A tracking control method for electricity-carbon emission forecasting

This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 17; p. e36576
Main Authors Chen, Hongyin, Wang, Songcen, Li, Jianfeng, Yu, Yaoxian, Li, Dezhi, Jin, Lu, Guo, Yi, Cui, Xiaorui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models such as LSTM and ARDL using Python showcases the proposed method's substantial reduction in prediction errors compared to singular reliance on electricity data, while also significantly reducing computational time in contrast to LSTM models. The findings establish a valuable reference for policymakers and researchers in refining carbon emission prediction methodologies and formulating effective carbon reduction policies. •Proposes a carbon emission prediction algorithm based on tracking control.•Proposes an idea of correcting the tracking forecast according to the power data.•Quickly predict future carbon emissions on the basis of ensuring the stability.•Significantly improve the accuracy of the forecast.
AbstractList This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models such as LSTM and ARDL using Python showcases the proposed method's substantial reduction in prediction errors compared to singular reliance on electricity data, while also significantly reducing computational time in contrast to LSTM models. The findings establish a valuable reference for policymakers and researchers in refining carbon emission prediction methodologies and formulating effective carbon reduction policies. •Proposes a carbon emission prediction algorithm based on tracking control.•Proposes an idea of correcting the tracking forecast according to the power data.•Quickly predict future carbon emissions on the basis of ensuring the stability.•Significantly improve the accuracy of the forecast.
This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models such as LSTM and ARDL using Python showcases the proposed method's substantial reduction in prediction errors compared to singular reliance on electricity data, while also significantly reducing computational time in contrast to LSTM models. The findings establish a valuable reference for policymakers and researchers in refining carbon emission prediction methodologies and formulating effective carbon reduction policies.
ArticleNumber e36576
Author Jin, Lu
Li, Jianfeng
Cui, Xiaorui
Yu, Yaoxian
Guo, Yi
Chen, Hongyin
Wang, Songcen
Li, Dezhi
Author_xml – sequence: 1
  givenname: Hongyin
  surname: Chen
  fullname: Chen, Hongyin
  email: ssrga163831@sina.com
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 2
  givenname: Songcen
  surname: Wang
  fullname: Wang, Songcen
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 3
  givenname: Jianfeng
  surname: Li
  fullname: Li, Jianfeng
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 4
  givenname: Yaoxian
  surname: Yu
  fullname: Yu, Yaoxian
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 5
  givenname: Dezhi
  surname: Li
  fullname: Li, Dezhi
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 6
  givenname: Lu
  surname: Jin
  fullname: Jin, Lu
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 7
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China
– sequence: 8
  givenname: Xiaorui
  surname: Cui
  fullname: Cui, Xiaorui
  organization: State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi, China
BookMark eNqFkMtKAzEUhoNUsNY-gjAvMDWXuWUlpVQtFNzoOqQnJ23qdCJJEPr2praIO1f5k_B_nPPdktHgByTkntEZo6x52M922LujH2ac8mqGoqnb5oqMeUXrsqsqOvqTb8g0xj2llNVdI1sxJst5kYKGDzdsC_BDCr4vDph23hTWhwJ7hBQcuHQsQYeNHwo8uBhdDvkfQceUq3fk2uo-4vRyTsj70_Jt8VKuX59Xi_m6BEFpKjvT1V0tOTUoESTPd4kaJVjJZG0ogG7bDdMSdGO04Z1AaCVKa1sjKOdiQlZnrvF6rz6DO-hwVF479fPgw1bpkBz0qChjlm6YtACbSkgjoRE2C-Na6KZFyKz6zILgYwxof3mMqpNatVcXteqkVp3V5t7juYd50S-HQUVwOAAal32kPIn7h_ANMtWIaQ
Cites_doi 10.1016/j.apenergy.2019.01.113
10.1016/j.techfore.2022.121858
10.1016/j.renene.2022.04.137
10.1016/j.renene.2021.09.072
10.1016/j.jretconser.2024.103854
10.1111/jiec.12839
10.1016/j.epsr.2023.109792
10.1016/j.renene.2023.118983
10.1007/s11814-014-0301-2
10.1016/j.renene.2022.04.023
10.1016/j.cie.2023.109237
10.3390/app10113788
10.1016/j.renene.2021.08.078
10.1109/TICPS.2023.3335328
10.1016/j.techfore.2023.122945
ContentType Journal Article
Copyright 2024 China Electric Power Research Institute
Copyright_xml – notice: 2024 China Electric Power Research Institute
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.heliyon.2024.e36576
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_011f0b19fccb439d9c63f0162a3a67ec
10_1016_j_heliyon_2024_e36576
S2405844024126072
GrantInformation_xml – fundername: Fund of State Key Laboratory of Power Grid Safety
  grantid: 5442YD220020
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
AALRI
ABMAC
ACGFS
ACLIJ
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
NCXOZ
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
ID FETCH-LOGICAL-c300t-8d8585920de9ec928d89eae9cf9195d0cca77b1a9ca6dad283ec79e9ff7d30223
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Tue Oct 22 15:14:41 EDT 2024
Wed Nov 06 13:19:34 EST 2024
Sat Nov 09 16:00:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Carbon emission
LSTM
Forcast
Tracking control
ARDL
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-8d8585920de9ec928d89eae9cf9195d0cca77b1a9ca6dad283ec79e9ff7d30223
OpenAccessLink https://doaj.org/article/011f0b19fccb439d9c63f0162a3a67ec
ParticipantIDs doaj_primary_oai_doaj_org_article_011f0b19fccb439d9c63f0162a3a67ec
crossref_primary_10_1016_j_heliyon_2024_e36576
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e36576
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sun, Ding, Liu, Wang (br0030) 2023; 179
Liu, Jiang, De Bock, Wang, Zhang, Niu (br0040) 2024; 198
Ahmed, Cho, Kim, Seong, Yeo (br0160) 2015; 32
AlKheder, Almusalam (br0180) 2022; 191
Bedi, Toshniwal (br0220) 2019; 238
Xu, Wu (br0090) 2023; 215
Liu, Chang, Huang (br0060) 2022; 42
Shan, Zhou, Meng, Mi, Liu, Guan (br0230) 2019; 23
IEA, CO2 emissions in 2022, resreport, IEA (2023-03).
Dang (br0120) 2018; 32
Abbasi, Adedoyin, Abbas, Hussain (br0110) 2021; 180
Qi, Lv, Ma, Li (br0170) 2020; 10
Wazirali, Yaghoubi, Abujazar, Ahmad, Vakili (br0190) 2023; 225
Liu, Zhang, Abedin, Wang, Yang, Gao, Chen (br0050) 2024; 79
Hu, Zhang (br0100) 2023; 33
Molnar (br0210) 2024
Mirziyoyeva, Salahodjaev (br0070) 2022; 192
Liu, Zhou, Yan, Han, Li, Galsan (br0130) 2021; 39
Dai, Yang, Leng (br0200) 2022; 182
Hua, Chen, Gan, Sun, Dong, Liu, Qin, Li, Hu (br0020) 2024; 2
Gao, Yang, Xiao, Goh (br0080) 2022; 181
Zhang, Li, Zhang, Qiao, Li (br0150) 2022; 1
Li, Zhang, Peng, Yin, Shi (br0140) 2021; 38
Hu (10.1016/j.heliyon.2024.e36576_br0100) 2023; 33
Zhang (10.1016/j.heliyon.2024.e36576_br0150) 2022; 1
Mirziyoyeva (10.1016/j.heliyon.2024.e36576_br0070) 2022; 192
Shan (10.1016/j.heliyon.2024.e36576_br0230) 2019; 23
Liu (10.1016/j.heliyon.2024.e36576_br0040) 2024; 198
Molnar (10.1016/j.heliyon.2024.e36576_br0210) 2024
Liu (10.1016/j.heliyon.2024.e36576_br0060) 2022; 42
Sun (10.1016/j.heliyon.2024.e36576_br0030) 2023; 179
Bedi (10.1016/j.heliyon.2024.e36576_br0220) 2019; 238
Li (10.1016/j.heliyon.2024.e36576_br0140) 2021; 38
Dang (10.1016/j.heliyon.2024.e36576_br0120) 2018; 32
Xu (10.1016/j.heliyon.2024.e36576_br0090) 2023; 215
AlKheder (10.1016/j.heliyon.2024.e36576_br0180) 2022; 191
Wazirali (10.1016/j.heliyon.2024.e36576_br0190) 2023; 225
Ahmed (10.1016/j.heliyon.2024.e36576_br0160) 2015; 32
Hua (10.1016/j.heliyon.2024.e36576_br0020) 2024; 2
Liu (10.1016/j.heliyon.2024.e36576_br0050) 2024; 79
Liu (10.1016/j.heliyon.2024.e36576_br0130) 2021; 39
Abbasi (10.1016/j.heliyon.2024.e36576_br0110) 2021; 180
Qi (10.1016/j.heliyon.2024.e36576_br0170) 2020; 10
Gao (10.1016/j.heliyon.2024.e36576_br0080) 2022; 181
Dai (10.1016/j.heliyon.2024.e36576_br0200) 2022; 182
10.1016/j.heliyon.2024.e36576_br0010
References_xml – volume: 192
  start-page: 507
  year: 2022
  end-page: 512
  ident: br0070
  article-title: Renewable energy and CO
  publication-title: Renew. Energy
  contributor:
    fullname: Salahodjaev
– volume: 38
  start-page: 110
  year: 2021
  end-page: 118
  ident: br0140
  article-title: Real-time prediction of wind power based on error following forget gate-based long short-term memory
  publication-title: Modern Electric Power
  contributor:
    fullname: Shi
– volume: 23
  start-page: 959
  year: 2019
  end-page: 971
  ident: br0230
  article-title: Peak cement-related CO2 emissions and the changes in drivers in China
  publication-title: J. Ind. Ecol.
  contributor:
    fullname: Guan
– volume: 180
  start-page: 1439
  year: 2021
  end-page: 1450
  ident: br0110
  article-title: The impact of energy depletion and renewable energy on CO2 emissions in Thailand: fresh evidence from the novel dynamic ARDL simulation
  publication-title: Renew. Energy
  contributor:
    fullname: Hussain
– volume: 238
  start-page: 1312
  year: 2019
  end-page: 1326
  ident: br0220
  article-title: Deep learning framework to forecast electricity demand
  publication-title: Appl. Energy
  contributor:
    fullname: Toshniwal
– volume: 32
  start-page: 113
  year: 2018
  end-page: 121
  ident: br0120
  article-title: The impact of fdi and international trade on co2 emissions in China —panel ardl approach
  publication-title: China Business and Market
  contributor:
    fullname: Dang
– year: 2024
  ident: br0210
  article-title: Interpretable Machine Learning a Guide for Making Black Box Models Explainable
  contributor:
    fullname: Molnar
– volume: 179
  year: 2023
  ident: br0030
  article-title: Combined forecasting tool for renewable energy management in sustainable supply chains
  publication-title: Comput. Ind. Eng.
  contributor:
    fullname: Wang
– volume: 42
  start-page: 15
  year: 2022
  end-page: 20
  ident: br0060
  article-title: The impact of economic growth, industrial structure and population structure on China's carbon emissions
  publication-title: Modernization of Management
  contributor:
    fullname: Huang
– volume: 39
  start-page: 481
  year: 2021
  end-page: 487
  ident: br0130
  article-title: Wind speed real-time prediction method based on multi-task learning
  publication-title: Renew. Energy Resour.
  contributor:
    fullname: Galsan
– volume: 2
  start-page: 14
  year: 2024
  end-page: 25
  ident: br0020
  article-title: Demand-side joint electricity and carbon trading mechanism
  publication-title: IEEE Transactions on Industrial Cyber-Physical Systems
  contributor:
    fullname: Hu
– volume: 1
  start-page: 71
  year: 2022
  end-page: 75
  ident: br0150
  article-title: Research on real-time prediction of carbon emissions in China based on cnn-lstm model
  publication-title: China-Arab States Science and Technology
  contributor:
    fullname: Li
– volume: 32
  start-page: 1029
  year: 2015
  end-page: 1036
  ident: br0160
  article-title: A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant
  publication-title: Korean J. Chem. Eng.
  contributor:
    fullname: Yeo
– volume: 79
  year: 2024
  ident: br0050
  article-title: Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction
  publication-title: J. Retail. Consum. Serv.
  contributor:
    fullname: Chen
– volume: 215
  year: 2023
  ident: br0090
  article-title: Nexus between green finance, renewable energy and carbon emission: empirical evidence from selected Asian economies
  publication-title: Renew. Energy
  contributor:
    fullname: Wu
– volume: 198
  year: 2024
  ident: br0040
  article-title: Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction
  publication-title: Technol. Forecast. Soc. Change
  contributor:
    fullname: Niu
– volume: 181
  start-page: 803
  year: 2022
  end-page: 819
  ident: br0080
  article-title: A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: evidence from American industrial sector
  publication-title: Renew. Energy
  contributor:
    fullname: Goh
– volume: 191
  start-page: 819
  year: 2022
  end-page: 827
  ident: br0180
  article-title: Forecasting of carbon dioxide emissions from power plants in Kuwait using United States environmental protection agency, intergovernmental panel on climate change, and machine learning methods
  publication-title: Renew. Energy
  contributor:
    fullname: Almusalam
– volume: 225
  year: 2023
  ident: br0190
  article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques
  publication-title: Electr. Power Syst. Res.
  contributor:
    fullname: Vakili
– volume: 33
  start-page: 1
  year: 2023
  end-page: 7
  ident: br0100
  article-title: An empirical study on the influencing factors of carbon emissions in China based on ardl model
  publication-title: Journal of Hebei University of Environmental Engineering
  contributor:
    fullname: Zhang
– volume: 10
  start-page: 3788
  year: 2020
  ident: br0170
  article-title: An LSTM-based method considering history and real-time data for passenger flow prediction
  publication-title: Appl. Sci.
  contributor:
    fullname: Li
– volume: 182
  year: 2022
  ident: br0200
  article-title: Forecasting power load: a hybrid forecasting method with intelligent data processing and optimized artificial intelligence
  publication-title: Technol. Forecast. Soc. Change
  contributor:
    fullname: Leng
– year: 2024
  ident: 10.1016/j.heliyon.2024.e36576_br0210
  contributor:
    fullname: Molnar
– volume: 238
  start-page: 1312
  year: 2019
  ident: 10.1016/j.heliyon.2024.e36576_br0220
  article-title: Deep learning framework to forecast electricity demand
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.113
  contributor:
    fullname: Bedi
– volume: 182
  year: 2022
  ident: 10.1016/j.heliyon.2024.e36576_br0200
  article-title: Forecasting power load: a hybrid forecasting method with intelligent data processing and optimized artificial intelligence
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2022.121858
  contributor:
    fullname: Dai
– volume: 192
  start-page: 507
  year: 2022
  ident: 10.1016/j.heliyon.2024.e36576_br0070
  article-title: Renewable energy and CO2 emissions intensity in the top carbon intense countries
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.04.137
  contributor:
    fullname: Mirziyoyeva
– volume: 181
  start-page: 803
  year: 2022
  ident: 10.1016/j.heliyon.2024.e36576_br0080
  article-title: A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: evidence from American industrial sector
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.09.072
  contributor:
    fullname: Gao
– volume: 79
  year: 2024
  ident: 10.1016/j.heliyon.2024.e36576_br0050
  article-title: Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction
  publication-title: J. Retail. Consum. Serv.
  doi: 10.1016/j.jretconser.2024.103854
  contributor:
    fullname: Liu
– volume: 23
  start-page: 959
  issue: 4
  year: 2019
  ident: 10.1016/j.heliyon.2024.e36576_br0230
  article-title: Peak cement-related CO2 emissions and the changes in drivers in China
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12839
  contributor:
    fullname: Shan
– volume: 1
  start-page: 71
  issue: 10
  year: 2022
  ident: 10.1016/j.heliyon.2024.e36576_br0150
  article-title: Research on real-time prediction of carbon emissions in China based on cnn-lstm model
  publication-title: China-Arab States Science and Technology
  contributor:
    fullname: Zhang
– volume: 225
  year: 2023
  ident: 10.1016/j.heliyon.2024.e36576_br0190
  article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109792
  contributor:
    fullname: Wazirali
– volume: 215
  year: 2023
  ident: 10.1016/j.heliyon.2024.e36576_br0090
  article-title: Nexus between green finance, renewable energy and carbon emission: empirical evidence from selected Asian economies
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.118983
  contributor:
    fullname: Xu
– volume: 32
  start-page: 1029
  issue: 6
  year: 2015
  ident: 10.1016/j.heliyon.2024.e36576_br0160
  article-title: A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0301-2
  contributor:
    fullname: Ahmed
– ident: 10.1016/j.heliyon.2024.e36576_br0010
– volume: 38
  start-page: 110
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e36576_br0140
  article-title: Real-time prediction of wind power based on error following forget gate-based long short-term memory
  publication-title: Modern Electric Power
  contributor:
    fullname: Li
– volume: 191
  start-page: 819
  year: 2022
  ident: 10.1016/j.heliyon.2024.e36576_br0180
  article-title: Forecasting of carbon dioxide emissions from power plants in Kuwait using United States environmental protection agency, intergovernmental panel on climate change, and machine learning methods
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.04.023
  contributor:
    fullname: AlKheder
– volume: 179
  year: 2023
  ident: 10.1016/j.heliyon.2024.e36576_br0030
  article-title: Combined forecasting tool for renewable energy management in sustainable supply chains
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109237
  contributor:
    fullname: Sun
– volume: 33
  start-page: 1
  issue: 3
  year: 2023
  ident: 10.1016/j.heliyon.2024.e36576_br0100
  article-title: An empirical study on the influencing factors of carbon emissions in China based on ardl model
  publication-title: Journal of Hebei University of Environmental Engineering
  contributor:
    fullname: Hu
– volume: 10
  start-page: 3788
  issue: 11
  year: 2020
  ident: 10.1016/j.heliyon.2024.e36576_br0170
  article-title: An LSTM-based method considering history and real-time data for passenger flow prediction
  publication-title: Appl. Sci.
  doi: 10.3390/app10113788
  contributor:
    fullname: Qi
– volume: 42
  start-page: 15
  issue: 4
  year: 2022
  ident: 10.1016/j.heliyon.2024.e36576_br0060
  article-title: The impact of economic growth, industrial structure and population structure on China's carbon emissions
  publication-title: Modernization of Management
  contributor:
    fullname: Liu
– volume: 39
  start-page: 481
  issue: 4
  year: 2021
  ident: 10.1016/j.heliyon.2024.e36576_br0130
  article-title: Wind speed real-time prediction method based on multi-task learning
  publication-title: Renew. Energy Resour.
  contributor:
    fullname: Liu
– volume: 180
  start-page: 1439
  year: 2021
  ident: 10.1016/j.heliyon.2024.e36576_br0110
  article-title: The impact of energy depletion and renewable energy on CO2 emissions in Thailand: fresh evidence from the novel dynamic ARDL simulation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.08.078
  contributor:
    fullname: Abbasi
– volume: 2
  start-page: 14
  year: 2024
  ident: 10.1016/j.heliyon.2024.e36576_br0020
  article-title: Demand-side joint electricity and carbon trading mechanism
  publication-title: IEEE Transactions on Industrial Cyber-Physical Systems
  doi: 10.1109/TICPS.2023.3335328
  contributor:
    fullname: Hua
– volume: 198
  year: 2024
  ident: 10.1016/j.heliyon.2024.e36576_br0040
  article-title: Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2023.122945
  contributor:
    fullname: Liu
– volume: 32
  start-page: 113
  issue: 6
  year: 2018
  ident: 10.1016/j.heliyon.2024.e36576_br0120
  article-title: The impact of fdi and international trade on co2 emissions in China —panel ardl approach
  publication-title: China Business and Market
  contributor:
    fullname: Dang
SSID ssj0001586973
Score 2.3234646
Snippet This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage e36576
SubjectTerms ARDL
Carbon emission
Forcast
LSTM
Tracking control
Title A tracking control method for electricity-carbon emission forecasting
URI https://dx.doi.org/10.1016/j.heliyon.2024.e36576
https://doaj.org/article/011f0b19fccb439d9c63f0162a3a67ec
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQkRAL4inKo_LAmhLHiROPBbWqkCgLlSoWy4-LaIVaVMLQf48vTiETLIxJTnb0nZXv4jt_R8iN86QsOKSRj8ZdlBrjImMZizJuQBeWQalrtc-JGE_Th1k2a7X6wpqwIA8cgMNGpWVsmCytNZ48nbSClz5OSTTXIgdbf31j2fqZCueDCyFz_nNk53bRf4W3-WaFmqdJ2gcuMtQZaZFRrdnf4qQWz4wOyUETINJBeLEjsgPLY7L32KTAT8hwQKu1trjDTZs6cxraQFMff9LQ1sbbVpvI6rVZLSl2dMM9MXwOVn9gofMpmY6Gz_fjqOmFEFkex1VUOEzgySR2IMHKxF9L0CBtKZnMXOwdkeeGaWm1cNr5oAFsLgF3ZB33PM3PSGe5WsI5od7SJALzY8BSyLSRSS6FS4tE6tLGeZf0t6Co9yB5oba1YAvVoKgQRRVQ7JI7hO7bGBWr6xvej6rxo_rLj11SbIFXDfkHUvdDzX-f_-I_5r8k-zgkloKw7Ip0qvUnXPt4ozK9emn1yO7kfvb08gUnEde9
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tracking+control+method+for+electricity-carbon+emission+forecasting&rft.jtitle=Heliyon&rft.au=Chen%2C+Hongyin&rft.au=Wang%2C+Songcen&rft.au=Li%2C+Jianfeng&rft.au=Yu%2C+Yaoxian&rft.date=2024-09-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=17&rft.spage=e36576&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e36576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heliyon_2024_e36576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon