Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning
Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative inform...
Saved in:
Published in | Applied soft computing Vol. 121; p. 108729 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).
•An unsupervised domain adaptation method via joint adversarial learning and self-learning for medical image segmentation.•A post-situ identification manner for adversarial learning to focus on alignment of task-related features.•A joint semantic-aware and shape-entropy-aware adversarial learning to align the distribution of low-level features.•A mean completer approach for pseudo-label generation and a low-signal augmentation function to improve the model robustness.•A novel self-learning mechanism named student-to-partner learning for further improving the segmentation results. |
---|---|
AbstractList | Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of liver diseases. Compared to MRI, CT images of liver are more abundant and readily available. However, MRI can provide richer quantitative information of the liver compared to CT. Thus, it is desirable to achieve unsupervised domain adaptation for transferring the learned knowledge from the source domain containing labeled CT images to the target domain containing unlabeled MR images. In this work, we report a novel unsupervised domain adaptation framework for cross-modality liver segmentation via joint adversarial learning and self-learning. We propose joint semantic-aware and shape-entropy-aware adversarial learning with post-situ identification manner to implicitly align the distribution of task-related features extracted from the target domain with those from the source domain. In proposed framework, a network is trained with the above two adversarial losses in an unsupervised manner, and then a mean completer of pseudo-label generation is employed to produce pseudo-labels to train the next network (desired model). Additionally, semantic-aware adversarial learning and two self-learning methods, including pixel-adaptive mask refinement and student-to-partner learning, are proposed to train the desired model. To improve the robustness of the desired model, a low-signal augmentation function is proposed to transform MRI images as the input of the desired model to handle hard samples. Using the public datasets, our experiments demonstrated the proposed unsupervised domain adaptation framework reached four supervised learning methods with a Dice score 0.912 ± 0.037 (mean ± standard deviation).
•An unsupervised domain adaptation method via joint adversarial learning and self-learning for medical image segmentation.•A post-situ identification manner for adversarial learning to focus on alignment of task-related features.•A joint semantic-aware and shape-entropy-aware adversarial learning to align the distribution of low-level features.•A mean completer approach for pseudo-label generation and a low-signal augmentation function to improve the model robustness.•A novel self-learning mechanism named student-to-partner learning for further improving the segmentation results. |
ArticleNumber | 108729 |
Author | Hong, Jin Chen, Weitian Yu, Simon Chun-Ho |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0002-8757-2700 surname: Hong fullname: Hong, Jin email: hongj5@mail2.sysu.edu.cn – sequence: 2 givenname: Simon Chun-Ho surname: Yu fullname: Yu, Simon Chun-Ho email: simonyu@cuhk.edu.hk – sequence: 3 givenname: Weitian orcidid: 0000-0001-7242-9285 surname: Chen fullname: Chen, Weitian email: wtchen@cuhk.edu.hk |
BookMark | eNp9kM1qwzAQhEVJoUnaF-hJL-BU8l9k6KWE_kGgl_Qs1tI6yNhSkBxD3r5KnV56yGmX2fkWZhZkZp1FQh45W3HGy6d2BcGpVcrSNApinVY3ZM7jTKpS8Fnci1IkeZWXd2QRQssiVKViTo7fNhwP6EcTUFPtejCWgobDAINxljbOU-VdCEnvNHRmONHOjOhpwH2P9uIaDdDWGTtENB4DeAMd7RC8NXZPwero75rkT7kntw10AR8uc0l2b6-7zUey_Xr_3LxsE5UxNiQCgfMCBK-zEhkiS3Gdg2iiJHKuWLbOVZVjIYoM6zoXyEWtM9Cs4GVa6WxJ0untbwKPjTx404M_Sc7kuTfZynNv8tybnHqLkPgHKTPFHDyY7jr6PKEYM40GvQzKoFWojUc1SO3MNfwH4zyOdQ |
CitedBy_id | crossref_primary_10_1007_s11227_025_06924_5 crossref_primary_10_1109_OJEMB_2024_3512932 crossref_primary_10_1002_ima_23220 crossref_primary_10_1016_j_jksuci_2024_102086 crossref_primary_10_1038_s41598_025_92423_9 crossref_primary_10_1002_ima_23222 crossref_primary_10_1016_j_bspc_2024_106977 crossref_primary_10_1016_j_bspc_2024_106415 crossref_primary_10_1016_j_cmpb_2024_108165 crossref_primary_10_1016_j_measurement_2024_114901 crossref_primary_10_12677_JISP_2022_114019 crossref_primary_10_1109_TETCI_2024_3369868 crossref_primary_10_1002_ima_70019 crossref_primary_10_1016_j_asoc_2023_110675 crossref_primary_10_1016_j_bspc_2024_106846 crossref_primary_10_3390_app13010084 crossref_primary_10_1016_j_bspc_2024_106290 crossref_primary_10_1007_s11548_024_03219_7 crossref_primary_10_3389_fcell_2024_1484880 crossref_primary_10_1016_j_bspc_2024_107391 crossref_primary_10_1016_j_cmpbup_2025_100180 crossref_primary_10_1016_j_bspc_2024_106028 crossref_primary_10_1016_j_bspc_2024_106669 crossref_primary_10_1016_j_cmpb_2024_108252 crossref_primary_10_1016_j_bspc_2024_107357 crossref_primary_10_1080_21681163_2025_2476702 crossref_primary_10_1016_j_cmpb_2025_108635 crossref_primary_10_1016_j_cmpb_2025_108599 crossref_primary_10_1016_j_asoc_2025_112868 crossref_primary_10_1016_j_cmpb_2025_108636 crossref_primary_10_1016_j_bspc_2024_107071 crossref_primary_10_3389_fnins_2022_1087176 crossref_primary_10_1016_j_bspc_2024_107122 crossref_primary_10_1016_j_engappai_2022_105532 crossref_primary_10_3390_bioengineering11070737 crossref_primary_10_1016_j_cmpb_2023_107729 crossref_primary_10_1007_s11042_024_18388_5 crossref_primary_10_1002_ima_23123 crossref_primary_10_1002_ima_23201 crossref_primary_10_1016_j_cmpb_2024_108141 crossref_primary_10_1002_ima_23126 crossref_primary_10_1007_s10489_024_05931_y crossref_primary_10_1016_j_asoc_2023_110697 crossref_primary_10_1016_j_gande_2025_03_002 crossref_primary_10_1016_j_neunet_2025_107396 crossref_primary_10_3390_diagnostics12102475 crossref_primary_10_1016_j_bspc_2024_107339 crossref_primary_10_1016_j_knosys_2022_109155 crossref_primary_10_1007_s44230_024_00083_1 crossref_primary_10_1002_ima_70062 crossref_primary_10_1016_j_bspc_2024_106486 crossref_primary_10_1016_j_cmpb_2024_108199 crossref_primary_10_3389_fonc_2024_1415859 crossref_primary_10_1016_j_bspc_2024_107333 crossref_primary_10_1016_j_bspc_2024_107410 crossref_primary_10_1016_j_cmpb_2024_108398 crossref_primary_10_1016_j_bspc_2024_106840 crossref_primary_10_1177_15330338231173495 crossref_primary_10_1016_j_asoc_2023_110787 crossref_primary_10_1155_2022_2303733 crossref_primary_10_3390_diagnostics13213313 crossref_primary_10_1002_cpe_7837 crossref_primary_10_1007_s10462_024_10992_z crossref_primary_10_3390_biomimetics7040195 crossref_primary_10_1016_j_jksuci_2024_102129 |
Cites_doi | 10.1016/j.patrec.2020.03.035 10.1109/TMI.2020.2972701 10.1109/TIT.1976.1055554 10.1109/CVPR.2017.18 10.1109/CVPR.2019.01142 10.1109/ICCV.2015.123 10.1145/1015706.1015720 10.1109/CVPR42600.2020.00431 10.1016/j.neucom.2016.08.037 10.1007/978-3-030-01228-1_32 10.1109/ICCV.2017.220 10.1148/radiol.11091710 10.1109/CVPR.2017.316 10.1109/ICCV.2017.244 10.1016/j.media.2021.102039 10.1109/CVPR.2019.00200 10.1146/annurev.bioeng.1.1.211 10.1016/j.artmed.2021.102023 10.1109/MSP.2014.2347059 10.1102/1470-7330.2004.0011 10.1109/CVPR.2018.00454 10.1007/978-3-030-01219-9_18 10.1109/ICCVW.2019.00043 10.1016/j.neuroimage.2019.03.026 10.1109/TKDE.2009.191 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2022.108729 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2022_108729 S1568494622001788 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-8ea115a81b36e0ee02e74a8f5a8841c0374c94e5853ebb48e18bd3ad051629d3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:14 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Fri Feb 23 02:41:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Unsupervised domain adaptation Post-situ identification manner Liver segmentation Self-learning Adversarial learning Student-to-partner learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-8ea115a81b36e0ee02e74a8f5a8841c0374c94e5853ebb48e18bd3ad051629d3 |
ORCID | 0000-0002-8757-2700 0000-0001-7242-9285 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2022_108729 crossref_citationtrail_10_1016_j_asoc_2022_108729 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_108729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | T.-H. Vu, H. Jain, M. Bucher, M. Cord, P. Pérez, Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2517–2526. Ginneken, Schaefer-Prokop, Prokop (b10) 2011; 261 Milletari, Navab, Ahmadi (b37) 2016 Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, M. Sun, No more discrimination: Cross city adaptation of road scene segmenters, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1992–2001. Kingma, Ba (b53) 2014 Tong, Gan, Wen, Li (b41) 2020; 135 Nair, Hinton (b36) 2010 Patel, Gopalan, Li, Chellappa (b7) 2015; 32 W.-L. Chang, H.-P. Wang, W.-H. Peng, W.-C. Chiu, All about structure: Adapting structural information across domains for boosting semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1900–1909. He, Lian, Adeli, Huo, Gao, Zhang, Zhang, Shen (b39) 2021 Chen, Dou, Chen, Qin, Heng (b31) 2020; 39 J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232. Hoffman, Wang, Yu, Darrell (b16) 2016 Tzeng, Hoffman, Zhang, Saenko, Darrell (b12) 2014 Bilic, Christ, Vorontsov, Chlebus, Chen, Dou, Fu, Han, Heng, Hesser (b50) 2019 Kavur, Selver, Dicle, Barı CÇs, Gezer (b51) 2019 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b14) 2014 Graves (b54) 2013 Rother, Kolmogorov, Blake (b43) 2004; 23 Dou, Ouyang, Chen, Chen, Heng (b2) 2018 Y. Zou, Z. Yu, B. Kumar, J. Wang, Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 289–305. Torralba, Efros (b4) 2011; 2011 Pan, Yang (b8) 2009; 22 Radford, Metz, Chintala (b48) 2015 Hinton, Vinyals, Dean (b46) 2015 Tarvainen, Valpola (b27) 2017 Perone, Ballester, Barros, Cohen-Adad (b33) 2019; 194 Y. Zhang, T. Xiang, T.M. Hospedales, H. Lu, Deep mutual learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4320–4328. Howe, Matsuoka (b9) 1999; 1 K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised pixel-level domain adaptation with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3722–3731. J. Yang, N.C. Dvornek, F. Zhang, J. Zhuang, J. Chapiro, M. Lin, J.S. Duncan, Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019b. J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, T. Darrell, Cycada: Cycle-consistent adversarial domain adaptation, in: International Conference on Machine Learning. PMLR, 2018, pp. 1989–1998. Gretton, Smola, Huang, Schmittfull, Borgwardt, Schölkopf (b3) 2009; 3 Katona, Nemetz (b40) 1976; 22 H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, J. Kautz, Pixel-adaptive convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11166–11175. Z. Wu, X. Han, Y.-L. Lin, M.G. Uzunbas, T. Goldstein, S.N. Lim, L.S. Davis, Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 518–534. Novosad, Fonov, Collins (b5) 2019 Chung, Lee, Park, Lee, Lee, Shin (b38) 2021 E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7167–7176. M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: International Conference on Machine Learning. PMLR, 2017, pp. 214–223. N. Araslanov, S. Roth, Single-stage semantic segmentation from image labels, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4253–4262. Liew, Khalil-Hani, Bakhteri (b49) 2016; 216 Yang, Dvornek, Zhang, Chapiro, Lin, Duncan (b6) 2019 Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (b34) 2018 Laine, Aila (b26) 2016 K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. French, Mackiewicz, Fisher (b29) 2017 Sun, Saenko (b13) 2016 Krähenbühl, Koltun (b44) 2012 S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning. PMLR, 2015, pp. 448–456. Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b52) 2019 Ruder (b57) 2017 Chen, Dou, Chen, Heng (b56) 2018 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b18) 2016; 17 Oliva, Saini (b11) 2004; 4 Kouw, Loog (b1) 2019 Kamnitsas, Baumgartner, Ledig, Newcombe, Simpson, Kane, Menon, Nori, Criminisi, Rueckert (b30) 2017 Hinton (10.1016/j.asoc.2022.108729_b46) 2015 10.1016/j.asoc.2022.108729_b45 10.1016/j.asoc.2022.108729_b47 Hoffman (10.1016/j.asoc.2022.108729_b16) 2016 Goodfellow (10.1016/j.asoc.2022.108729_b14) 2014 Kingma (10.1016/j.asoc.2022.108729_b53) 2014 Tarvainen (10.1016/j.asoc.2022.108729_b27) 2017 Krähenbühl (10.1016/j.asoc.2022.108729_b44) 2012 Ganin (10.1016/j.asoc.2022.108729_b18) 2016; 17 10.1016/j.asoc.2022.108729_b42 Rother (10.1016/j.asoc.2022.108729_b43) 2004; 23 Tzeng (10.1016/j.asoc.2022.108729_b12) 2014 Nair (10.1016/j.asoc.2022.108729_b36) 2010 Dou (10.1016/j.asoc.2022.108729_b2) 2018 Ruder (10.1016/j.asoc.2022.108729_b57) 2017 Chung (10.1016/j.asoc.2022.108729_b38) 2021 Tong (10.1016/j.asoc.2022.108729_b41) 2020; 135 Novosad (10.1016/j.asoc.2022.108729_b5) 2019 10.1016/j.asoc.2022.108729_b35 Torralba (10.1016/j.asoc.2022.108729_b4) 2011; 2011 Ginneken (10.1016/j.asoc.2022.108729_b10) 2011; 261 Liew (10.1016/j.asoc.2022.108729_b49) 2016; 216 Kouw (10.1016/j.asoc.2022.108729_b1) 2019 10.1016/j.asoc.2022.108729_b32 Bilic (10.1016/j.asoc.2022.108729_b50) 2019 Milletari (10.1016/j.asoc.2022.108729_b37) 2016 Katona (10.1016/j.asoc.2022.108729_b40) 1976; 22 10.1016/j.asoc.2022.108729_b22 Laine (10.1016/j.asoc.2022.108729_b26) 2016 10.1016/j.asoc.2022.108729_b23 10.1016/j.asoc.2022.108729_b24 Kamnitsas (10.1016/j.asoc.2022.108729_b30) 2017 10.1016/j.asoc.2022.108729_b25 Oliva (10.1016/j.asoc.2022.108729_b11) 2004; 4 10.1016/j.asoc.2022.108729_b28 French (10.1016/j.asoc.2022.108729_b29) 2017 10.1016/j.asoc.2022.108729_b20 Graves (10.1016/j.asoc.2022.108729_b54) 2013 10.1016/j.asoc.2022.108729_b21 He (10.1016/j.asoc.2022.108729_b39) 2021 Chen (10.1016/j.asoc.2022.108729_b56) 2018 10.1016/j.asoc.2022.108729_b19 Patel (10.1016/j.asoc.2022.108729_b7) 2015; 32 Oktay (10.1016/j.asoc.2022.108729_b34) 2018 Kavur (10.1016/j.asoc.2022.108729_b51) 2019 Sun (10.1016/j.asoc.2022.108729_b13) 2016 Yang (10.1016/j.asoc.2022.108729_b6) 2019 10.1016/j.asoc.2022.108729_b55 10.1016/j.asoc.2022.108729_b15 10.1016/j.asoc.2022.108729_b17 Gretton (10.1016/j.asoc.2022.108729_b3) 2009; 3 Chen (10.1016/j.asoc.2022.108729_b31) 2020; 39 Perone (10.1016/j.asoc.2022.108729_b33) 2019; 194 Radford (10.1016/j.asoc.2022.108729_b48) 2015 Pan (10.1016/j.asoc.2022.108729_b8) 2009; 22 Howe (10.1016/j.asoc.2022.108729_b9) 1999; 1 Paszke (10.1016/j.asoc.2022.108729_b52) 2019 |
References_xml | – reference: J. Yang, N.C. Dvornek, F. Zhang, J. Zhuang, J. Chapiro, M. Lin, J.S. Duncan, Domain-agnostic learning with anatomy-consistent embedding for cross-modality liver segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019b. – volume: 23 start-page: 309 year: 2004 end-page: 314 ident: b43 article-title: GrabCut Interactive foreground extraction using iterated graph cuts publication-title: ACM Trans. Graph. – reference: T.-H. Vu, H. Jain, M. Bucher, M. Cord, P. Pérez, Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2517–2526. – reference: Z. Wu, X. Han, Y.-L. Lin, M.G. Uzunbas, T. Goldstein, S.N. Lim, L.S. Davis, Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 518–534. – reference: J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, T. Darrell, Cycada: Cycle-consistent adversarial domain adaptation, in: International Conference on Machine Learning. PMLR, 2018, pp. 1989–1998. – volume: 4 start-page: S42 year: 2004 ident: b11 article-title: Liver cancer imaging: role of CT, MRI, US and PET publication-title: Cancer Imaging – reference: Y. Zou, Z. Yu, B. Kumar, J. Wang, Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 289–305. – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. – reference: K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised pixel-level domain adaptation with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3722–3731. – volume: 194 start-page: 1 year: 2019 end-page: 11 ident: b33 article-title: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling publication-title: NeuroImage – volume: 32 start-page: 53 year: 2015 end-page: 69 ident: b7 article-title: Visual domain adaptation: A survey of recent advances publication-title: IEEE Signal Process. Mag. – year: 2017 ident: b29 article-title: Self-ensembling for visual domain adaptation – year: 2017 ident: b27 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – year: 2018 ident: b2 article-title: Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning. PMLR, 2015, pp. 448–456. – volume: 135 start-page: 8 year: 2020 end-page: 14 ident: b41 article-title: One-step spectral clustering based on self-paced learning publication-title: Pattern Recognit. Lett. – year: 2014 ident: b12 article-title: Deep domain confusion: Maximizing for domain invariance – year: 2015 ident: b48 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – volume: 39 start-page: 2494 year: 2020 end-page: 2505 ident: b31 article-title: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: b50 article-title: The liver tumor segmentation benchmark (lits) – reference: J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232. – year: 2016 ident: b26 article-title: Temporal ensembling for semi-supervised learning – year: 2021 ident: b39 article-title: Metricunet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling publication-title: Med. Image Anal. – reference: H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, J. Kautz, Pixel-adaptive convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11166–11175. – volume: 1 start-page: 211 year: 1999 end-page: 240 ident: b9 article-title: Robotics for surgery publication-title: Annu. Rev. Biomed. Eng. – year: 2010 ident: b36 publication-title: Rectified linear units improve restricted boltzmann machines – reference: N. Araslanov, S. Roth, Single-stage semantic segmentation from image labels, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4253–4262. – volume: 216 start-page: 718 year: 2016 end-page: 734 ident: b49 article-title: Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems publication-title: Neurocomput. – year: 2019 ident: b51 article-title: CHAOS - Combined (CT-MR) healthy abdominal organ segmentation challenge data, v1.03 ed. Zenodo – reference: E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7167–7176. – start-page: 597 year: 2017 end-page: 609 ident: b30 article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks publication-title: International Conference on Information Processing in Medical Imaging – year: 2018 ident: b34 article-title: Attention u-net: Learning where to look for the pancreas – volume: 22 start-page: 337 year: 1976 end-page: 340 ident: b40 article-title: Huffman codes and self-information publication-title: IEEE Trans. Inform. Theory – reference: M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: International Conference on Machine Learning. PMLR, 2017, pp. 214–223. – volume: 261 start-page: 719 year: 2011 end-page: 732 ident: b10 article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic publication-title: Radiology – year: 2019 ident: b52 article-title: Pytorch: An imperative style, high-performance deep learning library – year: 2013 ident: b54 article-title: Generating sequences with recurrent neural networks – year: 2021 ident: b38 article-title: Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention publication-title: Artif. Intell. Med. – year: 2014 ident: b53 article-title: Adam: A method for stochastic optimization – year: 2016 ident: b16 article-title: Fcns in the wild: Pixel-level adversarial and constraint-based adaptation – year: 2015 ident: b46 article-title: Distilling the knowledge in a neural network – volume: 22 start-page: 1345 year: 2009 end-page: 1359 ident: b8 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – reference: Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, M. Sun, No more discrimination: Cross city adaptation of road scene segmenters, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1992–2001. – volume: 17 year: 2016 ident: b18 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 2011 start-page: 1521 year: 2011 end-page: 1528 ident: b4 article-title: Unbiased look at dataset bias publication-title: CVPR – year: 2019 ident: b5 article-title: Unsupervised domain adaptation for the automated segmentation of neuroanatomy in MRI: a deep learning approach publication-title: BioRxiv – reference: Y. Zhang, T. Xiang, T.M. Hospedales, H. Lu, Deep mutual learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4320–4328. – start-page: 255 year: 2019 end-page: 263 ident: b6 article-title: Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2014 ident: b14 article-title: Generative adversarial networks – volume: 3 start-page: 5 year: 2009 ident: b3 article-title: Covariate shift by kernel mean matching publication-title: Dataset Shift in Mach. Lear. – year: 2012 ident: b44 article-title: Efficient inference in fully connected crfs with gaussian edge potentials – start-page: 565 year: 2016 end-page: 571 ident: b37 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) – year: 2019 ident: b1 article-title: A review of domain adaptation without target labels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: W.-L. Chang, H.-P. Wang, W.-H. Peng, W.-C. Chiu, All about structure: Adapting structural information across domains for boosting semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1900–1909. – start-page: 143 year: 2018 end-page: 151 ident: b56 article-title: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation publication-title: International Workshop on Machine Learning in Medical Imaging – year: 2017 ident: b57 article-title: An overview of multi-task learning in deep neural networks – start-page: 443 year: 2016 end-page: 450 ident: b13 article-title: Deep coral: Correlation alignment for deep domain adaptation publication-title: European Conference on Computer Vision – ident: 10.1016/j.asoc.2022.108729_b23 – volume: 135 start-page: 8 year: 2020 ident: 10.1016/j.asoc.2022.108729_b41 article-title: One-step spectral clustering based on self-paced learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.03.035 – year: 2019 ident: 10.1016/j.asoc.2022.108729_b1 article-title: A review of domain adaptation without target labels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 2494 year: 2020 ident: 10.1016/j.asoc.2022.108729_b31 article-title: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2972701 – volume: 22 start-page: 337 year: 1976 ident: 10.1016/j.asoc.2022.108729_b40 article-title: Huffman codes and self-information publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1976.1055554 – start-page: 143 year: 2018 ident: 10.1016/j.asoc.2022.108729_b56 article-title: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation – year: 2016 ident: 10.1016/j.asoc.2022.108729_b26 – year: 2010 ident: 10.1016/j.asoc.2022.108729_b36 – year: 2013 ident: 10.1016/j.asoc.2022.108729_b54 – start-page: 443 year: 2016 ident: 10.1016/j.asoc.2022.108729_b13 article-title: Deep coral: Correlation alignment for deep domain adaptation – year: 2012 ident: 10.1016/j.asoc.2022.108729_b44 – ident: 10.1016/j.asoc.2022.108729_b21 doi: 10.1109/CVPR.2017.18 – year: 2015 ident: 10.1016/j.asoc.2022.108729_b48 – ident: 10.1016/j.asoc.2022.108729_b45 doi: 10.1109/CVPR.2019.01142 – ident: 10.1016/j.asoc.2022.108729_b55 doi: 10.1109/ICCV.2015.123 – volume: 23 start-page: 309 year: 2004 ident: 10.1016/j.asoc.2022.108729_b43 article-title: GrabCut Interactive foreground extraction using iterated graph cuts publication-title: ACM Trans. Graph. doi: 10.1145/1015706.1015720 – year: 2014 ident: 10.1016/j.asoc.2022.108729_b12 – start-page: 597 year: 2017 ident: 10.1016/j.asoc.2022.108729_b30 article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks – year: 2019 ident: 10.1016/j.asoc.2022.108729_b52 – year: 2017 ident: 10.1016/j.asoc.2022.108729_b57 – ident: 10.1016/j.asoc.2022.108729_b42 doi: 10.1109/CVPR42600.2020.00431 – year: 2014 ident: 10.1016/j.asoc.2022.108729_b53 – volume: 216 start-page: 718 year: 2016 ident: 10.1016/j.asoc.2022.108729_b49 article-title: Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems publication-title: Neurocomput. doi: 10.1016/j.neucom.2016.08.037 – ident: 10.1016/j.asoc.2022.108729_b24 doi: 10.1007/978-3-030-01228-1_32 – year: 2014 ident: 10.1016/j.asoc.2022.108729_b14 – ident: 10.1016/j.asoc.2022.108729_b17 doi: 10.1109/ICCV.2017.220 – volume: 261 start-page: 719 year: 2011 ident: 10.1016/j.asoc.2022.108729_b10 article-title: Computer-aided diagnosis: how to move from the laboratory to the clinic publication-title: Radiology doi: 10.1148/radiol.11091710 – year: 2019 ident: 10.1016/j.asoc.2022.108729_b5 article-title: Unsupervised domain adaptation for the automated segmentation of neuroanatomy in MRI: a deep learning approach publication-title: BioRxiv – year: 2019 ident: 10.1016/j.asoc.2022.108729_b51 – ident: 10.1016/j.asoc.2022.108729_b19 doi: 10.1109/CVPR.2017.316 – ident: 10.1016/j.asoc.2022.108729_b22 doi: 10.1109/ICCV.2017.244 – ident: 10.1016/j.asoc.2022.108729_b15 – volume: 17 year: 2016 ident: 10.1016/j.asoc.2022.108729_b18 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – year: 2017 ident: 10.1016/j.asoc.2022.108729_b27 – year: 2021 ident: 10.1016/j.asoc.2022.108729_b39 article-title: Metricunet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102039 – ident: 10.1016/j.asoc.2022.108729_b25 doi: 10.1109/CVPR.2019.00200 – year: 2018 ident: 10.1016/j.asoc.2022.108729_b34 – volume: 1 start-page: 211 year: 1999 ident: 10.1016/j.asoc.2022.108729_b9 article-title: Robotics for surgery publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.1.1.211 – start-page: 565 year: 2016 ident: 10.1016/j.asoc.2022.108729_b37 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation – year: 2019 ident: 10.1016/j.asoc.2022.108729_b50 – volume: 2011 start-page: 1521 year: 2011 ident: 10.1016/j.asoc.2022.108729_b4 article-title: Unbiased look at dataset bias publication-title: CVPR – year: 2021 ident: 10.1016/j.asoc.2022.108729_b38 article-title: Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102023 – start-page: 255 year: 2019 ident: 10.1016/j.asoc.2022.108729_b6 article-title: Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation – ident: 10.1016/j.asoc.2022.108729_b20 – volume: 32 start-page: 53 year: 2015 ident: 10.1016/j.asoc.2022.108729_b7 article-title: Visual domain adaptation: A survey of recent advances publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2347059 – volume: 4 start-page: S42 year: 2004 ident: 10.1016/j.asoc.2022.108729_b11 article-title: Liver cancer imaging: role of CT, MRI, US and PET publication-title: Cancer Imaging doi: 10.1102/1470-7330.2004.0011 – ident: 10.1016/j.asoc.2022.108729_b47 doi: 10.1109/CVPR.2018.00454 – year: 2018 ident: 10.1016/j.asoc.2022.108729_b2 – ident: 10.1016/j.asoc.2022.108729_b35 – year: 2015 ident: 10.1016/j.asoc.2022.108729_b46 – volume: 3 start-page: 5 year: 2009 ident: 10.1016/j.asoc.2022.108729_b3 article-title: Covariate shift by kernel mean matching publication-title: Dataset Shift in Mach. Lear. – ident: 10.1016/j.asoc.2022.108729_b28 doi: 10.1007/978-3-030-01219-9_18 – ident: 10.1016/j.asoc.2022.108729_b32 doi: 10.1109/ICCVW.2019.00043 – year: 2016 ident: 10.1016/j.asoc.2022.108729_b16 – volume: 194 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2022.108729_b33 article-title: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.03.026 – volume: 22 start-page: 1345 year: 2009 ident: 10.1016/j.asoc.2022.108729_b8 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – year: 2017 ident: 10.1016/j.asoc.2022.108729_b29 |
SSID | ssj0016928 |
Score | 2.600962 |
Snippet | Liver segmentation on images acquired using computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in clinical management of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108729 |
SubjectTerms | Adversarial learning Liver segmentation Post-situ identification manner Self-learning Student-to-partner learning Unsupervised domain adaptation |
Title | Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning |
URI | https://dx.doi.org/10.1016/j.asoc.2022.108729 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu_Qpe-itbDWbTUyOIhX7ktIqeAub7EQUjVK1x_72ziQbaaF46ClkmSFhMjv7DflmhrGbuBkiqk6VcIIwFQpSR8QSs5TEAy0dDW6Yt2t66fndgXocesMKa5e1MESrtLG_iOl5tLYrdWvN-mI8rr9j5hGoUPlS5jPmqeBXqSZ5-d3Xhubh-GE-X5WEBUnbwpmC46XRApgjSklUuwJm_nE4_ThwOgdszyJF3ipe5pBVIDti--UUBm435TFbD7LlekFbfgmGm_kMc32ujV4UP9k5olKeP07M5iZH3XxKZAy-hNHMVh5l_HOs-WQ-zlaoSkwNTY7J7UyJEdeZQflpKsqVE9bv3PfbXWGHKYjEbTRWIgCN4E8jSnV9aAA0JDSVDlJcCpSTUBuaJFSA2YMLcawCcILYuNrgpvVlaNxTVs3mGZwxHssEEAgCxlij0jANlJfKRCYE5bTn6XPmlEaMEttonOZdTKOSUTaJyPARGT4qDH_Objc6i6LNxlZpr_w20S9nifAc2KJ38U-9S7ZLdwXP8YpVVx9ruEYssoprubPV2E6r_fb8SteHp27vG6od4aE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHvTitxE_9-DNrNDttmyPhkhQgYuQcGu23SmBQGkEPPrbnW23RBPDwesyE5rpzuyb9O08Qu6jZoCoOhHMkUHCBCQOizh2KbEHijsK3CAf19Tr-52heB15owpplXdhDK3S1v6ipufV2q7UbTTr2WRSf8fOQ4pA-JznGvNyh-wKTF8jY_D4teF5OH6QC6waa2bM7c2ZguSlMATYJHJuuHYFzvzjdPpx4rSPyIGFivSpeJpjUoH0hByWMgzUZuUpWQ_T5TozOb8ETfVijs0-VVplxVd2irCU5n_H5gudw246M2wMuoTx3F49SunnRNHpYpKu0NVQNZTZmdSKSoypSjXazxJWrpyRQft50Oowq6bAYrfRWDEJCtGfQpjq-tAAaHBoCiUTXJLCic0cmjgQgO2DC1EkJDgy0q7SmLU-D7R7TqrpIoULQiMeAyJBwCKrRRIkUngJj3lssJzyPFUjThnEMLaTxo3gxSwsKWXT0AQ-NIEPi8DXyMPGJyvmbGy19sp3E_7aLSEeBFv8Lv_pd0f2OoNeN-y-9N-uyL75pSA9XpPq6mMNNwhMVtFtvvG-Adqu4Zo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+domain+adaptation+for+cross-modality+liver+segmentation+via+joint+adversarial+learning+and+self-learning&rft.jtitle=Applied+soft+computing&rft.au=Hong%2C+Jin&rft.au=Yu%2C+Simon+Chun-Ho&rft.au=Chen%2C+Weitian&rft.date=2022-05-01&rft.issn=1568-4946&rft.volume=121&rft.spage=108729&rft_id=info:doi/10.1016%2Fj.asoc.2022.108729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_108729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |