A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms

•Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation, microorganisms increase heat transfer.•No experimental studies have been done so far regarding microorganisms nanofluid flow in porous media.•Ut...

Full description

Saved in:
Bibliographic Details
Published inThermal science and engineering progress Vol. 30; p. 101267
Main Authors Habibishandiz, M., Saghir, M.Z.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text
ISSN2451-9049
2451-9049
DOI10.1016/j.tsep.2022.101267

Cover

Loading…
Abstract •Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation, microorganisms increase heat transfer.•No experimental studies have been done so far regarding microorganisms nanofluid flow in porous media.•Utilization of different microorganisms’ types could be capable of increasing heat transfer. A current common topic of study among scientists and engineers is how to reduce energy usage.As the loading power of engineering devices is constantly upgrading, while they are becoming more and more compacted according to the market demand and in terms of less material consumption, thermal management is getting more complicated. Accordingly, three techniques are proposed to enhance heat transfer including passive, active, and compound (combination of passive and active) methods. Active methods enjoyexternal power sources, while passive methods mostly rely on modification of heat exchange surfaces without the need for any auxiliary tools. In the current paper, an extensive literature review is conducted for three widely used passive techniques including porous media, nanofluids, and microorganisms. Based on studies reviewed here, although hybrid (combination of more than one heat transfer enhancement method) passive methods could accelerate the rate of heat transfer, their productivity depends on whether the heat transfer enhancement acquired compensates the further induced pressure drops or not. Also, although an inconsistency was observed among published articles about the role of microorganisms’ presence in heat transfer intensification of nanofluid flow inside the porous medium, the overwhelming majority of studies proved the contributing role of microorganisms on heat transfer enhancement. There is a great deal of innovative thinking incorporated throughout this review article regarding future studies, and it concludes with key questions for further investigations.
AbstractList •Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation, microorganisms increase heat transfer.•No experimental studies have been done so far regarding microorganisms nanofluid flow in porous media.•Utilization of different microorganisms’ types could be capable of increasing heat transfer. A current common topic of study among scientists and engineers is how to reduce energy usage.As the loading power of engineering devices is constantly upgrading, while they are becoming more and more compacted according to the market demand and in terms of less material consumption, thermal management is getting more complicated. Accordingly, three techniques are proposed to enhance heat transfer including passive, active, and compound (combination of passive and active) methods. Active methods enjoyexternal power sources, while passive methods mostly rely on modification of heat exchange surfaces without the need for any auxiliary tools. In the current paper, an extensive literature review is conducted for three widely used passive techniques including porous media, nanofluids, and microorganisms. Based on studies reviewed here, although hybrid (combination of more than one heat transfer enhancement method) passive methods could accelerate the rate of heat transfer, their productivity depends on whether the heat transfer enhancement acquired compensates the further induced pressure drops or not. Also, although an inconsistency was observed among published articles about the role of microorganisms’ presence in heat transfer intensification of nanofluid flow inside the porous medium, the overwhelming majority of studies proved the contributing role of microorganisms on heat transfer enhancement. There is a great deal of innovative thinking incorporated throughout this review article regarding future studies, and it concludes with key questions for further investigations.
ArticleNumber 101267
Author Habibishandiz, M.
Saghir, M.Z.
Author_xml – sequence: 1
  givenname: M.
  surname: Habibishandiz
  fullname: Habibishandiz, M.
  email: mhabibishandiz@ryerson.ca
– sequence: 2
  givenname: M.Z.
  surname: Saghir
  fullname: Saghir, M.Z.
BookMark eNp9kM1KAzEQgINUsNa-gKc8QFuT7GabBS-l-AcFL3oO02TWpuwmJYkV395d6kE89DTDzHwzzHdNRj54JOSWswVnvLrbL3LCw0IwIYaCqJYXZCxKyec1K-vRn_yKTFPaM8aEVGVRqzE5rqiJLjsDLY14dPhFQ0N3CJnmCD41GCn6HXiDHfpMO8y7YBN1nuYd0kPEhH1vgA4hhs_UT1gHM-rBh6b9dDbNKHhLO2diCPEDvEtduiGXDbQJp79xQt4fH97Wz_PN69PLerWZm4KxPFe1BNWAqDjnS26bQhoJwAWqUkBZbQ0oVXHLTGm328IawZeV5EqUSlolK1lMiDrt7Y-nFLHRxmXILvj-O9dqzvSgUO_1oFAPCvVJYY-Kf-ghug7i93no_gRh_1RvM-pk3CDIuogmaxvcOfwHIlWOGQ
CitedBy_id crossref_primary_10_1115_1_4065722
crossref_primary_10_1002_ente_202401370
crossref_primary_10_1080_10407782_2024_2343031
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126199
crossref_primary_10_1108_HFF_03_2023_0113
crossref_primary_10_1016_j_ijheatfluidflow_2023_109258
crossref_primary_10_1111_jace_19177
crossref_primary_10_3390_en18040976
crossref_primary_10_3390_axioms12020199
crossref_primary_10_1002_htj_23185
crossref_primary_10_1134_S106373972460033X
crossref_primary_10_1016_j_icheatmasstransfer_2023_106764
crossref_primary_10_2298_TSCI2304269A
crossref_primary_10_1108_HFF_04_2023_0193
crossref_primary_10_1016_j_cscee_2023_100556
crossref_primary_10_1155_2024_3398551
crossref_primary_10_3390_en17102350
crossref_primary_10_1016_j_padiff_2024_100893
crossref_primary_10_1016_j_est_2024_113777
crossref_primary_10_1007_s10973_024_13071_1
crossref_primary_10_1108_HFF_08_2022_0485
crossref_primary_10_3390_geosciences14040103
crossref_primary_10_3390_en15218207
crossref_primary_10_1016_j_solener_2022_10_054
crossref_primary_10_3390_math11071685
crossref_primary_10_1615_NanoSciTechnolIntJ_2022045536
crossref_primary_10_1080_10407782_2024_2357586
crossref_primary_10_1080_10407790_2023_2292157
crossref_primary_10_1002_zamm_202400132
crossref_primary_10_1007_s10973_023_12861_3
crossref_primary_10_1088_1402_4896_acbdc7
crossref_primary_10_1166_jon_2023_2089
crossref_primary_10_1080_17455030_2023_2226230
crossref_primary_10_1615_InterfacPhenomHeatTransfer_2024053905
crossref_primary_10_1007_s13369_024_09301_1
crossref_primary_10_1002_htj_23123
crossref_primary_10_1088_1402_4896_ada194
crossref_primary_10_1515_ntrev_2022_0526
crossref_primary_10_3389_fenrg_2023_1288515
crossref_primary_10_1080_10407782_2024_2326200
crossref_primary_10_1007_s00396_024_05233_2
crossref_primary_10_1016_j_est_2024_112306
crossref_primary_10_1080_10420150_2024_2381239
crossref_primary_10_1007_s10973_023_12553_y
crossref_primary_10_1038_s41598_023_48412_x
crossref_primary_10_1002_htj_23017
crossref_primary_10_1002_zamm_202300281
crossref_primary_10_3390_bioengineering9110656
crossref_primary_10_1080_10407790_2023_2262747
crossref_primary_10_1016_j_applthermaleng_2023_120584
crossref_primary_10_1038_s41598_025_85236_3
crossref_primary_10_1166_jon_2024_2138
crossref_primary_10_1142_S0217984924504505
crossref_primary_10_3390_su15129448
crossref_primary_10_1007_s10973_023_12610_6
Cites_doi 10.1016/S0735-1933(04)00050-8
10.1016/j.fluiddyn.2005.03.002
10.1016/j.ijthermalsci.2016.09.001
10.1615/JPorMedia.v15.i7.20
10.1002/andp.19063240204
10.3390/molecules26133954
10.1038/ncomms7400
10.1016/j.applthermaleng.2013.11.072
10.1016/j.physa.2019.123887
10.1016/j.geothermics.2020.102016
10.1016/j.applthermaleng.2018.10.130
10.3103/S106879981301011X
10.1016/j.apt.2020.12.005
10.1007/s00231-017-1987-6
10.1063/1.5008969
10.1016/j.aej.2016.11.011
10.1016/j.ijheatmasstransfer.2016.11.031
10.1166/jon.2018.1461
10.1115/1.4000951
10.1007/s10404-009-0524-4
10.1016/j.icheatmasstransfer.2018.12.010
10.1615/JEnhHeatTransf.2018024886
10.1063/1.1460879
10.1016/j.ijmecsci.2017.09.031
10.1016/j.powtec.2021.01.045
10.1063/1.1700493
10.1016/S0735-1933(03)00196-9
10.1016/j.ijheatfluidflow.2012.05.005
10.1016/j.ijft.2020.100055
10.1007/s10973-016-5436-4
10.1016/S0301-9322(02)00108-8
10.1016/j.apt.2015.03.012
10.1016/j.tca.2007.06.009
10.1080/10407782.2016.1230423
10.1017/S0022112077001062
10.1017/jmech.2017.73
10.1007/s10973-018-7520-4
10.1021/cr400295a
10.1016/j.physa.2020.125617
10.1016/j.jmmm.2006.11.158
10.1002/smll.201702982
10.1016/j.expthermflusci.2017.03.008
10.3844/ajassp.2012.436.439
10.1016/j.coche.2018.03.003
10.1016/j.spmi.2003.09.012
10.1115/1.4037087
10.1115/1.2352789
10.1016/j.ijmecsci.2017.03.007
10.1016/j.tsep.2020.100693
10.3390/en14010080
10.1016/j.ijheatmasstransfer.2014.03.026
10.1016/j.apcatb.2010.06.001
10.1016/j.ijheatmasstransfer.2014.05.053
10.1016/j.icheatmasstransfer.2010.08.015
10.1115/1.4048122
10.1615/JPorMedia.2021036551
10.1016/j.cja.2018.06.011
10.1016/j.rser.2018.04.091
10.1002/aic.690490420
10.1007/s10973-019-08191-y
10.1016/j.ijhydene.2016.09.211
10.1007/s10973-020-10480-w
10.1108/09615530310464535
10.1146/annurev.fl.04.010172.000521
10.1016/j.ces.2019.03.006
10.1007/s00521-017-3165-7
10.1016/j.cej.2017.01.069
10.1146/annurev-fluid-120710-101156
10.1016/j.molliq.2016.05.089
10.1016/j.ijthermalsci.2011.03.008
10.1016/j.molliq.2016.12.039
10.1080/01430750.2015.1023843
10.1080/17458080.2014.989551
10.1615/HeatTransRes.2015005342
10.1016/j.cep.2018.04.018
10.1142/S021951941350067X
10.1016/j.cjche.2020.07.025
10.1016/j.apt.2016.10.002
10.1108/EUM0000000004124
10.1016/j.ijthermalsci.2016.06.007
10.1016/j.ijthermalsci.2012.01.011
10.1016/j.ijheatmasstransfer.2013.03.012
10.29252/jafm.75.253.28744
10.1016/j.ijheatmasstransfer.2013.09.039
10.1007/s13369-020-05132-y
10.1016/j.jclepro.2021.128365
10.3390/e22010018
10.32604/cmes.2020.09009
10.1016/j.jpowsour.2013.04.156
10.1016/j.renene.2019.10.084
10.1016/j.cjph.2020.12.022
10.1016/j.enbuild.2016.04.006
10.1016/j.rser.2014.11.023
10.1016/j.icheatmasstransfer.2017.08.009
10.1080/10407782.2017.1345270
10.1115/1.1416690
10.1016/j.ijheatmasstransfer.2017.06.030
10.1016/j.solmat.2019.01.050
10.1016/j.ijmecsci.2017.06.030
10.1007/s10483-020-2609-6
10.1016/j.ifset.2016.01.007
10.1016/j.cjche.2017.01.015
10.1007/s10891-016-1437-1
10.1038/326655a0
10.1016/j.ijheatmasstransfer.2007.10.017
10.1007/BF02120313
10.1515/ntrev-2020-0094
10.1016/j.rser.2005.07.002
10.1016/j.icheatmasstransfer.2013.02.012
10.1016/j.physrep.2018.11.004
10.1016/j.icheatmasstransfer.2020.104842
10.1023/A:1023582001592
10.1021/i160003a005
10.1016/j.jare.2020.09.008
10.1016/j.ijheatmasstransfer.2017.06.021
10.2514/2.6486
10.1016/j.applthermaleng.2019.114612
10.1039/C5EN00075K
10.2298/TSCI150424128S
10.1016/j.molliq.2018.04.119
10.1016/j.ijheatmasstransfer.2018.10.072
10.1016/j.rinp.2016.10.016
10.2514/1.T3983
10.1146/annurev.fl.09.010177.002011
10.1016/j.ijheatmasstransfer.2013.01.083
10.1016/0092-8240(94)00038-E
10.1007/s10973-019-08651-5
10.1007/s13369-019-03956-x
10.1142/S0219519417500592
10.1209/0295-5075/109/50001
10.1016/j.rser.2018.07.032
10.1122/1.548848
10.1016/j.icheatmasstransfer.2009.07.013
10.1016/j.applthermaleng.2020.115259
10.1115/1.2150834
10.1016/j.energy.2016.10.101
10.1016/j.jcp.2012.08.040
10.1115/1.4024387
10.1115/1.4039213
10.1016/j.enconman.2013.07.022
10.1016/j.ijheatmasstransfer.2007.03.009
10.1155/2018/6978130
10.1016/j.expthermflusci.2011.11.007
10.1016/j.ijheatmasstransfer.2017.12.075
10.1016/j.apenergy.2019.03.200
10.1039/C4LC01095G
10.1051/matecconf/201822001004
10.1016/j.renene.2017.08.059
10.1615/JPorMedia.2020027144
10.1016/j.molliq.2020.112787
10.1115/FEDSM2002-31105
10.1016/j.powtec.2020.12.037
10.1016/0021-9797(73)90225-7
10.1016/j.applthermaleng.2020.115543
10.1063/1.2192971
10.52292/j.laar.2018.259
10.1080/01457632.2015.1052682
10.3390/math8030380
10.1016/j.icheatmasstransfer.2018.07.002
10.1016/j.molliq.2020.114430
10.1016/j.expthermflusci.2015.11.009
10.1016/j.applthermaleng.2019.114163
10.1016/j.jtice.2012.12.018
10.1016/S0735-1933(01)00291-3
10.1166/jon.2019.1650
10.1142/S0217979209060270
10.3390/coatings10040391
10.1016/j.icheatmasstransfer.2021.105209
10.1016/j.renene.2017.07.008
10.1108/HFF-10-2016-0398
10.1016/j.solener.2020.03.047
10.1142/S0218339016500212
10.1016/j.compgeo.2015.06.021
10.1007/s10483-016-2044-9
10.1016/j.ijheatmasstransfer.2015.06.088
10.1016/j.powtec.2020.07.115
10.1016/j.rser.2018.03.108
10.1016/j.icheatmasstransfer.2014.01.012
10.1016/j.ijheatfluidflow.2003.08.002
10.1016/j.apenergy.2017.06.028
10.1111/j.1574-6968.1987.tb02336.x
10.1016/j.csite.2020.100809
10.1007/s11242-006-9028-9
10.1615/JPorMedia.v15.i3.30
10.1007/s10973-020-09488-z
10.1007/s10973-019-09009-7
10.1016/j.oceaneng.2017.04.005
10.1016/j.rser.2019.06.027
10.1016/j.ijheatmasstransfer.2014.12.024
10.1016/j.ijthermalsci.2020.106705
10.1007/s10973-019-08076-0
10.1142/S1793524514500053
10.1016/j.compgeo.2020.103778
10.1017/S0022112001005547
10.1088/1402-4896/ab19ea
10.1016/j.ijheatmasstransfer.2019.118713
10.1016/j.rser.2018.12.057
10.1016/j.chroma.2006.06.011
10.1016/j.applthermaleng.2016.06.036
10.1007/BF00951252
10.1002/htj.22129
10.1016/j.expthermflusci.2013.12.013
10.1002/fld.2469
10.1016/j.icheatmasstransfer.2014.08.039
10.1016/j.euromechflu.2021.07.006
10.1016/j.jpowsour.2017.03.030
10.1007/s10973-018-7181-3
10.1016/j.renene.2017.12.093
10.1016/j.rser.2017.04.040
10.15632/jtam-pl.57.1.221
10.1016/j.applthermaleng.2020.115231
10.1016/j.ijthermalsci.2015.10.005
10.1039/C7SM00766C
10.1016/j.molliq.2019.111231
10.1016/j.ijthermalsci.2020.106696
10.1021/jp0772629
10.1007/s10973-018-7829-z
10.1016/j.renene.2014.12.016
10.1007/978-981-10-5329-0_1
10.1016/j.applthermaleng.2019.114843
10.1016/j.icheatmasstransfer.2020.104893
10.1016/j.ijheatmasstransfer.2018.06.101
10.1115/1.4048622
10.1016/j.molliq.2019.111780
10.1080/01457630701850851
10.1016/j.applthermaleng.2020.116089
10.1088/1402-4896/abeba2
10.1002/num.22735
10.1016/j.solener.2018.06.083
10.1017/jfm.2019.606
10.1016/j.euromechflu.2018.08.010
10.1016/j.applthermaleng.2020.115446
10.1038/srep12710
10.1016/j.apsusc.2016.04.181
10.1016/j.molliq.2019.111377
10.1002/htj.22118
10.1108/HFF-04-2019-0317
10.1108/MMMS-08-2019-0160
10.1016/j.ijmecsci.2017.09.045
10.1177/09544089211007326
10.1016/j.icheatmasstransfer.2006.01.005
10.1016/j.expthermflusci.2015.04.012
10.1126/science.133.3466.1766
10.1063/1.1658506
10.1007/BF00997630
10.1016/S0735-1933(02)00308-1
10.1146/annurev-fluid-010518-040558
10.1016/j.csite.2020.100798
10.1016/j.rser.2017.08.060
10.1016/j.molliq.2016.08.109
10.1007/s11242-014-0297-4
10.1016/j.jclepro.2018.04.146
10.1002/(SICI)1097-0290(20000705)69:1<47::AID-BIT6>3.0.CO;2-N
10.1002/htj.21595
10.3390/en13153793
10.1088/0957-4484/18/10/105701
10.1016/j.ijheatmasstransfer.2008.10.025
10.1016/j.scitotenv.2020.144202
10.1086/281740
10.1155/2010/519659
10.1039/C7NR01869J
10.1016/j.rser.2015.04.113
10.1016/j.jmmm.2010.08.016
10.1007/s40430-015-0313-9
10.1016/j.ijheatmasstransfer.2016.06.095
10.1016/j.ijheatmasstransfer.2011.10.021
10.1016/j.heliyon.2020.e05832
10.1016/j.ijheatfluidflow.2005.02.004
10.1007/s10973-019-08362-x
10.1016/j.ces.2018.09.045
10.1016/j.rser.2013.12.017
10.1016/j.powtec.2017.10.040
10.1016/j.ijheatmasstransfer.2017.07.001
10.1108/HFF-05-2018-0238
10.1016/j.ijhydene.2017.03.170
10.1016/j.scriptamat.2006.05.030
10.1063/1.866465
10.1002/adfm.201202638
10.1016/j.energy.2020.117402
10.1063/1.5144737
10.1016/j.enconman.2010.06.072
10.1016/j.cjph.2017.08.005
10.1016/j.ijheatmasstransfer.2017.07.083
10.1016/j.jmrt.2020.07.025
10.1016/j.ijheatmasstransfer.2016.11.037
10.1016/j.applthermaleng.2021.116624
10.1146/annurev.fl.24.010192.001525
10.1016/j.molliq.2016.04.097
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tsep.2022.101267
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2451-9049
ExternalDocumentID 10_1016_j_tsep_2022_101267
S2451904922000749
GroupedDBID --M
AACTN
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FYGXN
KOM
OAUVE
ROL
SPC
SPCBC
SSR
SST
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
ID FETCH-LOGICAL-c300t-895a8fa2611171df35c5aa12e842a46bca8861d0c4dbb3dc21765182485d85653
IEDL.DBID AIKHN
ISSN 2451-9049
IngestDate Tue Jul 01 03:41:27 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 23 02:39:34 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Heat transfer enhancement
Porous media
Active methods
Nanofluid
Bioconvection
Microorganism
Passive methods
Hybrid nanofluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-895a8fa2611171df35c5aa12e842a46bca8861d0c4dbb3dc21765182485d85653
ParticipantIDs crossref_citationtrail_10_1016_j_tsep_2022_101267
crossref_primary_10_1016_j_tsep_2022_101267
elsevier_sciencedirect_doi_10_1016_j_tsep_2022_101267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Thermal science and engineering progress
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Esfe, Esforjani, Akbari, Karimipour (b0220) 2014; 45
Reddy, Kumar, Ajay (b0450) 2015; 77
Radwan, Ahmed (b0975) 2018; 171
Taheri, Bilgen (b1385) 2007; 50
Biswas, Manna, Mandal, Gorla (b1575) 2021
Abu-Hamdeh, Abusorrah, Bayoumi, Oztop, Sun (b1120) 2021; 144
A. V. Kuznetsov and V. Bubnovich, “Investigation of simultaneous effects of gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media,”
vol. 20, no. 4, pp. 571-571, 1952.
Chakraborty, Das, Kundu (b1395) 2018; 57
Sardari, Giddings, Grant, Gillott, Walker (b1110) 2020; 148
Bracconi, Ambrosetti, Maestri, Groppi, Tronconi (b0155) 2017; 315
Jourabian, Darzi, Akbari, Toghraie (b1130) 2020; 548
S. Akhter and M. Ashraf, “Darcy–Forchheimer flow of nanofluid with gyrotactic microorganisms using Buongiorno model,”
Yang, Niu, Bai, Li, Cui, He (b0365) 2019; 161
Esfe, Bahiraei, Hajbarati, Valadkhani (b0165) 2020; 178
Wakif, Chamkha, Thumma, Animasaun, Sehaqui (b0930) 2021; 143
Okonkwo, Wole-Osho, Kavaz, Abid (b0630) 2019; 292
Xu, Gong, Huang, Xu (b0090) 2015; 83
Nield, Bejan (b0140) 2013
Goudarzi, Shekaramiz, Omidvar, Golab, Karimipour, Karimipour (b0935) 2020; 375
Mehrizi, Farhadi, Sedighi, Delavar (b0420) 2013; 44
K. Elsaid, A. Olabi, T. Wilberforce, M. A. Abdelkareem and E. T. Sayed, “Environmental impacts of nanofluids: a review,”
Abbas, Hayat, Ayub, Bhatti, Alsaedi (b1460) 2019; 31
Kalpana, Madhura, Iyengar (b0950) 2020; 49
Pedley, Kessler (b1240) 1992; 24
Ghanbarpour, Haghigi, Khodabandeh (b0695) 2014; 53
Aziz, Khan, Pop (b1265) 2012; 56
Singh, Sah, Sharma (b1215) 2021; 317
Awais, Malik, Bilal, Salahuddin, Hussain (b1540) 2017; 7
Zahmatkesh, Sheremet, Yang, Heris, Sharifpur, Meyer, Ghalambaz, Wongwises, Jing, Mahian (b0580) 2021; 321
Kareem, Jaafar, Lazim, Abdullah, Abdulwahid (b0005) 2015; 68
Shuja, Yilbas, Khan (b0125) 2015; 46
Iasiello, Bianco, Chiu, Naso (b0295) 2021; 160
Kuznetsov, Avramenko (b1355) 2004; 31
Misra, Sarkar (b0225) 1995; 5
Kant, Shukla, Sharma, Kumar, Jain (b0535) 2016; 34
Kuznetsov (b1330) 2012; 15
Belabid, Allali (b1640) 2021; 89
Boomsma, Poulikakos, Ventikos (b0150) 2003; 24
Sheikholeslami, Gorji-Bandpy, Ganji (b0045) 2015; 49
D. Balaji, R. Velraj and M. R. Murthy, “A review of the role of passive techniques on heat transfer enhancement of horizontal tube falling film and flooded evaporators,”
Geng, Kuznetsov (b1325) 2004; 31
Durlofsky, Brady (b0185) 1987; 30
Wong, De Leon (b0485) 2010; 2
Hill, Pedley (b1290) 2005; 37
Akbari, Galanis, Behzadmehr (b0665) 2012; 37
Molaeimanesh, Googarchin, Moqaddam (b1000) 2016; 41
Dey, Kumar, Samantaray (b1180) 2017; 46
M. R. Habibi and I. Zahmatkesh, “Double-diffusive natural and mixed convection of binary nanofluids in porous cavities,”
Sayar (b0095) 2017; 53
Soares, Laia, Carvalho, Pereira, Coutinho, Ferreira, Novo, Borges (b1195) 2016; 383
Chen, Chen, Cheng (b0860) 2016; 102
Zhou, Lin, Huang, Zhong, Wang, Tang, Bi, Wan, Lin (b0320) 2013; 23
Brennen, Winet (b1295) 1977; 9
Alam, Kim (b0070) 2018; 81
Ghalambaz, Doostani, Chamkha, Ismael (b1090) 2017; 134
Kuznetsov, Jiang (b1285) 2003; 13
Wciślik (b0650) 2020; 13
Ali, Naqvi, Ali, Abdal, Hussain (b0925) 2021; 70
Ambreen, Saleem, Park (b0965) 2020; 173
Alharbi, Naeem, Zubair, Jawad, Jan, Jan (b1350) 2021; 26
Ji, Li, Xu, Huang (b0010) 2017; 85
Ma, Wilson, Borgmeyer, Park, Yu, Choi, Tirumala (b0500) 2006; 88
Evans, Prasher, Fish, Meakin, Phelan, Keblinski (b0740) 2008; 51
Ling, Zhang, Shi, Fang, Wang, Gao, Fang, Xu, Wang, Liu (b0530) 2014; 31
Albojamal, Vafai (b0770) 2017; 114
Rashidi, Akar, Bovand, Ellahi (b0845) 2018; 115
S. I. Abdelsalam and M. M. Bhatti, “ Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms,”
Zaraki, Ghalambaz, Chamkha, Ghalambaz, De Rossi (b0565) 2015; 26
Selimefendigil, Ismael, Chamkha (b1085) 2017; 124
Akbarzadeh, Rashidi, Keshmiri, Shokri (b0405) 2020; 139
Wu, Salama, Sun (b0205) 2015; 69
Sulochana, Aparna (b0920) 2020; 16
Feng, Kuang, Wen, Lu, Ichimiya (b0355) 2014; 77
Cooper, Eastwood, Gelb, Damblanc, Brett, Bradley, Withers, Lee, Marquis, Brandon, Shearing (b0145) 2014; 247
Mehl, Neckel, Neumann (b1015) 2011; 65
Jouybari, Saedodin, Zamzamian, Nimvari, Wongwises (b1095) 2017; 114
Li, Sheikholeslami, Samandari, Shafee (b1135) 2018; 127
Waqas, Ji, Xu, Ali, Alvi (b0540) 2018; 92
Rismani Yazdi, Nosrati, Stevens, Vogel, Davies, Escobedo (b1470) 2018; 14
Mazaheri, Bahiraei, Razi (b0660) 2021; 383
Zahmatkesh, Shandiz (b0115) 2019; 138
Plant, Saghir (b1040) 2021; 9
Faraz, Khamehchi, Tahan (b0245) 2021; 90
Haddad (b0190) 2014; 68
Ahmed, Mahdy (b1445) 2016; 37
Rho, Jang, Kim, Bae, Kim, Lee, Ha, Lee (b0305) 2017; 9
Rho, Lee, Bae, Kim, Lee, Lee, Hwang, Jeong, Kim, Ha, Lee (b0315) 2015; 5
Cimpean, Pop (b0915) 2019; 29
Zahmatkesh, Torshizi (b0960) 2019; 35
Saeed, Kim (b0805) 2018; 120
Ergun (b0180) 1952; 48
Sundar, Singh, Sousa (b0645) 2014; 52
Amudhalapalli, Devanuri (b0550) 2021
Batchelor (b0700) 1977; 83
Kuznetsov, Jiang (b1310) 2001; 28
Alhussain, Renuka, Muthtamilselvan (b1480) 2021; 23
vol. 2, pp. 14-18, 2002.
Hamilton, Crosser (b0790) 1962; 1
Laohalertdecha, Naphon, Wongwises (b0075) 2007; 11
Sundarram, Li (b0350) 2014; 64
R. Kumar and S. Sood, “Unsteady MHD Nanobioconvective Stagnation Slip Flow in a Porous Medium Due to Exponentially Stretching Sheet Containing Microorganisms,”
Gupta, Singh, Kumar, Kumar, Dilbaghi, Said (b0605) 2018; 190
Kuznetsov, Avramenko (b1360) 2002; 29
Kuznetsov, Avramenko (b1380) 2003; 53
Nielsen (b0715) 1970; 41
Mohammed, Abuobeida, Vuthaluru, Liu (b0810) 2019; 101
Khan, Makinde, Khan (b1605) 2014; 74
Alsabery, Mohebbi, Chamkha, Hashim (b1070) 2019; 201
Einstein (b0680) 1906; 19
Siavashi, Bozorg, Toosi (b1145) 2021; 45
Siddabasappa, Sakshath (b0280) 2021; 566
A. S. Dogonchi, M. A. Ismael, A. J. Chamkha and D. D. Ganji, “Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall,”
vol. 45, pp. 1782-1788, 1901.
Tahmasebiboldaji, Afrand, Barzinjy, Hamad, Talebizadehsardari (b0875) 2019; 161
Rashidi, Kashefi, Kim, Samimi-Abianeh (b0120) 2019; 243
Bayomy, Saghir (b0335) 2017; 107
S. U. S. Choi and J. A. Eastman, ““Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows,”
Soleimani, Sattari, Hanafizadeh (b0850) 2020; 20
Bahiraei, Mazaheri (b0870) 2021; 32
Alsabery, Tayebi, Kadhim, Ghalambaz, Hashim, Chamkha (b0940) 2021; 30
Balla, Haritha, Naikoti, Rashad (b1620) 2019
Kakaç, Pramuanjaroenkij (b0675) 2016; 89
Rao, Gangadhar, Chamkha, Surekha (b1475) 2021; 46
Suresh, Venkitaraj, Selvakumar, Chandrasekar (b0640) 2012; 38
Sajid, Ali (b0520) 2019; 103
Shao, Shu, Chew (b1010) 2013; 234
Moraveji, Ardehali (b0840) 2013; 44
Moraveji, Barzegarian, Bahiraei, Barzegarian, Aloueyan, Wongwises (b0780) 2019; 135
Hillesdon, Pedley, Kessler (b1560) 1995; 57
Dogonchi, Armaghani, Chamkha, Ganji (b1065) 2019; 44
Guasto, Rusconi, Stocker (b1250) 2012; 44
vol. 23, no. 10, 2020.
Hoseininejad, Dinarvand, Yazdi (b1625) 2020
Shahid, Huang, Bhatti, Zhang, Ellahi (b1455) 2020; 8
Sheremet, Pop (b1590) 2014; 103
Mashayekhi, Houshfar, Ashjaee (b1125) 2020; 178
Zhang, Wang, Ma, Wang, Wang (b0130) 2009; 23
vol. 24, no. 8, 2021.
Y. X. Li, K. Al-Khaled, S. U. Khan, T. C. Sun, M. I. Khan and M. Y. Malik, “Bio-convective Darcy-Forchheimer periodically accelerated flow of non-Newtonian nanofluid with Cattaneo–Christov and Prandtl effective approach,”
vol. 15, no. 7, 2012.
Spormann (b1465) 1987; 45
Graham (b0705) 1981; 37
Zohuri (b0370) 2017
Succi (b1020) 2015; 109
vol. 6, no. 2019, pp. 3485-3497, 135.
Tayebi, Chamkha (b1080) 2020; 139
Karimi, Karig, Kumar, Ardekani (b1280) 2015; 15
A. Kuznetsov and N. Jiang, “Investigation of the effect of cell deposition and declogging on bioconvection in porous media,”
Mehryan, Izadi, Chamkha, Sheremet (b1060) 2018; 263
Hadi Najafabadi, Keshavarz Moraveji (b0800) 2016; 13
Chakraborty, Panigrahi (b1190) 2020; 174
Yamada, Ota (b0755) 1980; 13
Ma, Rashidi, Mohebbi, Yang (b0955) 2020; 199
Kuznetsov, Avramenko, Geng (b1555) 2003; 36975
Yang, Chen, Liu (b0275) 2017; 115
Shahsavar, Entezari, Toghraie, Barnoon (b1175) 2020; 28
Minea, El-Maghlany (b1230) 2018; 120
Tan, Saw, San Thiam, Xuan, Cai, Yew (b0425) 2018; 96
Souayfane, Fardoun, Biwole (b0545) 2016; 129
Heris, Etemad, Esfahany (b0655) 2006; 33
Rodriguez-Gonzalez, Obregon Alfaro, Torres-Martinez, Cho, Lee (b1345) 2010; 98
B. Jamuna and C. S. Balla, “ Bioconvection in a porous square cavity containing gyrotactic microorganisms under the effects of heat generation/absorption,”
Ghalambaz, Jamesahar, Ismael, Chamkha (b1075) 2017; 111
Xu, Xing, Wang, Cheng (b0085) 2019; 195
Kuznetsov (b1340) 2010; 37
A. M. Rashad, A. J. Chamkha, M. A. Ismael and T. Salah, “Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation,”
Hassanpour, Borji, Ziapour, Kazemi (b0385) 2020; 40
Rea, McKrell, Hu, Buongiorno (b0725) 2009; 52
Saghir, Mohamed (b0910) 2018; 28
Lin, Xie, Yuan, Sundén (b0230) 2016; 37
Biswas, Datta, Manna, Mandal, Gorla (b1635) 2020
Han, Yang, Kim, Zachariah (b0620) 2007; 18
Rasool, Zhang, Chamkha, Shafiq, Tlili, Shahzadi (b0905) 2020; 22
Kim, Fogler (b1365) 2000; 69
Siavashi, Bahrami, Saffari (b0880) 2017; 71
Feng, Shi, Li, Lu (b1115) 2015; 90
Shaw, Kameswaran, Narayana, Sibanda (b1570) 2014; 7
McNab, Meisen (b0890) 1973; 44
Khan, Irfan, Khan (b1255) 2017; 130
Cepellotti, Fugallo, Paulatto, Lazzeri, Mauri, Marzari (b0310) 2015; 6
Hwang, Hwang, Yeh, Chao (b0270) 2002; 124
Bayomy, Saghir, Yousefi (b0340) 2016; 109
Huo, Cooper, Smith, Park, Jiao (b0435) 2017; 203
Guo, Dong, Wang (b0615) 2008; 112
Bakthavatchalam, Habib, Saidur, Saha, Irshad (b0035) 2020; 305
Zhang, Wang, Wang, Xie, Yu (b1150) 2020; 201
Becker, Kuznetsov (b1645) 2014
Kirsanov, Nazipov, Ivanova (b0395) 2013; 56
Xuan, Li, Hu (b0745) 2003; 49
Ma, Mohebbi, Rashidi, Yang, Sheremet (b0020) 2019; 130
vol. 41, no. 5, 2020.
Wang, Zhu (b1200) 2009; 107–111
Ahmad, Ashraf, Ali (b1405) 2020; 6
Khan, Kumam, Thounthong (b1520) 2019; 145
Siavashi, Rostami (b1165) 2017; 133
Balla, Ramesh, Kishan, Ras
Corcione (10.1016/j.tsep.2022.101267_b0750) 2011; 52
Albojamal (10.1016/j.tsep.2022.101267_b0770) 2017; 114
Rashidi (10.1016/j.tsep.2022.101267_b0120) 2019; 243
10.1016/j.tsep.2022.101267_b0300
Xu (10.1016/j.tsep.2022.101267_b0090) 2015; 83
Sayar (10.1016/j.tsep.2022.101267_b0095) 2017; 53
Valizade (10.1016/j.tsep.2022.101267_b1105) 2019; 195
Al-Sumaily (10.1016/j.tsep.2022.101267_b0250) 2014; 58
Mohamad (10.1016/j.tsep.2022.101267_b0990) 2019
10.1016/j.tsep.2022.101267_b1515
Balla (10.1016/j.tsep.2022.101267_b1585) 2021; 50
Kirsanov (10.1016/j.tsep.2022.101267_b0395) 2013; 56
Mahdy (10.1016/j.tsep.2022.101267_b1485) 2016; 38
Nield (10.1016/j.tsep.2022.101267_b0140) 2013
Salunkhe (10.1016/j.tsep.2022.101267_b0525) 2017; 12
Wen (10.1016/j.tsep.2022.101267_b0775) 2021; 182
Rasool (10.1016/j.tsep.2022.101267_b0905) 2020; 22
Saeed (10.1016/j.tsep.2022.101267_b0805) 2018; 120
Ghalambaz (10.1016/j.tsep.2022.101267_b1090) 2017; 134
Kuznetsov (10.1016/j.tsep.2022.101267_b1285) 2003; 13
Kuznetsov (10.1016/j.tsep.2022.101267_b1360) 2002; 29
Mosayebidorcheh (10.1016/j.tsep.2022.101267_b1400) 2017; 227
Nourgaliev (10.1016/j.tsep.2022.101267_b1005) 2003; 29
Ergun (10.1016/j.tsep.2022.101267_b0180) 1952; 48
Yang (10.1016/j.tsep.2022.101267_b0365) 2019; 161
Torabi (10.1016/j.tsep.2022.101267_b0265) 2016; 106
Ghalambaz (10.1016/j.tsep.2022.101267_b1075) 2017; 111
Zhang (10.1016/j.tsep.2022.101267_b0325) 2018; 5
Rho (10.1016/j.tsep.2022.101267_b0305) 2017; 9
Akbari (10.1016/j.tsep.2022.101267_b0690) 2011; 50
Zhou (10.1016/j.tsep.2022.101267_b0320) 2013; 23
Huo (10.1016/j.tsep.2022.101267_b0435) 2017; 203
Ghanbarpour (10.1016/j.tsep.2022.101267_b0695) 2014; 53
Ambreen (10.1016/j.tsep.2022.101267_b0475) 2018; 91
Sundar (10.1016/j.tsep.2022.101267_b0645) 2014; 52
Wciślik (10.1016/j.tsep.2022.101267_b0650) 2020; 13
Targui (10.1016/j.tsep.2022.101267_b0380) 2013; 76
Singh (10.1016/j.tsep.2022.101267_b1215) 2021; 317
Alhussain (10.1016/j.tsep.2022.101267_b1480) 2021; 23
Kuznetsov (10.1016/j.tsep.2022.101267_b1310) 2001; 28
Gibanov (10.1016/j.tsep.2022.101267_b0100) 2017; 114
Aksoy (10.1016/j.tsep.2022.101267_b0470) 2021; 14
Hoseininejad (10.1016/j.tsep.2022.101267_b1625) 2020
Zohuri (10.1016/j.tsep.2022.101267_b0370) 2017
Gul (10.1016/j.tsep.2022.101267_b0455) 2017; 111
Jana (10.1016/j.tsep.2022.101267_b0600) 2007; 462
Zahmatkesh (10.1016/j.tsep.2022.101267_b0960) 2019; 35
Uddin (10.1016/j.tsep.2022.101267_b1595) 2013; 27
Karimi (10.1016/j.tsep.2022.101267_b1280) 2015; 15
Misra (10.1016/j.tsep.2022.101267_b0225) 1995; 5
Sundarram (10.1016/j.tsep.2022.101267_b0350) 2014; 64
Senthilkumar (10.1016/j.tsep.2022.101267_b0400) 2016; 37
10.1016/j.tsep.2022.101267_b0685
Léal (10.1016/j.tsep.2022.101267_b0015) 2013; 61
Bég (10.1016/j.tsep.2022.101267_b1510) 2017; 17
Ma (10.1016/j.tsep.2022.101267_b0020) 2019; 130
Özerinç (10.1016/j.tsep.2022.101267_b0560) 2010; 8
Rea (10.1016/j.tsep.2022.101267_b0725) 2009; 52
Hill (10.1016/j.tsep.2022.101267_b1290) 2005; 37
Shuja (10.1016/j.tsep.2022.101267_b0125) 2015; 46
Saghir (10.1016/j.tsep.2022.101267_b0670) 2016; 100
Zhao (10.1016/j.tsep.2022.101267_b0410) 2020; 165
Afshari (10.1016/j.tsep.2022.101267_b0430) 2017; 118
Ghani (10.1016/j.tsep.2022.101267_b0030) 2017; 107
Esfe (10.1016/j.tsep.2022.101267_b0165) 2020; 178
Mehl (10.1016/j.tsep.2022.101267_b1015) 2011; 65
Soares (10.1016/j.tsep.2022.101267_b1195) 2016; 383
Huang (10.1016/j.tsep.2022.101267_b0625) 2016; 72
Mohammed (10.1016/j.tsep.2022.101267_b0810) 2019; 101
Babu (10.1016/j.tsep.2022.101267_b1225) 2017; 77
Rashidi (10.1016/j.tsep.2022.101267_b0845) 2018; 115
McNab (10.1016/j.tsep.2022.101267_b0890) 1973; 44
Bayomy (10.1016/j.tsep.2022.101267_b0335) 2017; 107
Jourabian (10.1016/j.tsep.2022.101267_b1130) 2020; 548
Pourzahedi (10.1016/j.tsep.2022.101267_b1210) 2015; 2
Belabid (10.1016/j.tsep.2022.101267_b1640) 2021; 89
Hamidi (10.1016/j.tsep.2022.101267_b0255) 2019; 147
Moradi (10.1016/j.tsep.2022.101267_b1035) 2019; 137
Mu (10.1016/j.tsep.2022.101267_b1220) 2014; 114
Zhang (10.1016/j.tsep.2022.101267_b1150) 2020; 201
Biswas (10.1016/j.tsep.2022.101267_b1575) 2021
Kakaç (10.1016/j.tsep.2022.101267_b0675) 2016; 89
Awais (10.1016/j.tsep.2022.101267_b1540) 2017; 7
Feng (10.1016/j.tsep.2022.101267_b0355) 2014; 77
Khan (10.1016/j.tsep.2022.101267_b1520) 2019; 145
Ahmad (10.1016/j.tsep.2022.101267_b1405) 2020; 6
Mohammadpour (10.1016/j.tsep.2022.101267_b0820) 2021; 161
Reddy (10.1016/j.tsep.2022.101267_b0450) 2015; 77
Maiga (10.1016/j.tsep.2022.101267_b0795) 2005; 26
Kessler (10.1016/j.tsep.2022.101267_b1375) 1986; 4
Cepellotti (10.1016/j.tsep.2022.101267_b0310) 2015; 6
Jahn (10.1016/j.tsep.2022.101267_b1300) 1972; 4
Souayfane (10.1016/j.tsep.2022.101267_b0545) 2016; 129
Borah (10.1016/j.tsep.2022.101267_b0815) 2021; 381
Heris (10.1016/j.tsep.2022.101267_b0655) 2006; 33
Mehryan (10.1016/j.tsep.2022.101267_b1060) 2018; 263
Tan (10.1016/j.tsep.2022.101267_b0425) 2018; 96
10.1016/j.tsep.2022.101267_b1435
Barnoon (10.1016/j.tsep.2022.101267_b1155) 2021; 124
Wong (10.1016/j.tsep.2022.101267_b0485) 2010; 2
10.1016/j.tsep.2022.101267_b0900
Mahdy (10.1016/j.tsep.2022.101267_b1495) 2018; 7
Alshomrani (10.1016/j.tsep.2022.101267_b1525) 2020; 22
Succi (10.1016/j.tsep.2022.101267_b1020) 2015; 109
Han (10.1016/j.tsep.2022.101267_b0620) 2007; 18
Khan (10.1016/j.tsep.2022.101267_b1255) 2017; 130
Guasto (10.1016/j.tsep.2022.101267_b1250) 2012; 44
Bårdsgård (10.1016/j.tsep.2022.101267_b0970) 2020; 12
Esfe (10.1016/j.tsep.2022.101267_b1170) 2020
Pathan (10.1016/j.tsep.2022.101267_b0135) 1988; 7
Alharbi (10.1016/j.tsep.2022.101267_b1350) 2021; 26
Mahdy (10.1016/j.tsep.2022.101267_b1490) 2018; 48
Ahmad (10.1016/j.tsep.2022.101267_b0055) 2021; 11
10.1016/j.tsep.2022.101267_b1420
Hwang (10.1016/j.tsep.2022.101267_b0270) 2002; 124
Kumar (10.1016/j.tsep.2022.101267_b0360) 2021; 143
10.1016/j.tsep.2022.101267_b1545
Kakaç (10.1016/j.tsep.2022.101267_b0735) 2013
Cimpean (10.1016/j.tsep.2022.101267_b0915) 2019; 29
Alsabery (10.1016/j.tsep.2022.101267_b0285) 2017; 139
Sajid (10.1016/j.tsep.2022.101267_b0520) 2019; 103
Suresh (10.1016/j.tsep.2022.101267_b0640) 2012; 38
Tham (10.1016/j.tsep.2022.101267_b1335) 2013; 62
Esfe (10.1016/j.tsep.2022.101267_b0220) 2014; 45
Nabwey (10.1016/j.tsep.2022.101267_b1430) 2021
Kwok (10.1016/j.tsep.2022.101267_b0440) 2017; 349
Waqas (10.1016/j.tsep.2022.101267_b0540) 2018; 92
Einstein (10.1016/j.tsep.2022.101267_b0680) 1906; 19
Siavashi (10.1016/j.tsep.2022.101267_b0880) 2017; 71
Lau (10.1016/j.tsep.2022.101267_b0980) 2021; 188
Chen (10.1016/j.tsep.2022.101267_b0860) 2016; 102
Bahiraei (10.1016/j.tsep.2022.101267_b0870) 2021; 32
Sharaf (10.1016/j.tsep.2022.101267_b0825) 2019; 878
Faraz (10.1016/j.tsep.2022.101267_b0245) 2021; 90
Yang (10.1016/j.tsep.2022.101267_b0275) 2017; 115
Zahmatkesh (10.1016/j.tsep.2022.101267_b0580) 2021; 321
Wakif (10.1016/j.tsep.2022.101267_b0930) 2021; 143
Kuznetsov (10.1016/j.tsep.2022.101267_b1330) 2012; 15
Alsaedi (10.1016/j.tsep.2022.101267_b1610) 2017; 28
Wu (10.1016/j.tsep.2022.101267_b0205) 2015; 69
Iasiello (10.1016/j.tsep.2022.101267_b0295) 2021; 160
Seyf (10.1016/j.tsep.2022.101267_b0345) 2010; 132
Bica (10.1016/j.tsep.2022.101267_b0515) 2007; 311
Haddad (10.1016/j.tsep.2022.101267_b0190) 2014; 68
Hassanpour (10.1016/j.tsep.2022.101267_b0385) 2020; 40
10.1016/j.tsep.2022.101267_b0480
Shahid (10.1016/j.tsep.2022.101267_b1455) 2020; 8
Balla (10.1016/j.tsep.2022.101267_b1620) 2019
Kareem (10.1016/j.tsep.2022.101267_b0005) 2015; 68
10.1016/j.tsep.2022.101267_b0110
Kant (10.1016/j.tsep.2022.101267_b0535) 2016; 34
10.1016/j.tsep.2022.101267_b1205
Sheikholeslami (10.1016/j.tsep.2022.101267_b0045) 2015; 49
Hangi (10.1016/j.tsep.2022.101267_b0830) 2019; 74
Chakraborty (10.1016/j.tsep.2022.101267_b1395) 2018; 57
Khan (10.1016/j.tsep.2022.101267_b1605) 2014; 74
Kalpana (10.1016/j.tsep.2022.101267_b0950) 2020; 49
Bayomy (10.1016/j.tsep.2022.101267_b0340) 2016; 109
Yamada (10.1016/j.tsep.2022.101267_b0755) 1980; 13
Li (10.1016/j.tsep.2022.101267_b1135) 2018; 127
Siavashi (10.1016/j.tsep.2022.101267_b1165) 2017; 133
Sarkar (10.1016/j.tsep.2022.101267_b1415) 2016; 223
Wang (10.1016/j.tsep.2022.101267_b0760) 1999; 13
Krieger (10.1016/j.tsep.2022.101267_b0710) 1959; 3
Mazaheri (10.1016/j.tsep.2022.101267_b0660) 2021; 383
Mahdavi (10.1016/j.tsep.2022.101267_b0855) 2020; 118
10.1016/j.tsep.2022.101267_b1440
Dogonchi (10.1016/j.tsep.2022.101267_b1065) 2019; 44
Waqas (10.1016/j.tsep.2022.101267_b1260) 2019; 291
Bera (10.1016/j.tsep.2022.101267_b0200) 2002; 14
Boomsma (10.1016/j.tsep.2022.101267_b0150) 2003; 24
Hamilton (10.1016/j.tsep.2022.101267_b0790) 1962; 1
Esfandiary (10.1016/j.tsep.2022.101267_b0765) 2016; 4
Khan (10.1016/j.tsep.2022.101267_b0555) 2016; 221
Graham (10.1016/j.tsep.2022.101267_b0705) 1981; 37
Cho (10.1016/j.tsep.2022.101267_b0105) 2017; 138
Shahsavar (10.1016/j.tsep.2022.101267_b0865) 2020
Jouybari (10.1016/j.tsep.2022.101267_b1095) 2017; 114
Pordanjani (10.1016/j.tsep.2022.101267_b0835) 2019; 198
Bakthavatchalam (10.1016/j.tsep.2022.101267_b0035) 2020; 305
Japar (10.1016/j.tsep.2022.101267_b0065) 2020; 9
Pedley (10.1016/j.tsep.2022.101267_b1240) 1992; 24
Kuznetsov (10.1016/j.tsep.2022.101267_b1380) 2003; 53
Stange (10.1016/j.tsep.2022.101267_b0445) 2017; 42
Van den Akker (10.1016/j.tsep.2022.101267_b0995) 2018; 21
Zaraki (10.1016/j.tsep.2022.101267_b0565) 2015; 26
Platt (10.1016/j.tsep.2022.101267_b1315) 1961; 133
Uddin (10.1016/j.tsep.2022.101267_b1615) 2017; 55
Kleinstreuer (10.1016/j.tsep.2022.101267_b0590) 2011; 6
Pourrajab (10.1016/j.tsep.2022.101267_b1390) 2018; 220
Al-Mubaddel (10.1016/j.tsep.2022.101267_b1535) 2021; 96
Izadi (10.1016/j.tsep.2022.101267_b0330) 2020; 168
Asbik (10.1016/j.tsep.2022.101267_b0215) 2007; 67
Tiwari (10.1016/j.tsep.2022.101267_b1100) 2018; 9
Ambreen (10.1016/j.tsep.2022.101267_b0965) 2020; 173
Zhang (10.1016/j.tsep.2022.101267_b0130) 2009; 23
Gururatana (10.1016/j.tsep.2022.101267_b0060) 2012; 9
Shahsavar (10.1016/j.tsep.2022.101267_b1175) 2020; 28
Moraveji (10.1016/j.tsep.2022.101267_b0780) 2019; 135
Taheri (10.1016/j.tsep.2022.101267_b1385) 2007; 50
Hlushkou (10.1016/j.tsep.2022.101267_b0170) 2006; 1126
Tausif Sk (10.1016/j.tsep.2022.101267_b1270) 2016; 220
Selimefendigi
References_xml – volume: 15
  start-page: 233
  year: 2012
  end-page: 248
  ident: b1330
  article-title: Nanofluid bioconvection in porous media: oxytactic microorganisms
  publication-title: Journal of Porous Media
– volume: 29
  start-page: 175
  year: 2002
  end-page: 184
  ident: b1360
  article-title: A 2D Analysis of bioconvection in a fluid saturated porous medium – estimation of the critical permeability value
  publication-title: International communication in heat and mass transfer
– volume: 31
  start-page: 1905
  year: 2019
  end-page: 1913
  ident: b1460
  article-title: Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism
  publication-title: Neural Comput. Appl.
– volume: 138
  start-page: 1669
  year: 2019
  end-page: 1681
  ident: b0115
  article-title: Optimum constituents for MHD heat transfer of nanofluids within porous cavities
  publication-title: J. Therm. Anal. Calorim.
– reference: A. Kuznetsov and N. Jiang, “Investigation of the effect of cell deposition and declogging on bioconvection in porous media,”
– volume: 326
  start-page: 655
  year: 1987
  end-page: 661
  ident: b1245
  article-title: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate
  publication-title: Nature
– volume: 65
  start-page: 67
  year: 2011
  end-page: 86
  ident: b1015
  article-title: Navier–Stokes and Lattice-Boltzmann on octree-like grids in the Peano framework
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 243
  start-page: 206
  year: 2019
  end-page: 232
  ident: b0120
  article-title: Potentials of porous materials for energy management in heat exchangers–A comprehensive review
  publication-title: Appl. Energy
– volume: 9
  start-page: 7565
  year: 2017
  end-page: 7569
  ident: b0305
  article-title: Porous copper–graphene heterostructures for cooling of electronic devices
  publication-title: Nanoscale
– volume: 70
  start-page: 1141
  year: 2016
  end-page: 1156
  ident: b0635
  article-title: Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 133
  start-page: 1766
  year: 1961
  end-page: 1767
  ident: b1315
  article-title: “Bioconvection patterns” in cultures of free swimming organisms
  publication-title: Science
– volume: 118
  year: 2020
  ident: b1410
  article-title: Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 129
  start-page: 181
  year: 2018
  end-page: 189
  ident: b0160
  article-title: A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams
  publication-title: Chemical Engineering and Processing-Process Intensification
– volume: 43
  start-page: 164
  year: 2015
  end-page: 177
  ident: b0610
  article-title: A review on hybrid nanofluids: recent research, development and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 134
  start-page: 85
  year: 2017
  end-page: 97
  ident: b1090
  article-title: Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles
  publication-title: Int. J. Mech. Sci.
– volume: 29
  start-page: 432
  year: 2008
  end-page: 460
  ident: b0490
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
  publication-title: Heat Transfer Eng.
– volume: 44
  start-page: 339
  year: 1973
  end-page: 346
  ident: b0890
  article-title: Thermophoresis in liquids
  publication-title: J. Colloid Interface Sci.
– volume: 139
  start-page: 411
  year: 2020
  end-page: 426
  ident: b0405
  article-title: The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis
  publication-title: J. Therm. Anal. Calorim.
– volume: 13
  start-page: 27
  year: 1980
  end-page: 37
  ident: b0755
  article-title: Effective thermal conductivity of dispersed materials
  publication-title: Wärme-und Stoffübertragung
– volume: 57
  year: 2019
  ident: b0895
  article-title: Natural and mixed convection of a nanofluid in porous cavities: critical analysis using Buongiorno’s model
  publication-title: Journal of Theoretical and Applied Mechanics
– volume: 195
  start-page: 71
  year: 2019
  end-page: 80
  ident: b1105
  article-title: Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 55
  start-page: 874
  year: 2012
  end-page: 885
  ident: b0730
  article-title: Latest developments on the viscosity of nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 107–111
  start-page: 470
  year: 2009
  ident: b1200
  article-title: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids
  publication-title: Chem. Phys. Lett.
– volume: 445
  start-page: 121
  year: 2001
  end-page: 149
  ident: b1550
  article-title: Falling plumes in bacterial bioconvection
  publication-title: J. Fluid Mech.
– volume: 61
  start-page: 505
  year: 2013
  end-page: 524
  ident: b0015
  article-title: An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials
  publication-title: Int. J. Heat Mass Transf.
– reference: vol. 24, no. 8, 2021.
– volume: 4
  start-page: 79
  year: 2008
  end-page: 87
  ident: b0510
  article-title: “Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues,”
  publication-title: Biology and Medicine
– year: 2021
  ident: b1430
  article-title: Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media
  publication-title: Alexandria Engineering Journal
– volume: 9
  start-page: 10468
  year: 2020
  end-page: 10477
  ident: b1500
  article-title: Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy
  publication-title: ournal of Materials Research and Technology
– volume: 7
  start-page: 1450005
  year: 2014
  ident: b1570
  article-title: Bioconvection in a non-Darcy porous medium saturated with a nanofluid and oxytactic micro-organisms
  publication-title: International Journal of Biomathematics
– volume: 292
  year: 2019
  ident: b0630
  article-title: Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids
  publication-title: J. Mol. Liq.
– volume: 56
  start-page: 73
  year: 2013
  end-page: 82
  ident: b0395
  article-title: A technique for thermal design of a heat exchanger with porous inserts
  publication-title: Russian Aeronautics (Iz VUZ)
– reference: vol. 140, no. 7, 2018.
– volume: 11
  start-page: 146
  year: 2021
  end-page: 154
  ident: b0055
  article-title: Recent advances in passive cooling methods for photovoltaic performance enhancement
  publication-title: International Journal of Electrical & Computer Engineering
– volume: 315
  start-page: 608
  year: 2017
  end-page: 620
  ident: b0155
  article-title: A systematic procedure for the virtual reconstruction of open-cell foams
  publication-title: Chem. Eng. J.
– volume: 113
  year: 2019
  ident: b0375
  article-title: Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers
  publication-title: Renew. Sustain. Energy Rev.
– volume: 311
  start-page: 17
  year: 2007
  end-page: 21
  ident: b0515
  article-title: Sterically stabilized water based magnetic fluids: Synthesis, structure and properties
  publication-title: J. Magn. Magn. Mater.
– volume: 48
  start-page: 4342
  year: 2019
  end-page: 4353
  ident: b0240
  article-title: Numerical study and sensitivity analysis on convective heat transfer enhancement in a heat pipe partially filled with porous material using LTE and LTNE methods
  publication-title: Heat Transfer-Asian Research
– volume: 42
  start-page: 12485
  year: 2017
  end-page: 12495
  ident: b0445
  article-title: Improvement of corrosion properties of porous alloy supports for solid oxide fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 145
  year: 2010
  end-page: 170
  ident: b0560
  article-title: Enhanced thermal conductivity of nanofluids: a state-of-the-art review
  publication-title: Microfluid. Nanofluid.
– volume: 2
  start-page: 361
  year: 2015
  end-page: 369
  ident: b1210
  article-title: Comparative life cycle assessment of silver nanoparticle synthesis routes
  publication-title: Environ. Sci. Nano
– volume: 57
  start-page: 61
  year: 2018
  end-page: 71
  ident: b1395
  article-title: Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions
  publication-title: Alexandria Engineering Journal
– volume: 85
  start-page: 119
  year: 2017
  end-page: 131
  ident: b0010
  article-title: Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices
  publication-title: Exp. Therm Fluid Sci.
– volume: 128
  start-page: 1213
  year: 2006
  end-page: 1216
  ident: b0505
  article-title: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe
  publication-title: J. Heat Transfer
– volume: 161
  year: 2019
  ident: b0875
  article-title: Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes Configuration
  publication-title: Int. J. Mech. Sci.
– volume: 114
  start-page: 31
  year: 2017
  end-page: 46
  ident: b0260
  article-title: Challenges and progress on the modelling of entropy generation in porous media: a review
  publication-title: Int. J. Heat Mass Transf.
– volume: 13
  start-page: 46
  year: 2016
  end-page: 61
  ident: b0800
  article-title: Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
  publication-title: Iranian Journal of Chemical Engineering (IJChE)
– volume: 317
  year: 2021
  ident: b1215
  article-title: Development and characterization of unitary and hybrid Al2O3 and ZrO dispersed Jatropha oil-based nanofluid for cleaner production
  publication-title: J. Cleaner Prod.
– volume: 37
  start-page: 275
  year: 1981
  end-page: 286
  ident: b0705
  article-title: On the viscosity of suspensions of solid spheres
  publication-title: Appl. Sci. Res.
– volume: 4
  start-page: 257
  year: 1986
  end-page: 307
  ident: b1375
  article-title: The external dynamics of swimming micro-organisms
  publication-title: Progress in Phycological Research
– volume: 291
  year: 2019
  ident: b1260
  article-title: Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles
  publication-title: J. Mol. Liq.
– volume: 37
  start-page: 74
  year: 2010
  end-page: 78
  ident: b0785
  article-title: Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 106
  start-page: 518
  year: 2016
  end-page: 536
  ident: b0265
  article-title: Generation of entropy and forced convection of heat in a conduit partially filled with porous media–local thermal non-equilibrium and exothermicity effects
  publication-title: Appl. Therm. Eng.
– volume: 124
  start-page: 120
  year: 2002
  end-page: 129
  ident: b0270
  article-title: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams
  publication-title: J. Heat Transfer
– volume: 4
  start-page: 11
  year: 2016
  end-page: 18
  ident: b0765
  article-title: Numerical Study of Single Phase/Two-Phase Models for Nano fluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow
  publication-title: Transport phenomena in nano and micro scales
– reference: A. M. Rashad, A. J. Chamkha, M. A. Ismael and T. Salah, “Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation,”
– volume: 26
  start-page: 530
  year: 2005
  end-page: 546
  ident: b0795
  article-title: Heat transfer enhancement by using nanofluids in forced convection flows
  publication-title: Int. J. Heat Fluid Flow
– volume: 383
  start-page: 240
  year: 2016
  end-page: 247
  ident: b1195
  article-title: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications
  publication-title: Appl. Surf. Sci.
– reference: K. Elsaid, A. Olabi, T. Wilberforce, M. A. Abdelkareem and E. T. Sayed, “Environmental impacts of nanofluids: a review,”
– volume: 114
  start-page: 7740
  year: 2014
  end-page: 7781
  ident: b1220
  article-title: Chemical basis of interactions between engineered nanoparticles and biological systems
  publication-title: Chem. Rev.
– volume: 89
  start-page: 421
  year: 2021
  end-page: 429
  ident: b1640
  article-title: Thermo-bioconvection in horizontal wavy-walled porous annulus
  publication-title: European Journal of Mechanics-B/Fluids
– volume: 38
  start-page: 67
  year: 2016
  end-page: 76
  ident: b1485
  article-title: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 221
  start-page: 298
  year: 2016
  end-page: 304
  ident: b0555
  article-title: Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects
  publication-title: J. Mol. Liq.
– volume: 375
  start-page: 493
  year: 2020
  end-page: 503
  ident: b0935
  article-title: Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection
  publication-title: Powder Technol.
– volume: 48
  start-page: 57
  year: 2018
  end-page: 62
  ident: b1490
  article-title: Gyrotactic microorganisms free convection boundary layer flow about a vertical truncated cone in nanofluid porous media
  publication-title: Latin American Applied Research-An international journal
– volume: 305
  year: 2020
  ident: b0035
  article-title: Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective
  publication-title: J. Mol. Liq.
– volume: 81
  start-page: 813
  year: 2018
  end-page: 839
  ident: b0070
  article-title: A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 195
  start-page: 462
  year: 2019
  end-page: 483
  ident: b0085
  article-title: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications
  publication-title: Chem. Eng. Sci.
– volume: 68
  start-page: 659
  year: 2014
  end-page: 668
  ident: b0190
  article-title: Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux
  publication-title: Int. J. Heat Mass Transf.
– volume: 325
  start-page: 78
  year: 2018
  end-page: 91
  ident: b1160
  article-title: Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium
  publication-title: Powder Technol.
– volume: 52
  start-page: 789
  year: 2011
  end-page: 793
  ident: b0750
  article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
  publication-title: Energy Convers. Manage.
– reference: vol. 23, no. 10, 2020.
– year: 2013
  ident: b0140
  article-title: Convection in Porous Media
– volume: 5
  start-page: 15004
  year: 2018
  end-page: 15009
  ident: b0325
  article-title: Experimental study on heat sink with porous copper as conductive material for CPU cooling
  publication-title: Mater. Today:. Proc.
– volume: 33
  start-page: 529
  year: 2006
  end-page: 535
  ident: b0655
  article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 8
  start-page: 380
  year: 2020
  ident: b1455
  article-title: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface
  publication-title: Mathematics
– volume: 190
  start-page: 169
  year: 2018
  end-page: 192
  ident: b0605
  article-title: Up to date review on the synthesis and thermophysical properties of hybrid nanofluids
  publication-title: J. Cleaner Prod.
– reference: p. 101069, 2021.
– reference: [Online]. Available: http://www.samsungsfour.com/comparison/which-is-the-thinnest-and-the-thickest-samsung-galaxy-android-smartphone.html.
– volume: 44
  start-page: 373
  year: 2012
  end-page: 400
  ident: b1250
  article-title: Fluid mechanics of planktonic microorganisms
  publication-title: Annu. Rev. Fluid Mech.
– volume: 8
  start-page: 957
  year: 2019
  end-page: 969
  ident: b1505
  article-title: Effect of thermal radiation on burgers nano fluid flow between two parallel plates with porous medium in the presence of gyrotactic micro-organisms and heat generation/absorption
  publication-title: Journal of Nanofluids
– reference: vol. 45, pp. 1782-1788, 1901.
– volume: 128
  start-page: 240
  year: 2006
  end-page: 250
  ident: b0885
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transfer
– volume: 57
  start-page: 299
  year: 1995
  end-page: 344
  ident: b1560
  article-title: The development of concentration gradients in a suspension of chemotactic bacteria
  publication-title: Bull. Math. Biol.
– year: 2008
  ident: b1025
  article-title: Lattice Boltzmann Method (LBM)
  publication-title: Encyclopedia of Microfluidics and Nanofluidics
– volume: 161
  year: 2019
  ident: b0365
  article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage
  publication-title: Appl. Therm. Eng.
– volume: 144
  start-page: 2627
  year: 2021
  end-page: 2639
  ident: b1120
  article-title: Numerical study on heat loss from the surface of solar collector tube filled by oil-NE-PCM/Al2O3 in the presence of the magnetic field
  publication-title: J. Therm. Anal. Calorim.
– volume: 74
  start-page: 252
  year: 2019
  end-page: 259
  ident: b0830
  article-title: A two-phase simulation for ferrofluid flow between two parallel plates under localized magnetic field by applying Lagrangian approach for nanoparticles
  publication-title: European Journal of Mechanics-B/Fluids
– volume: 98
  start-page: 229
  year: 2010
  end-page: 234
  ident: b1345
  article-title: Silver–TiO2 nanocomposites: Synthesis and harmful algae bloom UV-photoelimination
  publication-title: Appl. Catal. B
– reference: vol. 21, no. 6 Part A, pp. 2347-2356, 2017.
– volume: 90
  year: 2021
  ident: b0245
  article-title: Impact of boiling heat transfer on geothermal reservoir simulation using local thermal non-equilibrium model
  publication-title: Geothermics
– volume: 115
  start-page: 657
  year: 2017
  end-page: 662
  ident: b0275
  article-title: Determination of the stress jump coefficient, the interstitial heat transfer coefficient and the interface heat transfer coefficient in a porous composite system
  publication-title: Int. J. Heat Mass Transf.
– reference: M. R. Habibi and I. Zahmatkesh, “Double-diffusive natural and mixed convection of binary nanofluids in porous cavities,”
– volume: 118
  start-page: 705
  year: 2017
  end-page: 715
  ident: b0430
  article-title: An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor
  publication-title: Energy
– volume: 83
  start-page: 97
  year: 1977
  end-page: 117
  ident: b0700
  article-title: The effect of Brownian motion on the bulk stress in a suspension of spherical particles
  publication-title: J. Fluid Mech.
– reference: A. V. Kuznetsov and V. Bubnovich, “Investigation of simultaneous effects of gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media,”
– volume: 3
  start-page: 137
  year: 1959
  end-page: 152
  ident: b0710
  article-title: A mechanism for non-Newtonian flow in suspensions of rigid spheres
  publication-title: Transactions of the Society of Rheology
– volume: 50
  start-page: 4652
  year: 2007
  end-page: 4660
  ident: b1385
  article-title: Bioconvection of gravitactic micro-organisms in rectangular enclosures
  publication-title: Int. J. Heat Mass Transf.
– volume: 143
  year: 2021
  ident: b0290
  article-title: Numerical consideration of LTNE and darcy extended forchheimer models for the analysis of forced convection in a horizontal pipe in the presence of metal foam
  publication-title: J. Heat Transfer
– volume: 69
  start-page: 564
  year: 2015
  end-page: 577
  ident: b0205
  article-title: Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework
  publication-title: Comput. Geotech.
– volume: 28
  start-page: 2928
  year: 2020
  end-page: 2937
  ident: b1175
  article-title: Effects of the porous medium and water-silver biological nanofluid on the performance of a newly designed heat sink by using first and second laws of thermodynamics
  publication-title: Chin. J. Chem. Eng.
– volume: 28
  start-page: 47
  year: 2018
  end-page: 63
  ident: b0910
  article-title: Effectiveness in incorporating Brownian and thermophoresis effects in modelling convective flow of water-Al2O3 nanoparticles
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 50
  start-page: 5123
  year: 2021
  end-page: 5147
  ident: b1585
  article-title: Impact of Soret and Dufour on bioconvective flow of nanofluid in porous square cavity
  publication-title: Heat Transfer
– volume: 109
  start-page: 182
  year: 2016
  end-page: 200
  ident: b0340
  article-title: Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach
  publication-title: Int. J. Therm. Sci.
– volume: 10
  start-page: 1194
  year: 2015
  end-page: 1213
  ident: b1185
  article-title: Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications
  publication-title: J. Exp. Nanosci.
– year: 2021
  ident: b1530
  article-title: Impact of activation energy and gyrotactic microorganisms on flow of Casson hybrid nanofluid over a rotating moving disk
  publication-title: Heat Transfer
– reference: H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,”
– volume: 37
  start-page: 471
  year: 2016
  end-page: 484
  ident: b1445
  article-title: Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media
  publication-title: Appl. Math. Mech.
– volume: 160
  year: 2021
  ident: b0295
  article-title: The effects of variable porosity and cell size on the thermal performance of functionally-graded foams
  publication-title: Int. J. Therm. Sci.
– volume: 37
  start-page: 1
  year: 2005
  end-page: 20
  ident: b1290
  article-title: Bioconvection
  publication-title: Fluid Dyn. Res.
– volume: 6
  start-page: 1
  year: 2011
  end-page: 13
  ident: b0590
  article-title: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
  publication-title: Nanoscale Res. Lett.
– volume: 173
  year: 2020
  ident: b0965
  article-title: Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy-Forchheimer-Brinkman model coupled with multiphase Eulerian model
  publication-title: Appl. Therm. Eng.
– volume: 7
  start-page: 13
  year: 1988
  end-page: 16
  ident: b0135
  article-title: Effect of bed porosity on wall-to-bed heat transfer in liquid fluidized beds
  publication-title: Mehran University research journal of engineering and technology
– year: 2013
  ident: b0735
  article-title: Convective Heat Transfer, CRC Press
– volume: 139
  start-page: 2165
  year: 2020
  end-page: 2179
  ident: b1080
  article-title: Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder
  publication-title: J. Therm. Anal. Calorim.
– volume: 28
  start-page: 288
  year: 2017
  end-page: 298
  ident: b1610
  article-title: Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms
  publication-title: Adv. Powder Technol.
– volume: 223
  start-page: 725
  year: 2016
  end-page: 733
  ident: b1415
  article-title: On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium
  publication-title: J. Mol. Liq.
– volume: 24
  start-page: 409
  year: 2016
  end-page: 429
  ident: b1450
  article-title: A bioconvection model for MHD flow and heat transfer over a porous wedge containing both nanoparticles and gyrotatic microorganisms
  publication-title: Journal of Biological Systems
– reference: vol. 2, pp. 14-18, 2002.
– volume: 9
  start-page: 339
  year: 1977
  end-page: 398
  ident: b1295
  article-title: Fluid mechanics of propulsion by cilia and flagella
  publication-title: Annu. Rev. Fluid Mech.
– volume: 1
  start-page: 27
  year: 1949
  end-page: 34
  ident: b0195
  article-title: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
  publication-title: Flow, Turbulence and Combustion
– volume: 296
  year: 2019
  ident: b0585
  article-title: An updated review on the influential parameters on thermal conductivity of nano-fluids
  publication-title: J. Mol. Liq.
– volume: 14
  start-page: 80
  year: 2021
  ident: b0470
  article-title: The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review
  publication-title: Energies
– volume: 114
  start-page: 1407
  year: 2017
  end-page: 1418
  ident: b1095
  article-title: Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study
  publication-title: Renewable Energy
– volume: 21
  start-page: 67
  year: 2018
  end-page: 75
  ident: b0995
  article-title: Lattice Boltzmann simulations for multi-scale chemical engineering
  publication-title: Curr. Opin. Chem. Eng.
– volume: 69
  start-page: 47
  year: 2000
  end-page: 56
  ident: b1365
  article-title: Biomass evolution in porous media and its effects on permeability under starvation conditions
  publication-title: Biotechnol. Bioeng.
– volume: 96
  start-page: 181
  year: 2018
  end-page: 197
  ident: b0425
  article-title: Overview of porous media/metal foam application in fuel cells and solar power systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 548
  year: 2020
  ident: b1130
  article-title: The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus
  publication-title: Physica A
– volume: 7
  start-page: 49
  year: 2017
  end-page: 56
  ident: b1540
  article-title: Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder
  publication-title: Results Phys.
– volume: 140
  start-page: 2387
  year: 2020
  end-page: 2395
  ident: b1630
  article-title: Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact
  publication-title: J. Therm. Anal. Calorim.
– reference: B. Jamuna and C. S. Balla, “ Bioconvection in a porous square cavity containing gyrotactic microorganisms under the effects of heat generation/absorption,”
– reference: D. Balaji, R. Velraj and M. R. Murthy, “A review of the role of passive techniques on heat transfer enhancement of horizontal tube falling film and flooded evaporators,”
– volume: 17
  start-page: 1750059
  year: 2017
  ident: b1510
  article-title: Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model
  publication-title: Journal of Mechanics in Medicine and Biology
– year: 1873
  ident: b0465
  article-title: A treatise on electricity and magnetism
– volume: 124
  year: 2021
  ident: b1155
  article-title: Embedding multiple conical vanes inside a circular porous channel filled by two-phase nanofluid to improve thermal performance considering entropy generation
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 77
  start-page: 551
  year: 2017
  end-page: 565
  ident: b1225
  article-title: State-of-art review on hybrid nanofluids
  publication-title: Renew. Sustain. Energy Rev.
– volume: 31
  start-page: 1929
  year: 2018
  end-page: 1953
  ident: b0050
  article-title: Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles
  publication-title: Chin. J. Aeronaut.
– volume: 37
  start-page: 1421
  year: 2010
  end-page: 1425
  ident: b1340
  article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 107
  start-page: 181
  year: 2017
  end-page: 203
  ident: b0335
  article-title: Experimental study of using γ-Al2O3–water nanofluid flow through aluminum foam heat sink: comparison with numerical approach
  publication-title: Int. J. Heat Mass Transf.
– volume: 120
  start-page: 671
  year: 2018
  end-page: 682
  ident: b0805
  article-title: Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 115
  start-page: 400
  year: 2018
  end-page: 410
  ident: b0845
  article-title: Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still
  publication-title: Renewable Energy
– reference: pp. 3-16, 2018.
– volume: 178
  year: 2020
  ident: b0165
  article-title: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics
  publication-title: Appl. Therm. Eng.
– volume: 41
  start-page: 4626
  year: 1970
  end-page: 4627
  ident: b0715
  article-title: Generalized equation for the elastic moduli of composite materials
  publication-title: J. Appl. Phys.
– volume: 220
  start-page: 518
  year: 2016
  end-page: 526
  ident: b1270
  article-title: Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles
  publication-title: J. Mol. Liq.
– volume: 37
  start-page: 136
  year: 2012
  end-page: 146
  ident: b0665
  article-title: Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection
  publication-title: Int. J. Heat Fluid Flow
– volume: 31
  start-page: 1
  year: 2004
  end-page: 10
  ident: b1355
  article-title: Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth
  publication-title: International Communication in Heat and Mass Transfer
– volume: 1126
  start-page: 70
  year: 2006
  end-page: 85
  ident: b0170
  article-title: Transition from creeping via viscous-inertial to turbulent flow in fixed beds
  publication-title: J. Chromatogr. A
– volume: 9
  year: 2021
  ident: b1040
  article-title: Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger
  publication-title: International Journal of Thermofluids
– volume: 68
  start-page: 22
  year: 2015
  end-page: 38
  ident: b0005
  article-title: Passive heat transfer enhancement review in corrugation
  publication-title: Exp. Therm Fluid Sci.
– volume: 25
  start-page: 1352
  year: 2017
  end-page: 1359
  ident: b0390
  article-title: A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system
  publication-title: Chin. J. Chem. Eng.
– volume: 20
  year: 2020
  ident: b0850
  article-title: Thermal analysis of a microchannel heat sink cooled by two-phase flow boiling of Al2O3 HFE-7100 nanofluid
  publication-title: Thermal Science and Engineering Progress
– volume: 97
  start-page: 92
  year: 2018
  end-page: 102
  ident: b1045
  article-title: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 125
  start-page: 527
  year: 2016
  end-page: 535
  ident: b0575
  article-title: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid
  publication-title: J. Therm. Anal. Calorim.
– volume: 23
  start-page: 2263
  year: 2013
  end-page: 2269
  ident: b0320
  article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage
  publication-title: Adv. Funct. Mater.
– reference: L. Tham, R. Nazar and I. Pop, “Steady mixed convection flow on a horizontal circular cylinder embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms,”
– volume: 201
  start-page: 628
  year: 2020
  end-page: 637
  ident: b1150
  article-title: Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors
  publication-title: Sol. Energy
– reference: S. U. S. Choi and J. A. Eastman, ““Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows,”
– volume: 64
  start-page: 147
  year: 2014
  end-page: 154
  ident: b0350
  article-title: The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams
  publication-title: Appl. Therm. Eng.
– volume: 128
  year: 2020
  ident: b0210
  article-title: Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework
  publication-title: Comput. Geotech.
– volume: 49
  start-page: 444
  year: 2015
  end-page: 469
  ident: b0045
  article-title: Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices
  publication-title: Renew. Sustain. Energy Rev.
– volume: 37
  start-page: 314
  year: 2016
  end-page: 322
  ident: b0230
  article-title: Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model
  publication-title: Heat Transfer Eng.
– volume: 188
  year: 2021
  ident: b0980
  article-title: Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: an Eulerian approach
  publication-title: Appl. Therm. Eng.
– volume: 124
  start-page: 95
  year: 2017
  end-page: 108
  ident: b1085
  article-title: Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder
  publication-title: Int. J. Mech. Sci.
– volume: 114
  start-page: 225
  year: 2017
  end-page: 237
  ident: b0770
  article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport
  publication-title: Int. J. Heat Mass Transf.
– volume: 130
  start-page: 375
  year: 2017
  end-page: 382
  ident: b1255
  article-title: Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid
  publication-title: Int. J. Mech. Sci.
– volume: 24
  start-page: 313
  year: 1992
  end-page: 358
  ident: b1240
  article-title: Hydrodynamic phenomena in suspensions of swimming microorganisms
  publication-title: Annu. Rev. Fluid Mech.
– volume: 13
  start-page: 6033
  year: 2017
  end-page: 6050
  ident: b1275
  article-title: Modeling of active swimmer suspensions and theirinteractions with the environment
  publication-title: Soft Matter
– volume: 145
  year: 2019
  ident: b1520
  article-title: Renewable energy technology for the sustainable development of thermal system with entropy measures
  publication-title: Int. J. Heat Mass Transf.
– reference: S. Akhter and M. Ashraf, “Darcy–Forchheimer flow of nanofluid with gyrotactic microorganisms using Buongiorno model,”
– volume: 35
  start-page: 543
  year: 2004
  end-page: 557
  ident: b0720
  article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube
  publication-title: Superlattices Microstruct.
– volume: 83
  start-page: 399
  year: 2015
  end-page: 407
  ident: b0090
  article-title: Flow and heat transfer characteristics of nanofluid flowing through metal foams
  publication-title: Int. J. Heat Mass Transf.
– reference: P. Forchheimer, “Wasserbewegung durch boden,”
– volume: 45
  year: 2021
  ident: b1145
  article-title: A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors
  publication-title: Sustainable Energy Technol. Assess.
– volume: 23
  year: 2021
  ident: b1480
  article-title: A magneto-bioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism
  publication-title: Case Studies in Thermal Engineering
– volume: 46
  start-page: 1081
  year: 2015
  end-page: 1099
  ident: b0125
  article-title: Flow over a porous structure in a square cavity: Effects of the porous structure size and porosity on the heat transfer performance and fluid pressure loss
  publication-title: Heat Transfer Research
– volume: 18
  year: 2007
  ident: b0620
  article-title: Application of hybrid sphere/carbon nanotube particles in nanofluids
  publication-title: Nanotechnology
– volume: 38
  start-page: 54
  year: 2012
  end-page: 60
  ident: b0640
  article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer
  publication-title: Exp. Therm Fluid Sci.
– volume: 46
  start-page: 2493
  year: 2021
  end-page: 2503
  ident: b1475
  article-title: Bioconvection in a convectional nanofluid flow containing gyrotactic microorganisms over an isothermal vertical cone embedded in a porous surface with chemical reactive species
  publication-title: Arabian Journal for Science and Engineering
– volume: 30
  start-page: 3329
  year: 1987
  end-page: 3341
  ident: b0185
  article-title: Analysis of the Brinkman equation as a model for flow in porous media
  publication-title: The Physics of fluids
– volume: 26
  start-page: 935
  year: 2015
  end-page: 946
  ident: b0565
  article-title: Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature
  publication-title: Adv. Powder Technol.
– volume: 137
  start-page: 1797
  year: 2019
  end-page: 1807
  ident: b1035
  article-title: An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media
  publication-title: J. Therm. Anal. Calorim.
– volume: 27
  start-page: 326
  year: 2013
  end-page: 333
  ident: b1595
  article-title: Free convective flow of non-Newtonian nanofluids in porous media with gyrotactic microorganism
  publication-title: J. Thermophys Heat Transfer
– volume: 46
  start-page: 1413
  year: 2017
  end-page: 1442
  ident: b1180
  article-title: “A review of nanofluid preparation, stability, and thermo-physical properties,”
  publication-title: Research
– volume: 32
  start-page: 211
  year: 2021
  end-page: 224
  ident: b0870
  article-title: A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: Exergy destruction minimization attitude
  publication-title: Adv. Powder Technol.
– reference: R. Kumar and S. Sood, “Unsteady MHD Nanobioconvective Stagnation Slip Flow in a Porous Medium Due to Exponentially Stretching Sheet Containing Microorganisms,”
– volume: 132
  year: 2010
  ident: b0345
  article-title: Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
  publication-title: J. Heat Transfer
– volume: 56
  start-page: 48
  year: 2012
  end-page: 57
  ident: b1265
  article-title: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms
  publication-title: Int. J. Therm. Sci.
– volume: 15
  start-page: 23
  year: 2015
  end-page: 42
  ident: b1280
  article-title: Interplay of physical mechanisms and biofilmprocesses: review of microfluidic methods
  publication-title: Lab Chip
– volume: 10
  start-page: 391
  year: 2020
  ident: b0945
  article-title: Darcy-Forchheimer MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder
  publication-title: Coatings
– volume: 165
  year: 2020
  ident: b0410
  article-title: Numerical analysis of flow characteristics and heat transfer of high-temperature exhaust gas through porous fins
  publication-title: Appl. Therm. Eng.
– volume: 790
  start-page: 1
  year: 2019
  end-page: 48
  ident: b0460
  article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory
  publication-title: Phys. Rep.
– volume: 86
  start-page: 325
  year: 1952
  end-page: 329
  ident: b1320
  article-title: Concerning Pattern Formation by Free-Swimming Microorganisms
  publication-title: Am. Nat.
– volume: 129
  start-page: 396
  year: 2016
  end-page: 431
  ident: b0545
  article-title: Phase change materials (PCM) for cooling applications in buildings: A review
  publication-title: Energy Build.
– volume: 31
  start-page: 629
  year: 2004
  end-page: 638
  ident: b1325
  article-title: Effect of small solid particles on the development of bioconvection plumes
  publication-title: International Communication in Heat and Mass Transfer
– reference: vol. 25, no. 3, 2018.
– year: 2014
  ident: b1645
  article-title: Heat transfer and fluid flow in biological processes
– start-page: 19
  year: 2017
  end-page: 56
  ident: b0370
  article-title: “Heat Exchanger Types and Classifications,” in
– volume: 103
  start-page: 556
  year: 2019
  end-page: 592
  ident: b0520
  article-title: Recent advances in application of nanofluids in heat transfer devices: a critical review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 178
  year: 2020
  ident: b0415
  article-title: Assessment and optimization of exhaust gas heat exchanger with porous baffles and porous fins
  publication-title: Appl. Therm. Eng.
– start-page: 1
  year: 2020
  end-page: 12
  ident: b0865
  article-title: Numerical investigation of laminar flow of biological nanofluid in a rifled tube using two-phase mixture model: first-law and second-law analyses and geometry optimization
  publication-title: J. Therm. Anal. Calorim.
– volume: 13
  start-page: 341
  year: 2003
  end-page: 364
  ident: b1285
  article-title: Bioconvection of negatively geotactic microorganisms in a porous medium: the effect of cell deposition and declogging
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 161
  year: 2021
  ident: b0820
  article-title: Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models
  publication-title: Int. J. Therm. Sci.
– volume: 52
  start-page: 449
  year: 2020
  end-page: 476
  ident: b1305
  article-title: Advances in Bioconvection
  publication-title: Annu. Rev. Fluid Mech.
– volume: 53
  start-page: 95
  year: 2003
  end-page: 104
  ident: b1380
  article-title: Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium
  publication-title: Transp. Porous Media
– volume: 247
  start-page: 1033
  year: 2014
  end-page: 1039
  ident: b0145
  article-title: Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries
  publication-title: J. Power Sources
– volume: 96
  year: 2021
  ident: b1535
  article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes
  publication-title: Phys. Scr.
– year: 2019
  ident: b1620
  article-title: Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– year: 2018
  ident: b0595
  article-title: A review on nanofluids: fabrication, stability, and thermophysical properties
  publication-title: Journal of Nanomaterials
– volume: 135
  start-page: 1595
  year: 2019
  end-page: 1610
  ident: b1030
  article-title: Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media
  publication-title: J. Therm. Anal. Calorim.
– reference: p. 144202, 2021.
– volume: 11
  start-page: 858
  year: 2007
  end-page: 876
  ident: b0075
  article-title: A review of electrohydrodynamic enhancement of heat transfer
  publication-title: Renew. Sustain. Energy Rev.
– volume: 118
  year: 2020
  ident: b0855
  article-title: Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various roughness
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 566
  year: 2021
  ident: b0280
  article-title: Effect of thermal non-equilibrium and internal heat source on Brinkman-Bénard convection. Physica A
  publication-title: Statistical Mechanics and its Applications
– year: 2020
  ident: b1625
  article-title: Manninen’s mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 349
  start-page: 75
  year: 2017
  end-page: 83
  ident: b0440
  article-title: Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell
  publication-title: J. Power Sources
– volume: 40
  year: 2020
  ident: b0385
  article-title: Performance analysis of a cascade PCM heat exchanger and two-phase closed thermosiphon: A case study of geothermal district heating system
  publication-title: Sustainable Energy Technol. Assess.
– volume: 16
  start-page: 811
  year: 2020
  end-page: 834
  ident: b0920
  article-title: Unsteady magnetohydrodynamic radiative liquid thin film flow of hybrid nanofluid with thermophoresis and Brownian motion
  publication-title: Multidiscipline Modeling in Materials and Structures
– start-page: 1
  year: 2020
  end-page: 17
  ident: b1170
  article-title: Using a two-phase method for numerical natural convection simulation in a cavity containing multiwalled carbon nanotube/water
  publication-title: J. Therm. Anal. Calorim.
– volume: 36975
  start-page: 2083
  year: 2003
  end-page: 2088
  ident: b1555
  article-title: A Theoretical Prediction of Laminar Falling Plumes in Bioconvection of Oxytactic Bacteria in Porous Media
  publication-title: Fluids Engineering Division Summer Meeting
– volume: 9
  start-page: 1192
  year: 2020
  end-page: 1216
  ident: b0065
  article-title: A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges
  publication-title: Nanotechnology Reviews
– volume: 19
  start-page: 289
  year: 1906
  end-page: 306
  ident: b0680
  article-title: A new determination of molecular dimensions
  publication-title: Ann. Phys.
– volume: 111
  year: 2017
  ident: b0455
  article-title: Quantum ballistic transport in strained epitaxial germanium
  publication-title: Appl. Phys. Lett.
– volume: 112
  start-page: 2389
  year: 2008
  end-page: 2393
  ident: b0615
  article-title: Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction
  publication-title: The Journal of Physical Chemistry C
– volume: 52
  start-page: 73
  year: 2014
  end-page: 83
  ident: b0645
  article-title: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 50
  start-page: 1343
  year: 2011
  end-page: 1354
  ident: b0690
  article-title: Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer
  publication-title: Int. J. Therm. Sci.
– volume: 120
  start-page: 350
  year: 2018
  end-page: 364
  ident: b1230
  article-title: Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison
  publication-title: Renewable Energy
– volume: 201
  start-page: 333
  year: 1910
  end-page: 390
  ident: b1235
  article-title: On the Effect of Gravity Upon the Movements and Aggregation of Euglena Viridis, Ehrb., and Other Micro-Organisms
  publication-title: Philos. Trans. R. Soc. Lond.
– volume: 109
  start-page: 50001
  year: 2015
  ident: b1020
  article-title: Lattice boltzmann 2038
  publication-title: EPL (Europhysics Letters)
– volume: 462
  start-page: 45
  year: 2007
  end-page: 55
  ident: b0600
  article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives
  publication-title: Thermochim Acta
– year: 2020
  ident: b1635
  article-title: Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– reference: S. I. Abdelsalam and M. M. Bhatti, “ Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms,”
– volume: 5
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0315
  article-title: Three-dimensional porous copper-graphene heterostructures with durability and high heat dissipation performance
  publication-title: Sci. Rep.
– volume: 102
  start-page: 971
  year: 2016
  end-page: 979
  ident: b0860
  article-title: Numerical simulation on forced thermal flow of nanofluid in the gap between co-axial cylinders with rotational inner spindle
  publication-title: Int. J. Heat Mass Transf.
– volume: 35
  start-page: 93
  year: 2019
  end-page: 105
  ident: b0960
  article-title: Scrutiny of unsteady flow and heat transfer in a backward-facing step under pulsating nanofluid blowing using the Eulerian-Eulerian approach
  publication-title: Journal of Mechanics
– volume: 381
  start-page: 164
  year: 2021
  end-page: 180
  ident: b0815
  article-title: Influence of non-uniform asymmetric heating on conjugate heat transfer in a rectangular minichannel using nanofluid by two-phase Eulerian-Lagrangian method
  publication-title: Powder Technol.
– reference: Y. X. Li, K. Al-Khaled, S. U. Khan, T. C. Sun, M. I. Khan and M. Y. Malik, “Bio-convective Darcy-Forchheimer periodically accelerated flow of non-Newtonian nanofluid with Cattaneo–Christov and Prandtl effective approach,”
– volume: 878
  start-page: 62
  year: 2019
  end-page: 97
  ident: b0825
  article-title: Numerical investigation of nanofluid particle migration and convective heat transfer in microchannels using an Eulerian-Lagrangian approach
  publication-title: J. Fluid Mech.
– reference: B. Shen, L. Zheng, C. Zhang and X. Zhang, “Bioconvection heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump,”
– volume: 76
  start-page: 43
  year: 2013
  end-page: 54
  ident: b0380
  article-title: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow
  publication-title: Energy Convers. Manage.
– volume: 55
  start-page: 2048
  year: 2017
  end-page: 2063
  ident: b1615
  article-title: Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells
  publication-title: Chin. J. Phys.
– volume: 31
  start-page: 427
  year: 2014
  end-page: 438
  ident: b0530
  article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules
  publication-title: Renew. Sustain. Energy Rev.
– volume: 133
  start-page: 689
  year: 2017
  end-page: 703
  ident: b1165
  article-title: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media
  publication-title: Int. J. Mech. Sci.
– volume: 203
  start-page: 101
  year: 2017
  end-page: 114
  ident: b0435
  article-title: Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor
  publication-title: Appl. Energy
– year: 2021
  ident: b1575
  article-title: Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with Cu–water nanofluid
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 139
  year: 2017
  ident: b0285
  article-title: Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model
  publication-title: J. Heat Transfer
– volume: 53
  start-page: 2351
  year: 2017
  end-page: 2361
  ident: b0095
  article-title: Experimental development of a Nusselt correlation for forced reciprocating oscillated vertical annular glycerol flow through a porous domain
  publication-title: Heat Mass Transf.
– volume: 22
  start-page: 18
  year: 2020
  ident: b0905
  article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface
  publication-title: Entropy
– volume: 45
  start-page: 37
  year: 1987
  end-page: 45
  ident: b1465
  article-title: Unusual swimming behavior of a magnetotactic bacterium
  publication-title: FEMS Microbiol. Ecol.
– volume: 220
  start-page: 01004
  year: 2018
  ident: b1390
  article-title: Bioconvection of Nanofluid Past Stretching Sheet in a Porous Medium in Presence of Gyrotactic Microorganisms with Newtonian Heating
  publication-title: In MATEC Web of Conferences
– volume: 13
  start-page: 474
  year: 1999
  end-page: 480
  ident: b0760
  article-title: Thermal conductivity of nanoparticle-fluid mixture
  publication-title: J. Thermophys Heat Transfer
– volume: 7
  start-page: 603
  year: 2018
  end-page: 612
  ident: b1495
  article-title: Modeling of Gyrotactic Microorganisms Non-Newtonian Nanofluids Due to Free Convection Flow Past a Vertical Porous Truncated Cone
  publication-title: Journal of Nanofluids
– volume: 72
  start-page: 190
  year: 2016
  end-page: 196
  ident: b0625
  article-title: Effects of hybrid nanofluid mixture in plate heat exchangers
  publication-title: Exp. Therm Fluid Sci.
– reference: vol. 20, no. 4, pp. 571-571, 1952.
– volume: 234
  start-page: 8
  year: 2013
  end-page: 32
  ident: b1010
  article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics
  publication-title: J. Comput. Phys.
– volume: 174
  year: 2020
  ident: b1190
  article-title: Stability of nanofluid: A review
  publication-title: Appl. Therm. Eng.
– volume: 168
  year: 2020
  ident: b0330
  article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling
  publication-title: Appl. Therm. Eng.
– start-page: 25
  year: 2019
  end-page: 39
  ident: b0990
  article-title: “The Boltzmann Equation,” in
– volume: 100
  start-page: 372
  year: 2016
  end-page: 380
  ident: b0670
  article-title: Two-phase and single phase models of flow of nanofluid in a square cavity: comparison with experimental results
  publication-title: Int. J. Therm. Sci.
– volume: 148
  start-page: 987
  year: 2020
  end-page: 1001
  ident: b1110
  article-title: Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit
  publication-title: Renewable Energy
– volume: 114
  start-page: 1086
  year: 2017
  end-page: 1097
  ident: b0100
  article-title: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid
  publication-title: Int. J. Heat Mass Transf.
– volume: 91
  start-page: 564
  year: 2018
  end-page: 583
  ident: b0475
  article-title: Heat transfer and pressure drop correlations of nanofluids: a state of art review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 29
  start-page: 117
  year: 2003
  end-page: 169
  ident: b1005
  article-title: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications
  publication-title: Int. J. Multiph. Flow
– volume: 138
  start-page: 23
  year: 2017
  end-page: 34
  ident: b0105
  article-title: Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle
  publication-title: Ocean Eng.
– volume: 44
  start-page: 7919
  year: 2019
  end-page: 7931
  ident: b1065
  article-title: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field
  publication-title: Arabian Journal for Science and Engineering
– volume: 147
  start-page: 962
  year: 2019
  end-page: 971
  ident: b0255
  article-title: Critical review of the local thermal equilibrium assumption in heterogeneous porous media: Dependence on permeability and porosity contrasts
  publication-title: Appl. Therm. Eng.
– volume: 92
  start-page: 254
  year: 2018
  end-page: 271
  ident: b0540
  article-title: Thermal and electrical management of photovoltaic panels using phase change materials–A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 94
  year: 2019
  ident: b1140
  article-title: Solidification entropy generation via FEM through a porous storage unit with applying a magnetic field
  publication-title: Phys. Scr.
– volume: 9
  start-page: 436
  year: 2012
  end-page: 439
  ident: b0060
  article-title: Heat transfer augmentation for electronic cooling
  publication-title: American Journal of Applied Sciences
– volume: 12
  year: 2020
  ident: b0970
  article-title: Eulerian CFD model of direct absorption solar collector with nanofluid
  publication-title: J. Renewable Sustainable Energy
– reference: vol. 135, no. 10, 2013.
– reference: vol. 15, no. 7, 2012.
– year: 2021
  ident: b0550
  article-title: Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials–A comprehensive review
  publication-title: Thermal Science and Engineering Progress
– volume: 12
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0985
  article-title: Laminar Forced Convection and Entropy Generation of ZnO-Ethylene Glycol Nanofluid Flow through Square Microchannel with using Two-Phase Eulerian-Eulerian Model
  publication-title: Journal of Applied Fluid Mechanics
– volume: 44
  start-page: 157
  year: 2013
  end-page: 164
  ident: b0840
  article-title: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 2
  year: 2010
  ident: b0485
  article-title: Applications of nanofluids: current and future
  publication-title: Advances in mechanical engineering
– volume: 14
  start-page: 1617
  year: 2002
  end-page: 1630
  ident: b0200
  article-title: Stability of mixed convection in an anisotropic vertical porous channel
  publication-title: Phys. Fluids
– volume: 130
  start-page: 123
  year: 2019
  end-page: 134
  ident: b0020
  article-title: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  ident: b0180
  article-title: Fluid Flow through Packed Columns
  publication-title: Chem. Eng. Prog.
– year: 2020
  ident: b1425
  article-title: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 199
  year: 2020
  ident: b0955
  article-title: Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method
  publication-title: Energy
– volume: 77
  start-page: 1063
  year: 2014
  end-page: 1074
  ident: b0355
  article-title: An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 198
  year: 2019
  ident: b0835
  article-title: An updated review on application of nanofluids in heat exchangers for saving energy
  publication-title: Energy Convers. Manage.
– volume: 111
  start-page: 256
  year: 2017
  end-page: 273
  ident: b1075
  article-title: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity
  publication-title: Int. J. Therm. Sci.
– volume: 9
  start-page: 29
  year: 2018
  end-page: 35
  ident: b1100
  article-title: Comparative study of conventional absorber using porous media in CSP with and without nano fluid flow using CFD analysis
  publication-title: International Journal on Emerging Technologies
– volume: 88
  year: 2006
  ident: b0500
  article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 2042
  year: 2009
  end-page: 2048
  ident: b0725
  article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 55
  start-page: 549
  year: 2006
  end-page: 552
  ident: b0495
  article-title: Synthesis and characterization of nanofluid for advanced heat transfer applications
  publication-title: Scr. Mater.
– volume: 182
  year: 2021
  ident: b0775
  article-title: Experimental study and CFD modelling on the thermal and flow behavior of EG/water ZnO nanofluid in multiport mini channels
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0310
  article-title: Phonon hydrodynamics in two-dimensional materials
  publication-title: Nat. Commun.
– volume: 49
  start-page: 1038
  year: 2003
  end-page: 1043
  ident: b0745
  article-title: Aggregation structure and thermal conductivity of nanofluids
  publication-title: AIChE J.
– volume: 70
  start-page: 125
  year: 2021
  end-page: 139
  ident: b0925
  article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid H2O with hybrid nano-materials Al2O3-Cu and Al2O3-TiO2 over an extending sheet using Buongiorno model: Finite element approach
  publication-title: Chin. J. Phys.
– volume: 23
  start-page: 940
  year: 2009
  end-page: 946
  ident: b0130
  article-title: The effect of porosity on heat transfer and mass transfer of Mg-3Ni-2MnO2 hydrogen storage materials reaction bed
  publication-title: Int. J. Mod Phys B
– volume: 29
  start-page: 4549
  year: 2019
  end-page: 4568
  ident: b0915
  article-title: Free convection in an inclined cavity filled with a nanofluid and with sinusoidal temperature on the walls: Buongiorno’s mathematical model
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 62
  start-page: 647
  year: 2013
  end-page: 660
  ident: b1335
  article-title: Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms
  publication-title: Internatinonal Journal of Heat and Mass Transfer
– volume: 12
  start-page: 243
  year: 2017
  end-page: 260
  ident: b0525
  article-title: Investigations on latent heat storage materials for solar water and space heating applications
  publication-title: J. Storage Mater.
– volume: 103
  start-page: 191
  year: 2014
  end-page: 205
  ident: b1590
  article-title: Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms
  publication-title: Transp. Porous Media
– volume: 77
  start-page: 308
  year: 2015
  end-page: 319
  ident: b0450
  article-title: Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector
  publication-title: Renewable Energy
– volume: 14
  start-page: 1702982
  year: 2018
  ident: b1470
  article-title: Magnetotaxis enables magnetotactic bacteria to navigate in flow
  publication-title: Small
– volume: 41
  start-page: 22221
  year: 2016
  end-page: 22245
  ident: b1000
  article-title: Lattice Boltzmann simulation of proton exchange membrane fuel cells–A review on opportunities and challenges
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 420
  year: 2013
  end-page: 431
  ident: b0420
  article-title: Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 101
  start-page: 10
  year: 2019
  end-page: 20
  ident: b0810
  article-title: Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 22
  year: 2020
  ident: b1525
  article-title: Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms
  publication-title: Case Studies in Thermal Engineering
– volume: 178
  year: 2020
  ident: b1125
  article-title: Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries
  publication-title: Appl. Therm. Eng.
– volume: 53
  start-page: 227
  year: 2014
  end-page: 235
  ident: b0695
  article-title: Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid
  publication-title: Exp. Therm Fluid Sci.
– year: 2014
  ident: b0025
  article-title: Pathways for Heat: Low Carbon Heat for Buildings
– volume: 90
  start-page: 838
  year: 2015
  end-page: 847
  ident: b1115
  article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam
  publication-title: Int. J. Heat Mass Transf.
– volume: 88
  start-page: 74
  year: 2017
  end-page: 83
  ident: b0040
  article-title: An overview of passive techniques for heat transfer augmentation in microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 45
  start-page: 857
  year: 2014
  end-page: 877
  ident: b0220
  article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle
  publication-title: Heat Transfer Research
– volume: 13
  start-page: 3793
  year: 2020
  ident: b0650
  article-title: Efficient Stabilization of Mono and Hybrid Nanofluids
  publication-title: Energies
– volume: 30
  start-page: 63
  year: 2021
  end-page: 74
  ident: b0940
  article-title: Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block
  publication-title: J. Adv. Res.
– reference: vol. 231, p. 99–105, 1995.
– volume: 71
  start-page: 1251
  year: 2017
  end-page: 1273
  ident: b0880
  article-title: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 322
  start-page: 3895
  year: 2010
  end-page: 3901
  ident: b0570
  article-title: Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids
  publication-title: J. Magn. Magn. Mater.
– reference: vol. 6, no. 2019, pp. 3485-3497, 135.
– volume: 123
  start-page: 895
  year: 2020
  end-page: 912
  ident: b0235
  article-title: Thermal modeling and analysis of metal foam heat sink with thermal equilibrium and non-equilibrium models
  publication-title: Computer Modeling in Engineering & Sciences
– volume: 127
  start-page: 914
  year: 2018
  end-page: 926
  ident: b1135
  article-title: Nanofluid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces
  publication-title: Int. J. Heat Mass Transf.
– volume: 58
  start-page: 184
  year: 2014
  end-page: 192
  ident: b0250
  article-title: Validation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bed
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 321
  year: 2021
  ident: b0580
  article-title: Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review
  publication-title: J. Mol. Liq.
– volume: 1
  start-page: 187
  year: 1962
  end-page: 191
  ident: b0790
  article-title: Thermal conductivity of heterogeneous two-component systems
  publication-title: Ind. Eng. Chem. Fundam.
– volume: 4
  start-page: 93
  year: 1972
  end-page: 116
  ident: b1300
  article-title: Locomotion of protozoa
  publication-title: Annu. Rev. Fluid Mech.
– volume: 24
  start-page: 825
  year: 2003
  end-page: 834
  ident: b0150
  article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure
  publication-title: Int. J. Heat Fluid Flow
– volume: 5
  start-page: 735
  year: 1995
  end-page: 752
  ident: b0225
  article-title: A comparative study of porous media models in a differentially heated square cavity using a finite element method
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 74
  start-page: 285
  year: 2014
  end-page: 291
  ident: b1605
  article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip
  publication-title: Int. J. Heat Mass Transf.
– volume: 201
  start-page: 247
  year: 2019
  end-page: 263
  ident: b1070
  article-title: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder
  publication-title: Chem. Eng. Sci.
– reference: p. 09544089211007326, 2021.
– volume: 143
  year: 2021
  ident: b0360
  article-title: Experimental analysis of salt hydrate latent heat thermal energy storage system with porous aluminum fabric and salt hydrate as phase change material with enhanced stability and supercooling
  publication-title: J. Energy Res. Technol.
– volume: 383
  start-page: 484
  year: 2021
  end-page: 497
  ident: b0660
  article-title: Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle
  publication-title: Powder Technol.
– volume: 135
  start-page: 671
  year: 2019
  end-page: 683
  ident: b0780
  article-title: Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels
  publication-title: J. Therm. Anal. Calorim.
– volume: 13
  start-page: 1350067
  year: 2013
  ident: b1565
  article-title: Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms
  publication-title: ournal of Mechanics in Medicine and Biology
– volume: 37
  start-page: 645
  year: 2016
  end-page: 651
  ident: b0400
  article-title: Thermal performance of diesel engine exhaust heat recovery system using concentric tube heat exchanger inserts with different porous materials
  publication-title: Int. J. Ambient Energy
– volume: 67
  start-page: 335
  year: 2007
  end-page: 352
  ident: b0215
  article-title: The effect of thermal dispersion on free convection film condensation on a vertical plate with a thin porous layer
  publication-title: Transp. Porous Media
– volume: 89
  start-page: 758
  year: 2016
  end-page: 793
  ident: b0675
  article-title: Analysis of convective heat transfer enhancement by nanofluids: single-phase and two-phase treatments
  publication-title: J. Eng. Phys. Thermophys.
– volume: 171
  start-page: 229
  year: 2018
  end-page: 246
  ident: b0975
  article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids
  publication-title: Sol. Energy
– volume: 26
  start-page: 3954
  year: 2021
  ident: b1350
  article-title: Bioconvection Due to Gyrotactic Microorganisms in Couple Stress Hybrid Nanofluid Laminar Mixed Convection Incompressible Flow with Magnetic Nanoparticles and Chemical Reaction as Carrier for Targeted Drug Delivery through Porous Stretching Sheet
  publication-title: Molecules
– volume: 143
  start-page: 1201
  year: 2021
  end-page: 1220
  ident: b0930
  article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model
  publication-title: J. Therm. Anal. Calorim.
– volume: 6
  year: 2020
  ident: b1405
  article-title: Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium
  publication-title: Heliyon
– volume: 263
  start-page: 510
  year: 2018
  end-page: 525
  ident: b1060
  article-title: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field
  publication-title: J. Mol. Liq.
– volume: 28
  start-page: 877
  year: 2001
  end-page: 886
  ident: b1310
  article-title: Numerical investigation of bioconvection of gravitactic microorganisms in an isotropic porous medium
  publication-title: International communication in heat and mass transfer
– volume: 34
  start-page: 86
  year: 2016
  end-page: 99
  ident: b0535
  article-title: Thermal energy storage based solar drying systems: A review
  publication-title: Innovative Food Sci. Emerg. Technol.
– volume: 51
  start-page: 1431
  year: 2008
  end-page: 1438
  ident: b0740
  article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
  publication-title: Int. J. Heat Mass Transf.
– reference: vol. 41, no. 5, 2020.
– volume: 107
  start-page: 21
  year: 2017
  end-page: 44
  ident: b0030
  article-title: Hydrothermal performance of microchannel heat sink: The effect of channel design
  publication-title: Int. J. Heat Mass Transf.
– reference: A. S. Dogonchi, M. A. Ismael, A. J. Chamkha and D. D. Ganji, “Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall,”
– volume: 227
  start-page: 356
  year: 2017
  end-page: 365
  ident: b1400
  article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using modified least square method (MLSM)
  publication-title: J. Mol. Liq.
– volume: 49
  start-page: 626
  year: 2020
  end-page: 650
  ident: b0950
  article-title: “Numerical computation on Marangoni convective flow of two-phase MHD dusty nanofluids under Brownian motion and thermophoresis effects,”
  publication-title: Research
– volume: 31
  start-page: 629
  year: 2004
  ident: 10.1016/j.tsep.2022.101267_b1325
  article-title: Effect of small solid particles on the development of bioconvection plumes
  publication-title: International Communication in Heat and Mass Transfer
  doi: 10.1016/S0735-1933(04)00050-8
– volume: 37
  start-page: 1
  year: 2005
  ident: 10.1016/j.tsep.2022.101267_b1290
  article-title: Bioconvection
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2005.03.002
– volume: 111
  start-page: 256
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1075
  article-title: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.09.001
– ident: 10.1016/j.tsep.2022.101267_b1545
  doi: 10.1615/JPorMedia.v15.i7.20
– volume: 19
  start-page: 289
  year: 1906
  ident: 10.1016/j.tsep.2022.101267_b0680
  article-title: A new determination of molecular dimensions
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19063240204
– volume: 26
  start-page: 3954
  issue: 13
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1350
  article-title: Bioconvection Due to Gyrotactic Microorganisms in Couple Stress Hybrid Nanofluid Laminar Mixed Convection Incompressible Flow with Magnetic Nanoparticles and Chemical Reaction as Carrier for Targeted Drug Delivery through Porous Stretching Sheet
  publication-title: Molecules
  doi: 10.3390/molecules26133954
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0310
  article-title: Phonon hydrodynamics in two-dimensional materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7400
– volume: 64
  start-page: 147
  issue: 1–2
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0350
  article-title: The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.072
– volume: 548
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1130
  article-title: The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123887
– start-page: 1
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1170
  article-title: Using a two-phase method for numerical natural convection simulation in a cavity containing multiwalled carbon nanotube/water
  publication-title: J. Therm. Anal. Calorim.
– volume: 90
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0245
  article-title: Impact of boiling heat transfer on geothermal reservoir simulation using local thermal non-equilibrium model
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2020.102016
– volume: 147
  start-page: 962
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0255
  article-title: Critical review of the local thermal equilibrium assumption in heterogeneous porous media: Dependence on permeability and porosity contrasts
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.130
– volume: 56
  start-page: 73
  issue: 1
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0395
  article-title: A technique for thermal design of a heat exchanger with porous inserts
  publication-title: Russian Aeronautics (Iz VUZ)
  doi: 10.3103/S106879981301011X
– volume: 32
  start-page: 211
  issue: 1
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0870
  article-title: A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: Exergy destruction minimization attitude
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2020.12.005
– volume: 53
  start-page: 2351
  issue: 7
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0095
  article-title: Experimental development of a Nusselt correlation for forced reciprocating oscillated vertical annular glycerol flow through a porous domain
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-017-1987-6
– volume: 111
  issue: 23
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0455
  article-title: Quantum ballistic transport in strained epitaxial germanium
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5008969
– volume: 57
  start-page: 61
  issue: 1
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1395
  article-title: Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2016.11.011
– volume: 107
  start-page: 21
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0030
  article-title: Hydrothermal performance of microchannel heat sink: The effect of channel design
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.031
– volume: 7
  start-page: 603
  issue: 3
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1495
  article-title: Modeling of Gyrotactic Microorganisms Non-Newtonian Nanofluids Due to Free Convection Flow Past a Vertical Porous Truncated Cone
  publication-title: Journal of Nanofluids
  doi: 10.1166/jon.2018.1461
– volume: 132
  issue: 7
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b0345
  article-title: Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4000951
– volume: 8
  start-page: 145
  issue: 2
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b0560
  article-title: Enhanced thermal conductivity of nanofluids: a state-of-the-art review
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-009-0524-4
– volume: 101
  start-page: 10
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0810
  article-title: Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.12.010
– ident: 10.1016/j.tsep.2022.101267_b0080
  doi: 10.1615/JEnhHeatTransf.2018024886
– volume: 14
  start-page: 1617
  issue: 5
  year: 2002
  ident: 10.1016/j.tsep.2022.101267_b0200
  article-title: Stability of mixed convection in an anisotropic vertical porous channel
  publication-title: Phys. Fluids
  doi: 10.1063/1.1460879
– volume: 133
  start-page: 689
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1165
  article-title: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.09.031
– volume: 383
  start-page: 484
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0660
  article-title: Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.01.045
– ident: 10.1016/j.tsep.2022.101267_b0685
  doi: 10.1063/1.1700493
– volume: 31
  start-page: 1
  year: 2004
  ident: 10.1016/j.tsep.2022.101267_b1355
  article-title: Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth
  publication-title: International Communication in Heat and Mass Transfer
  doi: 10.1016/S0735-1933(03)00196-9
– volume: 37
  start-page: 136
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b0665
  article-title: Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2012.05.005
– volume: 9
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1040
  article-title: Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger
  publication-title: International Journal of Thermofluids
  doi: 10.1016/j.ijft.2020.100055
– ident: 10.1016/j.tsep.2022.101267_b1440
– volume: 125
  start-page: 527
  issue: 1
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0575
  article-title: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5436-4
– volume: 29
  start-page: 117
  issue: 1
  year: 2003
  ident: 10.1016/j.tsep.2022.101267_b1005
  article-title: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(02)00108-8
– volume: 26
  start-page: 935
  issue: 3
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0565
  article-title: Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2015.03.012
– volume: 462
  start-page: 45
  issue: 1–2
  year: 2007
  ident: 10.1016/j.tsep.2022.101267_b0600
  article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2007.06.009
– volume: 70
  start-page: 1141
  issue: 10
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0635
  article-title: Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids
  publication-title: Numerical Heat Transfer, Part A: Applications
  doi: 10.1080/10407782.2016.1230423
– volume: 83
  start-page: 97
  issue: 1
  year: 1977
  ident: 10.1016/j.tsep.2022.101267_b0700
  article-title: The effect of Brownian motion on the bulk stress in a suspension of spherical particles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112077001062
– volume: 35
  start-page: 93
  issue: 1
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0960
  article-title: Scrutiny of unsteady flow and heat transfer in a backward-facing step under pulsating nanofluid blowing using the Eulerian-Eulerian approach
  publication-title: Journal of Mechanics
  doi: 10.1017/jmech.2017.73
– ident: 10.1016/j.tsep.2022.101267_b1055
  doi: 10.1007/s10973-018-7520-4
– volume: 114
  start-page: 7740
  issue: 15
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b1220
  article-title: Chemical basis of interactions between engineered nanoparticles and biological systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr400295a
– volume: 566
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0280
  article-title: Effect of thermal non-equilibrium and internal heat source on Brinkman-Bénard convection. Physica A
  publication-title: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2020.125617
– volume: 311
  start-page: 17
  issue: 1
  year: 2007
  ident: 10.1016/j.tsep.2022.101267_b0515
  article-title: Sterically stabilized water based magnetic fluids: Synthesis, structure and properties
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.11.158
– volume: 14
  start-page: 1702982
  issue: 5
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1470
  article-title: Magnetotaxis enables magnetotactic bacteria to navigate in flow
  publication-title: Small
  doi: 10.1002/smll.201702982
– volume: 85
  start-page: 119
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0010
  article-title: Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.03.008
– volume: 9
  start-page: 436
  issue: 3
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b0060
  article-title: Heat transfer augmentation for electronic cooling
  publication-title: American Journal of Applied Sciences
  doi: 10.3844/ajassp.2012.436.439
– volume: 21
  start-page: 67
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0995
  article-title: Lattice Boltzmann simulations for multi-scale chemical engineering
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2018.03.003
– volume: 35
  start-page: 543
  issue: 3–6
  year: 2004
  ident: 10.1016/j.tsep.2022.101267_b0720
  article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2003.09.012
– volume: 139
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0285
  article-title: Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4037087
– volume: 128
  start-page: 1213
  issue: 11
  year: 2006
  ident: 10.1016/j.tsep.2022.101267_b0505
  article-title: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2352789
– volume: 124
  start-page: 95
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1085
  article-title: Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.03.007
– volume: 20
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0850
  article-title: Thermal analysis of a microchannel heat sink cooled by two-phase flow boiling of Al2O3 HFE-7100 nanofluid
  publication-title: Thermal Science and Engineering Progress
  doi: 10.1016/j.tsep.2020.100693
– volume: 14
  start-page: 80
  issue: 1
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0470
  article-title: The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review
  publication-title: Energies
  doi: 10.3390/en14010080
– year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1430
  article-title: Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media
  publication-title: Alexandria Engineering Journal
– volume: 74
  start-page: 285
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b1605
  article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.03.026
– year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0140
– volume: 98
  start-page: 229
  issue: 3–4
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b1345
  article-title: Silver–TiO2 nanocomposites: Synthesis and harmful algae bloom UV-photoelimination
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2010.06.001
– volume: 77
  start-page: 1063
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0355
  article-title: An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.05.053
– volume: 37
  start-page: 1421
  issue: 10
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b1340
  article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.08.015
– volume: 143
  issue: 4
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0360
  article-title: Experimental analysis of salt hydrate latent heat thermal energy storage system with porous aluminum fabric and salt hydrate as phase change material with enhanced stability and supercooling
  publication-title: J. Energy Res. Technol.
  doi: 10.1115/1.4048122
– ident: 10.1016/j.tsep.2022.101267_b1435
  doi: 10.1615/JPorMedia.2021036551
– volume: 31
  start-page: 1929
  issue: 10
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0050
  article-title: Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2018.06.011
– volume: 92
  start-page: 254
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0540
  article-title: Thermal and electrical management of photovoltaic panels using phase change materials–A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.091
– volume: 49
  start-page: 1038
  issue: 4
  year: 2003
  ident: 10.1016/j.tsep.2022.101267_b0745
  article-title: Aggregation structure and thermal conductivity of nanofluids
  publication-title: AIChE J.
  doi: 10.1002/aic.690490420
– volume: 9
  start-page: 29
  issue: 1
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1100
  article-title: Comparative study of conventional absorber using porous media in CSP with and without nano fluid flow using CFD analysis
  publication-title: International Journal on Emerging Technologies
– volume: 138
  start-page: 1669
  issue: 2
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0115
  article-title: Optimum constituents for MHD heat transfer of nanofluids within porous cavities
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08191-y
– volume: 41
  start-page: 22221
  issue: 47
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1000
  article-title: Lattice Boltzmann simulation of proton exchange membrane fuel cells–A review on opportunities and challenges
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.211
– volume: 144
  start-page: 2627
  issue: 6
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1120
  article-title: Numerical study on heat loss from the surface of solar collector tube filled by oil-NE-PCM/Al2O3 in the presence of the magnetic field
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-10480-w
– volume: 13
  start-page: 341
  issue: 3
  year: 2003
  ident: 10.1016/j.tsep.2022.101267_b1285
  article-title: Bioconvection of negatively geotactic microorganisms in a porous medium: the effect of cell deposition and declogging
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/09615530310464535
– volume: 4
  start-page: 93
  issue: 1
  year: 1972
  ident: 10.1016/j.tsep.2022.101267_b1300
  article-title: Locomotion of protozoa
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.04.010172.000521
– volume: 201
  start-page: 247
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1070
  article-title: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.03.006
– volume: 31
  start-page: 1905
  issue: 6
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1460
  article-title: Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3165-7
– volume: 315
  start-page: 608
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0155
  article-title: A systematic procedure for the virtual reconstruction of open-cell foams
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.01.069
– volume: 44
  start-page: 373
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b1250
  article-title: Fluid mechanics of planktonic microorganisms
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101156
– volume: 221
  start-page: 298
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0555
  article-title: Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.05.089
– volume: 6
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.tsep.2022.101267_b0590
  article-title: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
  publication-title: Nanoscale Res. Lett.
– volume: 178
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0165
  article-title: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics
  publication-title: Appl. Therm. Eng.
– volume: 50
  start-page: 1343
  issue: 8
  year: 2011
  ident: 10.1016/j.tsep.2022.101267_b0690
  article-title: Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.03.008
– volume: 227
  start-page: 356
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1400
  article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using modified least square method (MLSM)
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.12.039
– volume: 37
  start-page: 645
  issue: 6
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0400
  article-title: Thermal performance of diesel engine exhaust heat recovery system using concentric tube heat exchanger inserts with different porous materials
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2015.1023843
– volume: 10
  start-page: 1194
  issue: 15
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b1185
  article-title: Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2014.989551
– volume: 46
  start-page: 1081
  issue: 12
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0125
  article-title: Flow over a porous structure in a square cavity: Effects of the porous structure size and porosity on the heat transfer performance and fluid pressure loss
  publication-title: Heat Transfer Research
  doi: 10.1615/HeatTransRes.2015005342
– volume: 129
  start-page: 181
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0160
  article-title: A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams
  publication-title: Chemical Engineering and Processing-Process Intensification
  doi: 10.1016/j.cep.2018.04.018
– volume: 13
  start-page: 1350067
  issue: 04
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b1565
  article-title: Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms
  publication-title: ournal of Mechanics in Medicine and Biology
  doi: 10.1142/S021951941350067X
– volume: 28
  start-page: 2928
  issue: 11
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1175
  article-title: Effects of the porous medium and water-silver biological nanofluid on the performance of a newly designed heat sink by using first and second laws of thermodynamics
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.07.025
– volume: 28
  start-page: 288
  issue: 1
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1610
  article-title: Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.10.002
– volume: 5
  start-page: 735
  year: 1995
  ident: 10.1016/j.tsep.2022.101267_b0225
  article-title: A comparative study of porous media models in a differentially heated square cavity using a finite element method
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/EUM0000000004124
– volume: 109
  start-page: 182
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0340
  article-title: Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.06.007
– volume: 56
  start-page: 48
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b1265
  article-title: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2012.01.011
– start-page: 1
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0865
  article-title: Numerical investigation of laminar flow of biological nanofluid in a rifled tube using two-phase mixture model: first-law and second-law analyses and geometry optimization
  publication-title: J. Therm. Anal. Calorim.
– volume: 62
  start-page: 647
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b1335
  article-title: Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms
  publication-title: Internatinonal Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.03.012
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0985
  article-title: Laminar Forced Convection and Entropy Generation of ZnO-Ethylene Glycol Nanofluid Flow through Square Microchannel with using Two-Phase Eulerian-Eulerian Model
  publication-title: Journal of Applied Fluid Mechanics
  doi: 10.29252/jafm.75.253.28744
– volume: 68
  start-page: 659
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0190
  article-title: Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.09.039
– volume: 46
  start-page: 2493
  issue: 3
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1475
  article-title: Bioconvection in a convectional nanofluid flow containing gyrotactic microorganisms over an isothermal vertical cone embedded in a porous surface with chemical reactive species
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-020-05132-y
– volume: 317
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1215
  article-title: Development and characterization of unitary and hybrid Al2O3 and ZrO dispersed Jatropha oil-based nanofluid for cleaner production
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.128365
– volume: 22
  start-page: 18
  issue: 1
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0905
  article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface
  publication-title: Entropy
  doi: 10.3390/e22010018
– volume: 123
  start-page: 895
  issue: 2
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0235
  article-title: Thermal modeling and analysis of metal foam heat sink with thermal equilibrium and non-equilibrium models
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2020.09009
– volume: 247
  start-page: 1033
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0145
  article-title: Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.156
– volume: 148
  start-page: 987
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1110
  article-title: Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.10.084
– volume: 70
  start-page: 125
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0925
  article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid H2O with hybrid nano-materials Al2O3-Cu and Al2O3-TiO2 over an extending sheet using Buongiorno model: Finite element approach
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.12.022
– year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1635
  article-title: Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 129
  start-page: 396
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0545
  article-title: Phase change materials (PCM) for cooling applications in buildings: A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.04.006
– volume: 43
  start-page: 164
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0610
  article-title: A review on hybrid nanofluids: recent research, development and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.023
– volume: 88
  start-page: 74
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0040
  article-title: An overview of passive techniques for heat transfer augmentation in microchannel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2017.08.009
– volume: 71
  start-page: 1251
  issue: 12
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0880
  article-title: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model
  publication-title: Numerical Heat Transfer, Part A: Applications
  doi: 10.1080/10407782.2017.1345270
– volume: 124
  start-page: 120
  issue: 1
  year: 2002
  ident: 10.1016/j.tsep.2022.101267_b0270
  article-title: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1416690
– volume: 114
  start-page: 225
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0770
  article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.030
– volume: 46
  start-page: 1413
  issue: 8
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1180
  article-title: “A review of nanofluid preparation, stability, and thermo-physical properties,” Heat Transfer—Asian
  publication-title: Research
– volume: 195
  start-page: 71
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1105
  article-title: Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.01.050
– volume: 4
  start-page: 11
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0765
  article-title: Numerical Study of Single Phase/Two-Phase Models for Nano fluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow
  publication-title: Transport phenomena in nano and micro scales
– volume: 130
  start-page: 375
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1255
  article-title: Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.06.030
– ident: 10.1016/j.tsep.2022.101267_b1580
  doi: 10.1007/s10483-020-2609-6
– year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0550
  article-title: Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials–A comprehensive review
  publication-title: Thermal Science and Engineering Progress
– volume: 11
  start-page: 146
  issue: 1
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0055
  article-title: Recent advances in passive cooling methods for photovoltaic performance enhancement
  publication-title: International Journal of Electrical & Computer Engineering
– volume: 34
  start-page: 86
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0535
  article-title: Thermal energy storage based solar drying systems: A review
  publication-title: Innovative Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2016.01.007
– volume: 25
  start-page: 1352
  issue: 10
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0390
  article-title: A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2017.01.015
– volume: 89
  start-page: 758
  issue: 3
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0675
  article-title: Analysis of convective heat transfer enhancement by nanofluids: single-phase and two-phase treatments
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-016-1437-1
– volume: 326
  start-page: 655
  year: 1987
  ident: 10.1016/j.tsep.2022.101267_b1245
  article-title: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate
  publication-title: Nature
  doi: 10.1038/326655a0
– volume: 51
  start-page: 1431
  issue: 5–6
  year: 2008
  ident: 10.1016/j.tsep.2022.101267_b0740
  article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.10.017
– volume: 1
  start-page: 27
  issue: 1
  year: 1949
  ident: 10.1016/j.tsep.2022.101267_b0195
  article-title: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1007/BF02120313
– volume: 9
  start-page: 1192
  issue: 1
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0065
  article-title: A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges
  publication-title: Nanotechnology Reviews
  doi: 10.1515/ntrev-2020-0094
– volume: 11
  start-page: 858
  issue: 5
  year: 2007
  ident: 10.1016/j.tsep.2022.101267_b0075
  article-title: A review of electrohydrodynamic enhancement of heat transfer
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2005.07.002
– volume: 44
  start-page: 157
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0840
  article-title: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2013.02.012
– volume: 790
  start-page: 1
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0460
  article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2018.11.004
– volume: 118
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0855
  article-title: Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various roughness
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104842
– volume: 53
  start-page: 95
  year: 2003
  ident: 10.1016/j.tsep.2022.101267_b1380
  article-title: Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1023582001592
– volume: 1
  start-page: 187
  issue: 3
  year: 1962
  ident: 10.1016/j.tsep.2022.101267_b0790
  article-title: Thermal conductivity of heterogeneous two-component systems
  publication-title: Ind. Eng. Chem. Fundam.
  doi: 10.1021/i160003a005
– volume: 30
  start-page: 63
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0940
  article-title: Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.09.008
– volume: 114
  start-page: 31
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0260
  article-title: Challenges and progress on the modelling of entropy generation in porous media: a review
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.021
– volume: 13
  start-page: 474
  issue: 4
  year: 1999
  ident: 10.1016/j.tsep.2022.101267_b0760
  article-title: Thermal conductivity of nanoparticle-fluid mixture
  publication-title: J. Thermophys Heat Transfer
  doi: 10.2514/2.6486
– volume: 4
  start-page: 257
  year: 1986
  ident: 10.1016/j.tsep.2022.101267_b1375
  article-title: The external dynamics of swimming micro-organisms
  publication-title: Progress in Phycological Research
– volume: 165
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0410
  article-title: Numerical analysis of flow characteristics and heat transfer of high-temperature exhaust gas through porous fins
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114612
– volume: 2
  start-page: 361
  issue: 4
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b1210
  article-title: Comparative life cycle assessment of silver nanoparticle synthesis routes
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C5EN00075K
– ident: 10.1016/j.tsep.2022.101267_b0110
  doi: 10.2298/TSCI150424128S
– volume: 263
  start-page: 510
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1060
  article-title: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.04.119
– volume: 130
  start-page: 123
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0020
  article-title: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.072
– volume: 7
  start-page: 49
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1540
  article-title: Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2016.10.016
– volume: 27
  start-page: 326
  issue: 2
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b1595
  article-title: Free convective flow of non-Newtonian nanofluids in porous media with gyrotactic microorganism
  publication-title: J. Thermophys Heat Transfer
  doi: 10.2514/1.T3983
– ident: 10.1016/j.tsep.2022.101267_b0175
– volume: 9
  start-page: 339
  issue: 1
  year: 1977
  ident: 10.1016/j.tsep.2022.101267_b1295
  article-title: Fluid mechanics of propulsion by cilia and flagella
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.09.010177.002011
– volume: 61
  start-page: 505
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0015
  article-title: An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.01.083
– volume: 57
  start-page: 299
  issue: 2
  year: 1995
  ident: 10.1016/j.tsep.2022.101267_b1560
  article-title: The development of concentration gradients in a suspension of chemotactic bacteria
  publication-title: Bull. Math. Biol.
  doi: 10.1016/0092-8240(94)00038-E
– volume: 198
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0835
  article-title: An updated review on application of nanofluids in heat exchangers for saving energy
  publication-title: Energy Convers. Manage.
– volume: 139
  start-page: 2165
  issue: 3
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1080
  article-title: Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08651-5
– volume: 44
  start-page: 7919
  issue: 9
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1065
  article-title: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-019-03956-x
– volume: 17
  start-page: 1750059
  issue: 03
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1510
  article-title: Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519417500592
– volume: 109
  start-page: 50001
  issue: 5
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b1020
  article-title: Lattice boltzmann 2038
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/109/50001
– volume: 96
  start-page: 181
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0425
  article-title: Overview of porous media/metal foam application in fuel cells and solar power systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.07.032
– volume: 3
  start-page: 137
  issue: 1
  year: 1959
  ident: 10.1016/j.tsep.2022.101267_b0710
  article-title: A mechanism for non-Newtonian flow in suspensions of rigid spheres
  publication-title: Transactions of the Society of Rheology
  doi: 10.1122/1.548848
– volume: 107–111
  start-page: 470
  issue: 1–3
  year: 2009
  ident: 10.1016/j.tsep.2022.101267_b1200
  article-title: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids
  publication-title: Chem. Phys. Lett.
– volume: 37
  start-page: 74
  issue: 1
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b0785
  article-title: Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2009.07.013
– volume: 174
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1190
  article-title: Stability of nanofluid: A review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115259
– volume: 128
  start-page: 240
  year: 2006
  ident: 10.1016/j.tsep.2022.101267_b0885
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2150834
– volume: 118
  start-page: 705
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0430
  article-title: An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.101
– volume: 234
  start-page: 8
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b1010
  article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.08.040
– ident: 10.1016/j.tsep.2022.101267_b1600
  doi: 10.1115/1.4024387
– ident: 10.1016/j.tsep.2022.101267_b1050
  doi: 10.1115/1.4039213
– volume: 76
  start-page: 43
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0380
  article-title: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.07.022
– ident: 10.1016/j.tsep.2022.101267_b0300
– volume: 50
  start-page: 4652
  year: 2007
  ident: 10.1016/j.tsep.2022.101267_b1385
  article-title: Bioconvection of gravitactic micro-organisms in rectangular enclosures
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.03.009
– year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0595
  article-title: A review on nanofluids: fabrication, stability, and thermophysical properties
  publication-title: Journal of Nanomaterials
  doi: 10.1155/2018/6978130
– volume: 38
  start-page: 54
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b0640
  article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.11.007
– volume: 120
  start-page: 671
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0805
  article-title: Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.075
– volume: 243
  start-page: 206
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0120
  article-title: Potentials of porous materials for energy management in heat exchangers–A comprehensive review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.200
– start-page: 25
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0990
– volume: 15
  start-page: 23
  issue: 1
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b1280
  article-title: Interplay of physical mechanisms and biofilmprocesses: review of microfluidic methods
  publication-title: Lab Chip
  doi: 10.1039/C4LC01095G
– volume: 220
  start-page: 01004
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1390
  article-title: Bioconvection of Nanofluid Past Stretching Sheet in a Porous Medium in Presence of Gyrotactic Microorganisms with Newtonian Heating
  publication-title: In MATEC Web of Conferences
  doi: 10.1051/matecconf/201822001004
– volume: 115
  start-page: 400
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0845
  article-title: Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.08.059
– ident: 10.1016/j.tsep.2022.101267_b0900
  doi: 10.1615/JPorMedia.2020027144
– volume: 305
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0035
  article-title: Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112787
– ident: 10.1016/j.tsep.2022.101267_b1370
  doi: 10.1115/FEDSM2002-31105
– volume: 40
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0385
  article-title: Performance analysis of a cascade PCM heat exchanger and two-phase closed thermosiphon: A case study of geothermal district heating system
  publication-title: Sustainable Energy Technol. Assess.
– volume: 381
  start-page: 164
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0815
  article-title: Influence of non-uniform asymmetric heating on conjugate heat transfer in a rectangular minichannel using nanofluid by two-phase Eulerian-Lagrangian method
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.12.037
– volume: 44
  start-page: 339
  issue: 2
  year: 1973
  ident: 10.1016/j.tsep.2022.101267_b0890
  article-title: Thermophoresis in liquids
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(73)90225-7
– volume: 5
  start-page: 15004
  issue: 7
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0325
  article-title: Experimental study on heat sink with porous copper as conductive material for CPU cooling
  publication-title: Mater. Today:. Proc.
– volume: 178
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1125
  article-title: Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115543
– volume: 88
  issue: 14
  year: 2006
  ident: 10.1016/j.tsep.2022.101267_b0500
  article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2192971
– volume: 48
  start-page: 57
  issue: 1
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1490
  article-title: Gyrotactic microorganisms free convection boundary layer flow about a vertical truncated cone in nanofluid porous media
  publication-title: Latin American Applied Research-An international journal
  doi: 10.52292/j.laar.2018.259
– volume: 37
  start-page: 314
  issue: 3–4
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0230
  article-title: Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2015.1052682
– volume: 8
  start-page: 380
  issue: 3
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1455
  article-title: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface
  publication-title: Mathematics
  doi: 10.3390/math8030380
– volume: 97
  start-page: 92
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1045
  article-title: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.07.002
– volume: 321
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0580
  article-title: Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.114430
– volume: 72
  start-page: 190
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0625
  article-title: Effects of hybrid nanofluid mixture in plate heat exchangers
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2015.11.009
– volume: 161
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0365
  article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114163
– volume: 44
  start-page: 420
  issue: 3
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0420
  article-title: Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2012.12.018
– volume: 28
  start-page: 877
  issue: 7
  year: 2001
  ident: 10.1016/j.tsep.2022.101267_b1310
  article-title: Numerical investigation of bioconvection of gravitactic microorganisms in an isotropic porous medium
  publication-title: International communication in heat and mass transfer
  doi: 10.1016/S0735-1933(01)00291-3
– volume: 8
  start-page: 957
  issue: 5
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1505
  article-title: Effect of thermal radiation on burgers nano fluid flow between two parallel plates with porous medium in the presence of gyrotactic micro-organisms and heat generation/absorption
  publication-title: Journal of Nanofluids
  doi: 10.1166/jon.2019.1650
– volume: 23
  start-page: 940
  year: 2009
  ident: 10.1016/j.tsep.2022.101267_b0130
  article-title: The effect of porosity on heat transfer and mass transfer of Mg-3Ni-2MnO2 hydrogen storage materials reaction bed
  publication-title: Int. J. Mod Phys B
  doi: 10.1142/S0217979209060270
– volume: 10
  start-page: 391
  issue: 4
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0945
  article-title: Darcy-Forchheimer MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder
  publication-title: Coatings
  doi: 10.3390/coatings10040391
– year: 2008
  ident: 10.1016/j.tsep.2022.101267_b1025
  article-title: Lattice Boltzmann Method (LBM)
– volume: 124
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1155
  article-title: Embedding multiple conical vanes inside a circular porous channel filled by two-phase nanofluid to improve thermal performance considering entropy generation
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105209
– volume: 114
  start-page: 1407
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1095
  article-title: Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.07.008
– volume: 7
  start-page: 13
  year: 1988
  ident: 10.1016/j.tsep.2022.101267_b0135
  article-title: Effect of bed porosity on wall-to-bed heat transfer in liquid fluidized beds
  publication-title: Mehran University research journal of engineering and technology
– volume: 28
  start-page: 47
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0910
  article-title: Effectiveness in incorporating Brownian and thermophoresis effects in modelling convective flow of water-Al2O3 nanoparticles
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/HFF-10-2016-0398
– volume: 201
  start-page: 628
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1150
  article-title: Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.03.047
– volume: 48
  start-page: 89
  issue: 2
  year: 1952
  ident: 10.1016/j.tsep.2022.101267_b0180
  article-title: Fluid Flow through Packed Columns
  publication-title: Chem. Eng. Prog.
– volume: 24
  start-page: 409
  issue: 04
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1450
  article-title: A bioconvection model for MHD flow and heat transfer over a porous wedge containing both nanoparticles and gyrotatic microorganisms
  publication-title: Journal of Biological Systems
  doi: 10.1142/S0218339016500212
– year: 1873
  ident: 10.1016/j.tsep.2022.101267_b0465
– volume: 69
  start-page: 564
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0205
  article-title: Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.06.021
– volume: 37
  start-page: 471
  issue: 4
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1445
  article-title: Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-016-2044-9
– volume: 90
  start-page: 838
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b1115
  article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.06.088
– volume: 375
  start-page: 493
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0935
  article-title: Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.07.115
– volume: 91
  start-page: 564
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0475
  article-title: Heat transfer and pressure drop correlations of nanofluids: a state of art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.108
– volume: 52
  start-page: 73
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0645
  article-title: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2014.01.012
– volume: 24
  start-page: 825
  issue: 6
  year: 2003
  ident: 10.1016/j.tsep.2022.101267_b0150
  article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2003.08.002
– volume: 4
  start-page: 79
  issue: 1
  year: 2008
  ident: 10.1016/j.tsep.2022.101267_b0510
  article-title: “Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues,” Nanomedicine: Nanotechnology
  publication-title: Biology and Medicine
– volume: 203
  start-page: 101
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0435
  article-title: Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.06.028
– volume: 45
  start-page: 37
  issue: 1
  year: 1987
  ident: 10.1016/j.tsep.2022.101267_b1465
  article-title: Unusual swimming behavior of a magnetotactic bacterium
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6968.1987.tb02336.x
– volume: 23
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1480
  article-title: A magneto-bioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2020.100809
– start-page: 19
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0370
– volume: 67
  start-page: 335
  issue: 3
  year: 2007
  ident: 10.1016/j.tsep.2022.101267_b0215
  article-title: The effect of thermal dispersion on free convection film condensation on a vertical plate with a thin porous layer
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-006-9028-9
– volume: 15
  start-page: 233
  issue: 3
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b1330
  article-title: Nanofluid bioconvection in porous media: oxytactic microorganisms
  publication-title: Journal of Porous Media
  doi: 10.1615/JPorMedia.v15.i3.30
– volume: 143
  start-page: 1201
  issue: 2
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0930
  article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09488-z
– volume: 140
  start-page: 2387
  issue: 5
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1630
  article-title: Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-09009-7
– volume: 138
  start-page: 23
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0105
  article-title: Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.04.005
– volume: 113
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0375
  article-title: Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.06.027
– volume: 83
  start-page: 399
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0090
  article-title: Flow and heat transfer characteristics of nanofluid flowing through metal foams
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.12.024
– volume: 161
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0820
  article-title: Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106705
– volume: 137
  start-page: 1797
  issue: 5
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1035
  article-title: An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08076-0
– volume: 7
  start-page: 1450005
  issue: 01
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b1570
  article-title: Bioconvection in a non-Darcy porous medium saturated with a nanofluid and oxytactic micro-organisms
  publication-title: International Journal of Biomathematics
  doi: 10.1142/S1793524514500053
– volume: 128
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0210
  article-title: Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103778
– year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0025
– volume: 445
  start-page: 121
  year: 2001
  ident: 10.1016/j.tsep.2022.101267_b1550
  article-title: Falling plumes in bacterial bioconvection
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001005547
– volume: 94
  issue: 9
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1140
  article-title: Solidification entropy generation via FEM through a porous storage unit with applying a magnetic field
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab19ea
– volume: 145
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1520
  article-title: Renewable energy technology for the sustainable development of thermal system with entropy measures
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118713
– volume: 103
  start-page: 556
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0520
  article-title: Recent advances in application of nanofluids in heat transfer devices: a critical review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.12.057
– volume: 1126
  start-page: 70
  issue: 1–2
  year: 2006
  ident: 10.1016/j.tsep.2022.101267_b0170
  article-title: Transition from creeping via viscous-inertial to turbulent flow in fixed beds
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.06.011
– volume: 106
  start-page: 518
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0265
  article-title: Generation of entropy and forced convection of heat in a conduit partially filled with porous media–local thermal non-equilibrium and exothermicity effects
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.06.036
– volume: 37
  start-page: 275
  issue: 3
  year: 1981
  ident: 10.1016/j.tsep.2022.101267_b0705
  article-title: On the viscosity of suspensions of solid spheres
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00951252
– year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1530
  article-title: Impact of activation energy and gyrotactic microorganisms on flow of Casson hybrid nanofluid over a rotating moving disk
  publication-title: Heat Transfer
  doi: 10.1002/htj.22129
– volume: 53
  start-page: 227
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0695
  article-title: Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2013.12.013
– volume: 65
  start-page: 67
  issue: 1–3
  year: 2011
  ident: 10.1016/j.tsep.2022.101267_b1015
  article-title: Navier–Stokes and Lattice-Boltzmann on octree-like grids in the Peano framework
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.2469
– volume: 58
  start-page: 184
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0250
  article-title: Validation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bed
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2014.08.039
– volume: 89
  start-page: 421
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1640
  article-title: Thermo-bioconvection in horizontal wavy-walled porous annulus
  publication-title: European Journal of Mechanics-B/Fluids
  doi: 10.1016/j.euromechflu.2021.07.006
– volume: 349
  start-page: 75
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0440
  article-title: Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.030
– volume: 135
  start-page: 671
  issue: 1
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0780
  article-title: Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7181-3
– volume: 120
  start-page: 350
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1230
  article-title: Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.12.093
– volume: 77
  start-page: 551
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1225
  article-title: State-of-art review on hybrid nanofluids
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.040
– volume: 57
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0895
  article-title: Natural and mixed convection of a nanofluid in porous cavities: critical analysis using Buongiorno’s model
  publication-title: Journal of Theoretical and Applied Mechanics
  doi: 10.15632/jtam-pl.57.1.221
– volume: 173
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0965
  article-title: Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy-Forchheimer-Brinkman model coupled with multiphase Eulerian model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115231
– volume: 201
  start-page: 333
  year: 1910
  ident: 10.1016/j.tsep.2022.101267_b1235
  article-title: On the Effect of Gravity Upon the Movements and Aggregation of Euglena Viridis, Ehrb., and Other Micro-Organisms
  publication-title: Philos. Trans. R. Soc. Lond.
– volume: 100
  start-page: 372
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0670
  article-title: Two-phase and single phase models of flow of nanofluid in a square cavity: comparison with experimental results
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.10.005
– volume: 49
  start-page: 626
  issue: 1
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0950
  article-title: “Numerical computation on Marangoni convective flow of two-phase MHD dusty nanofluids under Brownian motion and thermophoresis effects,” Heat Transfer—Asian
  publication-title: Research
– volume: 13
  start-page: 6033
  issue: 36
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1275
  article-title: Modeling of active swimmer suspensions and theirinteractions with the environment
  publication-title: Soft Matter
  doi: 10.1039/C7SM00766C
– volume: 291
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1260
  article-title: Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111231
– volume: 45
  start-page: 857
  issue: 6
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0220
  article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle
  publication-title: Heat Transfer Research
– volume: 160
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0295
  article-title: The effects of variable porosity and cell size on the thermal performance of functionally-graded foams
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106696
– volume: 112
  start-page: 2389
  issue: 7
  year: 2008
  ident: 10.1016/j.tsep.2022.101267_b0615
  article-title: Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp0772629
– volume: 135
  start-page: 1595
  issue: 2
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1030
  article-title: Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7829-z
– volume: 77
  start-page: 308
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0450
  article-title: Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.12.016
– ident: 10.1016/j.tsep.2022.101267_b1420
  doi: 10.1007/978-981-10-5329-0_1
– year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1625
  article-title: Manninen’s mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 168
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0330
  article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114843
– volume: 118
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1410
  article-title: Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104893
– volume: 127
  start-page: 914
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1135
  article-title: Nanofluid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.101
– volume: 143
  issue: 1
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0290
  article-title: Numerical consideration of LTNE and darcy extended forchheimer models for the analysis of forced convection in a horizontal pipe in the presence of metal foam
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4048622
– volume: 296
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0585
  article-title: An updated review on the influential parameters on thermal conductivity of nano-fluids
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111780
– volume: 29
  start-page: 432
  issue: 5
  year: 2008
  ident: 10.1016/j.tsep.2022.101267_b0490
  article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630701850851
– volume: 182
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0775
  article-title: Experimental study and CFD modelling on the thermal and flow behavior of EG/water ZnO nanofluid in multiport mini channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116089
– volume: 96
  issue: 5
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1535
  article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abeba2
– year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1425
  article-title: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.22735
– volume: 171
  start-page: 229
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0975
  article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.083
– volume: 878
  start-page: 62
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0825
  article-title: Numerical investigation of nanofluid particle migration and convective heat transfer in microchannels using an Eulerian-Lagrangian approach
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.606
– volume: 45
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1145
  article-title: A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors
  publication-title: Sustainable Energy Technol. Assess.
– volume: 74
  start-page: 252
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0830
  article-title: A two-phase simulation for ferrofluid flow between two parallel plates under localized magnetic field by applying Lagrangian approach for nanoparticles
  publication-title: European Journal of Mechanics-B/Fluids
  doi: 10.1016/j.euromechflu.2018.08.010
– volume: 178
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0415
  article-title: Assessment and optimization of exhaust gas heat exchanger with porous baffles and porous fins
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115446
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0315
  article-title: Three-dimensional porous copper-graphene heterostructures with durability and high heat dissipation performance
  publication-title: Sci. Rep.
  doi: 10.1038/srep12710
– volume: 383
  start-page: 240
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1195
  article-title: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.04.181
– volume: 292
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0630
  article-title: Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111377
– volume: 50
  start-page: 5123
  issue: 5
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1585
  article-title: Impact of Soret and Dufour on bioconvective flow of nanofluid in porous square cavity
  publication-title: Heat Transfer
  doi: 10.1002/htj.22118
– volume: 29
  start-page: 4549
  issue: 12
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0915
  article-title: Free convection in an inclined cavity filled with a nanofluid and with sinusoidal temperature on the walls: Buongiorno’s mathematical model
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/HFF-04-2019-0317
– volume: 16
  start-page: 811
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0920
  article-title: Unsteady magnetohydrodynamic radiative liquid thin film flow of hybrid nanofluid with thermophoresis and Brownian motion
  publication-title: Multidiscipline Modeling in Materials and Structures
  doi: 10.1108/MMMS-08-2019-0160
– volume: 134
  start-page: 85
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1090
  article-title: Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.09.045
– ident: 10.1016/j.tsep.2022.101267_b1515
  doi: 10.1177/09544089211007326
– volume: 33
  start-page: 529
  issue: 4
  year: 2006
  ident: 10.1016/j.tsep.2022.101267_b0655
  article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2006.01.005
– volume: 68
  start-page: 22
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0005
  article-title: Passive heat transfer enhancement review in corrugation
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2015.04.012
– volume: 133
  start-page: 1766
  year: 1961
  ident: 10.1016/j.tsep.2022.101267_b1315
  article-title: “Bioconvection patterns” in cultures of free swimming organisms
  publication-title: Science
  doi: 10.1126/science.133.3466.1766
– volume: 41
  start-page: 4626
  issue: 11
  year: 1970
  ident: 10.1016/j.tsep.2022.101267_b0715
  article-title: Generalized equation for the elastic moduli of composite materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1658506
– volume: 13
  start-page: 27
  issue: 1
  year: 1980
  ident: 10.1016/j.tsep.2022.101267_b0755
  article-title: Effective thermal conductivity of dispersed materials
  publication-title: Wärme-und Stoffübertragung
  doi: 10.1007/BF00997630
– volume: 29
  start-page: 175
  year: 2002
  ident: 10.1016/j.tsep.2022.101267_b1360
  article-title: A 2D Analysis of bioconvection in a fluid saturated porous medium – estimation of the critical permeability value
  publication-title: International communication in heat and mass transfer
  doi: 10.1016/S0735-1933(02)00308-1
– volume: 52
  start-page: 449
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1305
  article-title: Advances in Bioconvection
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010518-040558
– year: 2014
  ident: 10.1016/j.tsep.2022.101267_b1645
– volume: 22
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1525
  article-title: Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2020.100798
– volume: 81
  start-page: 813
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0070
  article-title: A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.060
– volume: 223
  start-page: 725
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1415
  article-title: On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.08.109
– volume: 103
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b1590
  article-title: Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-014-0297-4
– volume: 190
  start-page: 169
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b0605
  article-title: Up to date review on the synthesis and thermophysical properties of hybrid nanofluids
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.04.146
– volume: 69
  start-page: 47
  year: 2000
  ident: 10.1016/j.tsep.2022.101267_b1365
  article-title: Biomass evolution in porous media and its effects on permeability under starvation conditions
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(20000705)69:1<47::AID-BIT6>3.0.CO;2-N
– volume: 48
  start-page: 4342
  issue: 8
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0240
  article-title: Numerical study and sensitivity analysis on convective heat transfer enhancement in a heat pipe partially filled with porous material using LTE and LTNE methods
  publication-title: Heat Transfer-Asian Research
  doi: 10.1002/htj.21595
– volume: 13
  start-page: 3793
  issue: 15
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0650
  article-title: Efficient Stabilization of Mono and Hybrid Nanofluids
  publication-title: Energies
  doi: 10.3390/en13153793
– volume: 18
  issue: 10
  year: 2007
  ident: 10.1016/j.tsep.2022.101267_b0620
  article-title: Application of hybrid sphere/carbon nanotube particles in nanofluids
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/10/105701
– volume: 52
  start-page: 2042
  issue: 7–8
  year: 2009
  ident: 10.1016/j.tsep.2022.101267_b0725
  article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.10.025
– ident: 10.1016/j.tsep.2022.101267_b1205
  doi: 10.1016/j.scitotenv.2020.144202
– volume: 86
  start-page: 325
  year: 1952
  ident: 10.1016/j.tsep.2022.101267_b1320
  article-title: Concerning Pattern Formation by Free-Swimming Microorganisms
  publication-title: Am. Nat.
  doi: 10.1086/281740
– volume: 2
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b0485
  article-title: Applications of nanofluids: current and future
  publication-title: Advances in mechanical engineering
  doi: 10.1155/2010/519659
– volume: 9
  start-page: 7565
  issue: 22
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0305
  article-title: Porous copper–graphene heterostructures for cooling of electronic devices
  publication-title: Nanoscale
  doi: 10.1039/C7NR01869J
– volume: 49
  start-page: 444
  year: 2015
  ident: 10.1016/j.tsep.2022.101267_b0045
  article-title: Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.113
– volume: 161
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0875
  article-title: Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes Configuration
  publication-title: Int. J. Mech. Sci.
– volume: 322
  start-page: 3895
  issue: 24
  year: 2010
  ident: 10.1016/j.tsep.2022.101267_b0570
  article-title: Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.08.016
– volume: 38
  start-page: 67
  issue: 1
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1485
  article-title: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-015-0313-9
– volume: 102
  start-page: 971
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0860
  article-title: Numerical simulation on forced thermal flow of nanofluid in the gap between co-axial cylinders with rotational inner spindle
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.06.095
– volume: 55
  start-page: 874
  issue: 4
  year: 2012
  ident: 10.1016/j.tsep.2022.101267_b0730
  article-title: Latest developments on the viscosity of nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.10.021
– volume: 13
  start-page: 46
  issue: 4
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b0800
  article-title: Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
  publication-title: Iranian Journal of Chemical Engineering (IJChE)
– volume: 6
  issue: 12
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1405
  article-title: Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05832
– volume: 36975
  start-page: 2083
  year: 2003
  ident: 10.1016/j.tsep.2022.101267_b1555
  article-title: A Theoretical Prediction of Laminar Falling Plumes in Bioconvection of Oxytactic Bacteria in Porous Media
  publication-title: Fluids Engineering Division Summer Meeting
– volume: 26
  start-page: 530
  issue: 4
  year: 2005
  ident: 10.1016/j.tsep.2022.101267_b0795
  article-title: Heat transfer enhancement by using nanofluids in forced convection flows
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2005.02.004
– volume: 139
  start-page: 411
  issue: 1
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0405
  article-title: The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08362-x
– year: 2021
  ident: 10.1016/j.tsep.2022.101267_b1575
  article-title: Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with Cu–water nanofluid
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 195
  start-page: 462
  year: 2019
  ident: 10.1016/j.tsep.2022.101267_b0085
  article-title: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.09.045
– ident: 10.1016/j.tsep.2022.101267_b0480
– volume: 31
  start-page: 427
  year: 2014
  ident: 10.1016/j.tsep.2022.101267_b0530
  article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.017
– year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0735
– volume: 325
  start-page: 78
  year: 2018
  ident: 10.1016/j.tsep.2022.101267_b1160
  article-title: Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.10.040
– volume: 114
  start-page: 1086
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0100
  article-title: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.001
– year: 2019
  ident: 10.1016/j.tsep.2022.101267_b1620
  article-title: Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/HFF-05-2018-0238
– volume: 42
  start-page: 12485
  issue: 17
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0445
  article-title: Improvement of corrosion properties of porous alloy supports for solid oxide fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.170
– volume: 55
  start-page: 549
  issue: 6
  year: 2006
  ident: 10.1016/j.tsep.2022.101267_b0495
  article-title: Synthesis and characterization of nanofluid for advanced heat transfer applications
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.05.030
– volume: 30
  start-page: 3329
  issue: 11
  year: 1987
  ident: 10.1016/j.tsep.2022.101267_b0185
  article-title: Analysis of the Brinkman equation as a model for flow in porous media
  publication-title: The Physics of fluids
  doi: 10.1063/1.866465
– volume: 23
  start-page: 2263
  issue: 18
  year: 2013
  ident: 10.1016/j.tsep.2022.101267_b0320
  article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202638
– volume: 199
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0955
  article-title: Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117402
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b0970
  article-title: Eulerian CFD model of direct absorption solar collector with nanofluid
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/1.5144737
– volume: 52
  start-page: 789
  issue: 1
  year: 2011
  ident: 10.1016/j.tsep.2022.101267_b0750
  article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.06.072
– volume: 55
  start-page: 2048
  issue: 5
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b1615
  article-title: Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2017.08.005
– volume: 115
  start-page: 657
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0275
  article-title: Determination of the stress jump coefficient, the interstitial heat transfer coefficient and the interface heat transfer coefficient in a porous composite system
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.083
– volume: 9
  start-page: 10468
  issue: 5
  year: 2020
  ident: 10.1016/j.tsep.2022.101267_b1500
  article-title: Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy
  publication-title: ournal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2020.07.025
– volume: 107
  start-page: 181
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0335
  article-title: Experimental study of using γ-Al2O3–water nanofluid flow through aluminum foam heat sink: comparison with numerical approach
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.037
– volume: 188
  year: 2021
  ident: 10.1016/j.tsep.2022.101267_b0980
  article-title: Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: an Eulerian approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116624
– volume: 12
  start-page: 243
  year: 2017
  ident: 10.1016/j.tsep.2022.101267_b0525
  article-title: Investigations on latent heat storage materials for solar water and space heating applications
  publication-title: J. Storage Mater.
– volume: 24
  start-page: 313
  year: 1992
  ident: 10.1016/j.tsep.2022.101267_b1240
  article-title: Hydrodynamic phenomena in suspensions of swimming microorganisms
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.24.010192.001525
– volume: 220
  start-page: 518
  year: 2016
  ident: 10.1016/j.tsep.2022.101267_b1270
  article-title: Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.04.097
SSID ssj0002584398
Score 2.5384011
SecondaryResourceType review_article
Snippet •Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101267
SubjectTerms Active methods
Bioconvection
Heat transfer enhancement
Hybrid nanofluid
Microorganism
Nanofluid
Passive methods
Porous media
Title A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms
URI https://dx.doi.org/10.1016/j.tsep.2022.101267
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zu-hB_Im_ycGbK2vTpkuPYzim4i462K2kSYoTbYft_Pt9r8nGBNnBY0MfhC_hve-F995HyG3iS78vJWQngRZeZKT08GXQizIICIGvpK-xUfh5Eo-n0eOMz1pkuOqFwbJK5_utT2-8tVvpOTR7i_m898JwMgoQXMaaQJjskA4Lkxiudmfw8DSerJ9aGATZsFHFRRMPbVz7jK30qiuDkysZwwXWKM7_EaI2ws7ogOw7vkgHdkuHpGWKI7K3MUXwmHwPqHKCBdR2otAyp-hkad3QUvNFTfGGx4tPgdSKRld0XlBgf3TRNCApg0ZAxstlRZt2ki4tZFHmH8u5rrpUFpp-YvGelYGqPqsTMh3dvw7HnpNT8FTo-7UnEi5FLiFlCoJ-oPOQKy5lwIyImIziTEkh4kD7KtJZFmoFyUrMIf2IBNcCeF94StpFWZgzQjXLFawkWRbjhDcmAFLO-wpyPQAwC89JsEIwVW7WOEpefKSrorL3FFFPEfXUon5O7tY2CztpY-vffHUw6a_7kkIo2GJ38U-7S7KLX7bU8Yq066-luQY6Umc37rr9AHG73WA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdgAGxKconx7YaNTEiVN3rCpQS6ELRWKLHNsRRSWtSMrvxxe7VZEQA6uTk6xn6-6ddXcP4KbrC78jhMlOAsW9SAvh4cugF6UmIAS-FL7CRuGncTx4iR5e2WsN-qteGCyrdL7f-vTKW7uVtkOzvZhO288UJ6MYgktpFQi7W9DA6VSsDo3ecDQYr59aqAmyYaWKiyYe2rj2GVvpVRYaJ1dSigu0Upz_JURthJ37fdhzfJH07JYOoKbzQ9jdmCJ4BF89Ip1gAbGdKGSeEXSypKxoqf4kOn_D48WnQGJFowsyzYlhf2RRNSBJjUaGjM-XBanaSVokF_k8my2nqmgRkSvygcV7Vgaq-CiO4eX-btIfeE5OwZOh75ce7zLBM2FSpiDoBCoLmWRCBFTziIooTqXgPA6ULyOVpqGSJlmJmUk_Is4UN7wvPIF6Ps_1KRBFM2lWumka44Q3yg2kjHWkyfUMgGnYhGCFYCLdrHGUvJglq6Ky9wRRTxD1xKLehNu1zcJO2vjzb7Y6mOTHfUlMKPjD7uyfdtewPZg8PSaPw_HoHHbwiy17vIB6-bnUl4aalOmVu3rf6NDgRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+review+of+heat+transfer+enhancement+methods+in+the+presence+of+porous+media%2C+nanofluids%2C+and+microorganisms&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Habibishandiz%2C+M.&rft.au=Saghir%2C+M.Z.&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=30&rft_id=info:doi/10.1016%2Fj.tsep.2022.101267&rft.externalDocID=S2451904922000749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon