÇs, Gezer (b51) 2019
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b14) 2014
Graves (b54) 2013
Rother, Kolmogorov, Blake (b43) 2004; 23
Dou, Ouyang, Chen, Chen, Heng (b2) 2018
Y. Zou, Z. Yu, B. Kumar, J. Wang, Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 289–305.
Torralba, Efros (b4) 2011; 2011
Pan, Yang (b8) 2009; 22
Radford, Metz, Chintala (b48) 2015
Hinton, Vinyals, Dean (b46) 2015
Tarvainen, Valpola (b27) 2017
Perone, Ballester, Barros, Cohen-Adad (b33) 2019; 194
Y. Zhang, T. Xiang, T.M. Hospedales, H. Lu, Deep mutual learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4320–4328.
Howe, Matsuoka (b9) 1999; 1
K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised pixel-level domain adaptation with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3722–3731.
J. Yang, N.C. Dvornek, F. Zhang, J. Zhuang, J. Chapiro, M. Lin, J.S. Duncan, Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019b.
J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, T. Darrell, Cycada: Cycle-consistent adversarial domain adaptation, in: International Conference on Machine Learning. PMLR, 2018, pp. 1989–1998.
Gretton, Smola, Huang, Schmittfull, Borgwardt, Schölkopf (b3) 2009; 3
Katona, Nemetz (b40) 1976; 22
H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, J. Kautz, Pixel-adaptive convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11166–11175.
Z. Wu, X. Han, Y.-L. Lin, M.G. Uzunbas, T. Goldstein, S.N. Lim, L.S. Davis, Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 518–534.
Novosad, Fonov, Collins (b5) 2019
Chung, Lee, Park, Lee, Lee, Shin (b38) 2021
E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7167–7176.
M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: International Conference on Machine Learning. PMLR, 2017, pp. 214–223.
N. Araslanov, S. Roth, Single-stage semantic segmentation from image labels, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4253–4262.
Liew, Khalil-Hani, Bakhteri (b49) 2016; 216
Yang, Dvornek, Zhang, Chapiro, Lin, Duncan (b6) 2019
Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (b34) 2018
Laine, Aila (b26) 2016
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
French, Mackiewicz, Fisher (b29) 2017
Sun, Saenko (b13) 2016
Krähenbühl, Koltun (b44) 2012
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning. PMLR, 2015, pp. 448–456.
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b52) 2019
Ruder (b57) 2017
Chen, Dou, Chen, Heng (b56) 2018
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b18) 2016; 17
Oliva, Saini (b11) 2004; 4
Kouw, Loog (b1) 2019
Kamnitsas, Baumgartner, Ledig, Newcombe, Simpson, Kane, Menon, Nori, Criminisi, Rueckert (b30) 2017
Hinton (10.1016/j.asoc.2022.108729_b46) 2015
10.1016/j.asoc.2022.108729_b45
10.1016/j.asoc.2022.108729_b47
Hoffman (10.1016/j.asoc.2022.108729_b16) 2016
Goodfellow (10.1016/j.asoc.2022.108729_b14) 2014
Kingma (10.1016/j.asoc.2022.108729_b53) 2014
Tarvainen (10.1016/j.asoc.2022.108729_b27) 2017
Krähenbühl (10.1016/j.asoc.2022.108729_b44) 2012
Ganin (10.1016/j.asoc.2022.108729_b18) 2016; 17
10.1016/j.asoc.2022.108729_b42
Rother (10.1016/j.asoc.2022.108729_b43) 2004; 23
Tzeng (10.1016/j.asoc.2022.108729_b12) 2014
Nair (10.1016/j.asoc.2022.108729_b36) 2010
Dou (10.1016/j.asoc.2022.108729_b2) 2018
Ruder (10.1016/j.asoc.2022.108729_b57) 2017
Chung (10.1016/j.asoc.2022.108729_b38) 2021
Tong (10.1016/j.asoc.2022.108729_b41) 2020; 135
Novosad (10.1016/j.asoc.2022.108729_b5) 2019
10.1016/j.asoc.2022.108729_b35
Torralba (10.1016/j.asoc.2022.108729_b4) 2011; 2011
Ginneken (10.1016/j.asoc.2022.108729_b10) 2011; 261
Liew (10.1016/j.asoc.2022.108729_b49) 2016; 216
Kouw (10.1016/j.asoc.2022.108729_b1) 2019
10.1016/j.asoc.2022.108729_b32
Bilic (10.1016/j.asoc.2022.108729_b50) 2019
Milletari (10.1016/j.asoc.2022.108729_b37) 2016
Katona (10.1016/j.asoc.2022.108729_b40) 1976; 22
10.1016/j.asoc.2022.108729_b22
Laine (10.1016/j.asoc.2022.108729_b26) 2016
10.1016/j.asoc.2022.108729_b23
10.1016/j.asoc.2022.108729_b24
Kamnitsas (10.1016/j.asoc.2022.108729_b30) 2017
10.1016/j.asoc.2022.108729_b25
Oliva (10.1016/j.asoc.2022.108729_b11) 2004; 4
10.1016/j.asoc.2022.108729_b28
French (10.1016/j.asoc.2022.108729_b29) 2017
10.1016/j.asoc.2022.108729_b20
Graves (10.1016/j.asoc.2022.108729_b54) 2013
10.1016/j.asoc.2022.108729_b21
He (10.1016/j.asoc.2022.108729_b39) 2021
Chen (10.1016/j.asoc.2022.108729_b56) 2018
10.1016/j.asoc.2022.108729_b19
Patel (10.1016/j.asoc.2022.108729_b7) 2015; 32
Oktay (10.1016/j.asoc.2022.108729_b34) 2018
Kavur (10.1016/j.asoc.2022.108729_b51) 2019
Sun (10.1016/j.asoc.2022.108729_b13) 2016
Yang (10.1016/j.asoc.2022.108729_b6) 2019
10.1016/j.asoc.2022.108729_b55
10.1016/j.asoc.2022.108729_b15
10.1016/j.asoc.2022.108729_b17
Gretton (10.1016/j.asoc.2022.108729_b3) 2009; 3
Chen (10.1016/j.asoc.2022.108729_b31) 2020; 39
Perone (10.1016/j.asoc.2022.108729_b33) 2019; 194
Radford (10.1016/j.asoc.2022.108729_b48) 2015
Pan (10.1016/j.asoc.2022.108729_b8) 2009; 22
Howe (10.1016/j.asoc.2022.108729_b9) 1999; 1
Paszke (10.1016/j.asoc.2022.108729_b52) 2019
References_xml – reference: J. Yang, N.C. Dvornek, F. Zhang, J. Zhuang, J. Chapiro, M. Lin, J.S. Duncan, Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019b.
– volume: 23
  start-page: 309
  year: 2004
  end-page: 314
  ident: b43
  article-title: GrabCut Interactive foreground extraction using iterated graph cuts
  publication-title: ACM Trans. Graph.
– reference: T.-H. Vu, H. Jain, M. Bucher, M. Cord, P. Pérez, Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2517–2526.
– reference: Z. Wu, X. Han, Y.-L. Lin, M.G. Uzunbas, T. Goldstein, S.N. Lim, L.S. Davis, Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 518–534.
– reference: J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, T. Darrell, Cycada: Cycle-consistent adversarial domain adaptation, in: International Conference on Machine Learning. PMLR, 2018, pp. 1989–1998.
– volume: 4
  start-page: S42
  year: 2004
  ident: b11
  article-title: Liver cancer imaging: role of CT, MRI, US and PET
  publication-title: Cancer Imaging
– reference: Y. Zou, Z. Yu, B. Kumar, J. Wang, Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 289–305.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
– reference: K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised pixel-level domain adaptation with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3722–3731.
– volume: 194
  start-page: 1
  year: 2019
  end-page: 11
  ident: b33
  article-title: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling
  publication-title: NeuroImage
– volume: 32
  start-page: 53
  year: 2015
  end-page: 69
  ident: b7
  article-title: Visual domain adaptation: A survey of recent advances
  publication-title: IEEE Signal Process. Mag.
– year: 2017
  ident: b29
  article-title: Self-ensembling for visual domain adaptation
– year: 2017
  ident: b27
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– year: 2018
  ident: b2
  article-title: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning. PMLR, 2015, pp. 448–456.
– volume: 135
  start-page: 8
  year: 2020
  end-page: 14
  ident: b41
  article-title: One-step spectral clustering based on self-paced learning
  publication-title: Pattern Recognit. Lett.
– year: 2014
  ident: b12
  article-title: Deep domain confusion: Maximizing for domain invariance
– year: 2015
  ident: b48
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– volume: 39
  start-page: 2494
  year: 2020
  end-page: 2505
  ident: b31
  article-title: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– year: 2019
  ident: b50
  article-title: The liver tumor segmentation benchmark (lits)
– reference: J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232.
– year: 2016
  ident: b26
  article-title: Temporal ensembling for semi-supervised learning
– year: 2021
  ident: b39
  article-title: Metricunet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling
  publication-title: Med. Image Anal.
– reference: H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, J. Kautz, Pixel-adaptive convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11166–11175.
– volume: 1
  start-page: 211
  year: 1999
  end-page: 240
  ident: b9
  article-title: Robotics for surgery
  publication-title: Annu. Rev. Biomed. Eng.
– year: 2010
  ident: b36
  publication-title: Rectified linear units improve restricted boltzmann machines
– reference: N. Araslanov, S. Roth, Single-stage semantic segmentation from image labels, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4253–4262.
– volume: 216
  start-page: 718
  year: 2016
  end-page: 734
  ident: b49
  article-title: Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
  publication-title: Neurocomput.
– year: 2019
  ident: b51
  article-title: CHAOS - Combined (CT-MR) healthy abdominal organ segmentation challenge data, v1.03 ed. Zenodo
– reference: E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7167–7176.
– start-page: 597
  year: 2017
  end-page: 609
  ident: b30
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
  publication-title: International Conference on Information Processing in Medical Imaging
– year: 2018
  ident: b34
  article-title: Attention u-net: Learning where to look for the pancreas
– volume: 22
  start-page: 337
  year: 1976
  end-page: 340
  ident: b40
  article-title: Huffman codes and self-information
  publication-title: IEEE Trans. Inform. Theory
– reference: M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: International Conference on Machine Learning. PMLR, 2017, pp. 214–223.
– volume: 261
  start-page: 719
  year: 2011
  end-page: 732
  ident: b10
  article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic
  publication-title: Radiology
– year: 2019
  ident: b52
  article-title: Pytorch: An imperative style, high-performance deep learning library
– year: 2013
  ident: b54
  article-title: Generating sequences with recurrent neural networks
– year: 2021
  ident: b38
  article-title: Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention
  publication-title: Artif. Intell. Med.
– year: 2014
  ident: b53
  article-title: Adam: A method for stochastic optimization
– year: 2016
  ident: b16
  article-title: Fcns in the wild: Pixel-level adversarial and constraint-based adaptation
– year: 2015
  ident: b46
  article-title: Distilling the knowledge in a neural network
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b8
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, M. Sun, No more discrimination: Cross city adaptation of road scene segmenters, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1992–2001.
– volume: 17
  year: 2016
  ident: b18
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 2011
  start-page: 1521
  year: 2011
  end-page: 1528
  ident: b4
  article-title: Unbiased look at dataset bias
  publication-title: CVPR
– year: 2019
  ident: b5
  article-title: Unsupervised domain adaptation for the automated segmentation of neuroanatomy in MRI: a deep learning approach
  publication-title: BioRxiv
– reference: Y. Zhang, T. Xiang, T.M. Hospedales, H. Lu, Deep mutual learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4320–4328.
– start-page: 255
  year: 2019
  end-page: 263
  ident: b6
  article-title: Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2014
  ident: b14
  article-title: Generative adversarial networks
– volume: 3
  start-page: 5
  year: 2009
  ident: b3
  article-title: Covariate shift by kernel mean matching
  publication-title: Dataset Shift in Mach. Lear.
– year: 2012
  ident: b44
  article-title: Efficient inference in fully connected crfs with gaussian edge potentials
– start-page: 565
  year: 2016
  end-page: 571
  ident: b37
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– year: 2019
  ident: b1
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: W.-L. Chang, H.-P. Wang, W.-H. Peng, W.-C. Chiu, All about structure: Adapting structural information across domains for boosting semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1900–1909.
– start-page: 143
  year: 2018
  end-page: 151
  ident: b56
  article-title: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation
  publication-title: International Workshop on Machine Learning in Medical Imaging
– year: 2017
  ident: b57
  article-title: An overview of multi-task learning in deep neural networks
– start-page: 443
  year: 2016
  end-page: 450
  ident: b13
  article-title: Deep coral: Correlation alignment for deep domain adaptation
  publication-title: European Conference on Computer Vision
– ident: 10.1016/j.asoc.2022.108729_b23
– volume: 135
  start-page: 8
  year: 2020
  ident: 10.1016/j.asoc.2022.108729_b41
  article-title: One-step spectral clustering based on self-paced learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.03.035
– year: 2019
  ident: 10.1016/j.asoc.2022.108729_b1
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 2494
  year: 2020
  ident: 10.1016/j.asoc.2022.108729_b31
  article-title: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2972701
– volume: 22
  start-page: 337
  year: 1976
  ident: 10.1016/j.asoc.2022.108729_b40
  article-title: Huffman codes and self-information
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1976.1055554
– start-page: 143
  year: 2018
  ident: 10.1016/j.asoc.2022.108729_b56
  article-title: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation
– year: 2016
  ident: 10.1016/j.asoc.2022.108729_b26
– year: 2010
  ident: 10.1016/j.asoc.2022.108729_b36
– year: 2013
  ident: 10.1016/j.asoc.2022.108729_b54
– start-page: 443
  year: 2016
  ident: 10.1016/j.asoc.2022.108729_b13
  article-title: Deep coral: Correlation alignment for deep domain adaptation
– year: 2012
  ident: 10.1016/j.asoc.2022.108729_b44
– ident: 10.1016/j.asoc.2022.108729_b21
  doi: 10.1109/CVPR.2017.18
– year: 2015
  ident: 10.1016/j.asoc.2022.108729_b48
– ident: 10.1016/j.asoc.2022.108729_b45
  doi: 10.1109/CVPR.2019.01142
– ident: 10.1016/j.asoc.2022.108729_b55
  doi: 10.1109/ICCV.2015.123
– volume: 23
  start-page: 309
  year: 2004
  ident: 10.1016/j.asoc.2022.108729_b43
  article-title: GrabCut Interactive foreground extraction using iterated graph cuts
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015720
– year: 2014
  ident: 10.1016/j.asoc.2022.108729_b12
– start-page: 597
  year: 2017
  ident: 10.1016/j.asoc.2022.108729_b30
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
– year: 2019
  ident: 10.1016/j.asoc.2022.108729_b52
– year: 2017
  ident: 10.1016/j.asoc.2022.108729_b57
– ident: 10.1016/j.asoc.2022.108729_b42
  doi: 10.1109/CVPR42600.2020.00431
– year: 2014
  ident: 10.1016/j.asoc.2022.108729_b53
– volume: 216
  start-page: 718
  year: 2016
  ident: 10.1016/j.asoc.2022.108729_b49
  article-title: Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
  publication-title: Neurocomput.
  doi: 10.1016/j.neucom.2016.08.037
– ident: 10.1016/j.asoc.2022.108729_b24
  doi: 10.1007/978-3-030-01228-1_32
– year: 2014
  ident: 10.1016/j.asoc.2022.108729_b14
– ident: 10.1016/j.asoc.2022.108729_b17
  doi: 10.1109/ICCV.2017.220
– volume: 261
  start-page: 719
  year: 2011
  ident: 10.1016/j.asoc.2022.108729_b10
  article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic
  publication-title: Radiology
  doi: 10.1148/radiol.11091710
– year: 2019
  ident: 10.1016/j.asoc.2022.108729_b5
  article-title: Unsupervised domain adaptation for the automated segmentation of neuroanatomy in MRI: a deep learning approach
  publication-title: BioRxiv
– year: 2019
  ident: 10.1016/j.asoc.2022.108729_b51
– ident: 10.1016/j.asoc.2022.108729_b19
  doi: 10.1109/CVPR.2017.316
– ident: 10.1016/j.asoc.2022.108729_b22
  doi: 10.1109/ICCV.2017.244
– ident: 10.1016/j.asoc.2022.108729_b15
– volume: 17
  year: 2016
  ident: 10.1016/j.asoc.2022.108729_b18
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.asoc.2022.108729_b27
– year: 2021
  ident: 10.1016/j.asoc.2022.108729_b39
  article-title: Metricunet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102039
– ident: 10.1016/j.asoc.2022.108729_b25
  doi: 10.1109/CVPR.2019.00200
– year: 2018
  ident: 10.1016/j.asoc.2022.108729_b34
– volume: 1
  start-page: 211
  year: 1999
  ident: 10.1016/j.asoc.2022.108729_b9
  article-title: Robotics for surgery
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.1.1.211
– start-page: 565
  year: 2016
  ident: 10.1016/j.asoc.2022.108729_b37
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– year: 2019
  ident: 10.1016/j.asoc.2022.108729_b50
– volume: 2011
  start-page: 1521
  year: 2011
  ident: 10.1016/j.asoc.2022.108729_b4
  article-title: Unbiased look at dataset bias
  publication-title: CVPR
– year: 2021
  ident: 10.1016/j.asoc.2022.108729_b38
  article-title: Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102023
– start-page: 255
  year: 2019
  ident: 10.1016/j.asoc.2022.108729_b6
  article-title: Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation
– ident: 10.1016/j.asoc.2022.108729_b20
– volume: 32
  start-page: 53
  year: 2015
  ident: 10.1016/j.asoc.2022.108729_b7
  article-title: Visual domain adaptation: A survey of recent advances
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2347059
– volume: 4
  start-page: S42
  year: 2004
  ident: 10.1016/j.asoc.2022.108729_b11
  article-title: Liver cancer imaging: role of CT, MRI, US and PET
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2004.0011
– ident: 10.1016/j.asoc.2022.108729_b47
  doi: 10.1109/CVPR.2018.00454
– year: 2018
  ident: 10.1016/j.asoc.2022.108729_b2
– ident: 10.1016/j.asoc.2022.108729_b35
– year: 2015
  ident: 10.1016/j.asoc.2022.108729_b46
– volume: 3
  start-page: 5
  year: 2009
  ident: 10.1016/j.asoc.2022.108729_b3
  article-title: Covariate shift by kernel mean matching
  publication-title: Dataset Shift in Mach. Lear.
– ident: 10.1016/j.asoc.2022.108729_b28
  doi: 10.1007/978-3-030-01219-9_18
– ident: 10.1016/j.asoc.2022.108729_b32
  doi: 10.1109/ICCVW.2019.00043
– year: 2016
  ident: 10.1016/j.asoc.2022.108729_b16
– volume: 194
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.108729_b33
  article-title: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.03.026
– volume: 22
  start-page: 1345
  year: 2009
  ident: 10.1016/j.asoc.2022.108729_b8
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– year: 2017
  ident: 10.1016/j.asoc.2022.108729_b29
SSID ssj0016928
Score 2.600962
Snippet Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108729
SubjectTerms Adversarial learning
Liver segmentation
Post-situ identification manner
Self-learning
Student-to-partner learning
Unsupervised domain adaptation
Title Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning
URI https://dx.doi.org/10.1016/j.asoc.2022.108729
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu_Qpe-itbDWbTUyOIhX7ktIqeAub7EQUjVK1x_72ziQbaaF46ClkmSFhMjv7DflmhrGbuBkiqk6VcIIwFQpSR8QSs5TEAy0dDW6Yt2t66fndgXocesMKa5e1MESrtLG_iOl5tLYrdWvN-mI8rr9j5hGoUPlS5jPmqeBXqSZ5-d3Xhubh-GE-X5WEBUnbwpmC46XRApgjSklUuwJm_nE4_ThwOgdszyJF3ipe5pBVIDti--UUBm435TFbD7LlekFbfgmGm_kMc32ujV4UP9k5olKeP07M5iZH3XxKZAy-hNHMVh5l_HOs-WQ-zlaoSkwNTY7J7UyJEdeZQflpKsqVE9bv3PfbXWGHKYjEbTRWIgCN4E8jSnV9aAA0JDSVDlJcCpSTUBuaJFSA2YMLcawCcILYuNrgpvVlaNxTVs3mGZwxHssEEAgCxlij0jANlJfKRCYE5bTn6XPmlEaMEttonOZdTKOSUTaJyPARGT4qDH_Objc6i6LNxlZpr_w20S9nifAc2KJ38U-9S7ZLdwXP8YpVVx9ruEYssoprubPV2E6r_fb8SteHp27vG6od4aE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHvTitxE_9-DNrNDttmyPhkhQgYuQcGu23SmBQGkEPPrbnW23RBPDwesyE5rpzuyb9O08Qu6jZoCoOhHMkUHCBCQOizh2KbEHijsK3CAf19Tr-52heB15owpplXdhDK3S1v6ipufV2q7UbTTr2WRSf8fOQ4pA-JznGvNyh-wKTF8jY_D4teF5OH6QC6waa2bM7c2ZguSlMATYJHJuuHYFzvzjdPpx4rSPyIGFivSpeJpjUoH0hByWMgzUZuUpWQ_T5TozOb8ETfVijs0-VVplxVd2irCU5n_H5gudw246M2wMuoTx3F49SunnRNHpYpKu0NVQNZTZmdSKSoypSjXazxJWrpyRQft50Oowq6bAYrfRWDEJCtGfQpjq-tAAaHBoCiUTXJLCic0cmjgQgO2DC1EkJDgy0q7SmLU-D7R7TqrpIoULQiMeAyJBwCKrRRIkUngJj3lssJzyPFUjThnEMLaTxo3gxSwsKWXT0AQ-NIEPi8DXyMPGJyvmbGy19sp3E_7aLSEeBFv8Lv_pd0f2OoNeN-y-9N-uyL75pSA9XpPq6mMNNwhMVtFtvvG-Adqu4Zo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+domain+adaptation+for+cross-modality+liver+segmentation+via+joint+adversarial+learning+and+self-learning&rft.jtitle=Applied+soft+computing&rft.au=Hong%2C+Jin&rft.au=Yu%2C+Simon+Chun-Ho&rft.au=Chen%2C+Weitian&rft.date=2022-05-01&rft.issn=1568-4946&rft.volume=121&rft.spage=108729&rft_id=info:doi/10.1016%2Fj.asoc.2022.108729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_108729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon