A tracking control method for electricity-carbon emission forecasting
This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models...
Saved in:
Published in | Heliyon Vol. 10; no. 17; p. e36576 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models such as LSTM and ARDL using Python showcases the proposed method's substantial reduction in prediction errors compared to singular reliance on electricity data, while also significantly reducing computational time in contrast to LSTM models. The findings establish a valuable reference for policymakers and researchers in refining carbon emission prediction methodologies and formulating effective carbon reduction policies.
•Proposes a carbon emission prediction algorithm based on tracking control.•Proposes an idea of correcting the tracking forecast according to the power data.•Quickly predict future carbon emissions on the basis of ensuring the stability.•Significantly improve the accuracy of the forecast. |
---|---|
AbstractList | This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models such as LSTM and ARDL using Python showcases the proposed method's substantial reduction in prediction errors compared to singular reliance on electricity data, while also significantly reducing computational time in contrast to LSTM models. The findings establish a valuable reference for policymakers and researchers in refining carbon emission prediction methodologies and formulating effective carbon reduction policies.
•Proposes a carbon emission prediction algorithm based on tracking control.•Proposes an idea of correcting the tracking forecast according to the power data.•Quickly predict future carbon emissions on the basis of ensuring the stability.•Significantly improve the accuracy of the forecast. This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and feed-forward integration of electricity consumption data to enhance forecasting accuracy and minimize lag. Comparative analysis with pre-trained models such as LSTM and ARDL using Python showcases the proposed method's substantial reduction in prediction errors compared to singular reliance on electricity data, while also significantly reducing computational time in contrast to LSTM models. The findings establish a valuable reference for policymakers and researchers in refining carbon emission prediction methodologies and formulating effective carbon reduction policies. |
ArticleNumber | e36576 |
Author | Jin, Lu Li, Jianfeng Cui, Xiaorui Yu, Yaoxian Guo, Yi Chen, Hongyin Wang, Songcen Li, Dezhi |
Author_xml | – sequence: 1 givenname: Hongyin surname: Chen fullname: Chen, Hongyin email: ssrga163831@sina.com organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 2 givenname: Songcen surname: Wang fullname: Wang, Songcen organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 3 givenname: Jianfeng surname: Li fullname: Li, Jianfeng organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 4 givenname: Yaoxian surname: Yu fullname: Yu, Yaoxian organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 5 givenname: Dezhi surname: Li fullname: Li, Dezhi organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 6 givenname: Lu surname: Jin fullname: Jin, Lu organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 7 givenname: Yi surname: Guo fullname: Guo, Yi organization: National Key Laboratory of Power Grid Safety, Beijing, 100192, China – sequence: 8 givenname: Xiaorui surname: Cui fullname: Cui, Xiaorui organization: State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi, China |
BookMark | eNqFkMtKAzEUhoNUsNY-gjAvMDWXuWUlpVQtFNzoOqQnJ23qdCJJEPr2praIO1f5k_B_nPPdktHgByTkntEZo6x52M922LujH2ac8mqGoqnb5oqMeUXrsqsqOvqTb8g0xj2llNVdI1sxJst5kYKGDzdsC_BDCr4vDph23hTWhwJ7hBQcuHQsQYeNHwo8uBhdDvkfQceUq3fk2uo-4vRyTsj70_Jt8VKuX59Xi_m6BEFpKjvT1V0tOTUoESTPd4kaJVjJZG0ogG7bDdMSdGO04Z1AaCVKa1sjKOdiQlZnrvF6rz6DO-hwVF479fPgw1bpkBz0qChjlm6YtACbSkgjoRE2C-Na6KZFyKz6zILgYwxof3mMqpNatVcXteqkVp3V5t7juYd50S-HQUVwOAAal32kPIn7h_ANMtWIaQ |
Cites_doi | 10.1016/j.apenergy.2019.01.113 10.1016/j.techfore.2022.121858 10.1016/j.renene.2022.04.137 10.1016/j.renene.2021.09.072 10.1016/j.jretconser.2024.103854 10.1111/jiec.12839 10.1016/j.epsr.2023.109792 10.1016/j.renene.2023.118983 10.1007/s11814-014-0301-2 10.1016/j.renene.2022.04.023 10.1016/j.cie.2023.109237 10.3390/app10113788 10.1016/j.renene.2021.08.078 10.1109/TICPS.2023.3335328 10.1016/j.techfore.2023.122945 |
ContentType | Journal Article |
Copyright | 2024 China Electric Power Research Institute |
Copyright_xml | – notice: 2024 China Electric Power Research Institute |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.heliyon.2024.e36576 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-8440 |
ExternalDocumentID | oai_doaj_org_article_011f0b19fccb439d9c63f0162a3a67ec 10_1016_j_heliyon_2024_e36576 S2405844024126072 |
GrantInformation_xml | – fundername: Fund of State Key Laboratory of Power Grid Safety grantid: 5442YD220020 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDW AAFTH AAFWJ AALRI ABMAC ACGFS ACLIJ ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E NCXOZ O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG |
ID | FETCH-LOGICAL-c300t-8d8585920de9ec928d89eae9cf9195d0cca77b1a9ca6dad283ec79e9ff7d30223 |
IEDL.DBID | DOA |
ISSN | 2405-8440 |
IngestDate | Tue Oct 22 15:14:41 EDT 2024 Wed Nov 06 13:19:34 EST 2024 Sat Nov 09 16:00:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Carbon emission LSTM Forcast Tracking control ARDL |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-8d8585920de9ec928d89eae9cf9195d0cca77b1a9ca6dad283ec79e9ff7d30223 |
OpenAccessLink | https://doaj.org/article/011f0b19fccb439d9c63f0162a3a67ec |
ParticipantIDs | doaj_primary_oai_doaj_org_article_011f0b19fccb439d9c63f0162a3a67ec crossref_primary_10_1016_j_heliyon_2024_e36576 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e36576 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-15 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Heliyon |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sun, Ding, Liu, Wang (br0030) 2023; 179 Liu, Jiang, De Bock, Wang, Zhang, Niu (br0040) 2024; 198 Ahmed, Cho, Kim, Seong, Yeo (br0160) 2015; 32 AlKheder, Almusalam (br0180) 2022; 191 Bedi, Toshniwal (br0220) 2019; 238 Xu, Wu (br0090) 2023; 215 Liu, Chang, Huang (br0060) 2022; 42 Shan, Zhou, Meng, Mi, Liu, Guan (br0230) 2019; 23 IEA, CO2 emissions in 2022, resreport, IEA (2023-03). Dang (br0120) 2018; 32 Abbasi, Adedoyin, Abbas, Hussain (br0110) 2021; 180 Qi, Lv, Ma, Li (br0170) 2020; 10 Wazirali, Yaghoubi, Abujazar, Ahmad, Vakili (br0190) 2023; 225 Liu, Zhang, Abedin, Wang, Yang, Gao, Chen (br0050) 2024; 79 Hu, Zhang (br0100) 2023; 33 Molnar (br0210) 2024 Mirziyoyeva, Salahodjaev (br0070) 2022; 192 Liu, Zhou, Yan, Han, Li, Galsan (br0130) 2021; 39 Dai, Yang, Leng (br0200) 2022; 182 Hua, Chen, Gan, Sun, Dong, Liu, Qin, Li, Hu (br0020) 2024; 2 Gao, Yang, Xiao, Goh (br0080) 2022; 181 Zhang, Li, Zhang, Qiao, Li (br0150) 2022; 1 Li, Zhang, Peng, Yin, Shi (br0140) 2021; 38 Hu (10.1016/j.heliyon.2024.e36576_br0100) 2023; 33 Zhang (10.1016/j.heliyon.2024.e36576_br0150) 2022; 1 Mirziyoyeva (10.1016/j.heliyon.2024.e36576_br0070) 2022; 192 Shan (10.1016/j.heliyon.2024.e36576_br0230) 2019; 23 Liu (10.1016/j.heliyon.2024.e36576_br0040) 2024; 198 Molnar (10.1016/j.heliyon.2024.e36576_br0210) 2024 Liu (10.1016/j.heliyon.2024.e36576_br0060) 2022; 42 Sun (10.1016/j.heliyon.2024.e36576_br0030) 2023; 179 Bedi (10.1016/j.heliyon.2024.e36576_br0220) 2019; 238 Li (10.1016/j.heliyon.2024.e36576_br0140) 2021; 38 Dang (10.1016/j.heliyon.2024.e36576_br0120) 2018; 32 Xu (10.1016/j.heliyon.2024.e36576_br0090) 2023; 215 AlKheder (10.1016/j.heliyon.2024.e36576_br0180) 2022; 191 Wazirali (10.1016/j.heliyon.2024.e36576_br0190) 2023; 225 Ahmed (10.1016/j.heliyon.2024.e36576_br0160) 2015; 32 Hua (10.1016/j.heliyon.2024.e36576_br0020) 2024; 2 Liu (10.1016/j.heliyon.2024.e36576_br0050) 2024; 79 Liu (10.1016/j.heliyon.2024.e36576_br0130) 2021; 39 Abbasi (10.1016/j.heliyon.2024.e36576_br0110) 2021; 180 Qi (10.1016/j.heliyon.2024.e36576_br0170) 2020; 10 Gao (10.1016/j.heliyon.2024.e36576_br0080) 2022; 181 Dai (10.1016/j.heliyon.2024.e36576_br0200) 2022; 182 10.1016/j.heliyon.2024.e36576_br0010 |
References_xml | – volume: 192 start-page: 507 year: 2022 end-page: 512 ident: br0070 article-title: Renewable energy and CO publication-title: Renew. Energy contributor: fullname: Salahodjaev – volume: 38 start-page: 110 year: 2021 end-page: 118 ident: br0140 article-title: Real-time prediction of wind power based on error following forget gate-based long short-term memory publication-title: Modern Electric Power contributor: fullname: Shi – volume: 23 start-page: 959 year: 2019 end-page: 971 ident: br0230 article-title: Peak cement-related CO2 emissions and the changes in drivers in China publication-title: J. Ind. Ecol. contributor: fullname: Guan – volume: 180 start-page: 1439 year: 2021 end-page: 1450 ident: br0110 article-title: The impact of energy depletion and renewable energy on CO2 emissions in Thailand: fresh evidence from the novel dynamic ARDL simulation publication-title: Renew. Energy contributor: fullname: Hussain – volume: 238 start-page: 1312 year: 2019 end-page: 1326 ident: br0220 article-title: Deep learning framework to forecast electricity demand publication-title: Appl. Energy contributor: fullname: Toshniwal – volume: 32 start-page: 113 year: 2018 end-page: 121 ident: br0120 article-title: The impact of fdi and international trade on co2 emissions in China —panel ardl approach publication-title: China Business and Market contributor: fullname: Dang – year: 2024 ident: br0210 article-title: Interpretable Machine Learning a Guide for Making Black Box Models Explainable contributor: fullname: Molnar – volume: 179 year: 2023 ident: br0030 article-title: Combined forecasting tool for renewable energy management in sustainable supply chains publication-title: Comput. Ind. Eng. contributor: fullname: Wang – volume: 42 start-page: 15 year: 2022 end-page: 20 ident: br0060 article-title: The impact of economic growth, industrial structure and population structure on China's carbon emissions publication-title: Modernization of Management contributor: fullname: Huang – volume: 39 start-page: 481 year: 2021 end-page: 487 ident: br0130 article-title: Wind speed real-time prediction method based on multi-task learning publication-title: Renew. Energy Resour. contributor: fullname: Galsan – volume: 2 start-page: 14 year: 2024 end-page: 25 ident: br0020 article-title: Demand-side joint electricity and carbon trading mechanism publication-title: IEEE Transactions on Industrial Cyber-Physical Systems contributor: fullname: Hu – volume: 1 start-page: 71 year: 2022 end-page: 75 ident: br0150 article-title: Research on real-time prediction of carbon emissions in China based on cnn-lstm model publication-title: China-Arab States Science and Technology contributor: fullname: Li – volume: 32 start-page: 1029 year: 2015 end-page: 1036 ident: br0160 article-title: A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant publication-title: Korean J. Chem. Eng. contributor: fullname: Yeo – volume: 79 year: 2024 ident: br0050 article-title: Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction publication-title: J. Retail. Consum. Serv. contributor: fullname: Chen – volume: 215 year: 2023 ident: br0090 article-title: Nexus between green finance, renewable energy and carbon emission: empirical evidence from selected Asian economies publication-title: Renew. Energy contributor: fullname: Wu – volume: 198 year: 2024 ident: br0040 article-title: Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction publication-title: Technol. Forecast. Soc. Change contributor: fullname: Niu – volume: 181 start-page: 803 year: 2022 end-page: 819 ident: br0080 article-title: A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: evidence from American industrial sector publication-title: Renew. Energy contributor: fullname: Goh – volume: 191 start-page: 819 year: 2022 end-page: 827 ident: br0180 article-title: Forecasting of carbon dioxide emissions from power plants in Kuwait using United States environmental protection agency, intergovernmental panel on climate change, and machine learning methods publication-title: Renew. Energy contributor: fullname: Almusalam – volume: 225 year: 2023 ident: br0190 article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques publication-title: Electr. Power Syst. Res. contributor: fullname: Vakili – volume: 33 start-page: 1 year: 2023 end-page: 7 ident: br0100 article-title: An empirical study on the influencing factors of carbon emissions in China based on ardl model publication-title: Journal of Hebei University of Environmental Engineering contributor: fullname: Zhang – volume: 10 start-page: 3788 year: 2020 ident: br0170 article-title: An LSTM-based method considering history and real-time data for passenger flow prediction publication-title: Appl. Sci. contributor: fullname: Li – volume: 182 year: 2022 ident: br0200 article-title: Forecasting power load: a hybrid forecasting method with intelligent data processing and optimized artificial intelligence publication-title: Technol. Forecast. Soc. Change contributor: fullname: Leng – year: 2024 ident: 10.1016/j.heliyon.2024.e36576_br0210 contributor: fullname: Molnar – volume: 238 start-page: 1312 year: 2019 ident: 10.1016/j.heliyon.2024.e36576_br0220 article-title: Deep learning framework to forecast electricity demand publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.113 contributor: fullname: Bedi – volume: 182 year: 2022 ident: 10.1016/j.heliyon.2024.e36576_br0200 article-title: Forecasting power load: a hybrid forecasting method with intelligent data processing and optimized artificial intelligence publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2022.121858 contributor: fullname: Dai – volume: 192 start-page: 507 year: 2022 ident: 10.1016/j.heliyon.2024.e36576_br0070 article-title: Renewable energy and CO2 emissions intensity in the top carbon intense countries publication-title: Renew. Energy doi: 10.1016/j.renene.2022.04.137 contributor: fullname: Mirziyoyeva – volume: 181 start-page: 803 year: 2022 ident: 10.1016/j.heliyon.2024.e36576_br0080 article-title: A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: evidence from American industrial sector publication-title: Renew. Energy doi: 10.1016/j.renene.2021.09.072 contributor: fullname: Gao – volume: 79 year: 2024 ident: 10.1016/j.heliyon.2024.e36576_br0050 article-title: Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction publication-title: J. Retail. Consum. Serv. doi: 10.1016/j.jretconser.2024.103854 contributor: fullname: Liu – volume: 23 start-page: 959 issue: 4 year: 2019 ident: 10.1016/j.heliyon.2024.e36576_br0230 article-title: Peak cement-related CO2 emissions and the changes in drivers in China publication-title: J. Ind. Ecol. doi: 10.1111/jiec.12839 contributor: fullname: Shan – volume: 1 start-page: 71 issue: 10 year: 2022 ident: 10.1016/j.heliyon.2024.e36576_br0150 article-title: Research on real-time prediction of carbon emissions in China based on cnn-lstm model publication-title: China-Arab States Science and Technology contributor: fullname: Zhang – volume: 225 year: 2023 ident: 10.1016/j.heliyon.2024.e36576_br0190 article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109792 contributor: fullname: Wazirali – volume: 215 year: 2023 ident: 10.1016/j.heliyon.2024.e36576_br0090 article-title: Nexus between green finance, renewable energy and carbon emission: empirical evidence from selected Asian economies publication-title: Renew. Energy doi: 10.1016/j.renene.2023.118983 contributor: fullname: Xu – volume: 32 start-page: 1029 issue: 6 year: 2015 ident: 10.1016/j.heliyon.2024.e36576_br0160 article-title: A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0301-2 contributor: fullname: Ahmed – ident: 10.1016/j.heliyon.2024.e36576_br0010 – volume: 38 start-page: 110 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2024.e36576_br0140 article-title: Real-time prediction of wind power based on error following forget gate-based long short-term memory publication-title: Modern Electric Power contributor: fullname: Li – volume: 191 start-page: 819 year: 2022 ident: 10.1016/j.heliyon.2024.e36576_br0180 article-title: Forecasting of carbon dioxide emissions from power plants in Kuwait using United States environmental protection agency, intergovernmental panel on climate change, and machine learning methods publication-title: Renew. Energy doi: 10.1016/j.renene.2022.04.023 contributor: fullname: AlKheder – volume: 179 year: 2023 ident: 10.1016/j.heliyon.2024.e36576_br0030 article-title: Combined forecasting tool for renewable energy management in sustainable supply chains publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109237 contributor: fullname: Sun – volume: 33 start-page: 1 issue: 3 year: 2023 ident: 10.1016/j.heliyon.2024.e36576_br0100 article-title: An empirical study on the influencing factors of carbon emissions in China based on ardl model publication-title: Journal of Hebei University of Environmental Engineering contributor: fullname: Hu – volume: 10 start-page: 3788 issue: 11 year: 2020 ident: 10.1016/j.heliyon.2024.e36576_br0170 article-title: An LSTM-based method considering history and real-time data for passenger flow prediction publication-title: Appl. Sci. doi: 10.3390/app10113788 contributor: fullname: Qi – volume: 42 start-page: 15 issue: 4 year: 2022 ident: 10.1016/j.heliyon.2024.e36576_br0060 article-title: The impact of economic growth, industrial structure and population structure on China's carbon emissions publication-title: Modernization of Management contributor: fullname: Liu – volume: 39 start-page: 481 issue: 4 year: 2021 ident: 10.1016/j.heliyon.2024.e36576_br0130 article-title: Wind speed real-time prediction method based on multi-task learning publication-title: Renew. Energy Resour. contributor: fullname: Liu – volume: 180 start-page: 1439 year: 2021 ident: 10.1016/j.heliyon.2024.e36576_br0110 article-title: The impact of energy depletion and renewable energy on CO2 emissions in Thailand: fresh evidence from the novel dynamic ARDL simulation publication-title: Renew. Energy doi: 10.1016/j.renene.2021.08.078 contributor: fullname: Abbasi – volume: 2 start-page: 14 year: 2024 ident: 10.1016/j.heliyon.2024.e36576_br0020 article-title: Demand-side joint electricity and carbon trading mechanism publication-title: IEEE Transactions on Industrial Cyber-Physical Systems doi: 10.1109/TICPS.2023.3335328 contributor: fullname: Hua – volume: 198 year: 2024 ident: 10.1016/j.heliyon.2024.e36576_br0040 article-title: Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2023.122945 contributor: fullname: Liu – volume: 32 start-page: 113 issue: 6 year: 2018 ident: 10.1016/j.heliyon.2024.e36576_br0120 article-title: The impact of fdi and international trade on co2 emissions in China —panel ardl approach publication-title: China Business and Market contributor: fullname: Dang |
SSID | ssj0001586973 |
Score | 2.3234646 |
Snippet | This paper introduces a novel carbon emission prediction method based on tracking control, leveraging historical CO2 emission prediction errors and... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | e36576 |
SubjectTerms | ARDL Carbon emission Forcast LSTM Tracking control |
Title | A tracking control method for electricity-carbon emission forecasting |
URI | https://dx.doi.org/10.1016/j.heliyon.2024.e36576 https://doaj.org/article/011f0b19fccb439d9c63f0162a3a67ec |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQkRAL4inKo_LAmhLHiROPBbWqkCgLlSoWy4-LaIVaVMLQf48vTiETLIxJTnb0nZXv4jt_R8iN86QsOKSRj8ZdlBrjImMZizJuQBeWQalrtc-JGE_Th1k2a7X6wpqwIA8cgMNGpWVsmCytNZ48nbSClz5OSTTXIgdbf31j2fqZCueDCyFz_nNk53bRf4W3-WaFmqdJ2gcuMtQZaZFRrdnf4qQWz4wOyUETINJBeLEjsgPLY7L32KTAT8hwQKu1trjDTZs6cxraQFMff9LQ1sbbVpvI6rVZLSl2dMM9MXwOVn9gofMpmY6Gz_fjqOmFEFkex1VUOEzgySR2IMHKxF9L0CBtKZnMXOwdkeeGaWm1cNr5oAFsLgF3ZB33PM3PSGe5WsI5od7SJALzY8BSyLSRSS6FS4tE6tLGeZf0t6Co9yB5oba1YAvVoKgQRRVQ7JI7hO7bGBWr6xvej6rxo_rLj11SbIFXDfkHUvdDzX-f_-I_5r8k-zgkloKw7Ip0qvUnXPt4ozK9emn1yO7kfvb08gUnEde9 |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tracking+control+method+for+electricity-carbon+emission+forecasting&rft.jtitle=Heliyon&rft.au=Chen%2C+Hongyin&rft.au=Wang%2C+Songcen&rft.au=Li%2C+Jianfeng&rft.au=Yu%2C+Yaoxian&rft.date=2024-09-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=17&rft.spage=e36576&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e36576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heliyon_2024_e36576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |