A real-time energy and cost efficient vehicle route assignment neural recommender system

This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cos...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 263; p. 125634
Main Authors Moawad, Ayman, Li, Zhijian, Pancorbo, Ines, Gurumurthy, Krishna Murthy, Freyermuth, Vincent, Islam, Ehsan, Vijayagopal, Ram, Stinson, Monique, Rousseau, Aymeric
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.03.2025
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2024.125634

Cover

Abstract This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cost of ownership (TCO) perspective, for given trips. We employ a machine learning based approach to efficiently estimate the energy consumption of various candidate vehicles over given routes, defined as sequences of links (road segments), with little information known about internal dynamics, i.e. using high level macroscopic route information. A complete recommendation logic is then developed to allow for real-time optimum assignment for each route, subject to the operational constraints of the fleet. We show how this framework can be used to (1) efficiently provide a single trip recommendation with a top-k vehicles star ranking system, and (2) engage in more general assignment problems where n vehicles need to be deployed over m(m≤n) trips. This new assignment system has been deployed and integrated into the POLARIS.11POLARIS is an Argonne-based high-performance, open-source agent-based modeling framework for simulating large-scale transportation systems. Transportation System Simulation Tool for use in research conducted by the Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium (SMART, 2024). •Novel application of machine learning in transportation.•Introduced an innovative neural recommender system for vehicle routing.•Real-time optimization of routes for energy and cost efficiency.•Demonstrated integration with POLARIS Simulation Tool.•Evaluated in real-world scenarios, showing significant savings.
AbstractList This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cost of ownership (TCO) perspective, for given trips. We employ a machine learning based approach to efficiently estimate the energy consumption of various candidate vehicles over given routes, defined as sequences of links (road segments), with little information known about internal dynamics, i.e. using high level macroscopic route information. A complete recommendation logic is then developed to allow for real-time optimum assignment for each route, subject to the operational constraints of the fleet. We show how this framework can be used to (1) efficiently provide a single trip recommendation with a top-k vehicles star ranking system, and (2) engage in more general assignment problems where n vehicles need to be deployed over m(m≤n) trips. This new assignment system has been deployed and integrated into the POLARIS.11POLARIS is an Argonne-based high-performance, open-source agent-based modeling framework for simulating large-scale transportation systems. Transportation System Simulation Tool for use in research conducted by the Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium (SMART, 2024). •Novel application of machine learning in transportation.•Introduced an innovative neural recommender system for vehicle routing.•Real-time optimization of routes for energy and cost efficiency.•Demonstrated integration with POLARIS Simulation Tool.•Evaluated in real-world scenarios, showing significant savings.
ArticleNumber 125634
Author Gurumurthy, Krishna Murthy
Vijayagopal, Ram
Pancorbo, Ines
Islam, Ehsan
Rousseau, Aymeric
Freyermuth, Vincent
Stinson, Monique
Li, Zhijian
Moawad, Ayman
Author_xml – sequence: 1
  givenname: Ayman
  orcidid: 0000-0001-6658-9012
  surname: Moawad
  fullname: Moawad, Ayman
  email: amoawad@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
– sequence: 2
  givenname: Zhijian
  surname: Li
  fullname: Li, Zhijian
  email: zhijil2@uci.edu
  organization: Department of Mathematics, University of California Irvine, 340 Rowland Hall, Irvine, CA 92697, USA
– sequence: 3
  givenname: Ines
  surname: Pancorbo
  fullname: Pancorbo, Ines
  email: ip221@georgetown.edu
  organization: Department of Mathematics and Statistics at Georgetown University, 3700 O St NW, Washington, DC 20057, USA
– sequence: 4
  givenname: Krishna Murthy
  orcidid: 0000-0001-6791-4948
  surname: Gurumurthy
  fullname: Gurumurthy, Krishna Murthy
  email: kgurumurthy@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
– sequence: 5
  givenname: Vincent
  surname: Freyermuth
  fullname: Freyermuth, Vincent
  email: vfreyermuth@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
– sequence: 6
  givenname: Ehsan
  surname: Islam
  fullname: Islam, Ehsan
  email: eislam@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
– sequence: 7
  givenname: Ram
  surname: Vijayagopal
  fullname: Vijayagopal, Ram
  email: rvijayagopal@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
– sequence: 8
  givenname: Monique
  surname: Stinson
  fullname: Stinson, Monique
  email: mstinson@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
– sequence: 9
  givenname: Aymeric
  surname: Rousseau
  fullname: Rousseau, Aymeric
  email: arousseau@anl.gov
  organization: Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
BookMark eNp9kL1qwzAUhTWk0CTtC3TSCzi9-onlQJcQ-geBLhm6CVm6ThVsuUhKSt6-NunUIdOFc_kOnG9GJqEPSMgDgwUDVj4eFph-zIIDlwvGl6WQEzKF1VIVkil5S2YpHQCYAlBT8rmmEU1bZN8hxYBxf6YmOGr7lCk2jbceQ6Yn_PK2RRr7Y0ZqUvL70I2PgMdo2qHD9t0QOIw0nVPG7o7cNKZNeP9352T38rzbvBXbj9f3zXpbWAGQi8rYEkrBoakML521sJLW8aaSEhpUouY1l0KIyplaSeVWjhuoHVNWOFNZMSf8Umtjn1LERn9H35l41gz0qEMf9KhDjzr0RccAVf8g67PJvg85Gt9eR58uKA6bTh6jTqMhi84PDrJ2vb-G_wKK74FQ
CitedBy_id crossref_primary_10_3390_su17052328
Cites_doi 10.1016/j.ejor.2015.01.049
10.1016/j.trd.2021.102725
10.1016/j.procs.2019.04.118
10.1016/j.trc.2015.07.017
10.1016/j.atmosenv.2006.12.027
10.1162/neco.1997.9.8.1735
10.1016/j.trd.2017.08.008
10.1016/j.tre.2015.11.003
10.1016/j.procs.2020.03.157
10.1016/j.ejor.2016.01.038
10.1145/2843948
10.1016/j.trd.2017.04.020
10.1016/j.trpro.2020.03.091
10.1016/j.trd.2018.11.018
10.1145/3219819.3220023
10.1145/2988450.2988454
10.1145/3124749.3124754
10.1016/j.trd.2014.10.005
10.1016/j.trb.2014.12.007
10.1177/0954407017729938
10.1016/j.trd.2019.07.021
10.3390/atmos12010053
10.1016/j.trc.2013.01.002
10.1016/j.procs.2019.04.119
10.1016/j.trb.2013.06.004
10.1109/TITS.2012.2204051
10.1016/j.trd.2017.04.013
10.1016/j.ijforecast.2015.12.003
10.1016/j.trd.2017.08.007
10.1016/j.trd.2015.10.010
10.1016/j.cie.2021.107650
10.1177/0361198120921157
10.1016/j.trd.2014.11.012
10.1016/j.apenergy.2020.115408
10.1109/TAI.2021.3065011
10.1145/3038912.3052569
10.1002/nav.3800020109
10.1109/TTE.2016.2571783
10.1155/2019/4109148
10.1016/j.trd.2008.01.005
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125634
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125634
S0957417424025016
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-8ac606320f8a26dcc094cd2f8440fe73b2b243338dab747d9d2a0bd17c3da8c3
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Thu Jul 03 08:10:55 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Sat Dec 21 15:58:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heavy-duty
Trucks
Energy consumption
Medium-duty
Machine learning
Vehicle assignment
Neural recommender systems
Total cost of ownership
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-8ac606320f8a26dcc094cd2f8440fe73b2b243338dab747d9d2a0bd17c3da8c3
ORCID 0000-0001-6791-4948
0000-0001-6658-9012
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125634
crossref_citationtrail_10_1016_j_eswa_2024_125634
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125634
PublicationCentury 2000
PublicationDate 2025-03-05
PublicationDateYYYYMMDD 2025-03-05
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goeke, Schneider (b20) 2015; 245
Nie, Li (b42) 2013; 55
Sun, Hao, Ban, Yang (b54) 2015; 34
Ahn, Rakha (b2) 2008; 13
Auld, Mohammadian (b4) 2012; 46
Islam, Vijayagopal, Moawad, Kim, Dupont, Nieto Prada (b31) 2021
Moawad, Kim, Shidore, Rousseau (b39) 2016
Kim, Kim (b34) 2016; 32
Osorio, Nanduri (b43) 2015; 81
Zhang, Wang, Liu, Zhang (b63) 2020; 275
Cheng, H. T., et al. (2016). Wide & deep learning for recommender systems. In
(pp. 173–182).
Auld, Hope, Ley, Sokolov, Xu, Zhang (b3) 2016; 64
Boriboonsomsin, Barth, Zhu, Vu (b6) 2012; 13
Islam, Moawad, Kim, Rousseau (b29) 2018
Guo, Sun, Lindgren, Geng, Simcha, Chern (b23) 2020
Nesamani, Chu, McNally, Jayakrishnan (b41) 2007; 41
Stinson, Mohammadian (b52) 2021
Vijayagopal, Nieto Prada, Rousseau (b58) 2020
Grunditz, Thiringer (b22) 2016; 2
De Nunzio, Laraki, Thibault (b10) 2021; 12
Stinson, Mohammadian (b53) 2021
USDOE (b57) 2020
(2024). U.S. Energy Information Administration (EIA). URL
Naumov (b40) 2019
Energy.gov.
Kucukoglu, Dewil, Cattrysse (b35) 2021; 161
.
Zhang, Yao (b64) 2015; 41
:
Abadi (b1) 2015
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In
Richter, Zinser, Kabza (b45) 2012
Fiori, Arcidiacono, Fontaras, Makridis, Mattas, Marzano (b15) 2019; 67
Galvin (b19) 2017; 53
Gurumurthy, de Souza, Enam, Auld (b25) 2020; 2674
Stinson, Enam, Moore, Auld (b50) 2019
Auld, Verbas, Stinson (b5) 2019; 151
Guo, Tang, Ye, Li, He (b24) 2017
de Souza, Verbas, Auld (b11) 2019; 151
Fiori, Ahn, Rakha (b14) 2018; 64
SMART, . (2024). Energy efficient mobility systems. URL
Freyermuth, Auld, Karbowski, Moawad, Pagerit, Rousseau (b18) 2020
Gomez-Uribe, Hunt (b21) 2016; 6
Sun, Zhang, Bi, Wang (b55) 2019; 2019
Islam, Moawad, Kim, Rousseau (b30) 2020
Fontes, Pereira, Fernandes, Bandeira, Coelho (b16) 2015; 34
Rodriguez-Rey, Guevara, Linares, Casanovas, Salmerón, Soret (b46) 2021; 92
Kuhn (b36) 1955; 2
Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). xDeepFM: Combining explicit and implicit feature interactions for recommender systems. In
Stinson, M., Auld, J., & Mohammadian, A. (2020a). A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions. In
(pp. 1754–1763).
(pp. 7–10).
Freyermuth, Auld, Karbowski, Moawad, Pagerit, Rousseau (b17) 2019
Croce, Musolino, Rindone, Vitetta (b9) 2020; 47
Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. In
Hiermann, Puchinger, Ropke, Hartl (b27) 2016; 252
(pp. 771–778). Warsaw, Poland: URL:.
Hochreiter, Schmidhuber (b28) 1997; 9
Moawad, Islam, Kim, Vijayagopal, Rousseau, Wu (b38) 2021; 2
Qi, Wu, Boriboonsomsin, Barth (b44) 2018; 64
(pp. 1–7).
Stinson, Mohammadian (b51) 2020
Wang, Besselink, Nijmeijer (b59) 2018; 232
Fetene, Kaplan, Mabit, Jensen, Prato (b13) 2017; 54
Covington, Adams, Sargin (b8) 2016
Jiménez, Román (b32) 2016; 85
Karbowski, Rousseau, Smis-Michel, Vermeulen (b33) 2014
U.S. Census Bureau (b56) 2020
Zegeye, Schutter, Hellendoorn, Breunesse, Hegyi (b62) 2013; 31
Stinson, Auld, Mohammadian (b49) 2020; 170
Wang, Zhao, Cai, Meng, Ong (b61) 2019; 74
de Souza (10.1016/j.eswa.2024.125634_b11) 2019; 151
Qi (10.1016/j.eswa.2024.125634_b44) 2018; 64
Hochreiter (10.1016/j.eswa.2024.125634_b28) 1997; 9
Kim (10.1016/j.eswa.2024.125634_b34) 2016; 32
Grunditz (10.1016/j.eswa.2024.125634_b22) 2016; 2
Ahn (10.1016/j.eswa.2024.125634_b2) 2008; 13
Boriboonsomsin (10.1016/j.eswa.2024.125634_b6) 2012; 13
Fiori (10.1016/j.eswa.2024.125634_b14) 2018; 64
Islam (10.1016/j.eswa.2024.125634_b30) 2020
Nie (10.1016/j.eswa.2024.125634_b42) 2013; 55
USDOE (10.1016/j.eswa.2024.125634_b57) 2020
Abadi (10.1016/j.eswa.2024.125634_b1) 2015
Stinson (10.1016/j.eswa.2024.125634_b53) 2021
10.1016/j.eswa.2024.125634_b60
Karbowski (10.1016/j.eswa.2024.125634_b33) 2014
Covington (10.1016/j.eswa.2024.125634_b8) 2016
Rodriguez-Rey (10.1016/j.eswa.2024.125634_b46) 2021; 92
Islam (10.1016/j.eswa.2024.125634_b29) 2018
Zhang (10.1016/j.eswa.2024.125634_b64) 2015; 41
Croce (10.1016/j.eswa.2024.125634_b9) 2020; 47
10.1016/j.eswa.2024.125634_b26
Hiermann (10.1016/j.eswa.2024.125634_b27) 2016; 252
Wang (10.1016/j.eswa.2024.125634_b59) 2018; 232
Galvin (10.1016/j.eswa.2024.125634_b19) 2017; 53
Fontes (10.1016/j.eswa.2024.125634_b16) 2015; 34
Kucukoglu (10.1016/j.eswa.2024.125634_b35) 2021; 161
Goeke (10.1016/j.eswa.2024.125634_b20) 2015; 245
Vijayagopal (10.1016/j.eswa.2024.125634_b58) 2020
10.1016/j.eswa.2024.125634_b7
Stinson (10.1016/j.eswa.2024.125634_b51) 2020
Wang (10.1016/j.eswa.2024.125634_b61) 2019; 74
Gomez-Uribe (10.1016/j.eswa.2024.125634_b21) 2016; 6
Stinson (10.1016/j.eswa.2024.125634_b50) 2019
Auld (10.1016/j.eswa.2024.125634_b4) 2012; 46
Freyermuth (10.1016/j.eswa.2024.125634_b18) 2020
Richter (10.1016/j.eswa.2024.125634_b45) 2012
10.1016/j.eswa.2024.125634_b37
Jiménez (10.1016/j.eswa.2024.125634_b32) 2016; 85
Sun (10.1016/j.eswa.2024.125634_b54) 2015; 34
Guo (10.1016/j.eswa.2024.125634_b23) 2020
Kuhn (10.1016/j.eswa.2024.125634_b36) 1955; 2
De Nunzio (10.1016/j.eswa.2024.125634_b10) 2021; 12
Zhang (10.1016/j.eswa.2024.125634_b63) 2020; 275
Fiori (10.1016/j.eswa.2024.125634_b15) 2019; 67
Gurumurthy (10.1016/j.eswa.2024.125634_b25) 2020; 2674
Osorio (10.1016/j.eswa.2024.125634_b43) 2015; 81
Islam (10.1016/j.eswa.2024.125634_b31) 2021
Fetene (10.1016/j.eswa.2024.125634_b13) 2017; 54
Moawad (10.1016/j.eswa.2024.125634_b38) 2021; 2
Stinson (10.1016/j.eswa.2024.125634_b52) 2021
10.1016/j.eswa.2024.125634_b47
Freyermuth (10.1016/j.eswa.2024.125634_b17) 2019
10.1016/j.eswa.2024.125634_b48
Moawad (10.1016/j.eswa.2024.125634_b39) 2016
10.1016/j.eswa.2024.125634_b12
Auld (10.1016/j.eswa.2024.125634_b3) 2016; 64
Guo (10.1016/j.eswa.2024.125634_b24) 2017
Sun (10.1016/j.eswa.2024.125634_b55) 2019; 2019
Stinson (10.1016/j.eswa.2024.125634_b49) 2020; 170
Naumov (10.1016/j.eswa.2024.125634_b40) 2019
Zegeye (10.1016/j.eswa.2024.125634_b62) 2013; 31
Nesamani (10.1016/j.eswa.2024.125634_b41) 2007; 41
Auld (10.1016/j.eswa.2024.125634_b5) 2019; 151
U.S. Census Bureau (10.1016/j.eswa.2024.125634_b56) 2020
References_xml – volume: 47
  start-page: 211
  year: 2020
  end-page: 218
  ident: b9
  article-title: Energy consumption of electric vehicles: Models’ estimation using big data (FCD)
  publication-title: Transportation Research Procedia
– reference: , (pp. 771–778). Warsaw, Poland: URL:.
– year: 2016
  ident: b39
  article-title: Assessment of vehicle sizing, energy consumption and cost through large scale simulation of advanced vehicle technologies
– year: 2021
  ident: b31
  article-title: A Detailed Vehicle Modeling & Simulation Study Quantifying Energy Consumption and Cost Reduction of Advanced Vehicle Technologies Through 2050
– year: 2020
  ident: b58
  article-title: Fuel economy and cost estimates for medium and heavy duty trucks
– volume: 31
  start-page: 158
  year: 2013
  end-page: 171
  ident: b62
  article-title: Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 2674
  start-page: 181
  year: 2020
  end-page: 192
  ident: b25
  article-title: Integrating supply and demand perspectives for a large-scale simulation of shared autonomous vehicles
  publication-title: Transportation Research Record
– year: 2019
  ident: b50
  article-title: Citywide impacts of E-commerce: Does parcel delivery travel outweigh household shopping travel reductions?
  publication-title: Proceedings of the 2nd ACM/EIGSCC symposium on smart cities and communities
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b28
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 53
  start-page: 234
  year: 2017
  end-page: 248
  ident: b19
  article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers
  publication-title: Transportation Research Part D: Transport and Environment
– volume: 12
  year: 2021
  ident: b10
  article-title: Road traffic dynamic pollutant emissions estimation: From macroscopic road information to microscopic environmental impact
  publication-title: Atmosphere
– reference: SMART, . (2024). Energy efficient mobility systems. URL:
– volume: 46
  start-page: 1386
  year: 2012
  end-page: 1403
  ident: b4
  article-title: Activity planning processes in the agent-based dynamic activity planning and travel scheduling (ADAPTS) model
  publication-title: Transportation Research Part A: Policy and Practice
– start-page: 1
  year: 2020
  end-page: 6
  ident: b18
  article-title: Powertrain distribution based on total cost of ownership for privately owned vehicles and TNC in the Chicago metropolitan area
  publication-title: 2020 IEEE vehicle power and propulsion conference (VPPC)
– volume: 67
  start-page: 275
  year: 2019
  end-page: 290
  ident: b15
  article-title: The effect of electrified mobility on the relationship between traffic conditions and energy consumption
  publication-title: Transportation Research Part D: Transport and Environment
– volume: 245
  start-page: 81
  year: 2015
  end-page: 99
  ident: b20
  article-title: Routing a mixed fleet of electric and conventional vehicles
  publication-title: European Journal of Operational Research
– volume: 55
  start-page: 154
  year: 2013
  end-page: 170
  ident: b42
  article-title: An eco-routing model considering microscopic vehicle operating conditions
  publication-title: Transportation Research, Part B (Methodological)
– reference: :
– year: 2014
  ident: b33
  article-title: Trip prediction using GIS for vehicle energy efficiency
– volume: 13
  start-page: 1694
  year: 2012
  end-page: 1704
  ident: b6
  article-title: Eco-routing navigation system based on multisource historical and real-time traffic information
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 64
  start-page: 36
  year: 2018
  end-page: 52
  ident: b44
  article-title: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions
  publication-title: Transportation Research Part D: Transport and Environment
– start-page: 1
  year: 2019
  end-page: 7
  ident: b17
  article-title: Energy prediction of the Chicago metropolitan area using distributed transportation MBSE framework
  publication-title: 2019 IEEE vehicle power and propulsion conference (VPPC)
– volume: 2
  start-page: 270
  year: 2016
  end-page: 289
  ident: b22
  article-title: Performance analysis of current BEVs based on a comprehensive review of specifications
  publication-title: IEEE Transactions on Transportation Electrification
– volume: 151
  start-page: 864
  year: 2019
  end-page: 869
  ident: b5
  article-title: Agent-based dynamic traffic assignment with information mixing
  publication-title: Procedia Computer Science
– volume: 2
  start-page: 185
  year: 2021
  end-page: 199
  ident: b38
  article-title: Explainable AI for a no-teardown vehicle component cost estimation: A top-down approach
  publication-title: IEEE Transactions on Artificial Intelligence
– volume: 6
  start-page: 13:1
  year: 2016
  end-page: 13:19
  ident: b21
  article-title: The netflix recommender system: Algorithms, business value, and innovation
  publication-title: ACM Transactions on Management Information Systems
– reference: (pp. 1–7).
– reference: (pp. 173–182).
– volume: 161
  year: 2021
  ident: b35
  article-title: The electric vehicle routing problem and its variations: A literature review
  publication-title: Computers & Industrial Engineering
– year: 2021
  ident: b52
  article-title: Introducing CRISTAL: A model of collaborative, informed, strategic trade agents with logistics
– reference: Cheng, H. T., et al. (2016). Wide & deep learning for recommender systems. In
– year: 2020
  ident: b57
  article-title: SMART mobility multi-modal freight capstone report — department of energy
– volume: 13
  start-page: 151
  year: 2008
  end-page: 167
  ident: b2
  article-title: The effects of route choice decisions on vehicle energy consumption and emissions
  publication-title: Transportation Research Part D: Transport and Environment
– year: 2015
  ident: b1
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– year: 2020
  ident: b23
  article-title: Accelerating large-scale inference with anisotropic vector quantization
– volume: 92
  year: 2021
  ident: b46
  article-title: A coupled macroscopic traffic and pollutant emission modelling system for Barcelona
  publication-title: Transportation Research Part D: Transport and Environment
– year: 2020
  ident: b51
  article-title: A method to integrate strategic alignment in freight transportation behavioral models
– reference: Stinson, M., Auld, J., & Mohammadian, A. (2020a). A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions. In
– year: 2021
  ident: b53
  article-title: Two algorithms for measuring attitudes using natural language
– volume: 32
  start-page: 669
  year: 2016
  end-page: 679
  ident: b34
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: International Journal of Forecasting
– reference: Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions. In
– volume: 275
  year: 2020
  ident: b63
  article-title: Energy consumption analysis and prediction of electric vehicles based on real-world driving data
  publication-title: Applied Energy
– volume: 34
  start-page: 27
  year: 2015
  end-page: 40
  ident: b54
  article-title: Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data
  publication-title: Transportation Research Part D: Transport and Environment
– year: 2017
  ident: b24
  article-title: DeepFM: A factorization-machine based neural network for CTR prediction
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: b36
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
– year: 2019
  ident: b40
  article-title: Deep learning recommendation model for personalization and recommendation systems
– volume: 74
  start-page: 142
  year: 2019
  end-page: 153
  ident: b61
  article-title: A trajectory-based energy consumption estimation method considering battery degradation for an urban electric vehicle network
  publication-title: Transportation Research Part D: Transport and Environment
– reference: (pp. 7–10).
– year: 2020
  ident: b56
  article-title: Public use microdata samples
– volume: 81
  start-page: 520
  year: 2015
  end-page: 538
  ident: b43
  article-title: Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization
  publication-title: Transportation Research, Part B (Methodological)
– volume: 2019
  year: 2019
  ident: b55
  article-title: A machine learning method for predicting driving range of battery electric vehicles
  publication-title: Journal of Advanced Transportation
– reference: He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In
– year: 2020
  ident: b30
  article-title: Energy consumption and cost reduction of future light-duty vehicles through advanced vehicle technologies: A modeling simulation study through 2050
– start-page: 191
  year: 2016
  end-page: 198
  ident: b8
  article-title: Deep neural networks for YouTube recommendations
  publication-title: Proceedings of the 10th ACM conference on recommender systems
– reference: (2024). U.S. Energy Information Administration (EIA). URL:
– volume: 85
  start-page: 120
  year: 2016
  end-page: 131
  ident: b32
  article-title: Urban bus fleet-to-route assignment for pollutant emissions minimization
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– reference: (pp. 1754–1763).
– reference: . Energy.gov.
– volume: 34
  start-page: 293
  year: 2015
  end-page: 306
  ident: b16
  article-title: How to combine different microsimulation tools to assess the environmental impacts of road traffic? Lessons and directions
  publication-title: Transportation Research Part D: Transport and Environment
– year: 2018
  ident: b29
  article-title: An extensive study on sizing, energy consumption, and cost of advanced vehicle technologies
– reference: Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., & Sun, G. (2018). xDeepFM: Combining explicit and implicit feature interactions for recommender systems. In
– start-page: 1165
  year: 2012
  end-page: 1169
  ident: b45
  article-title: Comparison of eco and time efficient routing of ICEVs, BEVs and PHEVs in inner city traffic
  publication-title: 2012 IEEE vehicle power and propulsion conference
– reference: .
– volume: 232
  start-page: 1528
  year: 2018
  end-page: 1542
  ident: b59
  article-title: Battery electric vehicle energy consumption prediction for a trip based on route information
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D (Journal of Automobile Engineering)
– volume: 41
  start-page: 2996
  year: 2007
  end-page: 3008
  ident: b41
  article-title: Estimation of vehicular emissions by capturing traffic variations
  publication-title: Atmospheric Environment
– volume: 64
  start-page: 101
  year: 2016
  end-page: 116
  ident: b3
  article-title: POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations
  publication-title: Transportation Research Part C (Emerging Technologies)
– volume: 41
  start-page: 177
  year: 2015
  end-page: 187
  ident: b64
  article-title: Electric vehicles’ energy consumption estimation with real driving condition data
  publication-title: Transportation Research Part D: Transport and Environment
– volume: 151
  start-page: 858
  year: 2019
  end-page: 863
  ident: b11
  article-title: Mesoscopic traffic flow model for agent-based simulation
  publication-title: Procedia Computer Science
– volume: 54
  start-page: 1
  year: 2017
  end-page: 11
  ident: b13
  article-title: Harnessing big data for estimating the energy consumption and driving range of electric vehicles
  publication-title: Transportation Research Part D: Transport and Environment
– volume: 170
  start-page: 771
  year: 2020
  end-page: 778
  ident: b49
  article-title: A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions
  publication-title: Procedia Computer Science
– volume: 64
  start-page: 262
  year: 2018
  end-page: 272
  ident: b14
  article-title: Optimum routing of battery electric vehicles: Insights using empirical data and microsimulation
  publication-title: Transportation Research Part D: Transport and Environment
– volume: 252
  start-page: 995
  year: 2016
  end-page: 1018
  ident: b27
  article-title: The electric fleet size and mix vehicle routing problem with time windows and recharging stations
  publication-title: European Journal of Operational Research
– start-page: 191
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b8
  article-title: Deep neural networks for YouTube recommendations
– volume: 245
  start-page: 81
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2024.125634_b20
  article-title: Routing a mixed fleet of electric and conventional vehicles
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.01.049
– volume: 92
  year: 2021
  ident: 10.1016/j.eswa.2024.125634_b46
  article-title: A coupled macroscopic traffic and pollutant emission modelling system for Barcelona
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2021.102725
– volume: 151
  start-page: 858
  year: 2019
  ident: 10.1016/j.eswa.2024.125634_b11
  article-title: Mesoscopic traffic flow model for agent-based simulation
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.04.118
– year: 2021
  ident: 10.1016/j.eswa.2024.125634_b53
– year: 2020
  ident: 10.1016/j.eswa.2024.125634_b57
– volume: 64
  start-page: 101
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b3
  article-title: POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2015.07.017
– year: 2020
  ident: 10.1016/j.eswa.2024.125634_b30
– volume: 41
  start-page: 2996
  issue: 14
  year: 2007
  ident: 10.1016/j.eswa.2024.125634_b41
  article-title: Estimation of vehicular emissions by capturing traffic variations
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2006.12.027
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.eswa.2024.125634_b28
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 64
  start-page: 36
  year: 2018
  ident: 10.1016/j.eswa.2024.125634_b44
  article-title: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2017.08.008
– volume: 85
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b32
  article-title: Urban bus fleet-to-route assignment for pollutant emissions minimization
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2015.11.003
– ident: 10.1016/j.eswa.2024.125634_b48
  doi: 10.1016/j.procs.2020.03.157
– year: 2015
  ident: 10.1016/j.eswa.2024.125634_b1
– year: 2020
  ident: 10.1016/j.eswa.2024.125634_b56
– volume: 170
  start-page: 771
  year: 2020
  ident: 10.1016/j.eswa.2024.125634_b49
  article-title: A large-scale, agent-based simulation of metropolitan freight movements with passenger and freight market interactions
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.157
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2024.125634_b18
  article-title: Powertrain distribution based on total cost of ownership for privately owned vehicles and TNC in the Chicago metropolitan area
– volume: 252
  start-page: 995
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b27
  article-title: The electric fleet size and mix vehicle routing problem with time windows and recharging stations
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.01.038
– volume: 6
  start-page: 13:1
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b21
  article-title: The netflix recommender system: Algorithms, business value, and innovation
  publication-title: ACM Transactions on Management Information Systems
  doi: 10.1145/2843948
– volume: 46
  start-page: 1386
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2024.125634_b4
  article-title: Activity planning processes in the agent-based dynamic activity planning and travel scheduling (ADAPTS) model
  publication-title: Transportation Research Part A: Policy and Practice
– year: 2020
  ident: 10.1016/j.eswa.2024.125634_b23
– start-page: 1165
  year: 2012
  ident: 10.1016/j.eswa.2024.125634_b45
  article-title: Comparison of eco and time efficient routing of ICEVs, BEVs and PHEVs in inner city traffic
– year: 2018
  ident: 10.1016/j.eswa.2024.125634_b29
– year: 2016
  ident: 10.1016/j.eswa.2024.125634_b39
– year: 2020
  ident: 10.1016/j.eswa.2024.125634_b58
– volume: 53
  start-page: 234
  year: 2017
  ident: 10.1016/j.eswa.2024.125634_b19
  article-title: Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2017.04.020
– volume: 47
  start-page: 211
  year: 2020
  ident: 10.1016/j.eswa.2024.125634_b9
  article-title: Energy consumption of electric vehicles: Models’ estimation using big data (FCD)
  publication-title: Transportation Research Procedia
  doi: 10.1016/j.trpro.2020.03.091
– volume: 67
  start-page: 275
  year: 2019
  ident: 10.1016/j.eswa.2024.125634_b15
  article-title: The effect of electrified mobility on the relationship between traffic conditions and energy consumption
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2018.11.018
– ident: 10.1016/j.eswa.2024.125634_b37
  doi: 10.1145/3219819.3220023
– ident: 10.1016/j.eswa.2024.125634_b7
  doi: 10.1145/2988450.2988454
– ident: 10.1016/j.eswa.2024.125634_b60
  doi: 10.1145/3124749.3124754
– volume: 34
  start-page: 27
  year: 2015
  ident: 10.1016/j.eswa.2024.125634_b54
  article-title: Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2014.10.005
– year: 2017
  ident: 10.1016/j.eswa.2024.125634_b24
– year: 2019
  ident: 10.1016/j.eswa.2024.125634_b40
– volume: 81
  start-page: 520
  year: 2015
  ident: 10.1016/j.eswa.2024.125634_b43
  article-title: Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization
  publication-title: Transportation Research, Part B (Methodological)
  doi: 10.1016/j.trb.2014.12.007
– volume: 232
  start-page: 1528
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2024.125634_b59
  article-title: Battery electric vehicle energy consumption prediction for a trip based on route information
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D (Journal of Automobile Engineering)
  doi: 10.1177/0954407017729938
– year: 2021
  ident: 10.1016/j.eswa.2024.125634_b52
– volume: 74
  start-page: 142
  year: 2019
  ident: 10.1016/j.eswa.2024.125634_b61
  article-title: A trajectory-based energy consumption estimation method considering battery degradation for an urban electric vehicle network
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2019.07.021
– volume: 12
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.125634_b10
  article-title: Road traffic dynamic pollutant emissions estimation: From macroscopic road information to microscopic environmental impact
  publication-title: Atmosphere
  doi: 10.3390/atmos12010053
– volume: 31
  start-page: 158
  year: 2013
  ident: 10.1016/j.eswa.2024.125634_b62
  article-title: Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes
  publication-title: Transportation Research Part C (Emerging Technologies)
  doi: 10.1016/j.trc.2013.01.002
– volume: 151
  start-page: 864
  year: 2019
  ident: 10.1016/j.eswa.2024.125634_b5
  article-title: Agent-based dynamic traffic assignment with information mixing
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.04.119
– volume: 55
  start-page: 154
  year: 2013
  ident: 10.1016/j.eswa.2024.125634_b42
  article-title: An eco-routing model considering microscopic vehicle operating conditions
  publication-title: Transportation Research, Part B (Methodological)
  doi: 10.1016/j.trb.2013.06.004
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2024.125634_b17
  article-title: Energy prediction of the Chicago metropolitan area using distributed transportation MBSE framework
– volume: 13
  start-page: 1694
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2024.125634_b6
  article-title: Eco-routing navigation system based on multisource historical and real-time traffic information
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2012.2204051
– volume: 54
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2024.125634_b13
  article-title: Harnessing big data for estimating the energy consumption and driving range of electric vehicles
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2017.04.013
– ident: 10.1016/j.eswa.2024.125634_b12
– volume: 32
  start-page: 669
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b34
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2015.12.003
– volume: 64
  start-page: 262
  year: 2018
  ident: 10.1016/j.eswa.2024.125634_b14
  article-title: Optimum routing of battery electric vehicles: Insights using empirical data and microsimulation
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2017.08.007
– volume: 41
  start-page: 177
  year: 2015
  ident: 10.1016/j.eswa.2024.125634_b64
  article-title: Electric vehicles’ energy consumption estimation with real driving condition data
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2015.10.010
– volume: 161
  year: 2021
  ident: 10.1016/j.eswa.2024.125634_b35
  article-title: The electric vehicle routing problem and its variations: A literature review
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107650
– year: 2019
  ident: 10.1016/j.eswa.2024.125634_b50
  article-title: Citywide impacts of E-commerce: Does parcel delivery travel outweigh household shopping travel reductions?
– ident: 10.1016/j.eswa.2024.125634_b47
– volume: 2674
  start-page: 181
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2024.125634_b25
  article-title: Integrating supply and demand perspectives for a large-scale simulation of shared autonomous vehicles
  publication-title: Transportation Research Record
  doi: 10.1177/0361198120921157
– volume: 34
  start-page: 293
  year: 2015
  ident: 10.1016/j.eswa.2024.125634_b16
  article-title: How to combine different microsimulation tools to assess the environmental impacts of road traffic? Lessons and directions
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2014.11.012
– volume: 275
  year: 2020
  ident: 10.1016/j.eswa.2024.125634_b63
  article-title: Energy consumption analysis and prediction of electric vehicles based on real-world driving data
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.115408
– year: 2021
  ident: 10.1016/j.eswa.2024.125634_b31
– volume: 2
  start-page: 185
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2024.125634_b38
  article-title: Explainable AI for a no-teardown vehicle component cost estimation: A top-down approach
  publication-title: IEEE Transactions on Artificial Intelligence
  doi: 10.1109/TAI.2021.3065011
– year: 2014
  ident: 10.1016/j.eswa.2024.125634_b33
– year: 2020
  ident: 10.1016/j.eswa.2024.125634_b51
– ident: 10.1016/j.eswa.2024.125634_b26
  doi: 10.1145/3038912.3052569
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.eswa.2024.125634_b36
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800020109
– volume: 2
  start-page: 270
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2024.125634_b22
  article-title: Performance analysis of current BEVs based on a comprehensive review of specifications
  publication-title: IEEE Transactions on Transportation Electrification
  doi: 10.1109/TTE.2016.2571783
– volume: 2019
  year: 2019
  ident: 10.1016/j.eswa.2024.125634_b55
  article-title: A machine learning method for predicting driving range of battery electric vehicles
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2019/4109148
– volume: 13
  start-page: 151
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2024.125634_b2
  article-title: The effects of route choice decisions on vehicle energy consumption and emissions
  publication-title: Transportation Research Part D: Transport and Environment
  doi: 10.1016/j.trd.2008.01.005
SSID ssj0017007
Score 2.4708862
Snippet This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125634
SubjectTerms Energy consumption
Heavy-duty
Machine learning
Medium-duty
Neural recommender systems
Total cost of ownership
Trucks
Vehicle assignment
Title A real-time energy and cost efficient vehicle route assignment neural recommender system
URI https://dx.doi.org/10.1016/j.eswa.2024.125634
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1Bu7DwjfiWBzZkmtiO44wVAhUQXQCpW5T4HCiCFkGBjd_OOXEQSIiBNfIl0ZN9dy-5uwdwIGWcWJU6LjKMuHJCcaOd5gZLTDBKU1P57x2XQz24UeejZDQHx20vjC-rDL6_8em1tw5XegHN3tN43Lui5IDCIVE75eN4rOehK2Smkw50-2cXg-HXz4Q0arqmaT33BqF3pinzci_vfvyQUEcU6rVUv8enbzHndBkWQ7LI-s37rMCcm6zCUivEwMK5XINRn1Hu98C9UDxzdTcfKybI7PRlxlw9JIJiC3tzd_4-7HlK5oyy5vFtXQvA_FBLeo4nx4-PtbYcayY8r8P16cn18YAHyQRuZRTNuCksMRIposoUQqO1xN4sisooFVUulaUohZJES7EoiUhghqKISoxTK7EwVm5AZzKduE1gmU4rJPZhTInKYGysTW2GWVzKqjCotyBuccptGCfuVS0e8rZu7D732OYe27zBdgsOv2yemmEaf65OWvjzH1siJ2__h932P-12YEF4cV9fYJbsQmf2_Or2KOOYlfswf_QR74d99QkuzdXF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbAht4ntxM5YVVQF2i4UqVuU-BwoatOqDbDx27HzUYGEGFgjXxI9OXf3oud3CF0z5nqKC01oAA7hmnIife0TCTF44AghE_u_YzD0e0_8fuyNa6hTnYWxssoy9xc5Pc_W5ZVWiWZrMZm0Hk1zYMqhoXbc1nHX30Cb3GPC6vqan2udh_WfE4XhniB2eXlyphB56dWHNR-ivGkKvc_479XpW8Xp7qGdslXE7eJt9lFNpwdotxrDgMuv8hCN29h0flNix8RjnZ_lw1EKWM1XGda5RYSpLPhdv9j74OXchGPTM0-ecyUAtpaW5jmWGs9m-WQ5XPg7H6FR93bU6ZFyYAJRzHEyIiNl-AijTiIj6oNShrspoInk3Em0YDGNKWeGlEIUGxoBAdDIicEVikEkFTtG9XSe6hOEA18kYLiHlDFwCa5USqgAAjdmSSTBbyC3wilUpZm4nWkxDSvV2GtosQ0ttmGBbQPdrGMWhZXGn6u9Cv7wx4YITa7_I-70n3FXaKs3GvTD_t3w4QxtUzvm10rNvHNUz5Zv-sL0Hll8me-tL_rD1pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+energy+and+cost+efficient+vehicle+route+assignment+neural+recommender+system&rft.jtitle=Expert+systems+with+applications&rft.au=Moawad%2C+Ayman&rft.au=Li%2C+Zhijian&rft.au=Pancorbo%2C+Ines&rft.au=Gurumurthy%2C+Krishna+Murthy&rft.date=2025-03-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=263&rft_id=info:doi/10.1016%2Fj.eswa.2024.125634&rft.externalDocID=S0957417424025016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon