A real-time energy and cost efficient vehicle route assignment neural recommender system
This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cos...
Saved in:
Published in | Expert systems with applications Vol. 263; p. 125634 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 |
DOI | 10.1016/j.eswa.2024.125634 |
Cover
Abstract | This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cost of ownership (TCO) perspective, for given trips. We employ a machine learning based approach to efficiently estimate the energy consumption of various candidate vehicles over given routes, defined as sequences of links (road segments), with little information known about internal dynamics, i.e. using high level macroscopic route information. A complete recommendation logic is then developed to allow for real-time optimum assignment for each route, subject to the operational constraints of the fleet. We show how this framework can be used to (1) efficiently provide a single trip recommendation with a top-k vehicles star ranking system, and (2) engage in more general assignment problems where n vehicles need to be deployed over m(m≤n) trips. This new assignment system has been deployed and integrated into the POLARIS.11POLARIS is an Argonne-based high-performance, open-source agent-based modeling framework for simulating large-scale transportation systems. Transportation System Simulation Tool for use in research conducted by the Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium (SMART, 2024).
•Novel application of machine learning in transportation.•Introduced an innovative neural recommender system for vehicle routing.•Real-time optimization of routes for energy and cost efficiency.•Demonstrated integration with POLARIS Simulation Tool.•Evaluated in real-world scenarios, showing significant savings. |
---|---|
AbstractList | This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cost of ownership (TCO) perspective, for given trips. We employ a machine learning based approach to efficiently estimate the energy consumption of various candidate vehicles over given routes, defined as sequences of links (road segments), with little information known about internal dynamics, i.e. using high level macroscopic route information. A complete recommendation logic is then developed to allow for real-time optimum assignment for each route, subject to the operational constraints of the fleet. We show how this framework can be used to (1) efficiently provide a single trip recommendation with a top-k vehicles star ranking system, and (2) engage in more general assignment problems where n vehicles need to be deployed over m(m≤n) trips. This new assignment system has been deployed and integrated into the POLARIS.11POLARIS is an Argonne-based high-performance, open-source agent-based modeling framework for simulating large-scale transportation systems. Transportation System Simulation Tool for use in research conducted by the Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium (SMART, 2024).
•Novel application of machine learning in transportation.•Introduced an innovative neural recommender system for vehicle routing.•Real-time optimization of routes for energy and cost efficiency.•Demonstrated integration with POLARIS Simulation Tool.•Evaluated in real-world scenarios, showing significant savings. |
ArticleNumber | 125634 |
Author | Gurumurthy, Krishna Murthy Vijayagopal, Ram Pancorbo, Ines Islam, Ehsan Rousseau, Aymeric Freyermuth, Vincent Stinson, Monique Li, Zhijian Moawad, Ayman |
Author_xml | – sequence: 1 givenname: Ayman orcidid: 0000-0001-6658-9012 surname: Moawad fullname: Moawad, Ayman email: amoawad@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA – sequence: 2 givenname: Zhijian surname: Li fullname: Li, Zhijian email: zhijil2@uci.edu organization: Department of Mathematics, University of California Irvine, 340 Rowland Hall, Irvine, CA 92697, USA – sequence: 3 givenname: Ines surname: Pancorbo fullname: Pancorbo, Ines email: ip221@georgetown.edu organization: Department of Mathematics and Statistics at Georgetown University, 3700 O St NW, Washington, DC 20057, USA – sequence: 4 givenname: Krishna Murthy orcidid: 0000-0001-6791-4948 surname: Gurumurthy fullname: Gurumurthy, Krishna Murthy email: kgurumurthy@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA – sequence: 5 givenname: Vincent surname: Freyermuth fullname: Freyermuth, Vincent email: vfreyermuth@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA – sequence: 6 givenname: Ehsan surname: Islam fullname: Islam, Ehsan email: eislam@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA – sequence: 7 givenname: Ram surname: Vijayagopal fullname: Vijayagopal, Ram email: rvijayagopal@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA – sequence: 8 givenname: Monique surname: Stinson fullname: Stinson, Monique email: mstinson@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA – sequence: 9 givenname: Aymeric surname: Rousseau fullname: Rousseau, Aymeric email: arousseau@anl.gov organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA |
BookMark | eNp9kL1qwzAUhTWk0CTtC3TSCzi9-onlQJcQ-geBLhm6CVm6ThVsuUhKSt6-NunUIdOFc_kOnG9GJqEPSMgDgwUDVj4eFph-zIIDlwvGl6WQEzKF1VIVkil5S2YpHQCYAlBT8rmmEU1bZN8hxYBxf6YmOGr7lCk2jbceQ6Yn_PK2RRr7Y0ZqUvL70I2PgMdo2qHD9t0QOIw0nVPG7o7cNKZNeP9352T38rzbvBXbj9f3zXpbWAGQi8rYEkrBoakML521sJLW8aaSEhpUouY1l0KIyplaSeVWjhuoHVNWOFNZMSf8Umtjn1LERn9H35l41gz0qEMf9KhDjzr0RccAVf8g67PJvg85Gt9eR58uKA6bTh6jTqMhi84PDrJ2vb-G_wKK74FQ |
CitedBy_id | crossref_primary_10_3390_su17052328 |
Cites_doi | 10.1016/j.ejor.2015.01.049 10.1016/j.trd.2021.102725 10.1016/j.procs.2019.04.118 10.1016/j.trc.2015.07.017 10.1016/j.atmosenv.2006.12.027 10.1162/neco.1997.9.8.1735 10.1016/j.trd.2017.08.008 10.1016/j.tre.2015.11.003 10.1016/j.procs.2020.03.157 10.1016/j.ejor.2016.01.038 10.1145/2843948 10.1016/j.trd.2017.04.020 10.1016/j.trpro.2020.03.091 10.1016/j.trd.2018.11.018 10.1145/3219819.3220023 10.1145/2988450.2988454 10.1145/3124749.3124754 10.1016/j.trd.2014.10.005 10.1016/j.trb.2014.12.007 10.1177/0954407017729938 10.1016/j.trd.2019.07.021 10.3390/atmos12010053 10.1016/j.trc.2013.01.002 10.1016/j.procs.2019.04.119 10.1016/j.trb.2013.06.004 10.1109/TITS.2012.2204051 10.1016/j.trd.2017.04.013 10.1016/j.ijforecast.2015.12.003 10.1016/j.trd.2017.08.007 10.1016/j.trd.2015.10.010 10.1016/j.cie.2021.107650 10.1177/0361198120921157 10.1016/j.trd.2014.11.012 10.1016/j.apenergy.2020.115408 10.1109/TAI.2021.3065011 10.1145/3038912.3052569 10.1002/nav.3800020109 10.1109/TTE.2016.2571783 10.1155/2019/4109148 10.1016/j.trd.2008.01.005 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.125634 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2024_125634 S0957417424025016 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-8ac606320f8a26dcc094cd2f8440fe73b2b243338dab747d9d2a0bd17c3da8c3 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Thu Jul 03 08:10:55 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Sat Dec 21 15:58:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heavy-duty Trucks Energy consumption Medium-duty Machine learning Vehicle assignment Neural recommender systems Total cost of ownership |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-8ac606320f8a26dcc094cd2f8440fe73b2b243338dab747d9d2a0bd17c3da8c3 |
ORCID | 0000-0001-6791-4948 0000-0001-6658-9012 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_125634 crossref_citationtrail_10_1016_j_eswa_2024_125634 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125634 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-05 |
PublicationDateYYYYMMDD | 2025-03-05 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Goeke, Schneider (b20) 2015; 245 Nie, Li (b42) 2013; 55 Sun, Hao, Ban, Yang (b54) 2015; 34 Ahn, Rakha (b2) 2008; 13 Auld, Mohammadian (b4) 2012; 46 Islam, Vijayagopal, Moawad, Kim, Dupont, Nieto Prada (b31) 2021 Moawad, Kim, Shidore, Rousseau (b39) 2016 Kim, Kim (b34) 2016; 32 Osorio, Nanduri (b43) 2015; 81 Zhang, Wang, Liu, Zhang (b63) 2020; 275 Cheng, H. T., et al. (2016). Wide & deep learning for recommender systems. In (pp. 173–182). Auld, Hope, Ley, Sokolov, Xu, Zhang (b3) 2016; 64 Boriboonsomsin, Barth, Zhu, Vu (b6) 2012; 13 Islam, Moawad, Kim, Rousseau (b29) 2018 Guo, Sun, Lindgren, Geng, Simcha, Chern (b23) 2020 Nesamani, Chu, McNally, Jayakrishnan (b41) 2007; 41 Stinson, Mohammadian (b52) 2021 Vijayagopal, Nieto Prada, Rousseau (b58) 2020 Grunditz, Thiringer (b22) 2016; 2 De Nunzio, Laraki, Thibault (b10) 2021; 12 Stinson, Mohammadian (b53) 2021 USDOE (b57) 2020 (2024). U.S. Energy Information Administration (EIA). URL Naumov (b40) 2019 Energy.gov. Kucukoglu, Dewil, Cattrysse (b35) 2021; 161 . Zhang, Yao (b64) 2015; 41 : Abadi (b1) 2015 He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In Richter, Zinser, Kabza (b45) 2012 Fiori, Arcidiacono, Fontaras, Makridis, Mattas, Marzano (b15) 2019; 67 Galvin (b19) 2017; 53 Gurumurthy, de Souza, Enam, Auld (b25) 2020; 2674 Stinson, Enam, Moore, Auld (b50) 2019 Auld, Verbas, Stinson (b5) 2019; 151 Guo, Tang, Ye, Li, He (b24) 2017 de Souza, Verbas, Auld (b11) 2019; 151 Fiori, Ahn, Rakha (b14) 2018; 64 SMART, . (2024). Energy efficient mobility systems. URL Freyermuth, Auld, Karbowski, Moawad, Pagerit, Rousseau (b18) 2020 Gomez-Uribe, Hunt (b21) 2016; 6 Sun, Zhang, Bi, Wang (b55) 2019; 2019 Islam, Moawad, Kim, Rousseau (b30) 2020 Fontes, Pereira, Fernandes, Bandeira, Coelho (b16) 2015; 34 Rodriguez-Rey, Guevara, Linares, Casanovas, Salmerón, Soret (b46) 2021; 92 Kuhn (b36) 1955; 2 Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). xDeepFM: Combining explicit and implicit feature interactions for recommender systems. In Stinson, M., Auld, J., & Mohammadian, A. (2020a). A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions. In (pp. 1754–1763). (pp. 7–10). Freyermuth, Auld, Karbowski, Moawad, Pagerit, Rousseau (b17) 2019 Croce, Musolino, Rindone, Vitetta (b9) 2020; 47 Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. In Hiermann, Puchinger, Ropke, Hartl (b27) 2016; 252 (pp. 771–778). Warsaw, Poland: URL:. Hochreiter, Schmidhuber (b28) 1997; 9 Moawad, Islam, Kim, Vijayagopal, Rousseau, Wu (b38) 2021; 2 Qi, Wu, Boriboonsomsin, Barth (b44) 2018; 64 (pp. 1–7). Stinson, Mohammadian (b51) 2020 Wang, Besselink, Nijmeijer (b59) 2018; 232 Fetene, Kaplan, Mabit, Jensen, Prato (b13) 2017; 54 Covington, Adams, Sargin (b8) 2016 Jiménez, Román (b32) 2016; 85 Karbowski, Rousseau, Smis-Michel, Vermeulen (b33) 2014 U.S. Census Bureau (b56) 2020 Zegeye, Schutter, Hellendoorn, Breunesse, Hegyi (b62) 2013; 31 Stinson, Auld, Mohammadian (b49) 2020; 170 Wang, Zhao, Cai, Meng, Ong (b61) 2019; 74 de Souza (10.1016/j.eswa.2024.125634_b11) 2019; 151 Qi (10.1016/j.eswa.2024.125634_b44) 2018; 64 Hochreiter (10.1016/j.eswa.2024.125634_b28) 1997; 9 Kim (10.1016/j.eswa.2024.125634_b34) 2016; 32 Grunditz (10.1016/j.eswa.2024.125634_b22) 2016; 2 Ahn (10.1016/j.eswa.2024.125634_b2) 2008; 13 Boriboonsomsin (10.1016/j.eswa.2024.125634_b6) 2012; 13 Fiori (10.1016/j.eswa.2024.125634_b14) 2018; 64 Islam (10.1016/j.eswa.2024.125634_b30) 2020 Nie (10.1016/j.eswa.2024.125634_b42) 2013; 55 USDOE (10.1016/j.eswa.2024.125634_b57) 2020 Abadi (10.1016/j.eswa.2024.125634_b1) 2015 Stinson (10.1016/j.eswa.2024.125634_b53) 2021 10.1016/j.eswa.2024.125634_b60 Karbowski (10.1016/j.eswa.2024.125634_b33) 2014 Covington (10.1016/j.eswa.2024.125634_b8) 2016 Rodriguez-Rey (10.1016/j.eswa.2024.125634_b46) 2021; 92 Islam (10.1016/j.eswa.2024.125634_b29) 2018 Zhang (10.1016/j.eswa.2024.125634_b64) 2015; 41 Croce (10.1016/j.eswa.2024.125634_b9) 2020; 47 10.1016/j.eswa.2024.125634_b26 Hiermann (10.1016/j.eswa.2024.125634_b27) 2016; 252 Wang (10.1016/j.eswa.2024.125634_b59) 2018; 232 Galvin (10.1016/j.eswa.2024.125634_b19) 2017; 53 Fontes (10.1016/j.eswa.2024.125634_b16) 2015; 34 Kucukoglu (10.1016/j.eswa.2024.125634_b35) 2021; 161 Goeke (10.1016/j.eswa.2024.125634_b20) 2015; 245 Vijayagopal (10.1016/j.eswa.2024.125634_b58) 2020 10.1016/j.eswa.2024.125634_b7 Stinson (10.1016/j.eswa.2024.125634_b51) 2020 Wang (10.1016/j.eswa.2024.125634_b61) 2019; 74 Gomez-Uribe (10.1016/j.eswa.2024.125634_b21) 2016; 6 Stinson (10.1016/j.eswa.2024.125634_b50) 2019 Auld (10.1016/j.eswa.2024.125634_b4) 2012; 46 Freyermuth (10.1016/j.eswa.2024.125634_b18) 2020 Richter (10.1016/j.eswa.2024.125634_b45) 2012 10.1016/j.eswa.2024.125634_b37 Jiménez (10.1016/j.eswa.2024.125634_b32) 2016; 85 Sun (10.1016/j.eswa.2024.125634_b54) 2015; 34 Guo (10.1016/j.eswa.2024.125634_b23) 2020 Kuhn (10.1016/j.eswa.2024.125634_b36) 1955; 2 De Nunzio (10.1016/j.eswa.2024.125634_b10) 2021; 12 Zhang (10.1016/j.eswa.2024.125634_b63) 2020; 275 Fiori (10.1016/j.eswa.2024.125634_b15) 2019; 67 Gurumurthy (10.1016/j.eswa.2024.125634_b25) 2020; 2674 Osorio (10.1016/j.eswa.2024.125634_b43) 2015; 81 Islam (10.1016/j.eswa.2024.125634_b31) 2021 Fetene (10.1016/j.eswa.2024.125634_b13) 2017; 54 Moawad (10.1016/j.eswa.2024.125634_b38) 2021; 2 Stinson (10.1016/j.eswa.2024.125634_b52) 2021 10.1016/j.eswa.2024.125634_b47 Freyermuth (10.1016/j.eswa.2024.125634_b17) 2019 10.1016/j.eswa.2024.125634_b48 Moawad (10.1016/j.eswa.2024.125634_b39) 2016 10.1016/j.eswa.2024.125634_b12 Auld (10.1016/j.eswa.2024.125634_b3) 2016; 64 Guo (10.1016/j.eswa.2024.125634_b24) 2017 Sun (10.1016/j.eswa.2024.125634_b55) 2019; 2019 Stinson (10.1016/j.eswa.2024.125634_b49) 2020; 170 Naumov (10.1016/j.eswa.2024.125634_b40) 2019 Zegeye (10.1016/j.eswa.2024.125634_b62) 2013; 31 Nesamani (10.1016/j.eswa.2024.125634_b41) 2007; 41 Auld (10.1016/j.eswa.2024.125634_b5) 2019; 151 U.S. Census Bureau (10.1016/j.eswa.2024.125634_b56) 2020 |
References_xml | – volume: 47 start-page: 211 year: 2020 end-page: 218 ident: b9 article-title: Energy consumption of electric vehicles: Models’ estimation using big data (FCD) publication-title: Transportation Research Procedia – reference: , (pp. 771–778). Warsaw, Poland: URL:. – year: 2016 ident: b39 article-title: Assessment of vehicle sizing, energy consumption and cost through large scale simulation of advanced vehicle technologies – year: 2021 ident: b31 article-title: A Detailed Vehicle Modeling & Simulation Study Quantifying Energy Consumption and Cost Reduction of Advanced Vehicle Technologies Through 2050 – year: 2020 ident: b58 article-title: Fuel economy and cost estimates for medium and heavy duty trucks – volume: 31 start-page: 158 year: 2013 end-page: 171 ident: b62 article-title: Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes publication-title: Transportation Research Part C (Emerging Technologies) – volume: 2674 start-page: 181 year: 2020 end-page: 192 ident: b25 article-title: Integrating supply and demand perspectives for a large-scale simulation of shared autonomous vehicles publication-title: Transportation Research Record – year: 2019 ident: b50 article-title: Citywide impacts of E-commerce: Does parcel delivery travel outweigh household shopping travel reductions? publication-title: Proceedings of the 2nd ACM/EIGSCC symposium on smart cities and communities – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b28 article-title: Long short-term memory publication-title: Neural Computation – volume: 53 start-page: 234 year: 2017 end-page: 248 ident: b19 article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers publication-title: Transportation Research Part D: Transport and Environment – volume: 12 year: 2021 ident: b10 article-title: Road traffic dynamic pollutant emissions estimation: From macroscopic road information to microscopic environmental impact publication-title: Atmosphere – reference: SMART, . (2024). Energy efficient mobility systems. URL: – volume: 46 start-page: 1386 year: 2012 end-page: 1403 ident: b4 article-title: Activity planning processes in the agent-based dynamic activity planning and travel scheduling (ADAPTS) model publication-title: Transportation Research Part A: Policy and Practice – start-page: 1 year: 2020 end-page: 6 ident: b18 article-title: Powertrain distribution based on total cost of ownership for privately owned vehicles and TNC in the Chicago metropolitan area publication-title: 2020 IEEE vehicle power and propulsion conference (VPPC) – volume: 67 start-page: 275 year: 2019 end-page: 290 ident: b15 article-title: The effect of electrified mobility on the relationship between traffic conditions and energy consumption publication-title: Transportation Research Part D: Transport and Environment – volume: 245 start-page: 81 year: 2015 end-page: 99 ident: b20 article-title: Routing a mixed fleet of electric and conventional vehicles publication-title: European Journal of Operational Research – volume: 55 start-page: 154 year: 2013 end-page: 170 ident: b42 article-title: An eco-routing model considering microscopic vehicle operating conditions publication-title: Transportation Research, Part B (Methodological) – reference: : – year: 2014 ident: b33 article-title: Trip prediction using GIS for vehicle energy efficiency – volume: 13 start-page: 1694 year: 2012 end-page: 1704 ident: b6 article-title: Eco-routing navigation system based on multisource historical and real-time traffic information publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 64 start-page: 36 year: 2018 end-page: 52 ident: b44 article-title: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions publication-title: Transportation Research Part D: Transport and Environment – start-page: 1 year: 2019 end-page: 7 ident: b17 article-title: Energy prediction of the Chicago metropolitan area using distributed transportation MBSE framework publication-title: 2019 IEEE vehicle power and propulsion conference (VPPC) – volume: 2 start-page: 270 year: 2016 end-page: 289 ident: b22 article-title: Performance analysis of current BEVs based on a comprehensive review of specifications publication-title: IEEE Transactions on Transportation Electrification – volume: 151 start-page: 864 year: 2019 end-page: 869 ident: b5 article-title: Agent-based dynamic traffic assignment with information mixing publication-title: Procedia Computer Science – volume: 2 start-page: 185 year: 2021 end-page: 199 ident: b38 article-title: Explainable AI for a no-teardown vehicle component cost estimation: A top-down approach publication-title: IEEE Transactions on Artificial Intelligence – volume: 6 start-page: 13:1 year: 2016 end-page: 13:19 ident: b21 article-title: The netflix recommender system: Algorithms, business value, and innovation publication-title: ACM Transactions on Management Information Systems – reference: (pp. 1–7). – reference: (pp. 173–182). – volume: 161 year: 2021 ident: b35 article-title: The electric vehicle routing problem and its variations: A literature review publication-title: Computers & Industrial Engineering – year: 2021 ident: b52 article-title: Introducing CRISTAL: A model of collaborative, informed, strategic trade agents with logistics – reference: Cheng, H. T., et al. (2016). Wide & deep learning for recommender systems. In – year: 2020 ident: b57 article-title: SMART mobility multi-modal freight capstone report — department of energy – volume: 13 start-page: 151 year: 2008 end-page: 167 ident: b2 article-title: The effects of route choice decisions on vehicle energy consumption and emissions publication-title: Transportation Research Part D: Transport and Environment – year: 2015 ident: b1 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – year: 2020 ident: b23 article-title: Accelerating large-scale inference with anisotropic vector quantization – volume: 92 year: 2021 ident: b46 article-title: A coupled macroscopic traffic and pollutant emission modelling system for Barcelona publication-title: Transportation Research Part D: Transport and Environment – year: 2020 ident: b51 article-title: A method to integrate strategic alignment in freight transportation behavioral models – reference: Stinson, M., Auld, J., & Mohammadian, A. (2020a). A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions. In – year: 2021 ident: b53 article-title: Two algorithms for measuring attitudes using natural language – volume: 32 start-page: 669 year: 2016 end-page: 679 ident: b34 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: International Journal of Forecasting – reference: Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. In – volume: 275 year: 2020 ident: b63 article-title: Energy consumption analysis and prediction of electric vehicles based on real-world driving data publication-title: Applied Energy – volume: 34 start-page: 27 year: 2015 end-page: 40 ident: b54 article-title: Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data publication-title: Transportation Research Part D: Transport and Environment – year: 2017 ident: b24 article-title: DeepFM: A factorization-machine based neural network for CTR prediction – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: b36 article-title: The Hungarian method for the assignment problem publication-title: Naval Research Logistics Quarterly – year: 2019 ident: b40 article-title: Deep learning recommendation model for personalization and recommendation systems – volume: 74 start-page: 142 year: 2019 end-page: 153 ident: b61 article-title: A trajectory-based energy consumption estimation method considering battery degradation for an urban electric vehicle network publication-title: Transportation Research Part D: Transport and Environment – reference: (pp. 7–10). – year: 2020 ident: b56 article-title: Public use microdata samples – volume: 81 start-page: 520 year: 2015 end-page: 538 ident: b43 article-title: Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization publication-title: Transportation Research, Part B (Methodological) – volume: 2019 year: 2019 ident: b55 article-title: A machine learning method for predicting driving range of battery electric vehicles publication-title: Journal of Advanced Transportation – reference: He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In – year: 2020 ident: b30 article-title: Energy consumption and cost reduction of future light-duty vehicles through advanced vehicle technologies: A modeling simulation study through 2050 – start-page: 191 year: 2016 end-page: 198 ident: b8 article-title: Deep neural networks for YouTube recommendations publication-title: Proceedings of the 10th ACM conference on recommender systems – reference: (2024). U.S. Energy Information Administration (EIA). URL: – volume: 85 start-page: 120 year: 2016 end-page: 131 ident: b32 article-title: Urban bus fleet-to-route assignment for pollutant emissions minimization publication-title: Transportation Research Part E: Logistics and Transportation Review – reference: (pp. 1754–1763). – reference: . Energy.gov. – volume: 34 start-page: 293 year: 2015 end-page: 306 ident: b16 article-title: How to combine different microsimulation tools to assess the environmental impacts of road traffic? Lessons and directions publication-title: Transportation Research Part D: Transport and Environment – year: 2018 ident: b29 article-title: An extensive study on sizing, energy consumption, and cost of advanced vehicle technologies – reference: Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). xDeepFM: Combining explicit and implicit feature interactions for recommender systems. In – start-page: 1165 year: 2012 end-page: 1169 ident: b45 article-title: Comparison of eco and time efficient routing of ICEVs, BEVs and PHEVs in inner city traffic publication-title: 2012 IEEE vehicle power and propulsion conference – reference: . – volume: 232 start-page: 1528 year: 2018 end-page: 1542 ident: b59 article-title: Battery electric vehicle energy consumption prediction for a trip based on route information publication-title: Proceedings of the Institution of Mechanical Engineers, Part D (Journal of Automobile Engineering) – volume: 41 start-page: 2996 year: 2007 end-page: 3008 ident: b41 article-title: Estimation of vehicular emissions by capturing traffic variations publication-title: Atmospheric Environment – volume: 64 start-page: 101 year: 2016 end-page: 116 ident: b3 article-title: POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations publication-title: Transportation Research Part C (Emerging Technologies) – volume: 41 start-page: 177 year: 2015 end-page: 187 ident: b64 article-title: Electric vehicles’ energy consumption estimation with real driving condition data publication-title: Transportation Research Part D: Transport and Environment – volume: 151 start-page: 858 year: 2019 end-page: 863 ident: b11 article-title: Mesoscopic traffic flow model for agent-based simulation publication-title: Procedia Computer Science – volume: 54 start-page: 1 year: 2017 end-page: 11 ident: b13 article-title: Harnessing big data for estimating the energy consumption and driving range of electric vehicles publication-title: Transportation Research Part D: Transport and Environment – volume: 170 start-page: 771 year: 2020 end-page: 778 ident: b49 article-title: A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions publication-title: Procedia Computer Science – volume: 64 start-page: 262 year: 2018 end-page: 272 ident: b14 article-title: Optimum routing of battery electric vehicles: Insights using empirical data and microsimulation publication-title: Transportation Research Part D: Transport and Environment – volume: 252 start-page: 995 year: 2016 end-page: 1018 ident: b27 article-title: The electric fleet size and mix vehicle routing problem with time windows and recharging stations publication-title: European Journal of Operational Research – start-page: 191 year: 2016 ident: 10.1016/j.eswa.2024.125634_b8 article-title: Deep neural networks for YouTube recommendations – volume: 245 start-page: 81 issue: 1 year: 2015 ident: 10.1016/j.eswa.2024.125634_b20 article-title: Routing a mixed fleet of electric and conventional vehicles publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.01.049 – volume: 92 year: 2021 ident: 10.1016/j.eswa.2024.125634_b46 article-title: A coupled macroscopic traffic and pollutant emission modelling system for Barcelona publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2021.102725 – volume: 151 start-page: 858 year: 2019 ident: 10.1016/j.eswa.2024.125634_b11 article-title: Mesoscopic traffic flow model for agent-based simulation publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.04.118 – year: 2021 ident: 10.1016/j.eswa.2024.125634_b53 – year: 2020 ident: 10.1016/j.eswa.2024.125634_b57 – volume: 64 start-page: 101 year: 2016 ident: 10.1016/j.eswa.2024.125634_b3 article-title: POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2015.07.017 – year: 2020 ident: 10.1016/j.eswa.2024.125634_b30 – volume: 41 start-page: 2996 issue: 14 year: 2007 ident: 10.1016/j.eswa.2024.125634_b41 article-title: Estimation of vehicular emissions by capturing traffic variations publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2006.12.027 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.eswa.2024.125634_b28 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 64 start-page: 36 year: 2018 ident: 10.1016/j.eswa.2024.125634_b44 article-title: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2017.08.008 – volume: 85 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2024.125634_b32 article-title: Urban bus fleet-to-route assignment for pollutant emissions minimization publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2015.11.003 – ident: 10.1016/j.eswa.2024.125634_b48 doi: 10.1016/j.procs.2020.03.157 – year: 2015 ident: 10.1016/j.eswa.2024.125634_b1 – year: 2020 ident: 10.1016/j.eswa.2024.125634_b56 – volume: 170 start-page: 771 year: 2020 ident: 10.1016/j.eswa.2024.125634_b49 article-title: A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.03.157 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2024.125634_b18 article-title: Powertrain distribution based on total cost of ownership for privately owned vehicles and TNC in the Chicago metropolitan area – volume: 252 start-page: 995 issue: 3 year: 2016 ident: 10.1016/j.eswa.2024.125634_b27 article-title: The electric fleet size and mix vehicle routing problem with time windows and recharging stations publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.01.038 – volume: 6 start-page: 13:1 issue: 4 year: 2016 ident: 10.1016/j.eswa.2024.125634_b21 article-title: The netflix recommender system: Algorithms, business value, and innovation publication-title: ACM Transactions on Management Information Systems doi: 10.1145/2843948 – volume: 46 start-page: 1386 issue: 8 year: 2012 ident: 10.1016/j.eswa.2024.125634_b4 article-title: Activity planning processes in the agent-based dynamic activity planning and travel scheduling (ADAPTS) model publication-title: Transportation Research Part A: Policy and Practice – year: 2020 ident: 10.1016/j.eswa.2024.125634_b23 – start-page: 1165 year: 2012 ident: 10.1016/j.eswa.2024.125634_b45 article-title: Comparison of eco and time efficient routing of ICEVs, BEVs and PHEVs in inner city traffic – year: 2018 ident: 10.1016/j.eswa.2024.125634_b29 – year: 2016 ident: 10.1016/j.eswa.2024.125634_b39 – year: 2020 ident: 10.1016/j.eswa.2024.125634_b58 – volume: 53 start-page: 234 year: 2017 ident: 10.1016/j.eswa.2024.125634_b19 article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2017.04.020 – volume: 47 start-page: 211 year: 2020 ident: 10.1016/j.eswa.2024.125634_b9 article-title: Energy consumption of electric vehicles: Models’ estimation using big data (FCD) publication-title: Transportation Research Procedia doi: 10.1016/j.trpro.2020.03.091 – volume: 67 start-page: 275 year: 2019 ident: 10.1016/j.eswa.2024.125634_b15 article-title: The effect of electrified mobility on the relationship between traffic conditions and energy consumption publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2018.11.018 – ident: 10.1016/j.eswa.2024.125634_b37 doi: 10.1145/3219819.3220023 – ident: 10.1016/j.eswa.2024.125634_b7 doi: 10.1145/2988450.2988454 – ident: 10.1016/j.eswa.2024.125634_b60 doi: 10.1145/3124749.3124754 – volume: 34 start-page: 27 year: 2015 ident: 10.1016/j.eswa.2024.125634_b54 article-title: Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2014.10.005 – year: 2017 ident: 10.1016/j.eswa.2024.125634_b24 – year: 2019 ident: 10.1016/j.eswa.2024.125634_b40 – volume: 81 start-page: 520 year: 2015 ident: 10.1016/j.eswa.2024.125634_b43 article-title: Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization publication-title: Transportation Research, Part B (Methodological) doi: 10.1016/j.trb.2014.12.007 – volume: 232 start-page: 1528 issue: 11 year: 2018 ident: 10.1016/j.eswa.2024.125634_b59 article-title: Battery electric vehicle energy consumption prediction for a trip based on route information publication-title: Proceedings of the Institution of Mechanical Engineers, Part D (Journal of Automobile Engineering) doi: 10.1177/0954407017729938 – year: 2021 ident: 10.1016/j.eswa.2024.125634_b52 – volume: 74 start-page: 142 year: 2019 ident: 10.1016/j.eswa.2024.125634_b61 article-title: A trajectory-based energy consumption estimation method considering battery degradation for an urban electric vehicle network publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2019.07.021 – volume: 12 issue: 1 year: 2021 ident: 10.1016/j.eswa.2024.125634_b10 article-title: Road traffic dynamic pollutant emissions estimation: From macroscopic road information to microscopic environmental impact publication-title: Atmosphere doi: 10.3390/atmos12010053 – volume: 31 start-page: 158 year: 2013 ident: 10.1016/j.eswa.2024.125634_b62 article-title: Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes publication-title: Transportation Research Part C (Emerging Technologies) doi: 10.1016/j.trc.2013.01.002 – volume: 151 start-page: 864 year: 2019 ident: 10.1016/j.eswa.2024.125634_b5 article-title: Agent-based dynamic traffic assignment with information mixing publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.04.119 – volume: 55 start-page: 154 year: 2013 ident: 10.1016/j.eswa.2024.125634_b42 article-title: An eco-routing model considering microscopic vehicle operating conditions publication-title: Transportation Research, Part B (Methodological) doi: 10.1016/j.trb.2013.06.004 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2024.125634_b17 article-title: Energy prediction of the Chicago metropolitan area using distributed transportation MBSE framework – volume: 13 start-page: 1694 issue: 4 year: 2012 ident: 10.1016/j.eswa.2024.125634_b6 article-title: Eco-routing navigation system based on multisource historical and real-time traffic information publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2012.2204051 – volume: 54 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2024.125634_b13 article-title: Harnessing big data for estimating the energy consumption and driving range of electric vehicles publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2017.04.013 – ident: 10.1016/j.eswa.2024.125634_b12 – volume: 32 start-page: 669 issue: 3 year: 2016 ident: 10.1016/j.eswa.2024.125634_b34 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2015.12.003 – volume: 64 start-page: 262 year: 2018 ident: 10.1016/j.eswa.2024.125634_b14 article-title: Optimum routing of battery electric vehicles: Insights using empirical data and microsimulation publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2017.08.007 – volume: 41 start-page: 177 year: 2015 ident: 10.1016/j.eswa.2024.125634_b64 article-title: Electric vehicles’ energy consumption estimation with real driving condition data publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2015.10.010 – volume: 161 year: 2021 ident: 10.1016/j.eswa.2024.125634_b35 article-title: The electric vehicle routing problem and its variations: A literature review publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107650 – year: 2019 ident: 10.1016/j.eswa.2024.125634_b50 article-title: Citywide impacts of E-commerce: Does parcel delivery travel outweigh household shopping travel reductions? – ident: 10.1016/j.eswa.2024.125634_b47 – volume: 2674 start-page: 181 issue: 7 year: 2020 ident: 10.1016/j.eswa.2024.125634_b25 article-title: Integrating supply and demand perspectives for a large-scale simulation of shared autonomous vehicles publication-title: Transportation Research Record doi: 10.1177/0361198120921157 – volume: 34 start-page: 293 year: 2015 ident: 10.1016/j.eswa.2024.125634_b16 article-title: How to combine different microsimulation tools to assess the environmental impacts of road traffic? Lessons and directions publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2014.11.012 – volume: 275 year: 2020 ident: 10.1016/j.eswa.2024.125634_b63 article-title: Energy consumption analysis and prediction of electric vehicles based on real-world driving data publication-title: Applied Energy doi: 10.1016/j.apenergy.2020.115408 – year: 2021 ident: 10.1016/j.eswa.2024.125634_b31 – volume: 2 start-page: 185 issue: 2 year: 2021 ident: 10.1016/j.eswa.2024.125634_b38 article-title: Explainable AI for a no-teardown vehicle component cost estimation: A top-down approach publication-title: IEEE Transactions on Artificial Intelligence doi: 10.1109/TAI.2021.3065011 – year: 2014 ident: 10.1016/j.eswa.2024.125634_b33 – year: 2020 ident: 10.1016/j.eswa.2024.125634_b51 – ident: 10.1016/j.eswa.2024.125634_b26 doi: 10.1145/3038912.3052569 – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 10.1016/j.eswa.2024.125634_b36 article-title: The Hungarian method for the assignment problem publication-title: Naval Research Logistics Quarterly doi: 10.1002/nav.3800020109 – volume: 2 start-page: 270 issue: 3 year: 2016 ident: 10.1016/j.eswa.2024.125634_b22 article-title: Performance analysis of current BEVs based on a comprehensive review of specifications publication-title: IEEE Transactions on Transportation Electrification doi: 10.1109/TTE.2016.2571783 – volume: 2019 year: 2019 ident: 10.1016/j.eswa.2024.125634_b55 article-title: A machine learning method for predicting driving range of battery electric vehicles publication-title: Journal of Advanced Transportation doi: 10.1155/2019/4109148 – volume: 13 start-page: 151 issue: 3 year: 2008 ident: 10.1016/j.eswa.2024.125634_b2 article-title: The effects of route choice decisions on vehicle energy consumption and emissions publication-title: Transportation Research Part D: Transport and Environment doi: 10.1016/j.trd.2008.01.005 |
SSID | ssj0017007 |
Score | 2.4708862 |
Snippet | This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125634 |
SubjectTerms | Energy consumption Heavy-duty Machine learning Medium-duty Neural recommender systems Total cost of ownership Trucks Vehicle assignment |
Title | A real-time energy and cost efficient vehicle route assignment neural recommender system |
URI | https://dx.doi.org/10.1016/j.eswa.2024.125634 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1Bu7DwjfiWBzZkmtiO44wVAhUQXQCpW5T4HCiCFkGBjd_OOXEQSIiBNfIl0ZN9dy-5uwdwIGWcWJU6LjKMuHJCcaOd5gZLTDBKU1P57x2XQz24UeejZDQHx20vjC-rDL6_8em1tw5XegHN3tN43Lui5IDCIVE75eN4rOehK2Smkw50-2cXg-HXz4Q0arqmaT33BqF3pinzci_vfvyQUEcU6rVUv8enbzHndBkWQ7LI-s37rMCcm6zCUivEwMK5XINRn1Hu98C9UDxzdTcfKybI7PRlxlw9JIJiC3tzd_4-7HlK5oyy5vFtXQvA_FBLeo4nx4-PtbYcayY8r8P16cn18YAHyQRuZRTNuCksMRIposoUQqO1xN4sisooFVUulaUohZJES7EoiUhghqKISoxTK7EwVm5AZzKduE1gmU4rJPZhTInKYGysTW2GWVzKqjCotyBuccptGCfuVS0e8rZu7D732OYe27zBdgsOv2yemmEaf65OWvjzH1siJ2__h932P-12YEF4cV9fYJbsQmf2_Or2KOOYlfswf_QR74d99QkuzdXF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbAht4ntxM5YVVQF2i4UqVuU-BwoatOqDbDx27HzUYGEGFgjXxI9OXf3oud3CF0z5nqKC01oAA7hmnIife0TCTF44AghE_u_YzD0e0_8fuyNa6hTnYWxssoy9xc5Pc_W5ZVWiWZrMZm0Hk1zYMqhoXbc1nHX30Cb3GPC6vqan2udh_WfE4XhniB2eXlyphB56dWHNR-ivGkKvc_479XpW8Xp7qGdslXE7eJt9lFNpwdotxrDgMuv8hCN29h0flNix8RjnZ_lw1EKWM1XGda5RYSpLPhdv9j74OXchGPTM0-ecyUAtpaW5jmWGs9m-WQ5XPg7H6FR93bU6ZFyYAJRzHEyIiNl-AijTiIj6oNShrspoInk3Em0YDGNKWeGlEIUGxoBAdDIicEVikEkFTtG9XSe6hOEA18kYLiHlDFwCa5USqgAAjdmSSTBbyC3wilUpZm4nWkxDSvV2GtosQ0ttmGBbQPdrGMWhZXGn6u9Cv7wx4YITa7_I-70n3FXaKs3GvTD_t3w4QxtUzvm10rNvHNUz5Zv-sL0Hll8me-tL_rD1pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+energy+and+cost+efficient+vehicle+route+assignment+neural+recommender+system&rft.jtitle=Expert+systems+with+applications&rft.au=Moawad%2C+Ayman&rft.au=Li%2C+Zhijian&rft.au=Pancorbo%2C+Ines&rft.au=Gurumurthy%2C+Krishna+Murthy&rft.date=2025-03-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=263&rft_id=info:doi/10.1016%2Fj.eswa.2024.125634&rft.externalDocID=S0957417424025016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |