Training state and performance evaluation of working memory based on task-related EEG

•We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build functional brain network based on EEG, and used graph-theoretic indexes as EEG features to measure working memory ability.•Compared with the correlati...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 51; pp. 296 - 308
Main Authors Wang, Hong, Hua, Chengcheng, Wang, Qiaoxiu, Fu, Qiang, Fetlework, Tenssay
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build functional brain network based on EEG, and used graph-theoretic indexes as EEG features to measure working memory ability.•Compared with the correlation between the EEG features and working memory performance, the correlation between the EEG features and working memory training was stronger.•We used a deep learning algorithm named as stacked auto-encoder to predict of the performance in the WM task based on the EEG features, and the MSE was 144.24. The working memory (WM) refers to the information maintaining and manipulation during a short period, and it is corresponding to human ability in many tasks. The correlation between EEG features and the training state of the subjects or their performance in WM tasks had been investigated by many researches. However, there was no research done on the comparison between the training and performance to investigate which one is more correlated with the EEG features and adequately developed practical application of this correlation by now. This paper used phase synchronization methods to build functional brain networks (FBN) of the subjects based on their task-related EEG. Based on this, we investigated the correlation of the global and local features of the FBNs and applied Quadratic Discriminant, Cosine KNN and stacked auto-encoder (SAE) to evaluate the performance and the training state. The accuracy of training state detection was 98.7%, while the accuracy of performance prediction (predict if the score>79) was 81.2% and the MSE of the score prediction was 144.24. The results suggested that the training state is more reliance to the FBN features than performance. The method had the potential to be extended to other fields to assess WM ability or proficiency of people.
AbstractList •We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build functional brain network based on EEG, and used graph-theoretic indexes as EEG features to measure working memory ability.•Compared with the correlation between the EEG features and working memory performance, the correlation between the EEG features and working memory training was stronger.•We used a deep learning algorithm named as stacked auto-encoder to predict of the performance in the WM task based on the EEG features, and the MSE was 144.24. The working memory (WM) refers to the information maintaining and manipulation during a short period, and it is corresponding to human ability in many tasks. The correlation between EEG features and the training state of the subjects or their performance in WM tasks had been investigated by many researches. However, there was no research done on the comparison between the training and performance to investigate which one is more correlated with the EEG features and adequately developed practical application of this correlation by now. This paper used phase synchronization methods to build functional brain networks (FBN) of the subjects based on their task-related EEG. Based on this, we investigated the correlation of the global and local features of the FBNs and applied Quadratic Discriminant, Cosine KNN and stacked auto-encoder (SAE) to evaluate the performance and the training state. The accuracy of training state detection was 98.7%, while the accuracy of performance prediction (predict if the score>79) was 81.2% and the MSE of the score prediction was 144.24. The results suggested that the training state is more reliance to the FBN features than performance. The method had the potential to be extended to other fields to assess WM ability or proficiency of people.
Author Hua, Chengcheng
Fu, Qiang
Wang, Hong
Wang, Qiaoxiu
Fetlework, Tenssay
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0003-2148-8108
  surname: Wang
  fullname: Wang, Hong
  organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
– sequence: 2
  givenname: Chengcheng
  surname: Hua
  fullname: Hua, Chengcheng
  email: huachengcheng45@gmail.com
  organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
– sequence: 3
  givenname: Qiaoxiu
  surname: Wang
  fullname: Wang, Qiaoxiu
  organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
– sequence: 4
  givenname: Qiang
  surname: Fu
  fullname: Fu, Qiang
  organization: Department of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
– sequence: 5
  givenname: Tenssay
  surname: Fetlework
  fullname: Fetlework, Tenssay
  organization: School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, China
BookMark eNp9kMFOwzAMhiM0JLbBC3DKC7Q4bdekEhc0jYGExGU7R17iomxtMyVlaG9Px-DCYSdbsj_L_zdho853xNi9gFSAKB-26SbuTZqBqFLIU4Dsio2FLMpECVCjvx6q4oZNYtwCFEqKYszWq4Cuc90Hjz32xLGzfE-h9qHFzhCnAzaf2DvfcV_zLx92p92WWh-OfIORLB9GPcZdEqgZLli-WCxv2XWNTaS73zpl6-fFav6SvL0vX-dPb4nJAfpEVTVZzDdSGIlqeH6GUNmitJmRVEtBxlhhZ7ZEzMEigVRKWZpZaTBHS_mUZee7JvgYA9V6H1yL4agF6JMYvdUnMfokRkOuBzEDpP5BxvU_EfvBRXMZfTyjNIQ6OAo6GkeDJ-sCmV5b7y7h3_Ddgx8
CitedBy_id crossref_primary_10_1142_S0129065721500477
crossref_primary_10_1155_2022_1830318
crossref_primary_10_1007_s40846_021_00600_8
crossref_primary_10_1016_j_bspc_2020_101998
crossref_primary_10_1016_j_neucom_2019_05_088
crossref_primary_10_1142_S0129065720500021
Cites_doi 10.1126/science.1127647
10.1152/jn.00051.2014
10.1016/S0079-6123(07)00020-9
10.1038/nrn2979
10.1146/annurev-psych-120710-100422
10.1016/j.neubiorev.2009.12.006
10.1089/neu.2008.0644
10.1016/j.cortex.2013.01.008
10.1016/j.cub.2009.12.014
10.1523/JNEUROSCI.21-09-03175.2001
10.1016/j.brainresbull.2017.01.023
10.1016/j.eswa.2017.08.012
10.1016/j.tins.2007.05.001
10.1073/pnas.0911531107
10.1016/j.clinph.2013.08.033
10.1016/j.neulet.2017.01.022
10.1016/j.eswa.2016.10.017
10.1016/j.biopsych.2010.06.013
10.1016/j.bandc.2012.02.007
10.1016/j.neuroimage.2007.02.011
10.1016/j.biopsycho.2015.09.008
10.1007/s11571-015-9327-3
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2005.04.014
10.1038/nrn.2016.43
10.1155/2012/239210
10.1016/j.nlm.2014.04.009
10.1016/S0165-0173(98)00056-3
10.1016/j.eswa.2017.04.017
10.1152/physrev.00035.2008
10.1016/j.neuroimage.2013.02.008
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1016/j.cmpb.2004.07.002
10.1016/j.neuroimage.2011.01.055
10.1002/hbm.20346
10.1016/j.eswa.2016.01.024
10.1016/j.ijpsycho.2005.03.018
10.1523/JNEUROSCI.2945-16.2016
10.1088/0967-3334/22/4/305
10.1038/nrn1201
10.1046/j.1460-9568.2002.01975.x
10.1016/j.neulet.2012.10.061
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2019.03.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
EndPage 308
ExternalDocumentID 10_1016_j_bspc_2019_03_002
S174680941930076X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-89feda3b71c7a82015a09d46d2c7ef71eccd1d5d6aa30dae07888de5d7ca3ade3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:55:58 EDT 2025
Tue Jul 01 01:34:05 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Working memory (WM)
Functional brain network (FBN)
EEG
Phase synchronization
Stacked auto-encoder (SAE)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-89feda3b71c7a82015a09d46d2c7ef71eccd1d5d6aa30dae07888de5d7ca3ade3
ORCID 0000-0003-2148-8108
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_bspc_2019_03_002
crossref_citationtrail_10_1016_j_bspc_2019_03_002
elsevier_sciencedirect_doi_10_1016_j_bspc_2019_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yousefi-Azar, Hamey (bib0255) 2017; 68
Sari, Koster, Pourtois, Derakshan (bib0265) 2016; 121
Raghavachari, Kahana, Rizzuto, Caplan, Kirschen, Bourgeois, Madsen, Lisman (bib0040) 2001; 21
Baddeley (bib0020) 2012; 63
Jensen, Tesche (bib0050) 2002; 15
Dong, Li, Liu, Wen, Lai, Xu, Yao (bib0290) 2017; 11
Baddeley (bib0010) 2007
Aydore, Pantazis, Leahy (bib0160) 2013; 74
Jausovec, Jausovec (bib0270) 2012; 79
Pavlov, Kotchoubey (bib0260) 2017; 18
Jiang, Chin, Wang, Qu, Tsui (bib0240) 2017; 82
Palm (bib0235) 2012
Axmacher, Henseler, Jensen, Weinreich, Elger, Fell (bib0060) 2010; 107
Lachaux, Rodriguez, Martinerie, Varela (bib0180) 1999; 8
Vinck, Oostenveld, van Wingerden, Battaglia, Pennartz (bib0295) 2011; 55
Wu, Chen, Li, Han, Zhang (bib0110) 2007; 35
Sun, Li, Tong (bib0170) 2012
Onton, Delorme, Makeig (bib0095) 2005; 27
Hinton, Salakhutdinov (bib0245) 2006; 313
Xiong, Cheng, Wu, Guo, Yao, Zhang (bib0150) 2014; 24
de Vries, van Driel, Olivers (bib0100) 2017; 37
Sauseng, Conci, Wild, Geyer (bib0155) 2015; 6
Onnela, Saramaki, Kertesz, Kaski (bib0220) 2005; 71
Humphries, Gurney (bib0230) 2008; 3
Dai, de Souza, Lim, Ho, Chen, Li, Thakor, Bezerianos, Sun (bib0115) 2017; 11
Klimesch (bib0080) 1999; 29
Constantinidis, Klingberg (bib0140) 2016; 17
Jian, Chen, McFarland (bib0285) 2017; 130
Boccaletti, Latora, Moreno, Chavez, Hwang (bib0200) 2006; 424
Wang, Chang, Zhang (bib0205) 2016; 53
Astrand (bib0035) 2018; 15
Rajji, Zomorrodi, Barr, Blumberger, Mulsant, Daskalakis (bib0065) 2017; 27
Sauseng, Griesmayr, Freunberger, Klimesch (bib0055) 2010; 34
Zhang, Xu, Guo, Yao (bib0190) 2013; 10
Latora, Marchiori (bib0225) 2001; 87
Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (bib0250) 2010; 11
Sauseng, Klimesch, Schabus, Doppelmayr (bib0075) 2005; 57
Baddeley (bib0015) 2010; 20
Jensen, Kaiser, Lachaux (bib0045) 2007; 30
Toth, Kardos, File, Boha, Stam, Molnar (bib0175) 2014; 114
Kumar, Rao, Chandramouli, Pillai (bib0120) 2009; 26
Wang (bib0030) 2010; 90
Ahmadlou, Adeli, Bajo, Adeli (bib0125) 2014; 125
Euler, Wiltshire, Niermeyer, Butner (bib0130) 1637
Baddeley (bib0005) 2003; 4
Langer, von Bastian, Wirz, Oberauer, Jancke (bib0135) 2013; 49
Fell, Axmacher (bib0105) 2011; 12
Zhang, Guo, Cheng, Yao, Xu (bib0195) 2015; 9
Hsu, Cheng, Chiu (bib0090) 2017; 640
Haenschel, Linden, Bittner, Singer, Hanslmayr (bib0165) 2010; 68
Diykh, Li, Wen (bib0210) 2017; 90
Jones, Peterson, Blacker, Berryhill (bib0145) 1667
Yao (bib0275) 2001; 22
Stam, Nolte, Daffertshofer (bib0185) 2007; 28
Zhai, Yao (bib0280) 2004; 76
Cowan (bib0025) 2008; 169
Rubinov, Sporns (bib0215) 2010; 52
Poliakov, Stokes, Woolrich, Mantini, Astle (bib0085) 2014; 112
Park, Jhung, Lee, An (bib0070) 2013; 532
Latora (10.1016/j.bspc.2019.03.002_bib0225) 2001; 87
Humphries (10.1016/j.bspc.2019.03.002_bib0230) 2008; 3
Sun (10.1016/j.bspc.2019.03.002_bib0170) 2012
Raghavachari (10.1016/j.bspc.2019.03.002_bib0040) 2001; 21
Hinton (10.1016/j.bspc.2019.03.002_bib0245) 2006; 313
Zhang (10.1016/j.bspc.2019.03.002_bib0195) 2015; 9
Constantinidis (10.1016/j.bspc.2019.03.002_bib0140) 2016; 17
Lachaux (10.1016/j.bspc.2019.03.002_bib0180) 1999; 8
Onton (10.1016/j.bspc.2019.03.002_bib0095) 2005; 27
Toth (10.1016/j.bspc.2019.03.002_bib0175) 2014; 114
Kumar (10.1016/j.bspc.2019.03.002_bib0120) 2009; 26
Baddeley (10.1016/j.bspc.2019.03.002_bib0010) 2007
Sauseng (10.1016/j.bspc.2019.03.002_bib0075) 2005; 57
Hsu (10.1016/j.bspc.2019.03.002_bib0090) 2017; 640
Pavlov (10.1016/j.bspc.2019.03.002_bib0260) 2017; 18
Vinck (10.1016/j.bspc.2019.03.002_bib0295) 2011; 55
Erhan (10.1016/j.bspc.2019.03.002_bib0250) 2010; 11
Park (10.1016/j.bspc.2019.03.002_bib0070) 2013; 532
Poliakov (10.1016/j.bspc.2019.03.002_bib0085) 2014; 112
Yao (10.1016/j.bspc.2019.03.002_bib0275) 2001; 22
Stam (10.1016/j.bspc.2019.03.002_bib0185) 2007; 28
Palm (10.1016/j.bspc.2019.03.002_bib0235) 2012
Jensen (10.1016/j.bspc.2019.03.002_bib0045) 2007; 30
Aydore (10.1016/j.bspc.2019.03.002_bib0160) 2013; 74
Zhang (10.1016/j.bspc.2019.03.002_bib0190) 2013; 10
Klimesch (10.1016/j.bspc.2019.03.002_bib0080) 1999; 29
Cowan (10.1016/j.bspc.2019.03.002_bib0025) 2008; 169
Wu (10.1016/j.bspc.2019.03.002_bib0110) 2007; 35
Onnela (10.1016/j.bspc.2019.03.002_bib0220) 2005; 71
Rubinov (10.1016/j.bspc.2019.03.002_bib0215) 2010; 52
de Vries (10.1016/j.bspc.2019.03.002_bib0100) 2017; 37
Diykh (10.1016/j.bspc.2019.03.002_bib0210) 2017; 90
Jausovec (10.1016/j.bspc.2019.03.002_bib0270) 2012; 79
Xiong (10.1016/j.bspc.2019.03.002_bib0150) 2014; 24
Euler (10.1016/j.bspc.2019.03.002_bib0130) 1637
Dong (10.1016/j.bspc.2019.03.002_bib0290) 2017; 11
Haenschel (10.1016/j.bspc.2019.03.002_bib0165) 2010; 68
Astrand (10.1016/j.bspc.2019.03.002_bib0035) 2018; 15
Axmacher (10.1016/j.bspc.2019.03.002_bib0060) 2010; 107
Langer (10.1016/j.bspc.2019.03.002_bib0135) 2013; 49
Fell (10.1016/j.bspc.2019.03.002_bib0105) 2011; 12
Ahmadlou (10.1016/j.bspc.2019.03.002_bib0125) 2014; 125
Dai (10.1016/j.bspc.2019.03.002_bib0115) 2017; 11
Sari (10.1016/j.bspc.2019.03.002_bib0265) 2016; 121
Jones (10.1016/j.bspc.2019.03.002_bib0145) 1667
Sauseng (10.1016/j.bspc.2019.03.002_bib0155) 2015; 6
Sauseng (10.1016/j.bspc.2019.03.002_bib0055) 2010; 34
Baddeley (10.1016/j.bspc.2019.03.002_bib0015) 2010; 20
Zhai (10.1016/j.bspc.2019.03.002_bib0280) 2004; 76
Wang (10.1016/j.bspc.2019.03.002_bib0030) 2010; 90
Jiang (10.1016/j.bspc.2019.03.002_bib0240) 2017; 82
Jian (10.1016/j.bspc.2019.03.002_bib0285) 2017; 130
Yousefi-Azar (10.1016/j.bspc.2019.03.002_bib0255) 2017; 68
Jensen (10.1016/j.bspc.2019.03.002_bib0050) 2002; 15
Baddeley (10.1016/j.bspc.2019.03.002_bib0020) 2012; 63
Rajji (10.1016/j.bspc.2019.03.002_bib0065) 2017; 27
Baddeley (10.1016/j.bspc.2019.03.002_bib0005) 2003; 4
Boccaletti (10.1016/j.bspc.2019.03.002_bib0200) 2006; 424
Wang (10.1016/j.bspc.2019.03.002_bib0205) 2016; 53
References_xml – start-page: 22
  year: 1637
  end-page: 222033
  ident: bib0130
  article-title: Working memory performance inversely predicts spontaneous delta and theta-band scaling relations
  publication-title: Brain Res.
– volume: 18
  year: 2017
  ident: bib0260
  article-title: EEG correlates of working memory performance in females
  publication-title: BMC Neurosci.
– volume: 130
  start-page: 156
  year: 2017
  end-page: 164
  ident: bib0285
  article-title: EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement
  publication-title: Brain Res. Bull.
– volume: 90
  start-page: 87
  year: 2017
  end-page: 100
  ident: bib0210
  article-title: Classify epileptic EEG signals using weighted complex networks based community structure detection
  publication-title: Expert Syst. Appl.
– volume: 121
  start-page: 203
  year: 2016
  end-page: 212
  ident: bib0265
  article-title: Training working memory to improve attentional control in anxiety: a proof-of-principle study using behavioral and electrophysiological measures
  publication-title: Biol. Psychol.
– volume: 640
  start-page: 42
  year: 2017
  end-page: 46
  ident: bib0090
  article-title: Analyze the beta waves of electroencephalogram signals from young musicians and non-musicians in major scale working memory task
  publication-title: Neurosci. Lett.
– volume: 74
  start-page: 231
  year: 2013
  end-page: 244
  ident: bib0160
  article-title: A note on the phase locking value and its properties
  publication-title: Neuroimage
– volume: 34
  start-page: 1015
  year: 2010
  end-page: 1022
  ident: bib0055
  article-title: Control mechanisms in working memory: a possible function of EEG theta oscillations
  publication-title: Neurosci. Biobehav. Rev.
– volume: 15
  start-page: 1395
  year: 2002
  end-page: 1399
  ident: bib0050
  article-title: Frontal theta activity in humans increases with memory load in a working memory task
  publication-title: Eur. J. Neurosci.
– volume: 35
  start-page: 1654
  year: 2007
  end-page: 1662
  ident: bib0110
  article-title: Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency
  publication-title: Neuroimage
– volume: 28
  start-page: 1178
  year: 2007
  end-page: 1193
  ident: bib0185
  article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources
  publication-title: Hum. Brain Mapp.
– volume: 55
  start-page: 1548
  year: 2011
  end-page: 1565
  ident: bib0295
  article-title: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias
  publication-title: Neuroimage
– year: 2007
  ident: bib0010
  article-title: Working Memory, Thought, and Action
– volume: 107
  start-page: 3228
  year: 2010
  end-page: 3233
  ident: bib0060
  article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 82
  start-page: 216
  year: 2017
  end-page: 230
  ident: bib0240
  article-title: Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department
  publication-title: Expert Syst. Appl.
– volume: 10
  year: 2013
  ident: bib0190
  article-title: Prediction of SSVEP-based BCI performance by the resting-state EEG network
  publication-title: J. Neural Eng.
– volume: 532
  start-page: 39
  year: 2013
  end-page: 43
  ident: bib0070
  article-title: Theta-gamma coupling during a working memory task as compared to a simple vigilance task
  publication-title: Neurosci. Lett.
– volume: 37
  start-page: 1591
  year: 2017
  end-page: 1603
  ident: bib0100
  article-title: Posterior alpha EEG dynamics dissociate current from future goals in working memory-guided visual search
  publication-title: J. Neurosci.
– volume: 79
  start-page: 96
  year: 2012
  end-page: 106
  ident: bib0270
  article-title: Working memory training: improving intelligence - changing brain activity
  publication-title: Brain Cogn.
– start-page: 28
  year: 1667
  end-page: 282040
  ident: bib0145
  article-title: Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization
  publication-title: Brain Res.
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib0215
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 24
  start-page: 3637
  year: 2014
  end-page: 3644
  ident: bib0150
  article-title: Working memory training using EEG neurofeedback in normal young adults
  publication-title: Biomed. Mater. Eng.
– volume: 90
  start-page: 1195
  year: 2010
  end-page: 1268
  ident: bib0030
  article-title: Neurophysiological and computational principles of cortical rhythms in cognition
  publication-title: Physiol. Rev.
– volume: 17
  start-page: 438
  year: 2016
  end-page: 449
  ident: bib0140
  article-title: The neuroscience of working memory capacity and training
  publication-title: Nat. Rev. Neurosci.
– volume: 4
  start-page: 829
  year: 2003
  end-page: 839
  ident: bib0005
  article-title: Working memory: looking back and looking forward
  publication-title: Nat. Rev. Neurosci.
– volume: 22
  start-page: 693
  year: 2001
  end-page: 711
  ident: bib0275
  article-title: A method to standardize a reference of scalp EEG recordings to a point at infinity
  publication-title: Physiol. Meas.
– volume: 26
  start-page: 665
  year: 2009
  end-page: 675
  ident: bib0120
  article-title: Reduction of functional brain connectivity in mild traumatic brain injury during working memory
  publication-title: J. Neurotrauma
– volume: 27
  start-page: 1482
  year: 2017
  end-page: 1490
  ident: bib0065
  article-title: Ordering information in working memory and modulation of gamma by theta oscillations in humans
  publication-title: Cereb. Cortex
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  ident: bib0180
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
– volume: 87
  year: 2001
  ident: bib0225
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett.
– volume: 15
  year: 2018
  ident: bib0035
  article-title: A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance
  publication-title: J. Neural Eng.
– volume: 3
  year: 2008
  ident: bib0230
  article-title: Network’ Small-World-Ness’: a quantitative method for determining canonical network equivalence
  publication-title: PLoS One
– volume: 27
  start-page: 341
  year: 2005
  end-page: 356
  ident: bib0095
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
– year: 2012
  ident: bib0235
  article-title: Prediction as a Candidate for Learning Deep Hierarchical Models of Data
– volume: 112
  start-page: 2939
  year: 2014
  end-page: 2945
  ident: bib0085
  article-title: Modulation of alpha power at encoding and retrieval tracks the precision of visual short-term memory
  publication-title: J. Neurophysiol.
– volume: 6
  year: 2015
  ident: bib0155
  article-title: Predictive coding in visual search as revealed by cross-frequency EEG phase synchronization
  publication-title: Front. Psychol.
– volume: 169
  start-page: 323
  year: 2008
  end-page: 338
  ident: bib0025
  article-title: What are the differences between long-term, short-term, and working memory?
  publication-title: Essence Mem.
– volume: 9
  start-page: 305
  year: 2015
  end-page: 315
  ident: bib0195
  article-title: The graph theoretical analysis of the SSVEP harmonic response networks
  publication-title: Cogn. Neurodyn.
– volume: 68
  start-page: 595
  year: 2010
  end-page: 598
  ident: bib0165
  article-title: Alpha phase locking predicts residual working memory performance in schizophrenia
  publication-title: Biol. Psychiatry
– volume: 12
  start-page: 105
  year: 2011
  end-page: U1500
  ident: bib0105
  article-title: The role of phase synchronization in memory processes
  publication-title: Nat. Rev. Neurosci.
– volume: 63
  start-page: 1
  year: 2012
  end-page: 29
  ident: bib0020
  article-title: Working memory: theories, models, and controversies
  publication-title: Annu. Rev. Psychol.
– volume: 71
  year: 2005
  ident: bib0220
  article-title: Intensity and coherence of motifs in weighted complex networks
  publication-title: Phys. Rev. E
– volume: 76
  start-page: 229
  year: 2004
  end-page: 238
  ident: bib0280
  article-title: A study on the reference electrode standardization technique for a realistic head model
  publication-title: Comput. Methods Programs Biomed.
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: bib0080
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
– volume: 30
  start-page: 317
  year: 2007
  end-page: 324
  ident: bib0045
  article-title: Human gamma-frequency oscillations associated with attention and memory
  publication-title: Trends Neurosci.
– year: 2012
  ident: bib0170
  article-title: Inferring functional neural connectivity with phase synchronization analysis: a review of methodology
  publication-title: Comput. Math. Methods Med.
– volume: 20
  start-page: R136
  year: 2010
  end-page: R140
  ident: bib0015
  article-title: Working memory
  publication-title: Curr. Biol.
– volume: 53
  start-page: 117
  year: 2016
  end-page: 128
  ident: bib0205
  article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection
  publication-title: Expert Syst. Appl.
– volume: 49
  start-page: 2424
  year: 2013
  end-page: 2438
  ident: bib0135
  article-title: The effects of working memory training on functional brain network efficiency
  publication-title: Cortex
– volume: 125
  start-page: 694
  year: 2014
  end-page: 702
  ident: bib0125
  article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task
  publication-title: Clin. Neurophysiol.
– volume: 21
  start-page: 3175
  year: 2001
  end-page: 3183
  ident: bib0040
  article-title: Gating of human theta oscillations by a working memory task
  publication-title: J. Neurosci.
– volume: 57
  start-page: 97
  year: 2005
  end-page: 103
  ident: bib0075
  article-title: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory
  publication-title: Int. J. Psychophysiol.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0245
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 114
  start-page: 58
  year: 2014
  end-page: 69
  ident: bib0175
  article-title: Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging
  publication-title: Neurobiol. Learn. Mem.
– volume: 424
  start-page: 175
  year: 2006
  end-page: 308
  ident: bib0200
  article-title: Complex networks: structure and dynamics
  publication-title: Phys. Rep.-Rev. Sect. Phys. Lett.
– volume: 11
  year: 2017
  ident: bib0115
  article-title: EEG cortical connectivity analysis of working memory reveals topological reorganization in Theta and alpha bands
  publication-title: Front. Hum. Neurosci.
– volume: 68
  start-page: 93
  year: 2017
  end-page: 105
  ident: bib0255
  article-title: Text summarization using unsupervised deep learning
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: bib0250
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 11
  year: 2017
  ident: bib0290
  article-title: MATLAB toolboxes for reference electrode standardization technique (REST) of scalp EEG
  publication-title: Front. Neurosci.
– volume: 313
  start-page: 504
  issue: July (5786)
  year: 2006
  ident: 10.1016/j.bspc.2019.03.002_bib0245
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 112
  start-page: 2939
  issue: December (11)
  year: 2014
  ident: 10.1016/j.bspc.2019.03.002_bib0085
  article-title: Modulation of alpha power at encoding and retrieval tracks the precision of visual short-term memory
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00051.2014
– volume: 11
  issue: May (12)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0115
  article-title: EEG cortical connectivity analysis of working memory reveals topological reorganization in Theta and alpha bands
  publication-title: Front. Hum. Neurosci.
– volume: 87
  issue: November 5(19)
  year: 2001
  ident: 10.1016/j.bspc.2019.03.002_bib0225
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett.
– volume: 169
  start-page: 323
  year: 2008
  ident: 10.1016/j.bspc.2019.03.002_bib0025
  article-title: What are the differences between long-term, short-term, and working memory?
  publication-title: Essence Mem.
  doi: 10.1016/S0079-6123(07)00020-9
– volume: 12
  start-page: 105
  issue: February (2)
  year: 2011
  ident: 10.1016/j.bspc.2019.03.002_bib0105
  article-title: The role of phase synchronization in memory processes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2979
– volume: 63
  start-page: 1
  issue: 63
  year: 2012
  ident: 10.1016/j.bspc.2019.03.002_bib0020
  article-title: Working memory: theories, models, and controversies
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev-psych-120710-100422
– volume: 34
  start-page: 1015
  issue: June (7)
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0055
  article-title: Control mechanisms in working memory: a possible function of EEG theta oscillations
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2009.12.006
– volume: 26
  start-page: 665
  issue: May (5)
  year: 2009
  ident: 10.1016/j.bspc.2019.03.002_bib0120
  article-title: Reduction of functional brain connectivity in mild traumatic brain injury during working memory
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2008.0644
– volume: 49
  start-page: 2424
  issue: October (9)
  year: 2013
  ident: 10.1016/j.bspc.2019.03.002_bib0135
  article-title: The effects of working memory training on functional brain network efficiency
  publication-title: Cortex
  doi: 10.1016/j.cortex.2013.01.008
– volume: 20
  start-page: R136
  issue: 4
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0015
  article-title: Working memory
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.12.014
– start-page: 22
  issue: April (15)
  year: 1637
  ident: 10.1016/j.bspc.2019.03.002_bib0130
  article-title: Working memory performance inversely predicts spontaneous delta and theta-band scaling relations
  publication-title: Brain Res.
– volume: 21
  start-page: 3175
  issue: May (9)
  year: 2001
  ident: 10.1016/j.bspc.2019.03.002_bib0040
  article-title: Gating of human theta oscillations by a working memory task
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-09-03175.2001
– volume: 130
  start-page: 156
  issue: April
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0285
  article-title: EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2017.01.023
– start-page: 28
  issue: July (15)
  year: 1667
  ident: 10.1016/j.bspc.2019.03.002_bib0145
  article-title: Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization
  publication-title: Brain Res.
– volume: 18
  issue: February (13)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0260
  article-title: EEG correlates of working memory performance in females
  publication-title: BMC Neurosci.
– volume: 90
  start-page: 87
  issue: December (30)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0210
  article-title: Classify epileptic EEG signals using weighted complex networks based community structure detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.012
– volume: 30
  start-page: 317
  issue: July (7)
  year: 2007
  ident: 10.1016/j.bspc.2019.03.002_bib0045
  article-title: Human gamma-frequency oscillations associated with attention and memory
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.05.001
– year: 2007
  ident: 10.1016/j.bspc.2019.03.002_bib0010
– volume: 107
  start-page: 3228
  issue: February (7)
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0060
  article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911531107
– volume: 11
  start-page: 625
  issue: February
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0250
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 125
  start-page: 694
  issue: April (4)
  year: 2014
  ident: 10.1016/j.bspc.2019.03.002_bib0125
  article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.08.033
– volume: 640
  start-page: 42
  issue: February (15)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0090
  article-title: Analyze the beta waves of electroencephalogram signals from young musicians and non-musicians in major scale working memory task
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.01.022
– volume: 15
  issue: June (3)
  year: 2018
  ident: 10.1016/j.bspc.2019.03.002_bib0035
  article-title: A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance
  publication-title: J. Neural Eng.
– volume: 68
  start-page: 93
  issue: February
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0255
  article-title: Text summarization using unsupervised deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.017
– year: 2012
  ident: 10.1016/j.bspc.2019.03.002_bib0235
– volume: 68
  start-page: 595
  issue: October (7)
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0165
  article-title: Alpha phase locking predicts residual working memory performance in schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.06.013
– volume: 79
  start-page: 96
  issue: July (2)
  year: 2012
  ident: 10.1016/j.bspc.2019.03.002_bib0270
  article-title: Working memory training: improving intelligence - changing brain activity
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2012.02.007
– volume: 35
  start-page: 1654
  issue: May (4)
  year: 2007
  ident: 10.1016/j.bspc.2019.03.002_bib0110
  article-title: Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.011
– volume: 10
  issue: December (6)
  year: 2013
  ident: 10.1016/j.bspc.2019.03.002_bib0190
  article-title: Prediction of SSVEP-based BCI performance by the resting-state EEG network
  publication-title: J. Neural Eng.
– volume: 121
  start-page: 203
  issue: December
  year: 2016
  ident: 10.1016/j.bspc.2019.03.002_bib0265
  article-title: Training working memory to improve attentional control in anxiety: a proof-of-principle study using behavioral and electrophysiological measures
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2015.09.008
– volume: 9
  start-page: 305
  issue: June (3)
  year: 2015
  ident: 10.1016/j.bspc.2019.03.002_bib0195
  article-title: The graph theoretical analysis of the SSVEP harmonic response networks
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-015-9327-3
– volume: 52
  start-page: 1059
  issue: September (3)
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0215
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 27
  start-page: 341
  issue: August (2)
  year: 2005
  ident: 10.1016/j.bspc.2019.03.002_bib0095
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.014
– volume: 71
  issue: June (6)
  year: 2005
  ident: 10.1016/j.bspc.2019.03.002_bib0220
  article-title: Intensity and coherence of motifs in weighted complex networks
  publication-title: Phys. Rev. E
– volume: 17
  start-page: 438
  issue: July (7)
  year: 2016
  ident: 10.1016/j.bspc.2019.03.002_bib0140
  article-title: The neuroscience of working memory capacity and training
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.43
– year: 2012
  ident: 10.1016/j.bspc.2019.03.002_bib0170
  article-title: Inferring functional neural connectivity with phase synchronization analysis: a review of methodology
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2012/239210
– volume: 114
  start-page: 58
  issue: October
  year: 2014
  ident: 10.1016/j.bspc.2019.03.002_bib0175
  article-title: Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2014.04.009
– volume: 29
  start-page: 169
  issue: April (2–3)
  year: 1999
  ident: 10.1016/j.bspc.2019.03.002_bib0080
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 82
  start-page: 216
  issue: October
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0240
  article-title: Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.017
– volume: 90
  start-page: 1195
  issue: June (3)
  year: 2010
  ident: 10.1016/j.bspc.2019.03.002_bib0030
  article-title: Neurophysiological and computational principles of cortical rhythms in cognition
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00035.2008
– volume: 74
  start-page: 231
  issue: July (1)
  year: 2013
  ident: 10.1016/j.bspc.2019.03.002_bib0160
  article-title: A note on the phase locking value and its properties
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.008
– volume: 8
  start-page: 194
  issue: 4
  year: 1999
  ident: 10.1016/j.bspc.2019.03.002_bib0180
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume: 3
  issue: April 30(4)
  year: 2008
  ident: 10.1016/j.bspc.2019.03.002_bib0230
  article-title: Network’ Small-World-Ness’: a quantitative method for determining canonical network equivalence
  publication-title: PLoS One
– volume: 6
  issue: October (28)
  year: 2015
  ident: 10.1016/j.bspc.2019.03.002_bib0155
  article-title: Predictive coding in visual search as revealed by cross-frequency EEG phase synchronization
  publication-title: Front. Psychol.
– volume: 424
  start-page: 175
  issue: February (4–5)
  year: 2006
  ident: 10.1016/j.bspc.2019.03.002_bib0200
  article-title: Complex networks: structure and dynamics
  publication-title: Phys. Rep.-Rev. Sect. Phys. Lett.
– volume: 76
  start-page: 229
  issue: December (3)
  year: 2004
  ident: 10.1016/j.bspc.2019.03.002_bib0280
  article-title: A study on the reference electrode standardization technique for a realistic head model
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2004.07.002
– volume: 55
  start-page: 1548
  issue: April (4)
  year: 2011
  ident: 10.1016/j.bspc.2019.03.002_bib0295
  article-title: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.055
– volume: 28
  start-page: 1178
  issue: November (11)
  year: 2007
  ident: 10.1016/j.bspc.2019.03.002_bib0185
  article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20346
– volume: 11
  issue: October (30)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0290
  article-title: MATLAB toolboxes for reference electrode standardization technique (REST) of scalp EEG
  publication-title: Front. Neurosci.
– volume: 24
  start-page: 3637
  issue: 6
  year: 2014
  ident: 10.1016/j.bspc.2019.03.002_bib0150
  article-title: Working memory training using EEG neurofeedback in normal young adults
  publication-title: Biomed. Mater. Eng.
– volume: 53
  start-page: 117
  issue: July (1)
  year: 2016
  ident: 10.1016/j.bspc.2019.03.002_bib0205
  article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.024
– volume: 27
  start-page: 1482
  issue: February (2)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0065
  article-title: Ordering information in working memory and modulation of gamma by theta oscillations in humans
  publication-title: Cereb. Cortex
– volume: 57
  start-page: 97
  issue: August (2)
  year: 2005
  ident: 10.1016/j.bspc.2019.03.002_bib0075
  article-title: Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2005.03.018
– volume: 37
  start-page: 1591
  issue: February (6)
  year: 2017
  ident: 10.1016/j.bspc.2019.03.002_bib0100
  article-title: Posterior alpha EEG dynamics dissociate current from future goals in working memory-guided visual search
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2945-16.2016
– volume: 22
  start-page: 693
  issue: November (4)
  year: 2001
  ident: 10.1016/j.bspc.2019.03.002_bib0275
  article-title: A method to standardize a reference of scalp EEG recordings to a point at infinity
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/22/4/305
– volume: 4
  start-page: 829
  issue: October (10)
  year: 2003
  ident: 10.1016/j.bspc.2019.03.002_bib0005
  article-title: Working memory: looking back and looking forward
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1201
– volume: 15
  start-page: 1395
  issue: April (8)
  year: 2002
  ident: 10.1016/j.bspc.2019.03.002_bib0050
  article-title: Frontal theta activity in humans increases with memory load in a working memory task
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2002.01975.x
– volume: 532
  start-page: 39
  issue: January (4)
  year: 2013
  ident: 10.1016/j.bspc.2019.03.002_bib0070
  article-title: Theta-gamma coupling during a working memory task as compared to a simple vigilance task
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.10.061
SSID ssj0048714
Score 2.1961136
Snippet •We developed a system based on the EEG to evaluate working memory ability (training state and performance) of human.•We applied PLV and PLI to build...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 296
SubjectTerms EEG
Functional brain network (FBN)
Phase synchronization
Stacked auto-encoder (SAE)
Working memory (WM)
Title Training state and performance evaluation of working memory based on task-related EEG
URI https://dx.doi.org/10.1016/j.bspc.2019.03.002
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDywIdM4TuJ0rKqWAqILrdQtsmNbKo80okGIhW_HN3FKkVAHRie2lJw49x4n9xwjdMkMN9o3jEjLF0ggmSaxNpxQxn0dRV0VStAOP4yj0TS4m4WzBurXWhgoq3Sxv4rpZbR2RzoOzU4-n3ceLZeOYrs6sRQE_ifNQMEecJjl11-rMg_Lx0t_b-hMoLcTzlQ1XnKZg40hdUan_t_JaS3hDPfQrmOKuFddzD5q6OwA7az5Bx6i6cRt8IBLXRAWmcL5jxIA_1h544XBH9V3cfwKxbWfGPKXwvZUIZbPpNS02PZgcHOEpsPBpD8ibp8Ekto7L0jcNVoJJjlNuYCMHgqvq4JI-Sm3uFP7lBRVoYqEYJ4S2oNlr9Kh4qlgQml2jJrZItMnCNu319CQS0mZXTr5UhoehzKIhRdwoEotRGuAktSZiMNeFi9JXS32lACoCYCaeCyxoLbQ1WpMXllobOwd1rgnvyZCYmP8hnGn_xx3hrahVdUwnqNm8fauLyzPKGS7nEhttNW7vR-NvwEIY9L2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGNoOVZ8qfXroVlkkcRyHESEolMdSkNgsO3Yk-gioUFX997WJU6hUMXRM7JOSL87d5-TuO4A7krJUBynB0vAFHEqicaxThn3CAh1FdUWlrR0eDKPOOHyc0EkJmkUtjE2rdL4_9-krb-3O1Byatfl0WnsyXDqKze7EUBD7P2myAxWrTkXLUGl0e51h4ZANJV9JfNv52Bq42pk8zUsu5lbJ0Hdap8Hf8Wkj5rQP4cCRRdTIr-cISjo7hv0NCcETGI9cjwe0Kg1CIlNovi4GQGs1bzRL0Wf-aRy92fzaL2RDmEJmaCkWL3hV1mKOW62HUxi3W6NmB7tWCTgxN7_EcT3VShDJ_IQJG9Sp8OoqjFSQMAO9bx6U8hVVkRDEU0J7duerNFUsEUQoTc6gnM0yfQ7IvMCpT5mUPjG7p0DKlMVUhrHwQmbZUhX8AiCeOB1x287ilRcJY8_cgsotqNwj3IBahfsfm3muorF1Ni1w57_WAjdufovdxT_tbmG3Mxr0eb877F3Cnh3JUxqvoLx8_9DXhnYs5Y1bVt9R59Wn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+state+and+performance+evaluation+of+working+memory+based+on+task-related+EEG&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Hong&rft.au=Hua%2C+Chengcheng&rft.au=Wang%2C+Qiaoxiu&rft.au=Fu%2C+Qiang&rft.date=2019-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=51&rft.spage=296&rft.epage=308&rft_id=info:doi/10.1016%2Fj.bspc.2019.03.002&rft.externalDocID=S174680941930076X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon