Training state and performance evaluation of working memory based on task-related EEG
•We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build functional brain network based on EEG, and used graph-theoretic indexes as EEG features to measure working memory ability.•Compared with the correlati...
Saved in:
Published in | Biomedical signal processing and control Vol. 51; pp. 296 - 308 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build functional brain network based on EEG, and used graph-theoretic indexes as EEG features to measure working memory ability.•Compared with the correlation between the EEG features and working memory performance, the correlation between the EEG features and working memory training was stronger.•We used a deep learning algorithm named as stacked auto-encoder to predict of the performance in the WM task based on the EEG features, and the MSE was 144.24.
The working memory (WM) refers to the information maintaining and manipulation during a short period, and it is corresponding to human ability in many tasks. The correlation between EEG features and the training state of the subjects or their performance in WM tasks had been investigated by many researches. However, there was no research done on the comparison between the training and performance to investigate which one is more correlated with the EEG features and adequately developed practical application of this correlation by now. This paper used phase synchronization methods to build functional brain networks (FBN) of the subjects based on their task-related EEG. Based on this, we investigated the correlation of the global and local features of the FBNs and applied Quadratic Discriminant, Cosine KNN and stacked auto-encoder (SAE) to evaluate the performance and the training state. The accuracy of training state detection was 98.7%, while the accuracy of performance prediction (predict if the score>79) was 81.2% and the MSE of the score prediction was 144.24. The results suggested that the training state is more reliance to the FBN features than performance. The method had the potential to be extended to other fields to assess WM ability or proficiency of people. |
---|---|
AbstractList | •We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build functional brain network based on EEG, and used graph-theoretic indexes as EEG features to measure working memory ability.•Compared with the correlation between the EEG features and working memory performance, the correlation between the EEG features and working memory training was stronger.•We used a deep learning algorithm named as stacked auto-encoder to predict of the performance in the WM task based on the EEG features, and the MSE was 144.24.
The working memory (WM) refers to the information maintaining and manipulation during a short period, and it is corresponding to human ability in many tasks. The correlation between EEG features and the training state of the subjects or their performance in WM tasks had been investigated by many researches. However, there was no research done on the comparison between the training and performance to investigate which one is more correlated with the EEG features and adequately developed practical application of this correlation by now. This paper used phase synchronization methods to build functional brain networks (FBN) of the subjects based on their task-related EEG. Based on this, we investigated the correlation of the global and local features of the FBNs and applied Quadratic Discriminant, Cosine KNN and stacked auto-encoder (SAE) to evaluate the performance and the training state. The accuracy of training state detection was 98.7%, while the accuracy of performance prediction (predict if the score>79) was 81.2% and the MSE of the score prediction was 144.24. The results suggested that the training state is more reliance to the FBN features than performance. The method had the potential to be extended to other fields to assess WM ability or proficiency of people. |
Author | Hua, Chengcheng Fu, Qiang Wang, Hong Wang, Qiaoxiu Fetlework, Tenssay |
Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0003-2148-8108 surname: Wang fullname: Wang, Hong organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China – sequence: 2 givenname: Chengcheng surname: Hua fullname: Hua, Chengcheng email: huachengcheng45@gmail.com organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China – sequence: 3 givenname: Qiaoxiu surname: Wang fullname: Wang, Qiaoxiu organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China – sequence: 4 givenname: Qiang surname: Fu fullname: Fu, Qiang organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China – sequence: 5 givenname: Tenssay surname: Fetlework fullname: Fetlework, Tenssay organization: School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, China |
BookMark | eNp9kMFOwzAMhiM0JLbBC3DKC7Q4bdekEhc0jYGExGU7R17iomxtMyVlaG9Px-DCYSdbsj_L_zdho853xNi9gFSAKB-26SbuTZqBqFLIU4Dsio2FLMpECVCjvx6q4oZNYtwCFEqKYszWq4Cuc90Hjz32xLGzfE-h9qHFzhCnAzaf2DvfcV_zLx92p92WWh-OfIORLB9GPcZdEqgZLli-WCxv2XWNTaS73zpl6-fFav6SvL0vX-dPb4nJAfpEVTVZzDdSGIlqeH6GUNmitJmRVEtBxlhhZ7ZEzMEigVRKWZpZaTBHS_mUZee7JvgYA9V6H1yL4agF6JMYvdUnMfokRkOuBzEDpP5BxvU_EfvBRXMZfTyjNIQ6OAo6GkeDJ-sCmV5b7y7h3_Ddgx8 |
CitedBy_id | crossref_primary_10_1142_S0129065721500477 crossref_primary_10_1155_2022_1830318 crossref_primary_10_1007_s40846_021_00600_8 crossref_primary_10_1016_j_bspc_2020_101998 crossref_primary_10_1016_j_neucom_2019_05_088 crossref_primary_10_1142_S0129065720500021 |
Cites_doi | 10.1126/science.1127647 10.1152/jn.00051.2014 10.1016/S0079-6123(07)00020-9 10.1038/nrn2979 10.1146/annurev-psych-120710-100422 10.1016/j.neubiorev.2009.12.006 10.1089/neu.2008.0644 10.1016/j.cortex.2013.01.008 10.1016/j.cub.2009.12.014 10.1523/JNEUROSCI.21-09-03175.2001 10.1016/j.brainresbull.2017.01.023 10.1016/j.eswa.2017.08.012 10.1016/j.tins.2007.05.001 10.1073/pnas.0911531107 10.1016/j.clinph.2013.08.033 10.1016/j.neulet.2017.01.022 10.1016/j.eswa.2016.10.017 10.1016/j.biopsych.2010.06.013 10.1016/j.bandc.2012.02.007 10.1016/j.neuroimage.2007.02.011 10.1016/j.biopsycho.2015.09.008 10.1007/s11571-015-9327-3 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2005.04.014 10.1038/nrn.2016.43 10.1155/2012/239210 10.1016/j.nlm.2014.04.009 10.1016/S0165-0173(98)00056-3 10.1016/j.eswa.2017.04.017 10.1152/physrev.00035.2008 10.1016/j.neuroimage.2013.02.008 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1016/j.cmpb.2004.07.002 10.1016/j.neuroimage.2011.01.055 10.1002/hbm.20346 10.1016/j.eswa.2016.01.024 10.1016/j.ijpsycho.2005.03.018 10.1523/JNEUROSCI.2945-16.2016 10.1088/0967-3334/22/4/305 10.1038/nrn1201 10.1046/j.1460-9568.2002.01975.x 10.1016/j.neulet.2012.10.061 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2019.03.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
EndPage | 308 |
ExternalDocumentID | 10_1016_j_bspc_2019_03_002 S174680941930076X |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-89feda3b71c7a82015a09d46d2c7ef71eccd1d5d6aa30dae07888de5d7ca3ade3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 22:55:58 EDT 2025 Tue Jul 01 01:34:05 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Working memory (WM) Functional brain network (FBN) EEG Phase synchronization Stacked auto-encoder (SAE) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-89feda3b71c7a82015a09d46d2c7ef71eccd1d5d6aa30dae07888de5d7ca3ade3 |
ORCID | 0000-0003-2148-8108 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2019_03_002 crossref_citationtrail_10_1016_j_bspc_2019_03_002 elsevier_sciencedirect_doi_10_1016_j_bspc_2019_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yousefi-Azar, Hamey (bib0255) 2017; 68 Sari, Koster, Pourtois, Derakshan (bib0265) 2016; 121 Raghavachari, Kahana, Rizzuto, Caplan, Kirschen, Bourgeois, Madsen, Lisman (bib0040) 2001; 21 Baddeley (bib0020) 2012; 63 Jensen, Tesche (bib0050) 2002; 15 Dong, Li, Liu, Wen, Lai, Xu, Yao (bib0290) 2017; 11 Baddeley (bib0010) 2007 Aydore, Pantazis, Leahy (bib0160) 2013; 74 Jausovec, Jausovec (bib0270) 2012; 79 Pavlov, Kotchoubey (bib0260) 2017; 18 Jiang, Chin, Wang, Qu, Tsui (bib0240) 2017; 82 Palm (bib0235) 2012 Axmacher, Henseler, Jensen, Weinreich, Elger, Fell (bib0060) 2010; 107 Lachaux, Rodriguez, Martinerie, Varela (bib0180) 1999; 8 Vinck, Oostenveld, van Wingerden, Battaglia, Pennartz (bib0295) 2011; 55 Wu, Chen, Li, Han, Zhang (bib0110) 2007; 35 Sun, Li, Tong (bib0170) 2012 Onton, Delorme, Makeig (bib0095) 2005; 27 Hinton, Salakhutdinov (bib0245) 2006; 313 Xiong, Cheng, Wu, Guo, Yao, Zhang (bib0150) 2014; 24 de Vries, van Driel, Olivers (bib0100) 2017; 37 Sauseng, Conci, Wild, Geyer (bib0155) 2015; 6 Onnela, Saramaki, Kertesz, Kaski (bib0220) 2005; 71 Humphries, Gurney (bib0230) 2008; 3 Dai, de Souza, Lim, Ho, Chen, Li, Thakor, Bezerianos, Sun (bib0115) 2017; 11 Klimesch (bib0080) 1999; 29 Constantinidis, Klingberg (bib0140) 2016; 17 Jian, Chen, McFarland (bib0285) 2017; 130 Boccaletti, Latora, Moreno, Chavez, Hwang (bib0200) 2006; 424 Wang, Chang, Zhang (bib0205) 2016; 53 Astrand (bib0035) 2018; 15 Rajji, Zomorrodi, Barr, Blumberger, Mulsant, Daskalakis (bib0065) 2017; 27 Sauseng, Griesmayr, Freunberger, Klimesch (bib0055) 2010; 34 Zhang, Xu, Guo, Yao (bib0190) 2013; 10 Latora, Marchiori (bib0225) 2001; 87 Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (bib0250) 2010; 11 Sauseng, Klimesch, Schabus, Doppelmayr (bib0075) 2005; 57 Baddeley (bib0015) 2010; 20 Jensen, Kaiser, Lachaux (bib0045) 2007; 30 Toth, Kardos, File, Boha, Stam, Molnar (bib0175) 2014; 114 Kumar, Rao, Chandramouli, Pillai (bib0120) 2009; 26 Wang (bib0030) 2010; 90 Ahmadlou, Adeli, Bajo, Adeli (bib0125) 2014; 125 Euler, Wiltshire, Niermeyer, Butner (bib0130) 1637 Baddeley (bib0005) 2003; 4 Langer, von Bastian, Wirz, Oberauer, Jancke (bib0135) 2013; 49 Fell, Axmacher (bib0105) 2011; 12 Zhang, Guo, Cheng, Yao, Xu (bib0195) 2015; 9 Hsu, Cheng, Chiu (bib0090) 2017; 640 Haenschel, Linden, Bittner, Singer, Hanslmayr (bib0165) 2010; 68 Diykh, Li, Wen (bib0210) 2017; 90 Jones, Peterson, Blacker, Berryhill (bib0145) 1667 Yao (bib0275) 2001; 22 Stam, Nolte, Daffertshofer (bib0185) 2007; 28 Zhai, Yao (bib0280) 2004; 76 Cowan (bib0025) 2008; 169 Rubinov, Sporns (bib0215) 2010; 52 Poliakov, Stokes, Woolrich, Mantini, Astle (bib0085) 2014; 112 Park, Jhung, Lee, An (bib0070) 2013; 532 Latora (10.1016/j.bspc.2019.03.002_bib0225) 2001; 87 Humphries (10.1016/j.bspc.2019.03.002_bib0230) 2008; 3 Sun (10.1016/j.bspc.2019.03.002_bib0170) 2012 Raghavachari (10.1016/j.bspc.2019.03.002_bib0040) 2001; 21 Hinton (10.1016/j.bspc.2019.03.002_bib0245) 2006; 313 Zhang (10.1016/j.bspc.2019.03.002_bib0195) 2015; 9 Constantinidis (10.1016/j.bspc.2019.03.002_bib0140) 2016; 17 Lachaux (10.1016/j.bspc.2019.03.002_bib0180) 1999; 8 Onton (10.1016/j.bspc.2019.03.002_bib0095) 2005; 27 Toth (10.1016/j.bspc.2019.03.002_bib0175) 2014; 114 Kumar (10.1016/j.bspc.2019.03.002_bib0120) 2009; 26 Baddeley (10.1016/j.bspc.2019.03.002_bib0010) 2007 Sauseng (10.1016/j.bspc.2019.03.002_bib0075) 2005; 57 Hsu (10.1016/j.bspc.2019.03.002_bib0090) 2017; 640 Pavlov (10.1016/j.bspc.2019.03.002_bib0260) 2017; 18 Vinck (10.1016/j.bspc.2019.03.002_bib0295) 2011; 55 Erhan (10.1016/j.bspc.2019.03.002_bib0250) 2010; 11 Park (10.1016/j.bspc.2019.03.002_bib0070) 2013; 532 Poliakov (10.1016/j.bspc.2019.03.002_bib0085) 2014; 112 Yao (10.1016/j.bspc.2019.03.002_bib0275) 2001; 22 Stam (10.1016/j.bspc.2019.03.002_bib0185) 2007; 28 Palm (10.1016/j.bspc.2019.03.002_bib0235) 2012 Jensen (10.1016/j.bspc.2019.03.002_bib0045) 2007; 30 Aydore (10.1016/j.bspc.2019.03.002_bib0160) 2013; 74 Zhang (10.1016/j.bspc.2019.03.002_bib0190) 2013; 10 Klimesch (10.1016/j.bspc.2019.03.002_bib0080) 1999; 29 Cowan (10.1016/j.bspc.2019.03.002_bib0025) 2008; 169 Wu (10.1016/j.bspc.2019.03.002_bib0110) 2007; 35 Onnela (10.1016/j.bspc.2019.03.002_bib0220) 2005; 71 Rubinov (10.1016/j.bspc.2019.03.002_bib0215) 2010; 52 de Vries (10.1016/j.bspc.2019.03.002_bib0100) 2017; 37 Diykh (10.1016/j.bspc.2019.03.002_bib0210) 2017; 90 Jausovec (10.1016/j.bspc.2019.03.002_bib0270) 2012; 79 Xiong (10.1016/j.bspc.2019.03.002_bib0150) 2014; 24 Euler (10.1016/j.bspc.2019.03.002_bib0130) 1637 Dong (10.1016/j.bspc.2019.03.002_bib0290) 2017; 11 Haenschel (10.1016/j.bspc.2019.03.002_bib0165) 2010; 68 Astrand (10.1016/j.bspc.2019.03.002_bib0035) 2018; 15 Axmacher (10.1016/j.bspc.2019.03.002_bib0060) 2010; 107 Langer (10.1016/j.bspc.2019.03.002_bib0135) 2013; 49 Fell (10.1016/j.bspc.2019.03.002_bib0105) 2011; 12 Ahmadlou (10.1016/j.bspc.2019.03.002_bib0125) 2014; 125 Dai (10.1016/j.bspc.2019.03.002_bib0115) 2017; 11 Sari (10.1016/j.bspc.2019.03.002_bib0265) 2016; 121 Jones (10.1016/j.bspc.2019.03.002_bib0145) 1667 Sauseng (10.1016/j.bspc.2019.03.002_bib0155) 2015; 6 Sauseng (10.1016/j.bspc.2019.03.002_bib0055) 2010; 34 Baddeley (10.1016/j.bspc.2019.03.002_bib0015) 2010; 20 Zhai (10.1016/j.bspc.2019.03.002_bib0280) 2004; 76 Wang (10.1016/j.bspc.2019.03.002_bib0030) 2010; 90 Jiang (10.1016/j.bspc.2019.03.002_bib0240) 2017; 82 Jian (10.1016/j.bspc.2019.03.002_bib0285) 2017; 130 Yousefi-Azar (10.1016/j.bspc.2019.03.002_bib0255) 2017; 68 Jensen (10.1016/j.bspc.2019.03.002_bib0050) 2002; 15 Baddeley (10.1016/j.bspc.2019.03.002_bib0020) 2012; 63 Rajji (10.1016/j.bspc.2019.03.002_bib0065) 2017; 27 Baddeley (10.1016/j.bspc.2019.03.002_bib0005) 2003; 4 Boccaletti (10.1016/j.bspc.2019.03.002_bib0200) 2006; 424 Wang (10.1016/j.bspc.2019.03.002_bib0205) 2016; 53 |
References_xml | – start-page: 22 year: 1637 end-page: 222033 ident: bib0130 article-title: Working memory performance inversely predicts spontaneous delta and theta-band scaling relations publication-title: Brain Res. – volume: 18 year: 2017 ident: bib0260 article-title: EEG correlates of working memory performance in females publication-title: BMC Neurosci. – volume: 130 start-page: 156 year: 2017 end-page: 164 ident: bib0285 article-title: EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement publication-title: Brain Res. Bull. – volume: 90 start-page: 87 year: 2017 end-page: 100 ident: bib0210 article-title: Classify epileptic EEG signals using weighted complex networks based community structure detection publication-title: Expert Syst. Appl. – volume: 121 start-page: 203 year: 2016 end-page: 212 ident: bib0265 article-title: Training working memory to improve attentional control in anxiety: a proof-of-principle study using behavioral and electrophysiological measures publication-title: Biol. Psychol. – volume: 640 start-page: 42 year: 2017 end-page: 46 ident: bib0090 article-title: Analyze the beta waves of electroencephalogram signals from young musicians and non-musicians in major scale working memory task publication-title: Neurosci. Lett. – volume: 74 start-page: 231 year: 2013 end-page: 244 ident: bib0160 article-title: A note on the phase locking value and its properties publication-title: Neuroimage – volume: 34 start-page: 1015 year: 2010 end-page: 1022 ident: bib0055 article-title: Control mechanisms in working memory: a possible function of EEG theta oscillations publication-title: Neurosci. Biobehav. Rev. – volume: 15 start-page: 1395 year: 2002 end-page: 1399 ident: bib0050 article-title: Frontal theta activity in humans increases with memory load in a working memory task publication-title: Eur. J. Neurosci. – volume: 35 start-page: 1654 year: 2007 end-page: 1662 ident: bib0110 article-title: Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency publication-title: Neuroimage – volume: 28 start-page: 1178 year: 2007 end-page: 1193 ident: bib0185 article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources publication-title: Hum. Brain Mapp. – volume: 55 start-page: 1548 year: 2011 end-page: 1565 ident: bib0295 article-title: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias publication-title: Neuroimage – year: 2007 ident: bib0010 article-title: Working Memory, Thought, and Action – volume: 107 start-page: 3228 year: 2010 end-page: 3233 ident: bib0060 article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 82 start-page: 216 year: 2017 end-page: 230 ident: bib0240 article-title: Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department publication-title: Expert Syst. Appl. – volume: 10 year: 2013 ident: bib0190 article-title: Prediction of SSVEP-based BCI performance by the resting-state EEG network publication-title: J. Neural Eng. – volume: 532 start-page: 39 year: 2013 end-page: 43 ident: bib0070 article-title: Theta-gamma coupling during a working memory task as compared to a simple vigilance task publication-title: Neurosci. Lett. – volume: 37 start-page: 1591 year: 2017 end-page: 1603 ident: bib0100 article-title: Posterior alpha EEG dynamics dissociate current from future goals in working memory-guided visual search publication-title: J. Neurosci. – volume: 79 start-page: 96 year: 2012 end-page: 106 ident: bib0270 article-title: Working memory training: improving intelligence - changing brain activity publication-title: Brain Cogn. – start-page: 28 year: 1667 end-page: 282040 ident: bib0145 article-title: Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization publication-title: Brain Res. – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib0215 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 24 start-page: 3637 year: 2014 end-page: 3644 ident: bib0150 article-title: Working memory training using EEG neurofeedback in normal young adults publication-title: Biomed. Mater. Eng. – volume: 90 start-page: 1195 year: 2010 end-page: 1268 ident: bib0030 article-title: Neurophysiological and computational principles of cortical rhythms in cognition publication-title: Physiol. Rev. – volume: 17 start-page: 438 year: 2016 end-page: 449 ident: bib0140 article-title: The neuroscience of working memory capacity and training publication-title: Nat. Rev. Neurosci. – volume: 4 start-page: 829 year: 2003 end-page: 839 ident: bib0005 article-title: Working memory: looking back and looking forward publication-title: Nat. Rev. Neurosci. – volume: 22 start-page: 693 year: 2001 end-page: 711 ident: bib0275 article-title: A method to standardize a reference of scalp EEG recordings to a point at infinity publication-title: Physiol. Meas. – volume: 26 start-page: 665 year: 2009 end-page: 675 ident: bib0120 article-title: Reduction of functional brain connectivity in mild traumatic brain injury during working memory publication-title: J. Neurotrauma – volume: 27 start-page: 1482 year: 2017 end-page: 1490 ident: bib0065 article-title: Ordering information in working memory and modulation of gamma by theta oscillations in humans publication-title: Cereb. Cortex – volume: 8 start-page: 194 year: 1999 end-page: 208 ident: bib0180 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. – volume: 87 year: 2001 ident: bib0225 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett. – volume: 15 year: 2018 ident: bib0035 article-title: A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance publication-title: J. Neural Eng. – volume: 3 year: 2008 ident: bib0230 article-title: Network’ Small-World-Ness’: a quantitative method for determining canonical network equivalence publication-title: PLoS One – volume: 27 start-page: 341 year: 2005 end-page: 356 ident: bib0095 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage – year: 2012 ident: bib0235 article-title: Prediction as a Candidate for Learning Deep Hierarchical Models of Data – volume: 112 start-page: 2939 year: 2014 end-page: 2945 ident: bib0085 article-title: Modulation of alpha power at encoding and retrieval tracks the precision of visual short-term memory publication-title: J. Neurophysiol. – volume: 6 year: 2015 ident: bib0155 article-title: Predictive coding in visual search as revealed by cross-frequency EEG phase synchronization publication-title: Front. Psychol. – volume: 169 start-page: 323 year: 2008 end-page: 338 ident: bib0025 article-title: What are the differences between long-term, short-term, and working memory? publication-title: Essence Mem. – volume: 9 start-page: 305 year: 2015 end-page: 315 ident: bib0195 article-title: The graph theoretical analysis of the SSVEP harmonic response networks publication-title: Cogn. Neurodyn. – volume: 68 start-page: 595 year: 2010 end-page: 598 ident: bib0165 article-title: Alpha phase locking predicts residual working memory performance in schizophrenia publication-title: Biol. Psychiatry – volume: 12 start-page: 105 year: 2011 end-page: U1500 ident: bib0105 article-title: The role of phase synchronization in memory processes publication-title: Nat. Rev. Neurosci. – volume: 63 start-page: 1 year: 2012 end-page: 29 ident: bib0020 article-title: Working memory: theories, models, and controversies publication-title: Annu. Rev. Psychol. – volume: 71 year: 2005 ident: bib0220 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys. Rev. E – volume: 76 start-page: 229 year: 2004 end-page: 238 ident: bib0280 article-title: A study on the reference electrode standardization technique for a realistic head model publication-title: Comput. Methods Programs Biomed. – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: bib0080 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. – volume: 30 start-page: 317 year: 2007 end-page: 324 ident: bib0045 article-title: Human gamma-frequency oscillations associated with attention and memory publication-title: Trends Neurosci. – year: 2012 ident: bib0170 article-title: Inferring functional neural connectivity with phase synchronization analysis: a review of methodology publication-title: Comput. Math. Methods Med. – volume: 20 start-page: R136 year: 2010 end-page: R140 ident: bib0015 article-title: Working memory publication-title: Curr. Biol. – volume: 53 start-page: 117 year: 2016 end-page: 128 ident: bib0205 article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection publication-title: Expert Syst. Appl. – volume: 49 start-page: 2424 year: 2013 end-page: 2438 ident: bib0135 article-title: The effects of working memory training on functional brain network efficiency publication-title: Cortex – volume: 125 start-page: 694 year: 2014 end-page: 702 ident: bib0125 article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task publication-title: Clin. Neurophysiol. – volume: 21 start-page: 3175 year: 2001 end-page: 3183 ident: bib0040 article-title: Gating of human theta oscillations by a working memory task publication-title: J. Neurosci. – volume: 57 start-page: 97 year: 2005 end-page: 103 ident: bib0075 article-title: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory publication-title: Int. J. Psychophysiol. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0245 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 114 start-page: 58 year: 2014 end-page: 69 ident: bib0175 article-title: Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging publication-title: Neurobiol. Learn. Mem. – volume: 424 start-page: 175 year: 2006 end-page: 308 ident: bib0200 article-title: Complex networks: structure and dynamics publication-title: Phys. Rep.-Rev. Sect. Phys. Lett. – volume: 11 year: 2017 ident: bib0115 article-title: EEG cortical connectivity analysis of working memory reveals topological reorganization in Theta and alpha bands publication-title: Front. Hum. Neurosci. – volume: 68 start-page: 93 year: 2017 end-page: 105 ident: bib0255 article-title: Text summarization using unsupervised deep learning publication-title: Expert Syst. Appl. – volume: 11 start-page: 625 year: 2010 end-page: 660 ident: bib0250 article-title: Why does unsupervised pre-training help deep learning? publication-title: J. Mach. Learn. Res. – volume: 11 year: 2017 ident: bib0290 article-title: MATLAB toolboxes for reference electrode standardization technique (REST) of scalp EEG publication-title: Front. Neurosci. – volume: 313 start-page: 504 issue: July (5786) year: 2006 ident: 10.1016/j.bspc.2019.03.002_bib0245 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 112 start-page: 2939 issue: December (11) year: 2014 ident: 10.1016/j.bspc.2019.03.002_bib0085 article-title: Modulation of alpha power at encoding and retrieval tracks the precision of visual short-term memory publication-title: J. Neurophysiol. doi: 10.1152/jn.00051.2014 – volume: 11 issue: May (12) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0115 article-title: EEG cortical connectivity analysis of working memory reveals topological reorganization in Theta and alpha bands publication-title: Front. Hum. Neurosci. – volume: 87 issue: November 5(19) year: 2001 ident: 10.1016/j.bspc.2019.03.002_bib0225 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett. – volume: 169 start-page: 323 year: 2008 ident: 10.1016/j.bspc.2019.03.002_bib0025 article-title: What are the differences between long-term, short-term, and working memory? publication-title: Essence Mem. doi: 10.1016/S0079-6123(07)00020-9 – volume: 12 start-page: 105 issue: February (2) year: 2011 ident: 10.1016/j.bspc.2019.03.002_bib0105 article-title: The role of phase synchronization in memory processes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2979 – volume: 63 start-page: 1 issue: 63 year: 2012 ident: 10.1016/j.bspc.2019.03.002_bib0020 article-title: Working memory: theories, models, and controversies publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-120710-100422 – volume: 34 start-page: 1015 issue: June (7) year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0055 article-title: Control mechanisms in working memory: a possible function of EEG theta oscillations publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2009.12.006 – volume: 26 start-page: 665 issue: May (5) year: 2009 ident: 10.1016/j.bspc.2019.03.002_bib0120 article-title: Reduction of functional brain connectivity in mild traumatic brain injury during working memory publication-title: J. Neurotrauma doi: 10.1089/neu.2008.0644 – volume: 49 start-page: 2424 issue: October (9) year: 2013 ident: 10.1016/j.bspc.2019.03.002_bib0135 article-title: The effects of working memory training on functional brain network efficiency publication-title: Cortex doi: 10.1016/j.cortex.2013.01.008 – volume: 20 start-page: R136 issue: 4 year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0015 article-title: Working memory publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.12.014 – start-page: 22 issue: April (15) year: 1637 ident: 10.1016/j.bspc.2019.03.002_bib0130 article-title: Working memory performance inversely predicts spontaneous delta and theta-band scaling relations publication-title: Brain Res. – volume: 21 start-page: 3175 issue: May (9) year: 2001 ident: 10.1016/j.bspc.2019.03.002_bib0040 article-title: Gating of human theta oscillations by a working memory task publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-09-03175.2001 – volume: 130 start-page: 156 issue: April year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0285 article-title: EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2017.01.023 – start-page: 28 issue: July (15) year: 1667 ident: 10.1016/j.bspc.2019.03.002_bib0145 article-title: Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization publication-title: Brain Res. – volume: 18 issue: February (13) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0260 article-title: EEG correlates of working memory performance in females publication-title: BMC Neurosci. – volume: 90 start-page: 87 issue: December (30) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0210 article-title: Classify epileptic EEG signals using weighted complex networks based community structure detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.012 – volume: 30 start-page: 317 issue: July (7) year: 2007 ident: 10.1016/j.bspc.2019.03.002_bib0045 article-title: Human gamma-frequency oscillations associated with attention and memory publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.05.001 – year: 2007 ident: 10.1016/j.bspc.2019.03.002_bib0010 – volume: 107 start-page: 3228 issue: February (7) year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0060 article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911531107 – volume: 11 start-page: 625 issue: February year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0250 article-title: Why does unsupervised pre-training help deep learning? publication-title: J. Mach. Learn. Res. – volume: 125 start-page: 694 issue: April (4) year: 2014 ident: 10.1016/j.bspc.2019.03.002_bib0125 article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.08.033 – volume: 640 start-page: 42 issue: February (15) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0090 article-title: Analyze the beta waves of electroencephalogram signals from young musicians and non-musicians in major scale working memory task publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.01.022 – volume: 15 issue: June (3) year: 2018 ident: 10.1016/j.bspc.2019.03.002_bib0035 article-title: A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance publication-title: J. Neural Eng. – volume: 68 start-page: 93 issue: February year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0255 article-title: Text summarization using unsupervised deep learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.017 – year: 2012 ident: 10.1016/j.bspc.2019.03.002_bib0235 – volume: 68 start-page: 595 issue: October (7) year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0165 article-title: Alpha phase locking predicts residual working memory performance in schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.06.013 – volume: 79 start-page: 96 issue: July (2) year: 2012 ident: 10.1016/j.bspc.2019.03.002_bib0270 article-title: Working memory training: improving intelligence - changing brain activity publication-title: Brain Cogn. doi: 10.1016/j.bandc.2012.02.007 – volume: 35 start-page: 1654 issue: May (4) year: 2007 ident: 10.1016/j.bspc.2019.03.002_bib0110 article-title: Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.011 – volume: 10 issue: December (6) year: 2013 ident: 10.1016/j.bspc.2019.03.002_bib0190 article-title: Prediction of SSVEP-based BCI performance by the resting-state EEG network publication-title: J. Neural Eng. – volume: 121 start-page: 203 issue: December year: 2016 ident: 10.1016/j.bspc.2019.03.002_bib0265 article-title: Training working memory to improve attentional control in anxiety: a proof-of-principle study using behavioral and electrophysiological measures publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2015.09.008 – volume: 9 start-page: 305 issue: June (3) year: 2015 ident: 10.1016/j.bspc.2019.03.002_bib0195 article-title: The graph theoretical analysis of the SSVEP harmonic response networks publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-015-9327-3 – volume: 52 start-page: 1059 issue: September (3) year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0215 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 27 start-page: 341 issue: August (2) year: 2005 ident: 10.1016/j.bspc.2019.03.002_bib0095 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.04.014 – volume: 71 issue: June (6) year: 2005 ident: 10.1016/j.bspc.2019.03.002_bib0220 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys. Rev. E – volume: 17 start-page: 438 issue: July (7) year: 2016 ident: 10.1016/j.bspc.2019.03.002_bib0140 article-title: The neuroscience of working memory capacity and training publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.43 – year: 2012 ident: 10.1016/j.bspc.2019.03.002_bib0170 article-title: Inferring functional neural connectivity with phase synchronization analysis: a review of methodology publication-title: Comput. Math. Methods Med. doi: 10.1155/2012/239210 – volume: 114 start-page: 58 issue: October year: 2014 ident: 10.1016/j.bspc.2019.03.002_bib0175 article-title: Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2014.04.009 – volume: 29 start-page: 169 issue: April (2–3) year: 1999 ident: 10.1016/j.bspc.2019.03.002_bib0080 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – volume: 82 start-page: 216 issue: October year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0240 article-title: Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.017 – volume: 90 start-page: 1195 issue: June (3) year: 2010 ident: 10.1016/j.bspc.2019.03.002_bib0030 article-title: Neurophysiological and computational principles of cortical rhythms in cognition publication-title: Physiol. Rev. doi: 10.1152/physrev.00035.2008 – volume: 74 start-page: 231 issue: July (1) year: 2013 ident: 10.1016/j.bspc.2019.03.002_bib0160 article-title: A note on the phase locking value and its properties publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.008 – volume: 8 start-page: 194 issue: 4 year: 1999 ident: 10.1016/j.bspc.2019.03.002_bib0180 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 3 issue: April 30(4) year: 2008 ident: 10.1016/j.bspc.2019.03.002_bib0230 article-title: Network’ Small-World-Ness’: a quantitative method for determining canonical network equivalence publication-title: PLoS One – volume: 6 issue: October (28) year: 2015 ident: 10.1016/j.bspc.2019.03.002_bib0155 article-title: Predictive coding in visual search as revealed by cross-frequency EEG phase synchronization publication-title: Front. Psychol. – volume: 424 start-page: 175 issue: February (4–5) year: 2006 ident: 10.1016/j.bspc.2019.03.002_bib0200 article-title: Complex networks: structure and dynamics publication-title: Phys. Rep.-Rev. Sect. Phys. Lett. – volume: 76 start-page: 229 issue: December (3) year: 2004 ident: 10.1016/j.bspc.2019.03.002_bib0280 article-title: A study on the reference electrode standardization technique for a realistic head model publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2004.07.002 – volume: 55 start-page: 1548 issue: April (4) year: 2011 ident: 10.1016/j.bspc.2019.03.002_bib0295 article-title: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.055 – volume: 28 start-page: 1178 issue: November (11) year: 2007 ident: 10.1016/j.bspc.2019.03.002_bib0185 article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20346 – volume: 11 issue: October (30) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0290 article-title: MATLAB toolboxes for reference electrode standardization technique (REST) of scalp EEG publication-title: Front. Neurosci. – volume: 24 start-page: 3637 issue: 6 year: 2014 ident: 10.1016/j.bspc.2019.03.002_bib0150 article-title: Working memory training using EEG neurofeedback in normal young adults publication-title: Biomed. Mater. Eng. – volume: 53 start-page: 117 issue: July (1) year: 2016 ident: 10.1016/j.bspc.2019.03.002_bib0205 article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.024 – volume: 27 start-page: 1482 issue: February (2) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0065 article-title: Ordering information in working memory and modulation of gamma by theta oscillations in humans publication-title: Cereb. Cortex – volume: 57 start-page: 97 issue: August (2) year: 2005 ident: 10.1016/j.bspc.2019.03.002_bib0075 article-title: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.03.018 – volume: 37 start-page: 1591 issue: February (6) year: 2017 ident: 10.1016/j.bspc.2019.03.002_bib0100 article-title: Posterior alpha EEG dynamics dissociate current from future goals in working memory-guided visual search publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2945-16.2016 – volume: 22 start-page: 693 issue: November (4) year: 2001 ident: 10.1016/j.bspc.2019.03.002_bib0275 article-title: A method to standardize a reference of scalp EEG recordings to a point at infinity publication-title: Physiol. Meas. doi: 10.1088/0967-3334/22/4/305 – volume: 4 start-page: 829 issue: October (10) year: 2003 ident: 10.1016/j.bspc.2019.03.002_bib0005 article-title: Working memory: looking back and looking forward publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1201 – volume: 15 start-page: 1395 issue: April (8) year: 2002 ident: 10.1016/j.bspc.2019.03.002_bib0050 article-title: Frontal theta activity in humans increases with memory load in a working memory task publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2002.01975.x – volume: 532 start-page: 39 issue: January (4) year: 2013 ident: 10.1016/j.bspc.2019.03.002_bib0070 article-title: Theta-gamma coupling during a working memory task as compared to a simple vigilance task publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.10.061 |
SSID | ssj0048714 |
Score | 2.1961136 |
Snippet | •We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 296 |
SubjectTerms | EEG Functional brain network (FBN) Phase synchronization Stacked auto-encoder (SAE) Working memory (WM) |
Title | Training state and performance evaluation of working memory based on task-related EEG |
URI | https://dx.doi.org/10.1016/j.bspc.2019.03.002 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDywIdM4TuJ0rKqWAqILrdQtsmNbKo80okGIhW_HN3FKkVAHRie2lJw49x4n9xwjdMkMN9o3jEjLF0ggmSaxNpxQxn0dRV0VStAOP4yj0TS4m4WzBurXWhgoq3Sxv4rpZbR2RzoOzU4-n3ceLZeOYrs6sRQE_ifNQMEecJjl11-rMg_Lx0t_b-hMoLcTzlQ1XnKZg40hdUan_t_JaS3hDPfQrmOKuFddzD5q6OwA7az5Bx6i6cRt8IBLXRAWmcL5jxIA_1h544XBH9V3cfwKxbWfGPKXwvZUIZbPpNS02PZgcHOEpsPBpD8ibp8Ekto7L0jcNVoJJjlNuYCMHgqvq4JI-Sm3uFP7lBRVoYqEYJ4S2oNlr9Kh4qlgQml2jJrZItMnCNu319CQS0mZXTr5UhoehzKIhRdwoEotRGuAktSZiMNeFi9JXS32lACoCYCaeCyxoLbQ1WpMXllobOwd1rgnvyZCYmP8hnGn_xx3hrahVdUwnqNm8fauLyzPKGS7nEhttNW7vR-NvwEIY9L2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGNoOVZ8qfXroVlkkcRyHESEolMdSkNgsO3Yk-gioUFX997WJU6hUMXRM7JOSL87d5-TuO4A7krJUBynB0vAFHEqicaxThn3CAh1FdUWlrR0eDKPOOHyc0EkJmkUtjE2rdL4_9-krb-3O1Byatfl0WnsyXDqKze7EUBD7P2myAxWrTkXLUGl0e51h4ZANJV9JfNv52Bq42pk8zUsu5lbJ0Hdap8Hf8Wkj5rQP4cCRRdTIr-cISjo7hv0NCcETGI9cjwe0Kg1CIlNovi4GQGs1bzRL0Wf-aRy92fzaL2RDmEJmaCkWL3hV1mKOW62HUxi3W6NmB7tWCTgxN7_EcT3VShDJ_IQJG9Sp8OoqjFSQMAO9bx6U8hVVkRDEU0J7duerNFUsEUQoTc6gnM0yfQ7IvMCpT5mUPjG7p0DKlMVUhrHwQmbZUhX8AiCeOB1x287ilRcJY8_cgsotqNwj3IBahfsfm3muorF1Ni1w57_WAjdufovdxT_tbmG3Mxr0eb877F3Cnh3JUxqvoLx8_9DXhnYs5Y1bVt9R59Wn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+state+and+performance+evaluation+of+working+memory+based+on+task-related+EEG&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Hong&rft.au=Hua%2C+Chengcheng&rft.au=Wang%2C+Qiaoxiu&rft.au=Fu%2C+Qiang&rft.date=2019-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=51&rft.spage=296&rft.epage=308&rft_id=info:doi/10.1016%2Fj.bspc.2019.03.002&rft.externalDocID=S174680941930076X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |