A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms
•Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation, microorganisms increase heat transfer.•No experimental studies have been done so far regarding microorganisms nanofluid flow in porous media.•Ut...
Saved in:
Published in | Thermal science and engineering progress Vol. 30; p. 101267 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2451-9049 2451-9049 |
DOI | 10.1016/j.tsep.2022.101267 |
Cover
Loading…
Abstract | •Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation, microorganisms increase heat transfer.•No experimental studies have been done so far regarding microorganisms nanofluid flow in porous media.•Utilization of different microorganisms’ types could be capable of increasing heat transfer.
A current common topic of study among scientists and engineers is how to reduce energy usage.As the loading power of engineering devices is constantly upgrading, while they are becoming more and more compacted according to the market demand and in terms of less material consumption, thermal management is getting more complicated. Accordingly, three techniques are proposed to enhance heat transfer including passive, active, and compound (combination of passive and active) methods. Active methods enjoyexternal power sources, while passive methods mostly rely on modification of heat exchange surfaces without the need for any auxiliary tools. In the current paper, an extensive literature review is conducted for three widely used passive techniques including porous media, nanofluids, and microorganisms. Based on studies reviewed here, although hybrid (combination of more than one heat transfer enhancement method) passive methods could accelerate the rate of heat transfer, their productivity depends on whether the heat transfer enhancement acquired compensates the further induced pressure drops or not. Also, although an inconsistency was observed among published articles about the role of microorganisms’ presence in heat transfer intensification of nanofluid flow inside the porous medium, the overwhelming majority of studies proved the contributing role of microorganisms on heat transfer enhancement. There is a great deal of innovative thinking incorporated throughout this review article regarding future studies, and it concludes with key questions for further investigations. |
---|---|
AbstractList | •Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation, microorganisms increase heat transfer.•No experimental studies have been done so far regarding microorganisms nanofluid flow in porous media.•Utilization of different microorganisms’ types could be capable of increasing heat transfer.
A current common topic of study among scientists and engineers is how to reduce energy usage.As the loading power of engineering devices is constantly upgrading, while they are becoming more and more compacted according to the market demand and in terms of less material consumption, thermal management is getting more complicated. Accordingly, three techniques are proposed to enhance heat transfer including passive, active, and compound (combination of passive and active) methods. Active methods enjoyexternal power sources, while passive methods mostly rely on modification of heat exchange surfaces without the need for any auxiliary tools. In the current paper, an extensive literature review is conducted for three widely used passive techniques including porous media, nanofluids, and microorganisms. Based on studies reviewed here, although hybrid (combination of more than one heat transfer enhancement method) passive methods could accelerate the rate of heat transfer, their productivity depends on whether the heat transfer enhancement acquired compensates the further induced pressure drops or not. Also, although an inconsistency was observed among published articles about the role of microorganisms’ presence in heat transfer intensification of nanofluid flow inside the porous medium, the overwhelming majority of studies proved the contributing role of microorganisms on heat transfer enhancement. There is a great deal of innovative thinking incorporated throughout this review article regarding future studies, and it concludes with key questions for further investigations. |
ArticleNumber | 101267 |
Author | Habibishandiz, M. Saghir, M.Z. |
Author_xml | – sequence: 1 givenname: M. surname: Habibishandiz fullname: Habibishandiz, M. email: mhabibishandiz@ryerson.ca – sequence: 2 givenname: M.Z. surname: Saghir fullname: Saghir, M.Z. |
BookMark | eNp9kM1KAzEQgINUsNa-gKc8QFuT7GabBS-l-AcFL3oO02TWpuwmJYkV395d6kE89DTDzHwzzHdNRj54JOSWswVnvLrbL3LCw0IwIYaCqJYXZCxKyec1K-vRn_yKTFPaM8aEVGVRqzE5rqiJLjsDLY14dPhFQ0N3CJnmCD41GCn6HXiDHfpMO8y7YBN1nuYd0kPEhH1vgA4hhs_UT1gHM-rBh6b9dDbNKHhLO2diCPEDvEtduiGXDbQJp79xQt4fH97Wz_PN69PLerWZm4KxPFe1BNWAqDjnS26bQhoJwAWqUkBZbQ0oVXHLTGm328IawZeV5EqUSlolK1lMiDrt7Y-nFLHRxmXILvj-O9dqzvSgUO_1oFAPCvVJYY-Kf-ghug7i93no_gRh_1RvM-pk3CDIuogmaxvcOfwHIlWOGQ |
CitedBy_id | crossref_primary_10_1115_1_4065722 crossref_primary_10_1002_ente_202401370 crossref_primary_10_1080_10407782_2024_2343031 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126199 crossref_primary_10_1108_HFF_03_2023_0113 crossref_primary_10_1016_j_ijheatfluidflow_2023_109258 crossref_primary_10_1111_jace_19177 crossref_primary_10_3390_en18040976 crossref_primary_10_3390_axioms12020199 crossref_primary_10_1002_htj_23185 crossref_primary_10_1134_S106373972460033X crossref_primary_10_1016_j_icheatmasstransfer_2023_106764 crossref_primary_10_2298_TSCI2304269A crossref_primary_10_1108_HFF_04_2023_0193 crossref_primary_10_1016_j_cscee_2023_100556 crossref_primary_10_1155_2024_3398551 crossref_primary_10_3390_en17102350 crossref_primary_10_1016_j_padiff_2024_100893 crossref_primary_10_1016_j_est_2024_113777 crossref_primary_10_1007_s10973_024_13071_1 crossref_primary_10_1108_HFF_08_2022_0485 crossref_primary_10_3390_geosciences14040103 crossref_primary_10_3390_en15218207 crossref_primary_10_1016_j_solener_2022_10_054 crossref_primary_10_3390_math11071685 crossref_primary_10_1615_NanoSciTechnolIntJ_2022045536 crossref_primary_10_1080_10407782_2024_2357586 crossref_primary_10_1080_10407790_2023_2292157 crossref_primary_10_1002_zamm_202400132 crossref_primary_10_1007_s10973_023_12861_3 crossref_primary_10_1088_1402_4896_acbdc7 crossref_primary_10_1166_jon_2023_2089 crossref_primary_10_1080_17455030_2023_2226230 crossref_primary_10_1615_InterfacPhenomHeatTransfer_2024053905 crossref_primary_10_1007_s13369_024_09301_1 crossref_primary_10_1002_htj_23123 crossref_primary_10_1088_1402_4896_ada194 crossref_primary_10_1515_ntrev_2022_0526 crossref_primary_10_3389_fenrg_2023_1288515 crossref_primary_10_1080_10407782_2024_2326200 crossref_primary_10_1007_s00396_024_05233_2 crossref_primary_10_1016_j_est_2024_112306 crossref_primary_10_1080_10420150_2024_2381239 crossref_primary_10_1007_s10973_023_12553_y crossref_primary_10_1038_s41598_023_48412_x crossref_primary_10_1002_htj_23017 crossref_primary_10_1002_zamm_202300281 crossref_primary_10_3390_bioengineering9110656 crossref_primary_10_1080_10407790_2023_2262747 crossref_primary_10_1016_j_applthermaleng_2023_120584 crossref_primary_10_1038_s41598_025_85236_3 crossref_primary_10_1166_jon_2024_2138 crossref_primary_10_1142_S0217984924504505 crossref_primary_10_3390_su15129448 crossref_primary_10_1007_s10973_023_12610_6 |
Cites_doi | 10.1016/S0735-1933(04)00050-8 10.1016/j.fluiddyn.2005.03.002 10.1016/j.ijthermalsci.2016.09.001 10.1615/JPorMedia.v15.i7.20 10.1002/andp.19063240204 10.3390/molecules26133954 10.1038/ncomms7400 10.1016/j.applthermaleng.2013.11.072 10.1016/j.physa.2019.123887 10.1016/j.geothermics.2020.102016 10.1016/j.applthermaleng.2018.10.130 10.3103/S106879981301011X 10.1016/j.apt.2020.12.005 10.1007/s00231-017-1987-6 10.1063/1.5008969 10.1016/j.aej.2016.11.011 10.1016/j.ijheatmasstransfer.2016.11.031 10.1166/jon.2018.1461 10.1115/1.4000951 10.1007/s10404-009-0524-4 10.1016/j.icheatmasstransfer.2018.12.010 10.1615/JEnhHeatTransf.2018024886 10.1063/1.1460879 10.1016/j.ijmecsci.2017.09.031 10.1016/j.powtec.2021.01.045 10.1063/1.1700493 10.1016/S0735-1933(03)00196-9 10.1016/j.ijheatfluidflow.2012.05.005 10.1016/j.ijft.2020.100055 10.1007/s10973-016-5436-4 10.1016/S0301-9322(02)00108-8 10.1016/j.apt.2015.03.012 10.1016/j.tca.2007.06.009 10.1080/10407782.2016.1230423 10.1017/S0022112077001062 10.1017/jmech.2017.73 10.1007/s10973-018-7520-4 10.1021/cr400295a 10.1016/j.physa.2020.125617 10.1016/j.jmmm.2006.11.158 10.1002/smll.201702982 10.1016/j.expthermflusci.2017.03.008 10.3844/ajassp.2012.436.439 10.1016/j.coche.2018.03.003 10.1016/j.spmi.2003.09.012 10.1115/1.4037087 10.1115/1.2352789 10.1016/j.ijmecsci.2017.03.007 10.1016/j.tsep.2020.100693 10.3390/en14010080 10.1016/j.ijheatmasstransfer.2014.03.026 10.1016/j.apcatb.2010.06.001 10.1016/j.ijheatmasstransfer.2014.05.053 10.1016/j.icheatmasstransfer.2010.08.015 10.1115/1.4048122 10.1615/JPorMedia.2021036551 10.1016/j.cja.2018.06.011 10.1016/j.rser.2018.04.091 10.1002/aic.690490420 10.1007/s10973-019-08191-y 10.1016/j.ijhydene.2016.09.211 10.1007/s10973-020-10480-w 10.1108/09615530310464535 10.1146/annurev.fl.04.010172.000521 10.1016/j.ces.2019.03.006 10.1007/s00521-017-3165-7 10.1016/j.cej.2017.01.069 10.1146/annurev-fluid-120710-101156 10.1016/j.molliq.2016.05.089 10.1016/j.ijthermalsci.2011.03.008 10.1016/j.molliq.2016.12.039 10.1080/01430750.2015.1023843 10.1080/17458080.2014.989551 10.1615/HeatTransRes.2015005342 10.1016/j.cep.2018.04.018 10.1142/S021951941350067X 10.1016/j.cjche.2020.07.025 10.1016/j.apt.2016.10.002 10.1108/EUM0000000004124 10.1016/j.ijthermalsci.2016.06.007 10.1016/j.ijthermalsci.2012.01.011 10.1016/j.ijheatmasstransfer.2013.03.012 10.29252/jafm.75.253.28744 10.1016/j.ijheatmasstransfer.2013.09.039 10.1007/s13369-020-05132-y 10.1016/j.jclepro.2021.128365 10.3390/e22010018 10.32604/cmes.2020.09009 10.1016/j.jpowsour.2013.04.156 10.1016/j.renene.2019.10.084 10.1016/j.cjph.2020.12.022 10.1016/j.enbuild.2016.04.006 10.1016/j.rser.2014.11.023 10.1016/j.icheatmasstransfer.2017.08.009 10.1080/10407782.2017.1345270 10.1115/1.1416690 10.1016/j.ijheatmasstransfer.2017.06.030 10.1016/j.solmat.2019.01.050 10.1016/j.ijmecsci.2017.06.030 10.1007/s10483-020-2609-6 10.1016/j.ifset.2016.01.007 10.1016/j.cjche.2017.01.015 10.1007/s10891-016-1437-1 10.1038/326655a0 10.1016/j.ijheatmasstransfer.2007.10.017 10.1007/BF02120313 10.1515/ntrev-2020-0094 10.1016/j.rser.2005.07.002 10.1016/j.icheatmasstransfer.2013.02.012 10.1016/j.physrep.2018.11.004 10.1016/j.icheatmasstransfer.2020.104842 10.1023/A:1023582001592 10.1021/i160003a005 10.1016/j.jare.2020.09.008 10.1016/j.ijheatmasstransfer.2017.06.021 10.2514/2.6486 10.1016/j.applthermaleng.2019.114612 10.1039/C5EN00075K 10.2298/TSCI150424128S 10.1016/j.molliq.2018.04.119 10.1016/j.ijheatmasstransfer.2018.10.072 10.1016/j.rinp.2016.10.016 10.2514/1.T3983 10.1146/annurev.fl.09.010177.002011 10.1016/j.ijheatmasstransfer.2013.01.083 10.1016/0092-8240(94)00038-E 10.1007/s10973-019-08651-5 10.1007/s13369-019-03956-x 10.1142/S0219519417500592 10.1209/0295-5075/109/50001 10.1016/j.rser.2018.07.032 10.1122/1.548848 10.1016/j.icheatmasstransfer.2009.07.013 10.1016/j.applthermaleng.2020.115259 10.1115/1.2150834 10.1016/j.energy.2016.10.101 10.1016/j.jcp.2012.08.040 10.1115/1.4024387 10.1115/1.4039213 10.1016/j.enconman.2013.07.022 10.1016/j.ijheatmasstransfer.2007.03.009 10.1155/2018/6978130 10.1016/j.expthermflusci.2011.11.007 10.1016/j.ijheatmasstransfer.2017.12.075 10.1016/j.apenergy.2019.03.200 10.1039/C4LC01095G 10.1051/matecconf/201822001004 10.1016/j.renene.2017.08.059 10.1615/JPorMedia.2020027144 10.1016/j.molliq.2020.112787 10.1115/FEDSM2002-31105 10.1016/j.powtec.2020.12.037 10.1016/0021-9797(73)90225-7 10.1016/j.applthermaleng.2020.115543 10.1063/1.2192971 10.52292/j.laar.2018.259 10.1080/01457632.2015.1052682 10.3390/math8030380 10.1016/j.icheatmasstransfer.2018.07.002 10.1016/j.molliq.2020.114430 10.1016/j.expthermflusci.2015.11.009 10.1016/j.applthermaleng.2019.114163 10.1016/j.jtice.2012.12.018 10.1016/S0735-1933(01)00291-3 10.1166/jon.2019.1650 10.1142/S0217979209060270 10.3390/coatings10040391 10.1016/j.icheatmasstransfer.2021.105209 10.1016/j.renene.2017.07.008 10.1108/HFF-10-2016-0398 10.1016/j.solener.2020.03.047 10.1142/S0218339016500212 10.1016/j.compgeo.2015.06.021 10.1007/s10483-016-2044-9 10.1016/j.ijheatmasstransfer.2015.06.088 10.1016/j.powtec.2020.07.115 10.1016/j.rser.2018.03.108 10.1016/j.icheatmasstransfer.2014.01.012 10.1016/j.ijheatfluidflow.2003.08.002 10.1016/j.apenergy.2017.06.028 10.1111/j.1574-6968.1987.tb02336.x 10.1016/j.csite.2020.100809 10.1007/s11242-006-9028-9 10.1615/JPorMedia.v15.i3.30 10.1007/s10973-020-09488-z 10.1007/s10973-019-09009-7 10.1016/j.oceaneng.2017.04.005 10.1016/j.rser.2019.06.027 10.1016/j.ijheatmasstransfer.2014.12.024 10.1016/j.ijthermalsci.2020.106705 10.1007/s10973-019-08076-0 10.1142/S1793524514500053 10.1016/j.compgeo.2020.103778 10.1017/S0022112001005547 10.1088/1402-4896/ab19ea 10.1016/j.ijheatmasstransfer.2019.118713 10.1016/j.rser.2018.12.057 10.1016/j.chroma.2006.06.011 10.1016/j.applthermaleng.2016.06.036 10.1007/BF00951252 10.1002/htj.22129 10.1016/j.expthermflusci.2013.12.013 10.1002/fld.2469 10.1016/j.icheatmasstransfer.2014.08.039 10.1016/j.euromechflu.2021.07.006 10.1016/j.jpowsour.2017.03.030 10.1007/s10973-018-7181-3 10.1016/j.renene.2017.12.093 10.1016/j.rser.2017.04.040 10.15632/jtam-pl.57.1.221 10.1016/j.applthermaleng.2020.115231 10.1016/j.ijthermalsci.2015.10.005 10.1039/C7SM00766C 10.1016/j.molliq.2019.111231 10.1016/j.ijthermalsci.2020.106696 10.1021/jp0772629 10.1007/s10973-018-7829-z 10.1016/j.renene.2014.12.016 10.1007/978-981-10-5329-0_1 10.1016/j.applthermaleng.2019.114843 10.1016/j.icheatmasstransfer.2020.104893 10.1016/j.ijheatmasstransfer.2018.06.101 10.1115/1.4048622 10.1016/j.molliq.2019.111780 10.1080/01457630701850851 10.1016/j.applthermaleng.2020.116089 10.1088/1402-4896/abeba2 10.1002/num.22735 10.1016/j.solener.2018.06.083 10.1017/jfm.2019.606 10.1016/j.euromechflu.2018.08.010 10.1016/j.applthermaleng.2020.115446 10.1038/srep12710 10.1016/j.apsusc.2016.04.181 10.1016/j.molliq.2019.111377 10.1002/htj.22118 10.1108/HFF-04-2019-0317 10.1108/MMMS-08-2019-0160 10.1016/j.ijmecsci.2017.09.045 10.1177/09544089211007326 10.1016/j.icheatmasstransfer.2006.01.005 10.1016/j.expthermflusci.2015.04.012 10.1126/science.133.3466.1766 10.1063/1.1658506 10.1007/BF00997630 10.1016/S0735-1933(02)00308-1 10.1146/annurev-fluid-010518-040558 10.1016/j.csite.2020.100798 10.1016/j.rser.2017.08.060 10.1016/j.molliq.2016.08.109 10.1007/s11242-014-0297-4 10.1016/j.jclepro.2018.04.146 10.1002/(SICI)1097-0290(20000705)69:1<47::AID-BIT6>3.0.CO;2-N 10.1002/htj.21595 10.3390/en13153793 10.1088/0957-4484/18/10/105701 10.1016/j.ijheatmasstransfer.2008.10.025 10.1016/j.scitotenv.2020.144202 10.1086/281740 10.1155/2010/519659 10.1039/C7NR01869J 10.1016/j.rser.2015.04.113 10.1016/j.jmmm.2010.08.016 10.1007/s40430-015-0313-9 10.1016/j.ijheatmasstransfer.2016.06.095 10.1016/j.ijheatmasstransfer.2011.10.021 10.1016/j.heliyon.2020.e05832 10.1016/j.ijheatfluidflow.2005.02.004 10.1007/s10973-019-08362-x 10.1016/j.ces.2018.09.045 10.1016/j.rser.2013.12.017 10.1016/j.powtec.2017.10.040 10.1016/j.ijheatmasstransfer.2017.07.001 10.1108/HFF-05-2018-0238 10.1016/j.ijhydene.2017.03.170 10.1016/j.scriptamat.2006.05.030 10.1063/1.866465 10.1002/adfm.201202638 10.1016/j.energy.2020.117402 10.1063/1.5144737 10.1016/j.enconman.2010.06.072 10.1016/j.cjph.2017.08.005 10.1016/j.ijheatmasstransfer.2017.07.083 10.1016/j.jmrt.2020.07.025 10.1016/j.ijheatmasstransfer.2016.11.037 10.1016/j.applthermaleng.2021.116624 10.1146/annurev.fl.24.010192.001525 10.1016/j.molliq.2016.04.097 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tsep.2022.101267 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2451-9049 |
ExternalDocumentID | 10_1016_j_tsep_2022_101267 S2451904922000749 |
GroupedDBID | --M AACTN AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AGUBO AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FYGXN KOM OAUVE ROL SPC SPCBC SSR SST SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD SSH |
ID | FETCH-LOGICAL-c300t-895a8fa2611171df35c5aa12e842a46bca8861d0c4dbb3dc21765182485d85653 |
IEDL.DBID | AIKHN |
ISSN | 2451-9049 |
IngestDate | Tue Jul 01 03:41:27 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 23 02:39:34 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Heat transfer enhancement Porous media Active methods Nanofluid Bioconvection Microorganism Passive methods Hybrid nanofluid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-895a8fa2611171df35c5aa12e842a46bca8861d0c4dbb3dc21765182485d85653 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tsep_2022_101267 crossref_primary_10_1016_j_tsep_2022_101267 elsevier_sciencedirect_doi_10_1016_j_tsep_2022_101267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Thermal science and engineering progress |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Esfe, Esforjani, Akbari, Karimipour (b0220) 2014; 45 Reddy, Kumar, Ajay (b0450) 2015; 77 Radwan, Ahmed (b0975) 2018; 171 Taheri, Bilgen (b1385) 2007; 50 Biswas, Manna, Mandal, Gorla (b1575) 2021 Abu-Hamdeh, Abusorrah, Bayoumi, Oztop, Sun (b1120) 2021; 144 A. V. Kuznetsov and V. Bubnovich, “Investigation of simultaneous effects of gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media,” vol. 20, no. 4, pp. 571-571, 1952. Chakraborty, Das, Kundu (b1395) 2018; 57 Sardari, Giddings, Grant, Gillott, Walker (b1110) 2020; 148 Bracconi, Ambrosetti, Maestri, Groppi, Tronconi (b0155) 2017; 315 Jourabian, Darzi, Akbari, Toghraie (b1130) 2020; 548 S. Akhter and M. Ashraf, “Darcy–Forchheimer flow of nanofluid with gyrotactic microorganisms using Buongiorno model,” Yang, Niu, Bai, Li, Cui, He (b0365) 2019; 161 Esfe, Bahiraei, Hajbarati, Valadkhani (b0165) 2020; 178 Wakif, Chamkha, Thumma, Animasaun, Sehaqui (b0930) 2021; 143 Okonkwo, Wole-Osho, Kavaz, Abid (b0630) 2019; 292 Xu, Gong, Huang, Xu (b0090) 2015; 83 Nield, Bejan (b0140) 2013 Goudarzi, Shekaramiz, Omidvar, Golab, Karimipour, Karimipour (b0935) 2020; 375 Mehrizi, Farhadi, Sedighi, Delavar (b0420) 2013; 44 K. Elsaid, A. Olabi, T. Wilberforce, M. A. Abdelkareem and E. T. Sayed, “Environmental impacts of nanofluids: a review,” Abbas, Hayat, Ayub, Bhatti, Alsaedi (b1460) 2019; 31 Kalpana, Madhura, Iyengar (b0950) 2020; 49 Pedley, Kessler (b1240) 1992; 24 Ghanbarpour, Haghigi, Khodabandeh (b0695) 2014; 53 Aziz, Khan, Pop (b1265) 2012; 56 Singh, Sah, Sharma (b1215) 2021; 317 Awais, Malik, Bilal, Salahuddin, Hussain (b1540) 2017; 7 Zahmatkesh, Sheremet, Yang, Heris, Sharifpur, Meyer, Ghalambaz, Wongwises, Jing, Mahian (b0580) 2021; 321 Kareem, Jaafar, Lazim, Abdullah, Abdulwahid (b0005) 2015; 68 Shuja, Yilbas, Khan (b0125) 2015; 46 Iasiello, Bianco, Chiu, Naso (b0295) 2021; 160 Kuznetsov, Avramenko (b1355) 2004; 31 Misra, Sarkar (b0225) 1995; 5 Kant, Shukla, Sharma, Kumar, Jain (b0535) 2016; 34 Kuznetsov (b1330) 2012; 15 Belabid, Allali (b1640) 2021; 89 Boomsma, Poulikakos, Ventikos (b0150) 2003; 24 Sheikholeslami, Gorji-Bandpy, Ganji (b0045) 2015; 49 D. Balaji, R. Velraj and M. R. Murthy, “A review of the role of passive techniques on heat transfer enhancement of horizontal tube falling film and flooded evaporators,” Geng, Kuznetsov (b1325) 2004; 31 Durlofsky, Brady (b0185) 1987; 30 Wong, De Leon (b0485) 2010; 2 Hill, Pedley (b1290) 2005; 37 Akbari, Galanis, Behzadmehr (b0665) 2012; 37 Molaeimanesh, Googarchin, Moqaddam (b1000) 2016; 41 Dey, Kumar, Samantaray (b1180) 2017; 46 M. R. Habibi and I. Zahmatkesh, “Double-diffusive natural and mixed convection of binary nanofluids in porous cavities,” Sayar (b0095) 2017; 53 Soares, Laia, Carvalho, Pereira, Coutinho, Ferreira, Novo, Borges (b1195) 2016; 383 Chen, Chen, Cheng (b0860) 2016; 102 Zhou, Lin, Huang, Zhong, Wang, Tang, Bi, Wan, Lin (b0320) 2013; 23 Brennen, Winet (b1295) 1977; 9 Alam, Kim (b0070) 2018; 81 Ghalambaz, Doostani, Chamkha, Ismael (b1090) 2017; 134 Kuznetsov, Jiang (b1285) 2003; 13 Wciślik (b0650) 2020; 13 Ali, Naqvi, Ali, Abdal, Hussain (b0925) 2021; 70 Ambreen, Saleem, Park (b0965) 2020; 173 Alharbi, Naeem, Zubair, Jawad, Jan, Jan (b1350) 2021; 26 Ji, Li, Xu, Huang (b0010) 2017; 85 Ma, Wilson, Borgmeyer, Park, Yu, Choi, Tirumala (b0500) 2006; 88 Evans, Prasher, Fish, Meakin, Phelan, Keblinski (b0740) 2008; 51 Ling, Zhang, Shi, Fang, Wang, Gao, Fang, Xu, Wang, Liu (b0530) 2014; 31 Albojamal, Vafai (b0770) 2017; 114 Rashidi, Akar, Bovand, Ellahi (b0845) 2018; 115 S. I. Abdelsalam and M. M. Bhatti, “ Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms,” Zaraki, Ghalambaz, Chamkha, Ghalambaz, De Rossi (b0565) 2015; 26 Selimefendigil, Ismael, Chamkha (b1085) 2017; 124 Akbarzadeh, Rashidi, Keshmiri, Shokri (b0405) 2020; 139 Wu, Salama, Sun (b0205) 2015; 69 Sulochana, Aparna (b0920) 2020; 16 Feng, Kuang, Wen, Lu, Ichimiya (b0355) 2014; 77 Cooper, Eastwood, Gelb, Damblanc, Brett, Bradley, Withers, Lee, Marquis, Brandon, Shearing (b0145) 2014; 247 Mehl, Neckel, Neumann (b1015) 2011; 65 Jouybari, Saedodin, Zamzamian, Nimvari, Wongwises (b1095) 2017; 114 Li, Sheikholeslami, Samandari, Shafee (b1135) 2018; 127 Waqas, Ji, Xu, Ali, Alvi (b0540) 2018; 92 Rismani Yazdi, Nosrati, Stevens, Vogel, Davies, Escobedo (b1470) 2018; 14 Mazaheri, Bahiraei, Razi (b0660) 2021; 383 Zahmatkesh, Shandiz (b0115) 2019; 138 Plant, Saghir (b1040) 2021; 9 Faraz, Khamehchi, Tahan (b0245) 2021; 90 Haddad (b0190) 2014; 68 Ahmed, Mahdy (b1445) 2016; 37 Rho, Jang, Kim, Bae, Kim, Lee, Ha, Lee (b0305) 2017; 9 Rho, Lee, Bae, Kim, Lee, Lee, Hwang, Jeong, Kim, Ha, Lee (b0315) 2015; 5 Cimpean, Pop (b0915) 2019; 29 Zahmatkesh, Torshizi (b0960) 2019; 35 Saeed, Kim (b0805) 2018; 120 Ergun (b0180) 1952; 48 Sundar, Singh, Sousa (b0645) 2014; 52 Amudhalapalli, Devanuri (b0550) 2021 Batchelor (b0700) 1977; 83 Kuznetsov, Jiang (b1310) 2001; 28 Alhussain, Renuka, Muthtamilselvan (b1480) 2021; 23 vol. 2, pp. 14-18, 2002. Hamilton, Crosser (b0790) 1962; 1 Laohalertdecha, Naphon, Wongwises (b0075) 2007; 11 Sundarram, Li (b0350) 2014; 64 R. Kumar and S. Sood, “Unsteady MHD Nanobioconvective Stagnation Slip Flow in a Porous Medium Due to Exponentially Stretching Sheet Containing Microorganisms,” Gupta, Singh, Kumar, Kumar, Dilbaghi, Said (b0605) 2018; 190 Kuznetsov, Avramenko (b1360) 2002; 29 Kuznetsov, Avramenko (b1380) 2003; 53 Nielsen (b0715) 1970; 41 Mohammed, Abuobeida, Vuthaluru, Liu (b0810) 2019; 101 Khan, Makinde, Khan (b1605) 2014; 74 Alsabery, Mohebbi, Chamkha, Hashim (b1070) 2019; 201 Einstein (b0680) 1906; 19 Siavashi, Bozorg, Toosi (b1145) 2021; 45 Siddabasappa, Sakshath (b0280) 2021; 566 A. S. Dogonchi, M. A. Ismael, A. J. Chamkha and D. D. Ganji, “Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall,” vol. 45, pp. 1782-1788, 1901. Tahmasebiboldaji, Afrand, Barzinjy, Hamad, Talebizadehsardari (b0875) 2019; 161 Rashidi, Kashefi, Kim, Samimi-Abianeh (b0120) 2019; 243 Bayomy, Saghir (b0335) 2017; 107 S. U. S. Choi and J. A. Eastman, ““Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows,” Soleimani, Sattari, Hanafizadeh (b0850) 2020; 20 Bahiraei, Mazaheri (b0870) 2021; 32 Alsabery, Tayebi, Kadhim, Ghalambaz, Hashim, Chamkha (b0940) 2021; 30 Balla, Haritha, Naikoti, Rashad (b1620) 2019 Kakaç, Pramuanjaroenkij (b0675) 2016; 89 Rao, Gangadhar, Chamkha, Surekha (b1475) 2021; 46 Suresh, Venkitaraj, Selvakumar, Chandrasekar (b0640) 2012; 38 Sajid, Ali (b0520) 2019; 103 Shao, Shu, Chew (b1010) 2013; 234 Moraveji, Ardehali (b0840) 2013; 44 Moraveji, Barzegarian, Bahiraei, Barzegarian, Aloueyan, Wongwises (b0780) 2019; 135 Hillesdon, Pedley, Kessler (b1560) 1995; 57 Dogonchi, Armaghani, Chamkha, Ganji (b1065) 2019; 44 Guasto, Rusconi, Stocker (b1250) 2012; 44 vol. 23, no. 10, 2020. Hoseininejad, Dinarvand, Yazdi (b1625) 2020 Shahid, Huang, Bhatti, Zhang, Ellahi (b1455) 2020; 8 Sheremet, Pop (b1590) 2014; 103 Mashayekhi, Houshfar, Ashjaee (b1125) 2020; 178 Zhang, Wang, Ma, Wang, Wang (b0130) 2009; 23 vol. 24, no. 8, 2021. Y. X. Li, K. Al-Khaled, S. U. Khan, T. C. Sun, M. I. Khan and M. Y. Malik, “Bio-convective Darcy-Forchheimer periodically accelerated flow of non-Newtonian nanofluid with Cattaneo–Christov and Prandtl effective approach,” vol. 15, no. 7, 2012. Spormann (b1465) 1987; 45 Graham (b0705) 1981; 37 Zohuri (b0370) 2017 Succi (b1020) 2015; 109 vol. 6, no. 2019, pp. 3485-3497, 135. Tayebi, Chamkha (b1080) 2020; 139 Karimi, Karig, Kumar, Ardekani (b1280) 2015; 15 A. Kuznetsov and N. Jiang, “Investigation of the effect of cell deposition and declogging on bioconvection in porous media,” Mehryan, Izadi, Chamkha, Sheremet (b1060) 2018; 263 Hadi Najafabadi, Keshavarz Moraveji (b0800) 2016; 13 Chakraborty, Panigrahi (b1190) 2020; 174 Yamada, Ota (b0755) 1980; 13 Ma, Rashidi, Mohebbi, Yang (b0955) 2020; 199 Kuznetsov, Avramenko, Geng (b1555) 2003; 36975 Yang, Chen, Liu (b0275) 2017; 115 Shahsavar, Entezari, Toghraie, Barnoon (b1175) 2020; 28 Minea, El-Maghlany (b1230) 2018; 120 Tan, Saw, San Thiam, Xuan, Cai, Yew (b0425) 2018; 96 Souayfane, Fardoun, Biwole (b0545) 2016; 129 Heris, Etemad, Esfahany (b0655) 2006; 33 Rodriguez-Gonzalez, Obregon Alfaro, Torres-Martinez, Cho, Lee (b1345) 2010; 98 B. Jamuna and C. S. Balla, “ Bioconvection in a porous square cavity containing gyrotactic microorganisms under the effects of heat generation/absorption,” Ghalambaz, Jamesahar, Ismael, Chamkha (b1075) 2017; 111 Xu, Xing, Wang, Cheng (b0085) 2019; 195 Kuznetsov (b1340) 2010; 37 A. M. Rashad, A. J. Chamkha, M. A. Ismael and T. Salah, “Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation,” Hassanpour, Borji, Ziapour, Kazemi (b0385) 2020; 40 Rea, McKrell, Hu, Buongiorno (b0725) 2009; 52 Saghir, Mohamed (b0910) 2018; 28 Lin, Xie, Yuan, Sundén (b0230) 2016; 37 Biswas, Datta, Manna, Mandal, Gorla (b1635) 2020 Han, Yang, Kim, Zachariah (b0620) 2007; 18 Rasool, Zhang, Chamkha, Shafiq, Tlili, Shahzadi (b0905) 2020; 22 Kim, Fogler (b1365) 2000; 69 Siavashi, Bahrami, Saffari (b0880) 2017; 71 Feng, Shi, Li, Lu (b1115) 2015; 90 Shaw, Kameswaran, Narayana, Sibanda (b1570) 2014; 7 McNab, Meisen (b0890) 1973; 44 Khan, Irfan, Khan (b1255) 2017; 130 Cepellotti, Fugallo, Paulatto, Lazzeri, Mauri, Marzari (b0310) 2015; 6 Hwang, Hwang, Yeh, Chao (b0270) 2002; 124 Bayomy, Saghir, Yousefi (b0340) 2016; 109 Huo, Cooper, Smith, Park, Jiao (b0435) 2017; 203 Guo, Dong, Wang (b0615) 2008; 112 Bakthavatchalam, Habib, Saidur, Saha, Irshad (b0035) 2020; 305 Zhang, Wang, Wang, Xie, Yu (b1150) 2020; 201 Becker, Kuznetsov (b1645) 2014 Kirsanov, Nazipov, Ivanova (b0395) 2013; 56 Xuan, Li, Hu (b0745) 2003; 49 Ma, Mohebbi, Rashidi, Yang, Sheremet (b0020) 2019; 130 vol. 41, no. 5, 2020. Wang, Zhu (b1200) 2009; 107–111 Ahmad, Ashraf, Ali (b1405) 2020; 6 Khan, Kumam, Thounthong (b1520) 2019; 145 Siavashi, Rostami (b1165) 2017; 133 Balla, Ramesh, Kishan, Ras Corcione (10.1016/j.tsep.2022.101267_b0750) 2011; 52 Albojamal (10.1016/j.tsep.2022.101267_b0770) 2017; 114 Rashidi (10.1016/j.tsep.2022.101267_b0120) 2019; 243 10.1016/j.tsep.2022.101267_b0300 Xu (10.1016/j.tsep.2022.101267_b0090) 2015; 83 Sayar (10.1016/j.tsep.2022.101267_b0095) 2017; 53 Valizade (10.1016/j.tsep.2022.101267_b1105) 2019; 195 Al-Sumaily (10.1016/j.tsep.2022.101267_b0250) 2014; 58 Mohamad (10.1016/j.tsep.2022.101267_b0990) 2019 10.1016/j.tsep.2022.101267_b1515 Balla (10.1016/j.tsep.2022.101267_b1585) 2021; 50 Kirsanov (10.1016/j.tsep.2022.101267_b0395) 2013; 56 Mahdy (10.1016/j.tsep.2022.101267_b1485) 2016; 38 Nield (10.1016/j.tsep.2022.101267_b0140) 2013 Salunkhe (10.1016/j.tsep.2022.101267_b0525) 2017; 12 Wen (10.1016/j.tsep.2022.101267_b0775) 2021; 182 Rasool (10.1016/j.tsep.2022.101267_b0905) 2020; 22 Saeed (10.1016/j.tsep.2022.101267_b0805) 2018; 120 Ghalambaz (10.1016/j.tsep.2022.101267_b1090) 2017; 134 Kuznetsov (10.1016/j.tsep.2022.101267_b1285) 2003; 13 Kuznetsov (10.1016/j.tsep.2022.101267_b1360) 2002; 29 Mosayebidorcheh (10.1016/j.tsep.2022.101267_b1400) 2017; 227 Nourgaliev (10.1016/j.tsep.2022.101267_b1005) 2003; 29 Ergun (10.1016/j.tsep.2022.101267_b0180) 1952; 48 Yang (10.1016/j.tsep.2022.101267_b0365) 2019; 161 Torabi (10.1016/j.tsep.2022.101267_b0265) 2016; 106 Ghalambaz (10.1016/j.tsep.2022.101267_b1075) 2017; 111 Zhang (10.1016/j.tsep.2022.101267_b0325) 2018; 5 Rho (10.1016/j.tsep.2022.101267_b0305) 2017; 9 Akbari (10.1016/j.tsep.2022.101267_b0690) 2011; 50 Zhou (10.1016/j.tsep.2022.101267_b0320) 2013; 23 Huo (10.1016/j.tsep.2022.101267_b0435) 2017; 203 Ghanbarpour (10.1016/j.tsep.2022.101267_b0695) 2014; 53 Ambreen (10.1016/j.tsep.2022.101267_b0475) 2018; 91 Sundar (10.1016/j.tsep.2022.101267_b0645) 2014; 52 Wciślik (10.1016/j.tsep.2022.101267_b0650) 2020; 13 Targui (10.1016/j.tsep.2022.101267_b0380) 2013; 76 Singh (10.1016/j.tsep.2022.101267_b1215) 2021; 317 Alhussain (10.1016/j.tsep.2022.101267_b1480) 2021; 23 Kuznetsov (10.1016/j.tsep.2022.101267_b1310) 2001; 28 Gibanov (10.1016/j.tsep.2022.101267_b0100) 2017; 114 Aksoy (10.1016/j.tsep.2022.101267_b0470) 2021; 14 Hoseininejad (10.1016/j.tsep.2022.101267_b1625) 2020 Zohuri (10.1016/j.tsep.2022.101267_b0370) 2017 Gul (10.1016/j.tsep.2022.101267_b0455) 2017; 111 Jana (10.1016/j.tsep.2022.101267_b0600) 2007; 462 Zahmatkesh (10.1016/j.tsep.2022.101267_b0960) 2019; 35 Uddin (10.1016/j.tsep.2022.101267_b1595) 2013; 27 Karimi (10.1016/j.tsep.2022.101267_b1280) 2015; 15 Misra (10.1016/j.tsep.2022.101267_b0225) 1995; 5 Sundarram (10.1016/j.tsep.2022.101267_b0350) 2014; 64 Senthilkumar (10.1016/j.tsep.2022.101267_b0400) 2016; 37 10.1016/j.tsep.2022.101267_b0685 Léal (10.1016/j.tsep.2022.101267_b0015) 2013; 61 Bég (10.1016/j.tsep.2022.101267_b1510) 2017; 17 Ma (10.1016/j.tsep.2022.101267_b0020) 2019; 130 Özerinç (10.1016/j.tsep.2022.101267_b0560) 2010; 8 Rea (10.1016/j.tsep.2022.101267_b0725) 2009; 52 Hill (10.1016/j.tsep.2022.101267_b1290) 2005; 37 Shuja (10.1016/j.tsep.2022.101267_b0125) 2015; 46 Saghir (10.1016/j.tsep.2022.101267_b0670) 2016; 100 Zhao (10.1016/j.tsep.2022.101267_b0410) 2020; 165 Afshari (10.1016/j.tsep.2022.101267_b0430) 2017; 118 Ghani (10.1016/j.tsep.2022.101267_b0030) 2017; 107 Esfe (10.1016/j.tsep.2022.101267_b0165) 2020; 178 Mehl (10.1016/j.tsep.2022.101267_b1015) 2011; 65 Soares (10.1016/j.tsep.2022.101267_b1195) 2016; 383 Huang (10.1016/j.tsep.2022.101267_b0625) 2016; 72 Mohammed (10.1016/j.tsep.2022.101267_b0810) 2019; 101 Babu (10.1016/j.tsep.2022.101267_b1225) 2017; 77 Rashidi (10.1016/j.tsep.2022.101267_b0845) 2018; 115 McNab (10.1016/j.tsep.2022.101267_b0890) 1973; 44 Bayomy (10.1016/j.tsep.2022.101267_b0335) 2017; 107 Jourabian (10.1016/j.tsep.2022.101267_b1130) 2020; 548 Pourzahedi (10.1016/j.tsep.2022.101267_b1210) 2015; 2 Belabid (10.1016/j.tsep.2022.101267_b1640) 2021; 89 Hamidi (10.1016/j.tsep.2022.101267_b0255) 2019; 147 Moradi (10.1016/j.tsep.2022.101267_b1035) 2019; 137 Mu (10.1016/j.tsep.2022.101267_b1220) 2014; 114 Zhang (10.1016/j.tsep.2022.101267_b1150) 2020; 201 Biswas (10.1016/j.tsep.2022.101267_b1575) 2021 Kakaç (10.1016/j.tsep.2022.101267_b0675) 2016; 89 Awais (10.1016/j.tsep.2022.101267_b1540) 2017; 7 Feng (10.1016/j.tsep.2022.101267_b0355) 2014; 77 Khan (10.1016/j.tsep.2022.101267_b1520) 2019; 145 Ahmad (10.1016/j.tsep.2022.101267_b1405) 2020; 6 Mohammadpour (10.1016/j.tsep.2022.101267_b0820) 2021; 161 Reddy (10.1016/j.tsep.2022.101267_b0450) 2015; 77 Maiga (10.1016/j.tsep.2022.101267_b0795) 2005; 26 Kessler (10.1016/j.tsep.2022.101267_b1375) 1986; 4 Cepellotti (10.1016/j.tsep.2022.101267_b0310) 2015; 6 Jahn (10.1016/j.tsep.2022.101267_b1300) 1972; 4 Souayfane (10.1016/j.tsep.2022.101267_b0545) 2016; 129 Borah (10.1016/j.tsep.2022.101267_b0815) 2021; 381 Heris (10.1016/j.tsep.2022.101267_b0655) 2006; 33 Mehryan (10.1016/j.tsep.2022.101267_b1060) 2018; 263 Tan (10.1016/j.tsep.2022.101267_b0425) 2018; 96 10.1016/j.tsep.2022.101267_b1435 Barnoon (10.1016/j.tsep.2022.101267_b1155) 2021; 124 Wong (10.1016/j.tsep.2022.101267_b0485) 2010; 2 10.1016/j.tsep.2022.101267_b0900 Mahdy (10.1016/j.tsep.2022.101267_b1495) 2018; 7 Alshomrani (10.1016/j.tsep.2022.101267_b1525) 2020; 22 Succi (10.1016/j.tsep.2022.101267_b1020) 2015; 109 Han (10.1016/j.tsep.2022.101267_b0620) 2007; 18 Khan (10.1016/j.tsep.2022.101267_b1255) 2017; 130 Guasto (10.1016/j.tsep.2022.101267_b1250) 2012; 44 Bårdsgård (10.1016/j.tsep.2022.101267_b0970) 2020; 12 Esfe (10.1016/j.tsep.2022.101267_b1170) 2020 Pathan (10.1016/j.tsep.2022.101267_b0135) 1988; 7 Alharbi (10.1016/j.tsep.2022.101267_b1350) 2021; 26 Mahdy (10.1016/j.tsep.2022.101267_b1490) 2018; 48 Ahmad (10.1016/j.tsep.2022.101267_b0055) 2021; 11 10.1016/j.tsep.2022.101267_b1420 Hwang (10.1016/j.tsep.2022.101267_b0270) 2002; 124 Kumar (10.1016/j.tsep.2022.101267_b0360) 2021; 143 10.1016/j.tsep.2022.101267_b1545 Kakaç (10.1016/j.tsep.2022.101267_b0735) 2013 Cimpean (10.1016/j.tsep.2022.101267_b0915) 2019; 29 Alsabery (10.1016/j.tsep.2022.101267_b0285) 2017; 139 Sajid (10.1016/j.tsep.2022.101267_b0520) 2019; 103 Suresh (10.1016/j.tsep.2022.101267_b0640) 2012; 38 Tham (10.1016/j.tsep.2022.101267_b1335) 2013; 62 Esfe (10.1016/j.tsep.2022.101267_b0220) 2014; 45 Nabwey (10.1016/j.tsep.2022.101267_b1430) 2021 Kwok (10.1016/j.tsep.2022.101267_b0440) 2017; 349 Waqas (10.1016/j.tsep.2022.101267_b0540) 2018; 92 Einstein (10.1016/j.tsep.2022.101267_b0680) 1906; 19 Siavashi (10.1016/j.tsep.2022.101267_b0880) 2017; 71 Lau (10.1016/j.tsep.2022.101267_b0980) 2021; 188 Chen (10.1016/j.tsep.2022.101267_b0860) 2016; 102 Bahiraei (10.1016/j.tsep.2022.101267_b0870) 2021; 32 Sharaf (10.1016/j.tsep.2022.101267_b0825) 2019; 878 Faraz (10.1016/j.tsep.2022.101267_b0245) 2021; 90 Yang (10.1016/j.tsep.2022.101267_b0275) 2017; 115 Zahmatkesh (10.1016/j.tsep.2022.101267_b0580) 2021; 321 Wakif (10.1016/j.tsep.2022.101267_b0930) 2021; 143 Kuznetsov (10.1016/j.tsep.2022.101267_b1330) 2012; 15 Alsaedi (10.1016/j.tsep.2022.101267_b1610) 2017; 28 Wu (10.1016/j.tsep.2022.101267_b0205) 2015; 69 Iasiello (10.1016/j.tsep.2022.101267_b0295) 2021; 160 Seyf (10.1016/j.tsep.2022.101267_b0345) 2010; 132 Bica (10.1016/j.tsep.2022.101267_b0515) 2007; 311 Haddad (10.1016/j.tsep.2022.101267_b0190) 2014; 68 Hassanpour (10.1016/j.tsep.2022.101267_b0385) 2020; 40 10.1016/j.tsep.2022.101267_b0480 Shahid (10.1016/j.tsep.2022.101267_b1455) 2020; 8 Balla (10.1016/j.tsep.2022.101267_b1620) 2019 Kareem (10.1016/j.tsep.2022.101267_b0005) 2015; 68 10.1016/j.tsep.2022.101267_b0110 Kant (10.1016/j.tsep.2022.101267_b0535) 2016; 34 10.1016/j.tsep.2022.101267_b1205 Sheikholeslami (10.1016/j.tsep.2022.101267_b0045) 2015; 49 Hangi (10.1016/j.tsep.2022.101267_b0830) 2019; 74 Chakraborty (10.1016/j.tsep.2022.101267_b1395) 2018; 57 Khan (10.1016/j.tsep.2022.101267_b1605) 2014; 74 Kalpana (10.1016/j.tsep.2022.101267_b0950) 2020; 49 Bayomy (10.1016/j.tsep.2022.101267_b0340) 2016; 109 Yamada (10.1016/j.tsep.2022.101267_b0755) 1980; 13 Li (10.1016/j.tsep.2022.101267_b1135) 2018; 127 Siavashi (10.1016/j.tsep.2022.101267_b1165) 2017; 133 Sarkar (10.1016/j.tsep.2022.101267_b1415) 2016; 223 Wang (10.1016/j.tsep.2022.101267_b0760) 1999; 13 Krieger (10.1016/j.tsep.2022.101267_b0710) 1959; 3 Mazaheri (10.1016/j.tsep.2022.101267_b0660) 2021; 383 Mahdavi (10.1016/j.tsep.2022.101267_b0855) 2020; 118 10.1016/j.tsep.2022.101267_b1440 Dogonchi (10.1016/j.tsep.2022.101267_b1065) 2019; 44 Waqas (10.1016/j.tsep.2022.101267_b1260) 2019; 291 Bera (10.1016/j.tsep.2022.101267_b0200) 2002; 14 Boomsma (10.1016/j.tsep.2022.101267_b0150) 2003; 24 Hamilton (10.1016/j.tsep.2022.101267_b0790) 1962; 1 Esfandiary (10.1016/j.tsep.2022.101267_b0765) 2016; 4 Khan (10.1016/j.tsep.2022.101267_b0555) 2016; 221 Graham (10.1016/j.tsep.2022.101267_b0705) 1981; 37 Cho (10.1016/j.tsep.2022.101267_b0105) 2017; 138 Shahsavar (10.1016/j.tsep.2022.101267_b0865) 2020 Jouybari (10.1016/j.tsep.2022.101267_b1095) 2017; 114 Pordanjani (10.1016/j.tsep.2022.101267_b0835) 2019; 198 Bakthavatchalam (10.1016/j.tsep.2022.101267_b0035) 2020; 305 Japar (10.1016/j.tsep.2022.101267_b0065) 2020; 9 Pedley (10.1016/j.tsep.2022.101267_b1240) 1992; 24 Kuznetsov (10.1016/j.tsep.2022.101267_b1380) 2003; 53 Stange (10.1016/j.tsep.2022.101267_b0445) 2017; 42 Van den Akker (10.1016/j.tsep.2022.101267_b0995) 2018; 21 Zaraki (10.1016/j.tsep.2022.101267_b0565) 2015; 26 Platt (10.1016/j.tsep.2022.101267_b1315) 1961; 133 Uddin (10.1016/j.tsep.2022.101267_b1615) 2017; 55 Kleinstreuer (10.1016/j.tsep.2022.101267_b0590) 2011; 6 Pourrajab (10.1016/j.tsep.2022.101267_b1390) 2018; 220 Al-Mubaddel (10.1016/j.tsep.2022.101267_b1535) 2021; 96 Izadi (10.1016/j.tsep.2022.101267_b0330) 2020; 168 Asbik (10.1016/j.tsep.2022.101267_b0215) 2007; 67 Tiwari (10.1016/j.tsep.2022.101267_b1100) 2018; 9 Ambreen (10.1016/j.tsep.2022.101267_b0965) 2020; 173 Zhang (10.1016/j.tsep.2022.101267_b0130) 2009; 23 Gururatana (10.1016/j.tsep.2022.101267_b0060) 2012; 9 Shahsavar (10.1016/j.tsep.2022.101267_b1175) 2020; 28 Moraveji (10.1016/j.tsep.2022.101267_b0780) 2019; 135 Taheri (10.1016/j.tsep.2022.101267_b1385) 2007; 50 Hlushkou (10.1016/j.tsep.2022.101267_b0170) 2006; 1126 Tausif Sk (10.1016/j.tsep.2022.101267_b1270) 2016; 220 Selimefendigi |
References_xml | – volume: 15 start-page: 233 year: 2012 end-page: 248 ident: b1330 article-title: Nanofluid bioconvection in porous media: oxytactic microorganisms publication-title: Journal of Porous Media – volume: 29 start-page: 175 year: 2002 end-page: 184 ident: b1360 article-title: A 2D Analysis of bioconvection in a fluid saturated porous medium – estimation of the critical permeability value publication-title: International communication in heat and mass transfer – volume: 31 start-page: 1905 year: 2019 end-page: 1913 ident: b1460 article-title: Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism publication-title: Neural Comput. Appl. – volume: 138 start-page: 1669 year: 2019 end-page: 1681 ident: b0115 article-title: Optimum constituents for MHD heat transfer of nanofluids within porous cavities publication-title: J. Therm. Anal. Calorim. – reference: A. Kuznetsov and N. Jiang, “Investigation of the effect of cell deposition and declogging on bioconvection in porous media,” – volume: 326 start-page: 655 year: 1987 end-page: 661 ident: b1245 article-title: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate publication-title: Nature – volume: 65 start-page: 67 year: 2011 end-page: 86 ident: b1015 article-title: Navier–Stokes and Lattice-Boltzmann on octree-like grids in the Peano framework publication-title: Int. J. Numer. Meth. Fluids – volume: 243 start-page: 206 year: 2019 end-page: 232 ident: b0120 article-title: Potentials of porous materials for energy management in heat exchangers–A comprehensive review publication-title: Appl. Energy – volume: 9 start-page: 7565 year: 2017 end-page: 7569 ident: b0305 article-title: Porous copper–graphene heterostructures for cooling of electronic devices publication-title: Nanoscale – volume: 70 start-page: 1141 year: 2016 end-page: 1156 ident: b0635 article-title: Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids publication-title: Numerical Heat Transfer, Part A: Applications – volume: 133 start-page: 1766 year: 1961 end-page: 1767 ident: b1315 article-title: “Bioconvection patterns” in cultures of free swimming organisms publication-title: Science – volume: 118 year: 2020 ident: b1410 article-title: Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis publication-title: Int. Commun. Heat Mass Transfer – volume: 129 start-page: 181 year: 2018 end-page: 189 ident: b0160 article-title: A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams publication-title: Chemical Engineering and Processing-Process Intensification – volume: 43 start-page: 164 year: 2015 end-page: 177 ident: b0610 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. – volume: 134 start-page: 85 year: 2017 end-page: 97 ident: b1090 article-title: Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles publication-title: Int. J. Mech. Sci. – volume: 29 start-page: 432 year: 2008 end-page: 460 ident: b0490 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements publication-title: Heat Transfer Eng. – volume: 44 start-page: 339 year: 1973 end-page: 346 ident: b0890 article-title: Thermophoresis in liquids publication-title: J. Colloid Interface Sci. – volume: 139 start-page: 411 year: 2020 end-page: 426 ident: b0405 article-title: The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis publication-title: J. Therm. Anal. Calorim. – volume: 13 start-page: 27 year: 1980 end-page: 37 ident: b0755 article-title: Effective thermal conductivity of dispersed materials publication-title: Wärme-und Stoffübertragung – volume: 57 year: 2019 ident: b0895 article-title: Natural and mixed convection of a nanofluid in porous cavities: critical analysis using Buongiorno’s model publication-title: Journal of Theoretical and Applied Mechanics – volume: 195 start-page: 71 year: 2019 end-page: 80 ident: b1105 article-title: Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells – volume: 55 start-page: 874 year: 2012 end-page: 885 ident: b0730 article-title: Latest developments on the viscosity of nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 107–111 start-page: 470 year: 2009 ident: b1200 article-title: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids publication-title: Chem. Phys. Lett. – volume: 445 start-page: 121 year: 2001 end-page: 149 ident: b1550 article-title: Falling plumes in bacterial bioconvection publication-title: J. Fluid Mech. – volume: 61 start-page: 505 year: 2013 end-page: 524 ident: b0015 article-title: An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials publication-title: Int. J. Heat Mass Transf. – reference: vol. 24, no. 8, 2021. – volume: 4 start-page: 79 year: 2008 end-page: 87 ident: b0510 article-title: “Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues,” publication-title: Biology and Medicine – year: 2021 ident: b1430 article-title: Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media publication-title: Alexandria Engineering Journal – volume: 9 start-page: 10468 year: 2020 end-page: 10477 ident: b1500 article-title: Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy publication-title: ournal of Materials Research and Technology – volume: 7 start-page: 1450005 year: 2014 ident: b1570 article-title: Bioconvection in a non-Darcy porous medium saturated with a nanofluid and oxytactic micro-organisms publication-title: International Journal of Biomathematics – volume: 292 year: 2019 ident: b0630 article-title: Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids publication-title: J. Mol. Liq. – volume: 56 start-page: 73 year: 2013 end-page: 82 ident: b0395 article-title: A technique for thermal design of a heat exchanger with porous inserts publication-title: Russian Aeronautics (Iz VUZ) – reference: vol. 140, no. 7, 2018. – volume: 11 start-page: 146 year: 2021 end-page: 154 ident: b0055 article-title: Recent advances in passive cooling methods for photovoltaic performance enhancement publication-title: International Journal of Electrical & Computer Engineering – volume: 315 start-page: 608 year: 2017 end-page: 620 ident: b0155 article-title: A systematic procedure for the virtual reconstruction of open-cell foams publication-title: Chem. Eng. J. – volume: 113 year: 2019 ident: b0375 article-title: Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers publication-title: Renew. Sustain. Energy Rev. – volume: 311 start-page: 17 year: 2007 end-page: 21 ident: b0515 article-title: Sterically stabilized water based magnetic fluids: Synthesis, structure and properties publication-title: J. Magn. Magn. Mater. – volume: 48 start-page: 4342 year: 2019 end-page: 4353 ident: b0240 article-title: Numerical study and sensitivity analysis on convective heat transfer enhancement in a heat pipe partially filled with porous material using LTE and LTNE methods publication-title: Heat Transfer-Asian Research – volume: 42 start-page: 12485 year: 2017 end-page: 12495 ident: b0445 article-title: Improvement of corrosion properties of porous alloy supports for solid oxide fuel cells publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 145 year: 2010 end-page: 170 ident: b0560 article-title: Enhanced thermal conductivity of nanofluids: a state-of-the-art review publication-title: Microfluid. Nanofluid. – volume: 2 start-page: 361 year: 2015 end-page: 369 ident: b1210 article-title: Comparative life cycle assessment of silver nanoparticle synthesis routes publication-title: Environ. Sci. Nano – volume: 57 start-page: 61 year: 2018 end-page: 71 ident: b1395 article-title: Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions publication-title: Alexandria Engineering Journal – volume: 85 start-page: 119 year: 2017 end-page: 131 ident: b0010 article-title: Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices publication-title: Exp. Therm Fluid Sci. – volume: 128 start-page: 1213 year: 2006 end-page: 1216 ident: b0505 article-title: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe publication-title: J. Heat Transfer – volume: 161 year: 2019 ident: b0875 article-title: Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes Configuration publication-title: Int. J. Mech. Sci. – volume: 114 start-page: 31 year: 2017 end-page: 46 ident: b0260 article-title: Challenges and progress on the modelling of entropy generation in porous media: a review publication-title: Int. J. Heat Mass Transf. – volume: 13 start-page: 46 year: 2016 end-page: 61 ident: b0800 article-title: Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach publication-title: Iranian Journal of Chemical Engineering (IJChE) – volume: 317 year: 2021 ident: b1215 article-title: Development and characterization of unitary and hybrid Al2O3 and ZrO dispersed Jatropha oil-based nanofluid for cleaner production publication-title: J. Cleaner Prod. – volume: 37 start-page: 275 year: 1981 end-page: 286 ident: b0705 article-title: On the viscosity of suspensions of solid spheres publication-title: Appl. Sci. Res. – volume: 4 start-page: 257 year: 1986 end-page: 307 ident: b1375 article-title: The external dynamics of swimming micro-organisms publication-title: Progress in Phycological Research – volume: 291 year: 2019 ident: b1260 article-title: Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles publication-title: J. Mol. Liq. – volume: 37 start-page: 74 year: 2010 end-page: 78 ident: b0785 article-title: Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches publication-title: Int. Commun. Heat Mass Transfer – volume: 106 start-page: 518 year: 2016 end-page: 536 ident: b0265 article-title: Generation of entropy and forced convection of heat in a conduit partially filled with porous media–local thermal non-equilibrium and exothermicity effects publication-title: Appl. Therm. Eng. – volume: 124 start-page: 120 year: 2002 end-page: 129 ident: b0270 article-title: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams publication-title: J. Heat Transfer – volume: 4 start-page: 11 year: 2016 end-page: 18 ident: b0765 article-title: Numerical Study of Single Phase/Two-Phase Models for Nano fluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow publication-title: Transport phenomena in nano and micro scales – reference: A. M. Rashad, A. J. Chamkha, M. A. Ismael and T. Salah, “Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation,” – volume: 26 start-page: 530 year: 2005 end-page: 546 ident: b0795 article-title: Heat transfer enhancement by using nanofluids in forced convection flows publication-title: Int. J. Heat Fluid Flow – volume: 383 start-page: 240 year: 2016 end-page: 247 ident: b1195 article-title: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications publication-title: Appl. Surf. Sci. – reference: K. Elsaid, A. Olabi, T. Wilberforce, M. A. Abdelkareem and E. T. Sayed, “Environmental impacts of nanofluids: a review,” – volume: 114 start-page: 7740 year: 2014 end-page: 7781 ident: b1220 article-title: Chemical basis of interactions between engineered nanoparticles and biological systems publication-title: Chem. Rev. – volume: 89 start-page: 421 year: 2021 end-page: 429 ident: b1640 article-title: Thermo-bioconvection in horizontal wavy-walled porous annulus publication-title: European Journal of Mechanics-B/Fluids – volume: 38 start-page: 67 year: 2016 end-page: 76 ident: b1485 article-title: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 221 start-page: 298 year: 2016 end-page: 304 ident: b0555 article-title: Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects publication-title: J. Mol. Liq. – volume: 375 start-page: 493 year: 2020 end-page: 503 ident: b0935 article-title: Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection publication-title: Powder Technol. – volume: 48 start-page: 57 year: 2018 end-page: 62 ident: b1490 article-title: Gyrotactic microorganisms free convection boundary layer flow about a vertical truncated cone in nanofluid porous media publication-title: Latin American Applied Research-An international journal – volume: 305 year: 2020 ident: b0035 article-title: Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective publication-title: J. Mol. Liq. – volume: 81 start-page: 813 year: 2018 end-page: 839 ident: b0070 article-title: A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications publication-title: Renew. Sustain. Energy Rev. – volume: 195 start-page: 462 year: 2019 end-page: 483 ident: b0085 article-title: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications publication-title: Chem. Eng. Sci. – volume: 68 start-page: 659 year: 2014 end-page: 668 ident: b0190 article-title: Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux publication-title: Int. J. Heat Mass Transf. – volume: 325 start-page: 78 year: 2018 end-page: 91 ident: b1160 article-title: Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium publication-title: Powder Technol. – volume: 52 start-page: 789 year: 2011 end-page: 793 ident: b0750 article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids publication-title: Energy Convers. Manage. – reference: vol. 23, no. 10, 2020. – year: 2013 ident: b0140 article-title: Convection in Porous Media – volume: 5 start-page: 15004 year: 2018 end-page: 15009 ident: b0325 article-title: Experimental study on heat sink with porous copper as conductive material for CPU cooling publication-title: Mater. Today:. Proc. – volume: 33 start-page: 529 year: 2006 end-page: 535 ident: b0655 article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer publication-title: Int. Commun. Heat Mass Transfer – volume: 8 start-page: 380 year: 2020 ident: b1455 article-title: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface publication-title: Mathematics – volume: 190 start-page: 169 year: 2018 end-page: 192 ident: b0605 article-title: Up to date review on the synthesis and thermophysical properties of hybrid nanofluids publication-title: J. Cleaner Prod. – reference: p. 101069, 2021. – reference: [Online]. Available: http://www.samsungsfour.com/comparison/which-is-the-thinnest-and-the-thickest-samsung-galaxy-android-smartphone.html. – volume: 44 start-page: 373 year: 2012 end-page: 400 ident: b1250 article-title: Fluid mechanics of planktonic microorganisms publication-title: Annu. Rev. Fluid Mech. – volume: 8 start-page: 957 year: 2019 end-page: 969 ident: b1505 article-title: Effect of thermal radiation on burgers nano fluid flow between two parallel plates with porous medium in the presence of gyrotactic micro-organisms and heat generation/absorption publication-title: Journal of Nanofluids – reference: vol. 45, pp. 1782-1788, 1901. – volume: 128 start-page: 240 year: 2006 end-page: 250 ident: b0885 article-title: Convective transport in nanofluids publication-title: J. Heat Transfer – volume: 57 start-page: 299 year: 1995 end-page: 344 ident: b1560 article-title: The development of concentration gradients in a suspension of chemotactic bacteria publication-title: Bull. Math. Biol. – year: 2008 ident: b1025 article-title: Lattice Boltzmann Method (LBM) publication-title: Encyclopedia of Microfluidics and Nanofluidics – volume: 161 year: 2019 ident: b0365 article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage publication-title: Appl. Therm. Eng. – volume: 144 start-page: 2627 year: 2021 end-page: 2639 ident: b1120 article-title: Numerical study on heat loss from the surface of solar collector tube filled by oil-NE-PCM/Al2O3 in the presence of the magnetic field publication-title: J. Therm. Anal. Calorim. – volume: 74 start-page: 252 year: 2019 end-page: 259 ident: b0830 article-title: A two-phase simulation for ferrofluid flow between two parallel plates under localized magnetic field by applying Lagrangian approach for nanoparticles publication-title: European Journal of Mechanics-B/Fluids – volume: 98 start-page: 229 year: 2010 end-page: 234 ident: b1345 article-title: Silver–TiO2 nanocomposites: Synthesis and harmful algae bloom UV-photoelimination publication-title: Appl. Catal. B – reference: vol. 21, no. 6 Part A, pp. 2347-2356, 2017. – volume: 90 year: 2021 ident: b0245 article-title: Impact of boiling heat transfer on geothermal reservoir simulation using local thermal non-equilibrium model publication-title: Geothermics – volume: 115 start-page: 657 year: 2017 end-page: 662 ident: b0275 article-title: Determination of the stress jump coefficient, the interstitial heat transfer coefficient and the interface heat transfer coefficient in a porous composite system publication-title: Int. J. Heat Mass Transf. – reference: M. R. Habibi and I. Zahmatkesh, “Double-diffusive natural and mixed convection of binary nanofluids in porous cavities,” – volume: 118 start-page: 705 year: 2017 end-page: 715 ident: b0430 article-title: An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor publication-title: Energy – volume: 83 start-page: 97 year: 1977 end-page: 117 ident: b0700 article-title: The effect of Brownian motion on the bulk stress in a suspension of spherical particles publication-title: J. Fluid Mech. – reference: A. V. Kuznetsov and V. Bubnovich, “Investigation of simultaneous effects of gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media,” – volume: 3 start-page: 137 year: 1959 end-page: 152 ident: b0710 article-title: A mechanism for non-Newtonian flow in suspensions of rigid spheres publication-title: Transactions of the Society of Rheology – volume: 50 start-page: 4652 year: 2007 end-page: 4660 ident: b1385 article-title: Bioconvection of gravitactic micro-organisms in rectangular enclosures publication-title: Int. J. Heat Mass Transf. – volume: 143 year: 2021 ident: b0290 article-title: Numerical consideration of LTNE and darcy extended forchheimer models for the analysis of forced convection in a horizontal pipe in the presence of metal foam publication-title: J. Heat Transfer – volume: 69 start-page: 564 year: 2015 end-page: 577 ident: b0205 article-title: Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework publication-title: Comput. Geotech. – volume: 28 start-page: 2928 year: 2020 end-page: 2937 ident: b1175 article-title: Effects of the porous medium and water-silver biological nanofluid on the performance of a newly designed heat sink by using first and second laws of thermodynamics publication-title: Chin. J. Chem. Eng. – volume: 28 start-page: 47 year: 2018 end-page: 63 ident: b0910 article-title: Effectiveness in incorporating Brownian and thermophoresis effects in modelling convective flow of water-Al2O3 nanoparticles publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 50 start-page: 5123 year: 2021 end-page: 5147 ident: b1585 article-title: Impact of Soret and Dufour on bioconvective flow of nanofluid in porous square cavity publication-title: Heat Transfer – volume: 109 start-page: 182 year: 2016 end-page: 200 ident: b0340 article-title: Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach publication-title: Int. J. Therm. Sci. – volume: 10 start-page: 1194 year: 2015 end-page: 1213 ident: b1185 article-title: Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications publication-title: J. Exp. Nanosci. – year: 2021 ident: b1530 article-title: Impact of activation energy and gyrotactic microorganisms on flow of Casson hybrid nanofluid over a rotating moving disk publication-title: Heat Transfer – reference: H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” – volume: 37 start-page: 471 year: 2016 end-page: 484 ident: b1445 article-title: Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media publication-title: Appl. Math. Mech. – volume: 160 year: 2021 ident: b0295 article-title: The effects of variable porosity and cell size on the thermal performance of functionally-graded foams publication-title: Int. J. Therm. Sci. – volume: 37 start-page: 1 year: 2005 end-page: 20 ident: b1290 article-title: Bioconvection publication-title: Fluid Dyn. Res. – volume: 6 start-page: 1 year: 2011 end-page: 13 ident: b0590 article-title: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review publication-title: Nanoscale Res. Lett. – volume: 173 year: 2020 ident: b0965 article-title: Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy-Forchheimer-Brinkman model coupled with multiphase Eulerian model publication-title: Appl. Therm. Eng. – volume: 7 start-page: 13 year: 1988 end-page: 16 ident: b0135 article-title: Effect of bed porosity on wall-to-bed heat transfer in liquid fluidized beds publication-title: Mehran University research journal of engineering and technology – year: 2013 ident: b0735 article-title: Convective Heat Transfer, CRC Press – volume: 139 start-page: 2165 year: 2020 end-page: 2179 ident: b1080 article-title: Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder publication-title: J. Therm. Anal. Calorim. – volume: 28 start-page: 288 year: 2017 end-page: 298 ident: b1610 article-title: Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms publication-title: Adv. Powder Technol. – volume: 223 start-page: 725 year: 2016 end-page: 733 ident: b1415 article-title: On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium publication-title: J. Mol. Liq. – volume: 24 start-page: 409 year: 2016 end-page: 429 ident: b1450 article-title: A bioconvection model for MHD flow and heat transfer over a porous wedge containing both nanoparticles and gyrotatic microorganisms publication-title: Journal of Biological Systems – reference: vol. 2, pp. 14-18, 2002. – volume: 9 start-page: 339 year: 1977 end-page: 398 ident: b1295 article-title: Fluid mechanics of propulsion by cilia and flagella publication-title: Annu. Rev. Fluid Mech. – volume: 1 start-page: 27 year: 1949 end-page: 34 ident: b0195 article-title: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles publication-title: Flow, Turbulence and Combustion – volume: 296 year: 2019 ident: b0585 article-title: An updated review on the influential parameters on thermal conductivity of nano-fluids publication-title: J. Mol. Liq. – volume: 14 start-page: 80 year: 2021 ident: b0470 article-title: The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review publication-title: Energies – volume: 114 start-page: 1407 year: 2017 end-page: 1418 ident: b1095 article-title: Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study publication-title: Renewable Energy – volume: 21 start-page: 67 year: 2018 end-page: 75 ident: b0995 article-title: Lattice Boltzmann simulations for multi-scale chemical engineering publication-title: Curr. Opin. Chem. Eng. – volume: 69 start-page: 47 year: 2000 end-page: 56 ident: b1365 article-title: Biomass evolution in porous media and its effects on permeability under starvation conditions publication-title: Biotechnol. Bioeng. – volume: 96 start-page: 181 year: 2018 end-page: 197 ident: b0425 article-title: Overview of porous media/metal foam application in fuel cells and solar power systems publication-title: Renew. Sustain. Energy Rev. – volume: 548 year: 2020 ident: b1130 article-title: The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus publication-title: Physica A – volume: 7 start-page: 49 year: 2017 end-page: 56 ident: b1540 article-title: Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder publication-title: Results Phys. – volume: 140 start-page: 2387 year: 2020 end-page: 2395 ident: b1630 article-title: Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact publication-title: J. Therm. Anal. Calorim. – reference: B. Jamuna and C. S. Balla, “ Bioconvection in a porous square cavity containing gyrotactic microorganisms under the effects of heat generation/absorption,” – reference: D. Balaji, R. Velraj and M. R. Murthy, “A review of the role of passive techniques on heat transfer enhancement of horizontal tube falling film and flooded evaporators,” – volume: 17 start-page: 1750059 year: 2017 ident: b1510 article-title: Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model publication-title: Journal of Mechanics in Medicine and Biology – year: 1873 ident: b0465 article-title: A treatise on electricity and magnetism – volume: 124 year: 2021 ident: b1155 article-title: Embedding multiple conical vanes inside a circular porous channel filled by two-phase nanofluid to improve thermal performance considering entropy generation publication-title: Int. Commun. Heat Mass Transfer – volume: 77 start-page: 551 year: 2017 end-page: 565 ident: b1225 article-title: State-of-art review on hybrid nanofluids publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 1929 year: 2018 end-page: 1953 ident: b0050 article-title: Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles publication-title: Chin. J. Aeronaut. – volume: 37 start-page: 1421 year: 2010 end-page: 1425 ident: b1340 article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms publication-title: Int. Commun. Heat Mass Transfer – volume: 107 start-page: 181 year: 2017 end-page: 203 ident: b0335 article-title: Experimental study of using γ-Al2O3–water nanofluid flow through aluminum foam heat sink: comparison with numerical approach publication-title: Int. J. Heat Mass Transf. – volume: 120 start-page: 671 year: 2018 end-page: 682 ident: b0805 article-title: Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks publication-title: Int. J. Heat Mass Transf. – volume: 115 start-page: 400 year: 2018 end-page: 410 ident: b0845 article-title: Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still publication-title: Renewable Energy – reference: pp. 3-16, 2018. – volume: 178 year: 2020 ident: b0165 article-title: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics publication-title: Appl. Therm. Eng. – volume: 41 start-page: 4626 year: 1970 end-page: 4627 ident: b0715 article-title: Generalized equation for the elastic moduli of composite materials publication-title: J. Appl. Phys. – volume: 220 start-page: 518 year: 2016 end-page: 526 ident: b1270 article-title: Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles publication-title: J. Mol. Liq. – volume: 37 start-page: 136 year: 2012 end-page: 146 ident: b0665 article-title: Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection publication-title: Int. J. Heat Fluid Flow – volume: 31 start-page: 1 year: 2004 end-page: 10 ident: b1355 article-title: Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth publication-title: International Communication in Heat and Mass Transfer – volume: 1126 start-page: 70 year: 2006 end-page: 85 ident: b0170 article-title: Transition from creeping via viscous-inertial to turbulent flow in fixed beds publication-title: J. Chromatogr. A – volume: 9 year: 2021 ident: b1040 article-title: Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger publication-title: International Journal of Thermofluids – volume: 68 start-page: 22 year: 2015 end-page: 38 ident: b0005 article-title: Passive heat transfer enhancement review in corrugation publication-title: Exp. Therm Fluid Sci. – volume: 25 start-page: 1352 year: 2017 end-page: 1359 ident: b0390 article-title: A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system publication-title: Chin. J. Chem. Eng. – volume: 20 year: 2020 ident: b0850 article-title: Thermal analysis of a microchannel heat sink cooled by two-phase flow boiling of Al2O3 HFE-7100 nanofluid publication-title: Thermal Science and Engineering Progress – volume: 97 start-page: 92 year: 2018 end-page: 102 ident: b1045 article-title: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid publication-title: Int. Commun. Heat Mass Transfer – volume: 125 start-page: 527 year: 2016 end-page: 535 ident: b0575 article-title: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid publication-title: J. Therm. Anal. Calorim. – volume: 23 start-page: 2263 year: 2013 end-page: 2269 ident: b0320 article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage publication-title: Adv. Funct. Mater. – reference: L. Tham, R. Nazar and I. Pop, “Steady mixed convection flow on a horizontal circular cylinder embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms,” – volume: 201 start-page: 628 year: 2020 end-page: 637 ident: b1150 article-title: Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors publication-title: Sol. Energy – reference: S. U. S. Choi and J. A. Eastman, ““Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows,” – volume: 64 start-page: 147 year: 2014 end-page: 154 ident: b0350 article-title: The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams publication-title: Appl. Therm. Eng. – volume: 128 year: 2020 ident: b0210 article-title: Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework publication-title: Comput. Geotech. – volume: 49 start-page: 444 year: 2015 end-page: 469 ident: b0045 article-title: Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices publication-title: Renew. Sustain. Energy Rev. – volume: 37 start-page: 314 year: 2016 end-page: 322 ident: b0230 article-title: Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model publication-title: Heat Transfer Eng. – volume: 188 year: 2021 ident: b0980 article-title: Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: an Eulerian approach publication-title: Appl. Therm. Eng. – volume: 124 start-page: 95 year: 2017 end-page: 108 ident: b1085 article-title: Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder publication-title: Int. J. Mech. Sci. – volume: 114 start-page: 225 year: 2017 end-page: 237 ident: b0770 article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport publication-title: Int. J. Heat Mass Transf. – volume: 130 start-page: 375 year: 2017 end-page: 382 ident: b1255 article-title: Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid publication-title: Int. J. Mech. Sci. – volume: 24 start-page: 313 year: 1992 end-page: 358 ident: b1240 article-title: Hydrodynamic phenomena in suspensions of swimming microorganisms publication-title: Annu. Rev. Fluid Mech. – volume: 13 start-page: 6033 year: 2017 end-page: 6050 ident: b1275 article-title: Modeling of active swimmer suspensions and theirinteractions with the environment publication-title: Soft Matter – volume: 145 year: 2019 ident: b1520 article-title: Renewable energy technology for the sustainable development of thermal system with entropy measures publication-title: Int. J. Heat Mass Transf. – reference: S. Akhter and M. Ashraf, “Darcy–Forchheimer flow of nanofluid with gyrotactic microorganisms using Buongiorno model,” – volume: 35 start-page: 543 year: 2004 end-page: 557 ident: b0720 article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube publication-title: Superlattices Microstruct. – volume: 83 start-page: 399 year: 2015 end-page: 407 ident: b0090 article-title: Flow and heat transfer characteristics of nanofluid flowing through metal foams publication-title: Int. J. Heat Mass Transf. – reference: P. Forchheimer, “Wasserbewegung durch boden,” – volume: 45 year: 2021 ident: b1145 article-title: A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors publication-title: Sustainable Energy Technol. Assess. – volume: 23 year: 2021 ident: b1480 article-title: A magneto-bioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism publication-title: Case Studies in Thermal Engineering – volume: 46 start-page: 1081 year: 2015 end-page: 1099 ident: b0125 article-title: Flow over a porous structure in a square cavity: Effects of the porous structure size and porosity on the heat transfer performance and fluid pressure loss publication-title: Heat Transfer Research – volume: 18 year: 2007 ident: b0620 article-title: Application of hybrid sphere/carbon nanotube particles in nanofluids publication-title: Nanotechnology – volume: 38 start-page: 54 year: 2012 end-page: 60 ident: b0640 article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer publication-title: Exp. Therm Fluid Sci. – volume: 46 start-page: 2493 year: 2021 end-page: 2503 ident: b1475 article-title: Bioconvection in a convectional nanofluid flow containing gyrotactic microorganisms over an isothermal vertical cone embedded in a porous surface with chemical reactive species publication-title: Arabian Journal for Science and Engineering – volume: 30 start-page: 3329 year: 1987 end-page: 3341 ident: b0185 article-title: Analysis of the Brinkman equation as a model for flow in porous media publication-title: The Physics of fluids – volume: 26 start-page: 935 year: 2015 end-page: 946 ident: b0565 article-title: Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature publication-title: Adv. Powder Technol. – volume: 137 start-page: 1797 year: 2019 end-page: 1807 ident: b1035 article-title: An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media publication-title: J. Therm. Anal. Calorim. – volume: 27 start-page: 326 year: 2013 end-page: 333 ident: b1595 article-title: Free convective flow of non-Newtonian nanofluids in porous media with gyrotactic microorganism publication-title: J. Thermophys Heat Transfer – volume: 46 start-page: 1413 year: 2017 end-page: 1442 ident: b1180 article-title: “A review of nanofluid preparation, stability, and thermo-physical properties,” publication-title: Research – volume: 32 start-page: 211 year: 2021 end-page: 224 ident: b0870 article-title: A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: Exergy destruction minimization attitude publication-title: Adv. Powder Technol. – reference: R. Kumar and S. Sood, “Unsteady MHD Nanobioconvective Stagnation Slip Flow in a Porous Medium Due to Exponentially Stretching Sheet Containing Microorganisms,” – volume: 132 year: 2010 ident: b0345 article-title: Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert publication-title: J. Heat Transfer – volume: 56 start-page: 48 year: 2012 end-page: 57 ident: b1265 article-title: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms publication-title: Int. J. Therm. Sci. – volume: 15 start-page: 23 year: 2015 end-page: 42 ident: b1280 article-title: Interplay of physical mechanisms and biofilmprocesses: review of microfluidic methods publication-title: Lab Chip – volume: 10 start-page: 391 year: 2020 ident: b0945 article-title: Darcy-Forchheimer MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder publication-title: Coatings – volume: 165 year: 2020 ident: b0410 article-title: Numerical analysis of flow characteristics and heat transfer of high-temperature exhaust gas through porous fins publication-title: Appl. Therm. Eng. – volume: 790 start-page: 1 year: 2019 end-page: 48 ident: b0460 article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory publication-title: Phys. Rep. – volume: 86 start-page: 325 year: 1952 end-page: 329 ident: b1320 article-title: Concerning Pattern Formation by Free-Swimming Microorganisms publication-title: Am. Nat. – volume: 129 start-page: 396 year: 2016 end-page: 431 ident: b0545 article-title: Phase change materials (PCM) for cooling applications in buildings: A review publication-title: Energy Build. – volume: 31 start-page: 629 year: 2004 end-page: 638 ident: b1325 article-title: Effect of small solid particles on the development of bioconvection plumes publication-title: International Communication in Heat and Mass Transfer – reference: vol. 25, no. 3, 2018. – year: 2014 ident: b1645 article-title: Heat transfer and fluid flow in biological processes – start-page: 19 year: 2017 end-page: 56 ident: b0370 article-title: “Heat Exchanger Types and Classifications,” in – volume: 103 start-page: 556 year: 2019 end-page: 592 ident: b0520 article-title: Recent advances in application of nanofluids in heat transfer devices: a critical review publication-title: Renew. Sustain. Energy Rev. – volume: 178 year: 2020 ident: b0415 article-title: Assessment and optimization of exhaust gas heat exchanger with porous baffles and porous fins publication-title: Appl. Therm. Eng. – start-page: 1 year: 2020 end-page: 12 ident: b0865 article-title: Numerical investigation of laminar flow of biological nanofluid in a rifled tube using two-phase mixture model: first-law and second-law analyses and geometry optimization publication-title: J. Therm. Anal. Calorim. – volume: 13 start-page: 341 year: 2003 end-page: 364 ident: b1285 article-title: Bioconvection of negatively geotactic microorganisms in a porous medium: the effect of cell deposition and declogging publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 161 year: 2021 ident: b0820 article-title: Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models publication-title: Int. J. Therm. Sci. – volume: 52 start-page: 449 year: 2020 end-page: 476 ident: b1305 article-title: Advances in Bioconvection publication-title: Annu. Rev. Fluid Mech. – volume: 53 start-page: 95 year: 2003 end-page: 104 ident: b1380 article-title: Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium publication-title: Transp. Porous Media – volume: 247 start-page: 1033 year: 2014 end-page: 1039 ident: b0145 article-title: Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries publication-title: J. Power Sources – volume: 96 year: 2021 ident: b1535 article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes publication-title: Phys. Scr. – year: 2019 ident: b1620 article-title: Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms publication-title: Int. J. Numer. Meth. Heat Fluid Flow – year: 2018 ident: b0595 article-title: A review on nanofluids: fabrication, stability, and thermophysical properties publication-title: Journal of Nanomaterials – volume: 135 start-page: 1595 year: 2019 end-page: 1610 ident: b1030 article-title: Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media publication-title: J. Therm. Anal. Calorim. – reference: p. 144202, 2021. – volume: 11 start-page: 858 year: 2007 end-page: 876 ident: b0075 article-title: A review of electrohydrodynamic enhancement of heat transfer publication-title: Renew. Sustain. Energy Rev. – volume: 118 year: 2020 ident: b0855 article-title: Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various roughness publication-title: Int. Commun. Heat Mass Transfer – volume: 566 year: 2021 ident: b0280 article-title: Effect of thermal non-equilibrium and internal heat source on Brinkman-Bénard convection. Physica A publication-title: Statistical Mechanics and its Applications – year: 2020 ident: b1625 article-title: Manninen’s mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 349 start-page: 75 year: 2017 end-page: 83 ident: b0440 article-title: Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell publication-title: J. Power Sources – volume: 40 year: 2020 ident: b0385 article-title: Performance analysis of a cascade PCM heat exchanger and two-phase closed thermosiphon: A case study of geothermal district heating system publication-title: Sustainable Energy Technol. Assess. – volume: 16 start-page: 811 year: 2020 end-page: 834 ident: b0920 article-title: Unsteady magnetohydrodynamic radiative liquid thin film flow of hybrid nanofluid with thermophoresis and Brownian motion publication-title: Multidiscipline Modeling in Materials and Structures – start-page: 1 year: 2020 end-page: 17 ident: b1170 article-title: Using a two-phase method for numerical natural convection simulation in a cavity containing multiwalled carbon nanotube/water publication-title: J. Therm. Anal. Calorim. – volume: 36975 start-page: 2083 year: 2003 end-page: 2088 ident: b1555 article-title: A Theoretical Prediction of Laminar Falling Plumes in Bioconvection of Oxytactic Bacteria in Porous Media publication-title: Fluids Engineering Division Summer Meeting – volume: 9 start-page: 1192 year: 2020 end-page: 1216 ident: b0065 article-title: A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges publication-title: Nanotechnology Reviews – volume: 19 start-page: 289 year: 1906 end-page: 306 ident: b0680 article-title: A new determination of molecular dimensions publication-title: Ann. Phys. – volume: 111 year: 2017 ident: b0455 article-title: Quantum ballistic transport in strained epitaxial germanium publication-title: Appl. Phys. Lett. – volume: 112 start-page: 2389 year: 2008 end-page: 2393 ident: b0615 article-title: Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction publication-title: The Journal of Physical Chemistry C – volume: 52 start-page: 73 year: 2014 end-page: 83 ident: b0645 article-title: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids publication-title: Int. Commun. Heat Mass Transfer – volume: 50 start-page: 1343 year: 2011 end-page: 1354 ident: b0690 article-title: Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer publication-title: Int. J. Therm. Sci. – volume: 120 start-page: 350 year: 2018 end-page: 364 ident: b1230 article-title: Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison publication-title: Renewable Energy – volume: 201 start-page: 333 year: 1910 end-page: 390 ident: b1235 article-title: On the Effect of Gravity Upon the Movements and Aggregation of Euglena Viridis, Ehrb., and Other Micro-Organisms publication-title: Philos. Trans. R. Soc. Lond. – volume: 109 start-page: 50001 year: 2015 ident: b1020 article-title: Lattice boltzmann 2038 publication-title: EPL (Europhysics Letters) – volume: 462 start-page: 45 year: 2007 end-page: 55 ident: b0600 article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives publication-title: Thermochim Acta – year: 2020 ident: b1635 article-title: Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field publication-title: Int. J. Numer. Meth. Heat Fluid Flow – reference: S. I. Abdelsalam and M. M. Bhatti, “ Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms,” – volume: 5 start-page: 1 year: 2015 end-page: 7 ident: b0315 article-title: Three-dimensional porous copper-graphene heterostructures with durability and high heat dissipation performance publication-title: Sci. Rep. – volume: 102 start-page: 971 year: 2016 end-page: 979 ident: b0860 article-title: Numerical simulation on forced thermal flow of nanofluid in the gap between co-axial cylinders with rotational inner spindle publication-title: Int. J. Heat Mass Transf. – volume: 35 start-page: 93 year: 2019 end-page: 105 ident: b0960 article-title: Scrutiny of unsteady flow and heat transfer in a backward-facing step under pulsating nanofluid blowing using the Eulerian-Eulerian approach publication-title: Journal of Mechanics – volume: 381 start-page: 164 year: 2021 end-page: 180 ident: b0815 article-title: Influence of non-uniform asymmetric heating on conjugate heat transfer in a rectangular minichannel using nanofluid by two-phase Eulerian-Lagrangian method publication-title: Powder Technol. – reference: Y. X. Li, K. Al-Khaled, S. U. Khan, T. C. Sun, M. I. Khan and M. Y. Malik, “Bio-convective Darcy-Forchheimer periodically accelerated flow of non-Newtonian nanofluid with Cattaneo–Christov and Prandtl effective approach,” – volume: 878 start-page: 62 year: 2019 end-page: 97 ident: b0825 article-title: Numerical investigation of nanofluid particle migration and convective heat transfer in microchannels using an Eulerian-Lagrangian approach publication-title: J. Fluid Mech. – reference: B. Shen, L. Zheng, C. Zhang and X. Zhang, “Bioconvection heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump,” – volume: 76 start-page: 43 year: 2013 end-page: 54 ident: b0380 article-title: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow publication-title: Energy Convers. Manage. – volume: 55 start-page: 2048 year: 2017 end-page: 2063 ident: b1615 article-title: Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells publication-title: Chin. J. Phys. – volume: 31 start-page: 427 year: 2014 end-page: 438 ident: b0530 article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules publication-title: Renew. Sustain. Energy Rev. – volume: 133 start-page: 689 year: 2017 end-page: 703 ident: b1165 article-title: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media publication-title: Int. J. Mech. Sci. – volume: 203 start-page: 101 year: 2017 end-page: 114 ident: b0435 article-title: Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor publication-title: Appl. Energy – year: 2021 ident: b1575 article-title: Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with Cu–water nanofluid publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 139 year: 2017 ident: b0285 article-title: Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model publication-title: J. Heat Transfer – volume: 53 start-page: 2351 year: 2017 end-page: 2361 ident: b0095 article-title: Experimental development of a Nusselt correlation for forced reciprocating oscillated vertical annular glycerol flow through a porous domain publication-title: Heat Mass Transf. – volume: 22 start-page: 18 year: 2020 ident: b0905 article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface publication-title: Entropy – volume: 45 start-page: 37 year: 1987 end-page: 45 ident: b1465 article-title: Unusual swimming behavior of a magnetotactic bacterium publication-title: FEMS Microbiol. Ecol. – volume: 220 start-page: 01004 year: 2018 ident: b1390 article-title: Bioconvection of Nanofluid Past Stretching Sheet in a Porous Medium in Presence of Gyrotactic Microorganisms with Newtonian Heating publication-title: In MATEC Web of Conferences – volume: 13 start-page: 474 year: 1999 end-page: 480 ident: b0760 article-title: Thermal conductivity of nanoparticle-fluid mixture publication-title: J. Thermophys Heat Transfer – volume: 7 start-page: 603 year: 2018 end-page: 612 ident: b1495 article-title: Modeling of Gyrotactic Microorganisms Non-Newtonian Nanofluids Due to Free Convection Flow Past a Vertical Porous Truncated Cone publication-title: Journal of Nanofluids – volume: 72 start-page: 190 year: 2016 end-page: 196 ident: b0625 article-title: Effects of hybrid nanofluid mixture in plate heat exchangers publication-title: Exp. Therm Fluid Sci. – reference: vol. 20, no. 4, pp. 571-571, 1952. – volume: 234 start-page: 8 year: 2013 end-page: 32 ident: b1010 article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics publication-title: J. Comput. Phys. – volume: 174 year: 2020 ident: b1190 article-title: Stability of nanofluid: A review publication-title: Appl. Therm. Eng. – volume: 168 year: 2020 ident: b0330 article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling publication-title: Appl. Therm. Eng. – start-page: 25 year: 2019 end-page: 39 ident: b0990 article-title: “The Boltzmann Equation,” in – volume: 100 start-page: 372 year: 2016 end-page: 380 ident: b0670 article-title: Two-phase and single phase models of flow of nanofluid in a square cavity: comparison with experimental results publication-title: Int. J. Therm. Sci. – volume: 148 start-page: 987 year: 2020 end-page: 1001 ident: b1110 article-title: Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit publication-title: Renewable Energy – volume: 114 start-page: 1086 year: 2017 end-page: 1097 ident: b0100 article-title: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid publication-title: Int. J. Heat Mass Transf. – volume: 91 start-page: 564 year: 2018 end-page: 583 ident: b0475 article-title: Heat transfer and pressure drop correlations of nanofluids: a state of art review publication-title: Renew. Sustain. Energy Rev. – volume: 29 start-page: 117 year: 2003 end-page: 169 ident: b1005 article-title: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications publication-title: Int. J. Multiph. Flow – volume: 138 start-page: 23 year: 2017 end-page: 34 ident: b0105 article-title: Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle publication-title: Ocean Eng. – volume: 44 start-page: 7919 year: 2019 end-page: 7931 ident: b1065 article-title: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field publication-title: Arabian Journal for Science and Engineering – volume: 147 start-page: 962 year: 2019 end-page: 971 ident: b0255 article-title: Critical review of the local thermal equilibrium assumption in heterogeneous porous media: Dependence on permeability and porosity contrasts publication-title: Appl. Therm. Eng. – volume: 92 start-page: 254 year: 2018 end-page: 271 ident: b0540 article-title: Thermal and electrical management of photovoltaic panels using phase change materials–A review publication-title: Renew. Sustain. Energy Rev. – volume: 94 year: 2019 ident: b1140 article-title: Solidification entropy generation via FEM through a porous storage unit with applying a magnetic field publication-title: Phys. Scr. – volume: 9 start-page: 436 year: 2012 end-page: 439 ident: b0060 article-title: Heat transfer augmentation for electronic cooling publication-title: American Journal of Applied Sciences – volume: 12 year: 2020 ident: b0970 article-title: Eulerian CFD model of direct absorption solar collector with nanofluid publication-title: J. Renewable Sustainable Energy – reference: vol. 135, no. 10, 2013. – reference: vol. 15, no. 7, 2012. – year: 2021 ident: b0550 article-title: Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials–A comprehensive review publication-title: Thermal Science and Engineering Progress – volume: 12 start-page: 1 year: 2019 end-page: 10 ident: b0985 article-title: Laminar Forced Convection and Entropy Generation of ZnO-Ethylene Glycol Nanofluid Flow through Square Microchannel with using Two-Phase Eulerian-Eulerian Model publication-title: Journal of Applied Fluid Mechanics – volume: 44 start-page: 157 year: 2013 end-page: 164 ident: b0840 article-title: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink publication-title: Int. Commun. Heat Mass Transfer – volume: 2 year: 2010 ident: b0485 article-title: Applications of nanofluids: current and future publication-title: Advances in mechanical engineering – volume: 14 start-page: 1617 year: 2002 end-page: 1630 ident: b0200 article-title: Stability of mixed convection in an anisotropic vertical porous channel publication-title: Phys. Fluids – volume: 130 start-page: 123 year: 2019 end-page: 134 ident: b0020 article-title: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure publication-title: Int. J. Heat Mass Transf. – volume: 48 start-page: 89 year: 1952 end-page: 94 ident: b0180 article-title: Fluid Flow through Packed Columns publication-title: Chem. Eng. Prog. – year: 2020 ident: b1425 article-title: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains publication-title: Numerical Methods for Partial Differential Equations – volume: 199 year: 2020 ident: b0955 article-title: Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method publication-title: Energy – volume: 77 start-page: 1063 year: 2014 end-page: 1074 ident: b0355 article-title: An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling publication-title: Int. J. Heat Mass Transf. – volume: 198 year: 2019 ident: b0835 article-title: An updated review on application of nanofluids in heat exchangers for saving energy publication-title: Energy Convers. Manage. – volume: 111 start-page: 256 year: 2017 end-page: 273 ident: b1075 article-title: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity publication-title: Int. J. Therm. Sci. – volume: 9 start-page: 29 year: 2018 end-page: 35 ident: b1100 article-title: Comparative study of conventional absorber using porous media in CSP with and without nano fluid flow using CFD analysis publication-title: International Journal on Emerging Technologies – volume: 88 year: 2006 ident: b0500 article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters publication-title: Appl. Phys. Lett. – volume: 52 start-page: 2042 year: 2009 end-page: 2048 ident: b0725 article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 55 start-page: 549 year: 2006 end-page: 552 ident: b0495 article-title: Synthesis and characterization of nanofluid for advanced heat transfer applications publication-title: Scr. Mater. – volume: 182 year: 2021 ident: b0775 article-title: Experimental study and CFD modelling on the thermal and flow behavior of EG/water ZnO nanofluid in multiport mini channels publication-title: Appl. Therm. Eng. – volume: 6 start-page: 1 year: 2015 end-page: 7 ident: b0310 article-title: Phonon hydrodynamics in two-dimensional materials publication-title: Nat. Commun. – volume: 49 start-page: 1038 year: 2003 end-page: 1043 ident: b0745 article-title: Aggregation structure and thermal conductivity of nanofluids publication-title: AIChE J. – volume: 70 start-page: 125 year: 2021 end-page: 139 ident: b0925 article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid H2O with hybrid nano-materials Al2O3-Cu and Al2O3-TiO2 over an extending sheet using Buongiorno model: Finite element approach publication-title: Chin. J. Phys. – volume: 23 start-page: 940 year: 2009 end-page: 946 ident: b0130 article-title: The effect of porosity on heat transfer and mass transfer of Mg-3Ni-2MnO2 hydrogen storage materials reaction bed publication-title: Int. J. Mod Phys B – volume: 29 start-page: 4549 year: 2019 end-page: 4568 ident: b0915 article-title: Free convection in an inclined cavity filled with a nanofluid and with sinusoidal temperature on the walls: Buongiorno’s mathematical model publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 62 start-page: 647 year: 2013 end-page: 660 ident: b1335 article-title: Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms publication-title: Internatinonal Journal of Heat and Mass Transfer – volume: 12 start-page: 243 year: 2017 end-page: 260 ident: b0525 article-title: Investigations on latent heat storage materials for solar water and space heating applications publication-title: J. Storage Mater. – volume: 103 start-page: 191 year: 2014 end-page: 205 ident: b1590 article-title: Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms publication-title: Transp. Porous Media – volume: 77 start-page: 308 year: 2015 end-page: 319 ident: b0450 article-title: Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector publication-title: Renewable Energy – volume: 14 start-page: 1702982 year: 2018 ident: b1470 article-title: Magnetotaxis enables magnetotactic bacteria to navigate in flow publication-title: Small – volume: 41 start-page: 22221 year: 2016 end-page: 22245 ident: b1000 article-title: Lattice Boltzmann simulation of proton exchange membrane fuel cells–A review on opportunities and challenges publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 420 year: 2013 end-page: 431 ident: b0420 article-title: Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger publication-title: J. Taiwan Inst. Chem. Eng. – volume: 101 start-page: 10 year: 2019 end-page: 20 ident: b0810 article-title: Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts publication-title: Int. Commun. Heat Mass Transfer – volume: 22 year: 2020 ident: b1525 article-title: Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms publication-title: Case Studies in Thermal Engineering – volume: 178 year: 2020 ident: b1125 article-title: Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries publication-title: Appl. Therm. Eng. – volume: 53 start-page: 227 year: 2014 end-page: 235 ident: b0695 article-title: Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid publication-title: Exp. Therm Fluid Sci. – year: 2014 ident: b0025 article-title: Pathways for Heat: Low Carbon Heat for Buildings – volume: 90 start-page: 838 year: 2015 end-page: 847 ident: b1115 article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam publication-title: Int. J. Heat Mass Transf. – volume: 88 start-page: 74 year: 2017 end-page: 83 ident: b0040 article-title: An overview of passive techniques for heat transfer augmentation in microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer – volume: 45 start-page: 857 year: 2014 end-page: 877 ident: b0220 article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle publication-title: Heat Transfer Research – volume: 13 start-page: 3793 year: 2020 ident: b0650 article-title: Efficient Stabilization of Mono and Hybrid Nanofluids publication-title: Energies – volume: 30 start-page: 63 year: 2021 end-page: 74 ident: b0940 article-title: Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block publication-title: J. Adv. Res. – reference: vol. 231, p. 99–105, 1995. – volume: 71 start-page: 1251 year: 2017 end-page: 1273 ident: b0880 article-title: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model publication-title: Numerical Heat Transfer, Part A: Applications – volume: 322 start-page: 3895 year: 2010 end-page: 3901 ident: b0570 article-title: Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids publication-title: J. Magn. Magn. Mater. – reference: vol. 6, no. 2019, pp. 3485-3497, 135. – volume: 123 start-page: 895 year: 2020 end-page: 912 ident: b0235 article-title: Thermal modeling and analysis of metal foam heat sink with thermal equilibrium and non-equilibrium models publication-title: Computer Modeling in Engineering & Sciences – volume: 127 start-page: 914 year: 2018 end-page: 926 ident: b1135 article-title: Nanofluid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces publication-title: Int. J. Heat Mass Transf. – volume: 58 start-page: 184 year: 2014 end-page: 192 ident: b0250 article-title: Validation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bed publication-title: Int. Commun. Heat Mass Transfer – volume: 321 year: 2021 ident: b0580 article-title: Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review publication-title: J. Mol. Liq. – volume: 1 start-page: 187 year: 1962 end-page: 191 ident: b0790 article-title: Thermal conductivity of heterogeneous two-component systems publication-title: Ind. Eng. Chem. Fundam. – volume: 4 start-page: 93 year: 1972 end-page: 116 ident: b1300 article-title: Locomotion of protozoa publication-title: Annu. Rev. Fluid Mech. – volume: 24 start-page: 825 year: 2003 end-page: 834 ident: b0150 article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure publication-title: Int. J. Heat Fluid Flow – volume: 5 start-page: 735 year: 1995 end-page: 752 ident: b0225 article-title: A comparative study of porous media models in a differentially heated square cavity using a finite element method publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 74 start-page: 285 year: 2014 end-page: 291 ident: b1605 article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip publication-title: Int. J. Heat Mass Transf. – volume: 201 start-page: 247 year: 2019 end-page: 263 ident: b1070 article-title: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder publication-title: Chem. Eng. Sci. – reference: p. 09544089211007326, 2021. – volume: 143 year: 2021 ident: b0360 article-title: Experimental analysis of salt hydrate latent heat thermal energy storage system with porous aluminum fabric and salt hydrate as phase change material with enhanced stability and supercooling publication-title: J. Energy Res. Technol. – volume: 383 start-page: 484 year: 2021 end-page: 497 ident: b0660 article-title: Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle publication-title: Powder Technol. – volume: 135 start-page: 671 year: 2019 end-page: 683 ident: b0780 article-title: Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels publication-title: J. Therm. Anal. Calorim. – volume: 13 start-page: 1350067 year: 2013 ident: b1565 article-title: Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms publication-title: ournal of Mechanics in Medicine and Biology – volume: 37 start-page: 645 year: 2016 end-page: 651 ident: b0400 article-title: Thermal performance of diesel engine exhaust heat recovery system using concentric tube heat exchanger inserts with different porous materials publication-title: Int. J. Ambient Energy – volume: 67 start-page: 335 year: 2007 end-page: 352 ident: b0215 article-title: The effect of thermal dispersion on free convection film condensation on a vertical plate with a thin porous layer publication-title: Transp. Porous Media – volume: 89 start-page: 758 year: 2016 end-page: 793 ident: b0675 article-title: Analysis of convective heat transfer enhancement by nanofluids: single-phase and two-phase treatments publication-title: J. Eng. Phys. Thermophys. – volume: 171 start-page: 229 year: 2018 end-page: 246 ident: b0975 article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids publication-title: Sol. Energy – volume: 26 start-page: 3954 year: 2021 ident: b1350 article-title: Bioconvection Due to Gyrotactic Microorganisms in Couple Stress Hybrid Nanofluid Laminar Mixed Convection Incompressible Flow with Magnetic Nanoparticles and Chemical Reaction as Carrier for Targeted Drug Delivery through Porous Stretching Sheet publication-title: Molecules – volume: 143 start-page: 1201 year: 2021 end-page: 1220 ident: b0930 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. – volume: 6 year: 2020 ident: b1405 article-title: Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium publication-title: Heliyon – volume: 263 start-page: 510 year: 2018 end-page: 525 ident: b1060 article-title: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field publication-title: J. Mol. Liq. – volume: 28 start-page: 877 year: 2001 end-page: 886 ident: b1310 article-title: Numerical investigation of bioconvection of gravitactic microorganisms in an isotropic porous medium publication-title: International communication in heat and mass transfer – volume: 34 start-page: 86 year: 2016 end-page: 99 ident: b0535 article-title: Thermal energy storage based solar drying systems: A review publication-title: Innovative Food Sci. Emerg. Technol. – volume: 51 start-page: 1431 year: 2008 end-page: 1438 ident: b0740 article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids publication-title: Int. J. Heat Mass Transf. – reference: vol. 41, no. 5, 2020. – volume: 107 start-page: 21 year: 2017 end-page: 44 ident: b0030 article-title: Hydrothermal performance of microchannel heat sink: The effect of channel design publication-title: Int. J. Heat Mass Transf. – reference: A. S. Dogonchi, M. A. Ismael, A. J. Chamkha and D. D. Ganji, “Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall,” – volume: 227 start-page: 356 year: 2017 end-page: 365 ident: b1400 article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using modified least square method (MLSM) publication-title: J. Mol. Liq. – volume: 49 start-page: 626 year: 2020 end-page: 650 ident: b0950 article-title: “Numerical computation on Marangoni convective flow of two-phase MHD dusty nanofluids under Brownian motion and thermophoresis effects,” publication-title: Research – volume: 31 start-page: 629 year: 2004 ident: 10.1016/j.tsep.2022.101267_b1325 article-title: Effect of small solid particles on the development of bioconvection plumes publication-title: International Communication in Heat and Mass Transfer doi: 10.1016/S0735-1933(04)00050-8 – volume: 37 start-page: 1 year: 2005 ident: 10.1016/j.tsep.2022.101267_b1290 article-title: Bioconvection publication-title: Fluid Dyn. Res. doi: 10.1016/j.fluiddyn.2005.03.002 – volume: 111 start-page: 256 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1075 article-title: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.09.001 – ident: 10.1016/j.tsep.2022.101267_b1545 doi: 10.1615/JPorMedia.v15.i7.20 – volume: 19 start-page: 289 year: 1906 ident: 10.1016/j.tsep.2022.101267_b0680 article-title: A new determination of molecular dimensions publication-title: Ann. Phys. doi: 10.1002/andp.19063240204 – volume: 26 start-page: 3954 issue: 13 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1350 article-title: Bioconvection Due to Gyrotactic Microorganisms in Couple Stress Hybrid Nanofluid Laminar Mixed Convection Incompressible Flow with Magnetic Nanoparticles and Chemical Reaction as Carrier for Targeted Drug Delivery through Porous Stretching Sheet publication-title: Molecules doi: 10.3390/molecules26133954 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0310 article-title: Phonon hydrodynamics in two-dimensional materials publication-title: Nat. Commun. doi: 10.1038/ncomms7400 – volume: 64 start-page: 147 issue: 1–2 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0350 article-title: The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.072 – volume: 548 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1130 article-title: The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus publication-title: Physica A doi: 10.1016/j.physa.2019.123887 – start-page: 1 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1170 article-title: Using a two-phase method for numerical natural convection simulation in a cavity containing multiwalled carbon nanotube/water publication-title: J. Therm. Anal. Calorim. – volume: 90 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0245 article-title: Impact of boiling heat transfer on geothermal reservoir simulation using local thermal non-equilibrium model publication-title: Geothermics doi: 10.1016/j.geothermics.2020.102016 – volume: 147 start-page: 962 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0255 article-title: Critical review of the local thermal equilibrium assumption in heterogeneous porous media: Dependence on permeability and porosity contrasts publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.130 – volume: 56 start-page: 73 issue: 1 year: 2013 ident: 10.1016/j.tsep.2022.101267_b0395 article-title: A technique for thermal design of a heat exchanger with porous inserts publication-title: Russian Aeronautics (Iz VUZ) doi: 10.3103/S106879981301011X – volume: 32 start-page: 211 issue: 1 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0870 article-title: A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: Exergy destruction minimization attitude publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.12.005 – volume: 53 start-page: 2351 issue: 7 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0095 article-title: Experimental development of a Nusselt correlation for forced reciprocating oscillated vertical annular glycerol flow through a porous domain publication-title: Heat Mass Transf. doi: 10.1007/s00231-017-1987-6 – volume: 111 issue: 23 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0455 article-title: Quantum ballistic transport in strained epitaxial germanium publication-title: Appl. Phys. Lett. doi: 10.1063/1.5008969 – volume: 57 start-page: 61 issue: 1 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1395 article-title: Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2016.11.011 – volume: 107 start-page: 21 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0030 article-title: Hydrothermal performance of microchannel heat sink: The effect of channel design publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.031 – volume: 7 start-page: 603 issue: 3 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1495 article-title: Modeling of Gyrotactic Microorganisms Non-Newtonian Nanofluids Due to Free Convection Flow Past a Vertical Porous Truncated Cone publication-title: Journal of Nanofluids doi: 10.1166/jon.2018.1461 – volume: 132 issue: 7 year: 2010 ident: 10.1016/j.tsep.2022.101267_b0345 article-title: Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert publication-title: J. Heat Transfer doi: 10.1115/1.4000951 – volume: 8 start-page: 145 issue: 2 year: 2010 ident: 10.1016/j.tsep.2022.101267_b0560 article-title: Enhanced thermal conductivity of nanofluids: a state-of-the-art review publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-009-0524-4 – volume: 101 start-page: 10 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0810 article-title: Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.12.010 – ident: 10.1016/j.tsep.2022.101267_b0080 doi: 10.1615/JEnhHeatTransf.2018024886 – volume: 14 start-page: 1617 issue: 5 year: 2002 ident: 10.1016/j.tsep.2022.101267_b0200 article-title: Stability of mixed convection in an anisotropic vertical porous channel publication-title: Phys. Fluids doi: 10.1063/1.1460879 – volume: 133 start-page: 689 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1165 article-title: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.09.031 – volume: 383 start-page: 484 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0660 article-title: Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.01.045 – ident: 10.1016/j.tsep.2022.101267_b0685 doi: 10.1063/1.1700493 – volume: 31 start-page: 1 year: 2004 ident: 10.1016/j.tsep.2022.101267_b1355 article-title: Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth publication-title: International Communication in Heat and Mass Transfer doi: 10.1016/S0735-1933(03)00196-9 – volume: 37 start-page: 136 year: 2012 ident: 10.1016/j.tsep.2022.101267_b0665 article-title: Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2012.05.005 – volume: 9 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1040 article-title: Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger publication-title: International Journal of Thermofluids doi: 10.1016/j.ijft.2020.100055 – ident: 10.1016/j.tsep.2022.101267_b1440 – volume: 125 start-page: 527 issue: 1 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0575 article-title: Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5436-4 – volume: 29 start-page: 117 issue: 1 year: 2003 ident: 10.1016/j.tsep.2022.101267_b1005 article-title: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(02)00108-8 – volume: 26 start-page: 935 issue: 3 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0565 article-title: Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2015.03.012 – volume: 462 start-page: 45 issue: 1–2 year: 2007 ident: 10.1016/j.tsep.2022.101267_b0600 article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives publication-title: Thermochim Acta doi: 10.1016/j.tca.2007.06.009 – volume: 70 start-page: 1141 issue: 10 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0635 article-title: Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids publication-title: Numerical Heat Transfer, Part A: Applications doi: 10.1080/10407782.2016.1230423 – volume: 83 start-page: 97 issue: 1 year: 1977 ident: 10.1016/j.tsep.2022.101267_b0700 article-title: The effect of Brownian motion on the bulk stress in a suspension of spherical particles publication-title: J. Fluid Mech. doi: 10.1017/S0022112077001062 – volume: 35 start-page: 93 issue: 1 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0960 article-title: Scrutiny of unsteady flow and heat transfer in a backward-facing step under pulsating nanofluid blowing using the Eulerian-Eulerian approach publication-title: Journal of Mechanics doi: 10.1017/jmech.2017.73 – ident: 10.1016/j.tsep.2022.101267_b1055 doi: 10.1007/s10973-018-7520-4 – volume: 114 start-page: 7740 issue: 15 year: 2014 ident: 10.1016/j.tsep.2022.101267_b1220 article-title: Chemical basis of interactions between engineered nanoparticles and biological systems publication-title: Chem. Rev. doi: 10.1021/cr400295a – volume: 566 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0280 article-title: Effect of thermal non-equilibrium and internal heat source on Brinkman-Bénard convection. Physica A publication-title: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2020.125617 – volume: 311 start-page: 17 issue: 1 year: 2007 ident: 10.1016/j.tsep.2022.101267_b0515 article-title: Sterically stabilized water based magnetic fluids: Synthesis, structure and properties publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.11.158 – volume: 14 start-page: 1702982 issue: 5 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1470 article-title: Magnetotaxis enables magnetotactic bacteria to navigate in flow publication-title: Small doi: 10.1002/smll.201702982 – volume: 85 start-page: 119 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0010 article-title: Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2017.03.008 – volume: 9 start-page: 436 issue: 3 year: 2012 ident: 10.1016/j.tsep.2022.101267_b0060 article-title: Heat transfer augmentation for electronic cooling publication-title: American Journal of Applied Sciences doi: 10.3844/ajassp.2012.436.439 – volume: 21 start-page: 67 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0995 article-title: Lattice Boltzmann simulations for multi-scale chemical engineering publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2018.03.003 – volume: 35 start-page: 543 issue: 3–6 year: 2004 ident: 10.1016/j.tsep.2022.101267_b0720 article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2003.09.012 – volume: 139 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0285 article-title: Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model publication-title: J. Heat Transfer doi: 10.1115/1.4037087 – volume: 128 start-page: 1213 issue: 11 year: 2006 ident: 10.1016/j.tsep.2022.101267_b0505 article-title: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe publication-title: J. Heat Transfer doi: 10.1115/1.2352789 – volume: 124 start-page: 95 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1085 article-title: Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.03.007 – volume: 20 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0850 article-title: Thermal analysis of a microchannel heat sink cooled by two-phase flow boiling of Al2O3 HFE-7100 nanofluid publication-title: Thermal Science and Engineering Progress doi: 10.1016/j.tsep.2020.100693 – volume: 14 start-page: 80 issue: 1 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0470 article-title: The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review publication-title: Energies doi: 10.3390/en14010080 – year: 2021 ident: 10.1016/j.tsep.2022.101267_b1430 article-title: Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media publication-title: Alexandria Engineering Journal – volume: 74 start-page: 285 year: 2014 ident: 10.1016/j.tsep.2022.101267_b1605 article-title: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.03.026 – year: 2013 ident: 10.1016/j.tsep.2022.101267_b0140 – volume: 98 start-page: 229 issue: 3–4 year: 2010 ident: 10.1016/j.tsep.2022.101267_b1345 article-title: Silver–TiO2 nanocomposites: Synthesis and harmful algae bloom UV-photoelimination publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.06.001 – volume: 77 start-page: 1063 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0355 article-title: An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.05.053 – volume: 37 start-page: 1421 issue: 10 year: 2010 ident: 10.1016/j.tsep.2022.101267_b1340 article-title: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.08.015 – volume: 143 issue: 4 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0360 article-title: Experimental analysis of salt hydrate latent heat thermal energy storage system with porous aluminum fabric and salt hydrate as phase change material with enhanced stability and supercooling publication-title: J. Energy Res. Technol. doi: 10.1115/1.4048122 – ident: 10.1016/j.tsep.2022.101267_b1435 doi: 10.1615/JPorMedia.2021036551 – volume: 31 start-page: 1929 issue: 10 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0050 article-title: Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2018.06.011 – volume: 92 start-page: 254 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0540 article-title: Thermal and electrical management of photovoltaic panels using phase change materials–A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.091 – volume: 49 start-page: 1038 issue: 4 year: 2003 ident: 10.1016/j.tsep.2022.101267_b0745 article-title: Aggregation structure and thermal conductivity of nanofluids publication-title: AIChE J. doi: 10.1002/aic.690490420 – volume: 9 start-page: 29 issue: 1 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1100 article-title: Comparative study of conventional absorber using porous media in CSP with and without nano fluid flow using CFD analysis publication-title: International Journal on Emerging Technologies – volume: 138 start-page: 1669 issue: 2 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0115 article-title: Optimum constituents for MHD heat transfer of nanofluids within porous cavities publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08191-y – volume: 41 start-page: 22221 issue: 47 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1000 article-title: Lattice Boltzmann simulation of proton exchange membrane fuel cells–A review on opportunities and challenges publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.211 – volume: 144 start-page: 2627 issue: 6 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1120 article-title: Numerical study on heat loss from the surface of solar collector tube filled by oil-NE-PCM/Al2O3 in the presence of the magnetic field publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10480-w – volume: 13 start-page: 341 issue: 3 year: 2003 ident: 10.1016/j.tsep.2022.101267_b1285 article-title: Bioconvection of negatively geotactic microorganisms in a porous medium: the effect of cell deposition and declogging publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/09615530310464535 – volume: 4 start-page: 93 issue: 1 year: 1972 ident: 10.1016/j.tsep.2022.101267_b1300 article-title: Locomotion of protozoa publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.04.010172.000521 – volume: 201 start-page: 247 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1070 article-title: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.03.006 – volume: 31 start-page: 1905 issue: 6 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1460 article-title: Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3165-7 – volume: 315 start-page: 608 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0155 article-title: A systematic procedure for the virtual reconstruction of open-cell foams publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.069 – volume: 44 start-page: 373 year: 2012 ident: 10.1016/j.tsep.2022.101267_b1250 article-title: Fluid mechanics of planktonic microorganisms publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101156 – volume: 221 start-page: 298 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0555 article-title: Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.05.089 – volume: 6 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.tsep.2022.101267_b0590 article-title: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review publication-title: Nanoscale Res. Lett. – volume: 178 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0165 article-title: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics publication-title: Appl. Therm. Eng. – volume: 50 start-page: 1343 issue: 8 year: 2011 ident: 10.1016/j.tsep.2022.101267_b0690 article-title: Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.03.008 – volume: 227 start-page: 356 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1400 article-title: Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using modified least square method (MLSM) publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.12.039 – volume: 37 start-page: 645 issue: 6 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0400 article-title: Thermal performance of diesel engine exhaust heat recovery system using concentric tube heat exchanger inserts with different porous materials publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2015.1023843 – volume: 10 start-page: 1194 issue: 15 year: 2015 ident: 10.1016/j.tsep.2022.101267_b1185 article-title: Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2014.989551 – volume: 46 start-page: 1081 issue: 12 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0125 article-title: Flow over a porous structure in a square cavity: Effects of the porous structure size and porosity on the heat transfer performance and fluid pressure loss publication-title: Heat Transfer Research doi: 10.1615/HeatTransRes.2015005342 – volume: 129 start-page: 181 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0160 article-title: A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams publication-title: Chemical Engineering and Processing-Process Intensification doi: 10.1016/j.cep.2018.04.018 – volume: 13 start-page: 1350067 issue: 04 year: 2013 ident: 10.1016/j.tsep.2022.101267_b1565 article-title: Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic microorganisms publication-title: ournal of Mechanics in Medicine and Biology doi: 10.1142/S021951941350067X – volume: 28 start-page: 2928 issue: 11 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1175 article-title: Effects of the porous medium and water-silver biological nanofluid on the performance of a newly designed heat sink by using first and second laws of thermodynamics publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.07.025 – volume: 28 start-page: 288 issue: 1 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1610 article-title: Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.10.002 – volume: 5 start-page: 735 year: 1995 ident: 10.1016/j.tsep.2022.101267_b0225 article-title: A comparative study of porous media models in a differentially heated square cavity using a finite element method publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/EUM0000000004124 – volume: 109 start-page: 182 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0340 article-title: Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.06.007 – volume: 56 start-page: 48 year: 2012 ident: 10.1016/j.tsep.2022.101267_b1265 article-title: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.01.011 – start-page: 1 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0865 article-title: Numerical investigation of laminar flow of biological nanofluid in a rifled tube using two-phase mixture model: first-law and second-law analyses and geometry optimization publication-title: J. Therm. Anal. Calorim. – volume: 62 start-page: 647 year: 2013 ident: 10.1016/j.tsep.2022.101267_b1335 article-title: Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms publication-title: Internatinonal Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.03.012 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0985 article-title: Laminar Forced Convection and Entropy Generation of ZnO-Ethylene Glycol Nanofluid Flow through Square Microchannel with using Two-Phase Eulerian-Eulerian Model publication-title: Journal of Applied Fluid Mechanics doi: 10.29252/jafm.75.253.28744 – volume: 68 start-page: 659 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0190 article-title: Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.09.039 – volume: 46 start-page: 2493 issue: 3 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1475 article-title: Bioconvection in a convectional nanofluid flow containing gyrotactic microorganisms over an isothermal vertical cone embedded in a porous surface with chemical reactive species publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-020-05132-y – volume: 317 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1215 article-title: Development and characterization of unitary and hybrid Al2O3 and ZrO dispersed Jatropha oil-based nanofluid for cleaner production publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.128365 – volume: 22 start-page: 18 issue: 1 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0905 article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface publication-title: Entropy doi: 10.3390/e22010018 – volume: 123 start-page: 895 issue: 2 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0235 article-title: Thermal modeling and analysis of metal foam heat sink with thermal equilibrium and non-equilibrium models publication-title: Computer Modeling in Engineering & Sciences doi: 10.32604/cmes.2020.09009 – volume: 247 start-page: 1033 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0145 article-title: Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.156 – volume: 148 start-page: 987 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1110 article-title: Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit publication-title: Renewable Energy doi: 10.1016/j.renene.2019.10.084 – volume: 70 start-page: 125 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0925 article-title: A comparative description on time-dependent rotating magnetic transport of a water base liquid H2O with hybrid nano-materials Al2O3-Cu and Al2O3-TiO2 over an extending sheet using Buongiorno model: Finite element approach publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.12.022 – year: 2020 ident: 10.1016/j.tsep.2022.101267_b1635 article-title: Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 129 start-page: 396 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0545 article-title: Phase change materials (PCM) for cooling applications in buildings: A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.04.006 – volume: 43 start-page: 164 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0610 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.023 – volume: 88 start-page: 74 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0040 article-title: An overview of passive techniques for heat transfer augmentation in microchannel heat sink publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2017.08.009 – volume: 71 start-page: 1251 issue: 12 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0880 article-title: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model publication-title: Numerical Heat Transfer, Part A: Applications doi: 10.1080/10407782.2017.1345270 – volume: 124 start-page: 120 issue: 1 year: 2002 ident: 10.1016/j.tsep.2022.101267_b0270 article-title: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams publication-title: J. Heat Transfer doi: 10.1115/1.1416690 – volume: 114 start-page: 225 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0770 article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.030 – volume: 46 start-page: 1413 issue: 8 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1180 article-title: “A review of nanofluid preparation, stability, and thermo-physical properties,” Heat Transfer—Asian publication-title: Research – volume: 195 start-page: 71 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1105 article-title: Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.01.050 – volume: 4 start-page: 11 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0765 article-title: Numerical Study of Single Phase/Two-Phase Models for Nano fluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow publication-title: Transport phenomena in nano and micro scales – volume: 130 start-page: 375 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1255 article-title: Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.06.030 – ident: 10.1016/j.tsep.2022.101267_b1580 doi: 10.1007/s10483-020-2609-6 – year: 2021 ident: 10.1016/j.tsep.2022.101267_b0550 article-title: Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials–A comprehensive review publication-title: Thermal Science and Engineering Progress – volume: 11 start-page: 146 issue: 1 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0055 article-title: Recent advances in passive cooling methods for photovoltaic performance enhancement publication-title: International Journal of Electrical & Computer Engineering – volume: 34 start-page: 86 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0535 article-title: Thermal energy storage based solar drying systems: A review publication-title: Innovative Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2016.01.007 – volume: 25 start-page: 1352 issue: 10 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0390 article-title: A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2017.01.015 – volume: 89 start-page: 758 issue: 3 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0675 article-title: Analysis of convective heat transfer enhancement by nanofluids: single-phase and two-phase treatments publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/s10891-016-1437-1 – volume: 326 start-page: 655 year: 1987 ident: 10.1016/j.tsep.2022.101267_b1245 article-title: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate publication-title: Nature doi: 10.1038/326655a0 – volume: 51 start-page: 1431 issue: 5–6 year: 2008 ident: 10.1016/j.tsep.2022.101267_b0740 article-title: Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.10.017 – volume: 1 start-page: 27 issue: 1 year: 1949 ident: 10.1016/j.tsep.2022.101267_b0195 article-title: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles publication-title: Flow, Turbulence and Combustion doi: 10.1007/BF02120313 – volume: 9 start-page: 1192 issue: 1 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0065 article-title: A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges publication-title: Nanotechnology Reviews doi: 10.1515/ntrev-2020-0094 – volume: 11 start-page: 858 issue: 5 year: 2007 ident: 10.1016/j.tsep.2022.101267_b0075 article-title: A review of electrohydrodynamic enhancement of heat transfer publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2005.07.002 – volume: 44 start-page: 157 year: 2013 ident: 10.1016/j.tsep.2022.101267_b0840 article-title: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2013.02.012 – volume: 790 start-page: 1 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0460 article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory publication-title: Phys. Rep. doi: 10.1016/j.physrep.2018.11.004 – volume: 118 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0855 article-title: Fluid flow and heat transfer analysis of nanofluid jet cooling on a hot surface with various roughness publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104842 – volume: 53 start-page: 95 year: 2003 ident: 10.1016/j.tsep.2022.101267_b1380 article-title: Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium publication-title: Transp. Porous Media doi: 10.1023/A:1023582001592 – volume: 1 start-page: 187 issue: 3 year: 1962 ident: 10.1016/j.tsep.2022.101267_b0790 article-title: Thermal conductivity of heterogeneous two-component systems publication-title: Ind. Eng. Chem. Fundam. doi: 10.1021/i160003a005 – volume: 30 start-page: 63 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0940 article-title: Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.09.008 – volume: 114 start-page: 31 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0260 article-title: Challenges and progress on the modelling of entropy generation in porous media: a review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.021 – volume: 13 start-page: 474 issue: 4 year: 1999 ident: 10.1016/j.tsep.2022.101267_b0760 article-title: Thermal conductivity of nanoparticle-fluid mixture publication-title: J. Thermophys Heat Transfer doi: 10.2514/2.6486 – volume: 4 start-page: 257 year: 1986 ident: 10.1016/j.tsep.2022.101267_b1375 article-title: The external dynamics of swimming micro-organisms publication-title: Progress in Phycological Research – volume: 165 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0410 article-title: Numerical analysis of flow characteristics and heat transfer of high-temperature exhaust gas through porous fins publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114612 – volume: 2 start-page: 361 issue: 4 year: 2015 ident: 10.1016/j.tsep.2022.101267_b1210 article-title: Comparative life cycle assessment of silver nanoparticle synthesis routes publication-title: Environ. Sci. Nano doi: 10.1039/C5EN00075K – ident: 10.1016/j.tsep.2022.101267_b0110 doi: 10.2298/TSCI150424128S – volume: 263 start-page: 510 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1060 article-title: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.119 – volume: 130 start-page: 123 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0020 article-title: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.10.072 – volume: 7 start-page: 49 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1540 article-title: Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder publication-title: Results Phys. doi: 10.1016/j.rinp.2016.10.016 – volume: 27 start-page: 326 issue: 2 year: 2013 ident: 10.1016/j.tsep.2022.101267_b1595 article-title: Free convective flow of non-Newtonian nanofluids in porous media with gyrotactic microorganism publication-title: J. Thermophys Heat Transfer doi: 10.2514/1.T3983 – ident: 10.1016/j.tsep.2022.101267_b0175 – volume: 9 start-page: 339 issue: 1 year: 1977 ident: 10.1016/j.tsep.2022.101267_b1295 article-title: Fluid mechanics of propulsion by cilia and flagella publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.09.010177.002011 – volume: 61 start-page: 505 year: 2013 ident: 10.1016/j.tsep.2022.101267_b0015 article-title: An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.01.083 – volume: 57 start-page: 299 issue: 2 year: 1995 ident: 10.1016/j.tsep.2022.101267_b1560 article-title: The development of concentration gradients in a suspension of chemotactic bacteria publication-title: Bull. Math. Biol. doi: 10.1016/0092-8240(94)00038-E – volume: 198 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0835 article-title: An updated review on application of nanofluids in heat exchangers for saving energy publication-title: Energy Convers. Manage. – volume: 139 start-page: 2165 issue: 3 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1080 article-title: Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08651-5 – volume: 44 start-page: 7919 issue: 9 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1065 article-title: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-019-03956-x – volume: 17 start-page: 1750059 issue: 03 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1510 article-title: Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model publication-title: Journal of Mechanics in Medicine and Biology doi: 10.1142/S0219519417500592 – volume: 109 start-page: 50001 issue: 5 year: 2015 ident: 10.1016/j.tsep.2022.101267_b1020 article-title: Lattice boltzmann 2038 publication-title: EPL (Europhysics Letters) doi: 10.1209/0295-5075/109/50001 – volume: 96 start-page: 181 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0425 article-title: Overview of porous media/metal foam application in fuel cells and solar power systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.07.032 – volume: 3 start-page: 137 issue: 1 year: 1959 ident: 10.1016/j.tsep.2022.101267_b0710 article-title: A mechanism for non-Newtonian flow in suspensions of rigid spheres publication-title: Transactions of the Society of Rheology doi: 10.1122/1.548848 – volume: 107–111 start-page: 470 issue: 1–3 year: 2009 ident: 10.1016/j.tsep.2022.101267_b1200 article-title: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids publication-title: Chem. Phys. Lett. – volume: 37 start-page: 74 issue: 1 year: 2010 ident: 10.1016/j.tsep.2022.101267_b0785 article-title: Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2009.07.013 – volume: 174 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1190 article-title: Stability of nanofluid: A review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115259 – volume: 128 start-page: 240 year: 2006 ident: 10.1016/j.tsep.2022.101267_b0885 article-title: Convective transport in nanofluids publication-title: J. Heat Transfer doi: 10.1115/1.2150834 – volume: 118 start-page: 705 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0430 article-title: An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor publication-title: Energy doi: 10.1016/j.energy.2016.10.101 – volume: 234 start-page: 8 year: 2013 ident: 10.1016/j.tsep.2022.101267_b1010 article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.08.040 – ident: 10.1016/j.tsep.2022.101267_b1600 doi: 10.1115/1.4024387 – ident: 10.1016/j.tsep.2022.101267_b1050 doi: 10.1115/1.4039213 – volume: 76 start-page: 43 year: 2013 ident: 10.1016/j.tsep.2022.101267_b0380 article-title: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.07.022 – ident: 10.1016/j.tsep.2022.101267_b0300 – volume: 50 start-page: 4652 year: 2007 ident: 10.1016/j.tsep.2022.101267_b1385 article-title: Bioconvection of gravitactic micro-organisms in rectangular enclosures publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.03.009 – year: 2018 ident: 10.1016/j.tsep.2022.101267_b0595 article-title: A review on nanofluids: fabrication, stability, and thermophysical properties publication-title: Journal of Nanomaterials doi: 10.1155/2018/6978130 – volume: 38 start-page: 54 year: 2012 ident: 10.1016/j.tsep.2022.101267_b0640 article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2011.11.007 – volume: 120 start-page: 671 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0805 article-title: Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.075 – volume: 243 start-page: 206 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0120 article-title: Potentials of porous materials for energy management in heat exchangers–A comprehensive review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.200 – start-page: 25 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0990 – volume: 15 start-page: 23 issue: 1 year: 2015 ident: 10.1016/j.tsep.2022.101267_b1280 article-title: Interplay of physical mechanisms and biofilmprocesses: review of microfluidic methods publication-title: Lab Chip doi: 10.1039/C4LC01095G – volume: 220 start-page: 01004 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1390 article-title: Bioconvection of Nanofluid Past Stretching Sheet in a Porous Medium in Presence of Gyrotactic Microorganisms with Newtonian Heating publication-title: In MATEC Web of Conferences doi: 10.1051/matecconf/201822001004 – volume: 115 start-page: 400 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0845 article-title: Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still publication-title: Renewable Energy doi: 10.1016/j.renene.2017.08.059 – ident: 10.1016/j.tsep.2022.101267_b0900 doi: 10.1615/JPorMedia.2020027144 – volume: 305 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0035 article-title: Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112787 – ident: 10.1016/j.tsep.2022.101267_b1370 doi: 10.1115/FEDSM2002-31105 – volume: 40 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0385 article-title: Performance analysis of a cascade PCM heat exchanger and two-phase closed thermosiphon: A case study of geothermal district heating system publication-title: Sustainable Energy Technol. Assess. – volume: 381 start-page: 164 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0815 article-title: Influence of non-uniform asymmetric heating on conjugate heat transfer in a rectangular minichannel using nanofluid by two-phase Eulerian-Lagrangian method publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.12.037 – volume: 44 start-page: 339 issue: 2 year: 1973 ident: 10.1016/j.tsep.2022.101267_b0890 article-title: Thermophoresis in liquids publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(73)90225-7 – volume: 5 start-page: 15004 issue: 7 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0325 article-title: Experimental study on heat sink with porous copper as conductive material for CPU cooling publication-title: Mater. Today:. Proc. – volume: 178 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1125 article-title: Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115543 – volume: 88 issue: 14 year: 2006 ident: 10.1016/j.tsep.2022.101267_b0500 article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters publication-title: Appl. Phys. Lett. doi: 10.1063/1.2192971 – volume: 48 start-page: 57 issue: 1 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1490 article-title: Gyrotactic microorganisms free convection boundary layer flow about a vertical truncated cone in nanofluid porous media publication-title: Latin American Applied Research-An international journal doi: 10.52292/j.laar.2018.259 – volume: 37 start-page: 314 issue: 3–4 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0230 article-title: Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2015.1052682 – volume: 8 start-page: 380 issue: 3 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1455 article-title: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface publication-title: Mathematics doi: 10.3390/math8030380 – volume: 97 start-page: 92 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1045 article-title: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.07.002 – volume: 321 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0580 article-title: Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114430 – volume: 72 start-page: 190 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0625 article-title: Effects of hybrid nanofluid mixture in plate heat exchangers publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2015.11.009 – volume: 161 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0365 article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114163 – volume: 44 start-page: 420 issue: 3 year: 2013 ident: 10.1016/j.tsep.2022.101267_b0420 article-title: Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2012.12.018 – volume: 28 start-page: 877 issue: 7 year: 2001 ident: 10.1016/j.tsep.2022.101267_b1310 article-title: Numerical investigation of bioconvection of gravitactic microorganisms in an isotropic porous medium publication-title: International communication in heat and mass transfer doi: 10.1016/S0735-1933(01)00291-3 – volume: 8 start-page: 957 issue: 5 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1505 article-title: Effect of thermal radiation on burgers nano fluid flow between two parallel plates with porous medium in the presence of gyrotactic micro-organisms and heat generation/absorption publication-title: Journal of Nanofluids doi: 10.1166/jon.2019.1650 – volume: 23 start-page: 940 year: 2009 ident: 10.1016/j.tsep.2022.101267_b0130 article-title: The effect of porosity on heat transfer and mass transfer of Mg-3Ni-2MnO2 hydrogen storage materials reaction bed publication-title: Int. J. Mod Phys B doi: 10.1142/S0217979209060270 – volume: 10 start-page: 391 issue: 4 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0945 article-title: Darcy-Forchheimer MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder publication-title: Coatings doi: 10.3390/coatings10040391 – year: 2008 ident: 10.1016/j.tsep.2022.101267_b1025 article-title: Lattice Boltzmann Method (LBM) – volume: 124 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1155 article-title: Embedding multiple conical vanes inside a circular porous channel filled by two-phase nanofluid to improve thermal performance considering entropy generation publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105209 – volume: 114 start-page: 1407 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1095 article-title: Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study publication-title: Renewable Energy doi: 10.1016/j.renene.2017.07.008 – volume: 7 start-page: 13 year: 1988 ident: 10.1016/j.tsep.2022.101267_b0135 article-title: Effect of bed porosity on wall-to-bed heat transfer in liquid fluidized beds publication-title: Mehran University research journal of engineering and technology – volume: 28 start-page: 47 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0910 article-title: Effectiveness in incorporating Brownian and thermophoresis effects in modelling convective flow of water-Al2O3 nanoparticles publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-10-2016-0398 – volume: 201 start-page: 628 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1150 article-title: Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors publication-title: Sol. Energy doi: 10.1016/j.solener.2020.03.047 – volume: 48 start-page: 89 issue: 2 year: 1952 ident: 10.1016/j.tsep.2022.101267_b0180 article-title: Fluid Flow through Packed Columns publication-title: Chem. Eng. Prog. – volume: 24 start-page: 409 issue: 04 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1450 article-title: A bioconvection model for MHD flow and heat transfer over a porous wedge containing both nanoparticles and gyrotatic microorganisms publication-title: Journal of Biological Systems doi: 10.1142/S0218339016500212 – year: 1873 ident: 10.1016/j.tsep.2022.101267_b0465 – volume: 69 start-page: 564 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0205 article-title: Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.06.021 – volume: 37 start-page: 471 issue: 4 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1445 article-title: Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media publication-title: Appl. Math. Mech. doi: 10.1007/s10483-016-2044-9 – volume: 90 start-page: 838 year: 2015 ident: 10.1016/j.tsep.2022.101267_b1115 article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.06.088 – volume: 375 start-page: 493 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0935 article-title: Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.07.115 – volume: 91 start-page: 564 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0475 article-title: Heat transfer and pressure drop correlations of nanofluids: a state of art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.108 – volume: 52 start-page: 73 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0645 article-title: Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.01.012 – volume: 24 start-page: 825 issue: 6 year: 2003 ident: 10.1016/j.tsep.2022.101267_b0150 article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2003.08.002 – volume: 4 start-page: 79 issue: 1 year: 2008 ident: 10.1016/j.tsep.2022.101267_b0510 article-title: “Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues,” Nanomedicine: Nanotechnology publication-title: Biology and Medicine – volume: 203 start-page: 101 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0435 article-title: Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.06.028 – volume: 45 start-page: 37 issue: 1 year: 1987 ident: 10.1016/j.tsep.2022.101267_b1465 article-title: Unusual swimming behavior of a magnetotactic bacterium publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6968.1987.tb02336.x – volume: 23 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1480 article-title: A magneto-bioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2020.100809 – start-page: 19 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0370 – volume: 67 start-page: 335 issue: 3 year: 2007 ident: 10.1016/j.tsep.2022.101267_b0215 article-title: The effect of thermal dispersion on free convection film condensation on a vertical plate with a thin porous layer publication-title: Transp. Porous Media doi: 10.1007/s11242-006-9028-9 – volume: 15 start-page: 233 issue: 3 year: 2012 ident: 10.1016/j.tsep.2022.101267_b1330 article-title: Nanofluid bioconvection in porous media: oxytactic microorganisms publication-title: Journal of Porous Media doi: 10.1615/JPorMedia.v15.i3.30 – volume: 143 start-page: 1201 issue: 2 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0930 article-title: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09488-z – volume: 140 start-page: 2387 issue: 5 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1630 article-title: Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-09009-7 – volume: 138 start-page: 23 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0105 article-title: Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.04.005 – volume: 113 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0375 article-title: Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.06.027 – volume: 83 start-page: 399 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0090 article-title: Flow and heat transfer characteristics of nanofluid flowing through metal foams publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.12.024 – volume: 161 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0820 article-title: Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106705 – volume: 137 start-page: 1797 issue: 5 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1035 article-title: An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08076-0 – volume: 7 start-page: 1450005 issue: 01 year: 2014 ident: 10.1016/j.tsep.2022.101267_b1570 article-title: Bioconvection in a non-Darcy porous medium saturated with a nanofluid and oxytactic micro-organisms publication-title: International Journal of Biomathematics doi: 10.1142/S1793524514500053 – volume: 128 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0210 article-title: Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103778 – year: 2014 ident: 10.1016/j.tsep.2022.101267_b0025 – volume: 445 start-page: 121 year: 2001 ident: 10.1016/j.tsep.2022.101267_b1550 article-title: Falling plumes in bacterial bioconvection publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005547 – volume: 94 issue: 9 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1140 article-title: Solidification entropy generation via FEM through a porous storage unit with applying a magnetic field publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab19ea – volume: 145 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1520 article-title: Renewable energy technology for the sustainable development of thermal system with entropy measures publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118713 – volume: 103 start-page: 556 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0520 article-title: Recent advances in application of nanofluids in heat transfer devices: a critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.12.057 – volume: 1126 start-page: 70 issue: 1–2 year: 2006 ident: 10.1016/j.tsep.2022.101267_b0170 article-title: Transition from creeping via viscous-inertial to turbulent flow in fixed beds publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2006.06.011 – volume: 106 start-page: 518 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0265 article-title: Generation of entropy and forced convection of heat in a conduit partially filled with porous media–local thermal non-equilibrium and exothermicity effects publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.036 – volume: 37 start-page: 275 issue: 3 year: 1981 ident: 10.1016/j.tsep.2022.101267_b0705 article-title: On the viscosity of suspensions of solid spheres publication-title: Appl. Sci. Res. doi: 10.1007/BF00951252 – year: 2021 ident: 10.1016/j.tsep.2022.101267_b1530 article-title: Impact of activation energy and gyrotactic microorganisms on flow of Casson hybrid nanofluid over a rotating moving disk publication-title: Heat Transfer doi: 10.1002/htj.22129 – volume: 53 start-page: 227 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0695 article-title: Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2013.12.013 – volume: 65 start-page: 67 issue: 1–3 year: 2011 ident: 10.1016/j.tsep.2022.101267_b1015 article-title: Navier–Stokes and Lattice-Boltzmann on octree-like grids in the Peano framework publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.2469 – volume: 58 start-page: 184 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0250 article-title: Validation of thermal equilibrium assumption in free convection flow over a cylinder embedded in a packed bed publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.08.039 – volume: 89 start-page: 421 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1640 article-title: Thermo-bioconvection in horizontal wavy-walled porous annulus publication-title: European Journal of Mechanics-B/Fluids doi: 10.1016/j.euromechflu.2021.07.006 – volume: 349 start-page: 75 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0440 article-title: Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.030 – volume: 135 start-page: 671 issue: 1 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0780 article-title: Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7181-3 – volume: 120 start-page: 350 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1230 article-title: Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison publication-title: Renewable Energy doi: 10.1016/j.renene.2017.12.093 – volume: 77 start-page: 551 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1225 article-title: State-of-art review on hybrid nanofluids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.040 – volume: 57 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0895 article-title: Natural and mixed convection of a nanofluid in porous cavities: critical analysis using Buongiorno’s model publication-title: Journal of Theoretical and Applied Mechanics doi: 10.15632/jtam-pl.57.1.221 – volume: 173 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0965 article-title: Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy-Forchheimer-Brinkman model coupled with multiphase Eulerian model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115231 – volume: 201 start-page: 333 year: 1910 ident: 10.1016/j.tsep.2022.101267_b1235 article-title: On the Effect of Gravity Upon the Movements and Aggregation of Euglena Viridis, Ehrb., and Other Micro-Organisms publication-title: Philos. Trans. R. Soc. Lond. – volume: 100 start-page: 372 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0670 article-title: Two-phase and single phase models of flow of nanofluid in a square cavity: comparison with experimental results publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.10.005 – volume: 49 start-page: 626 issue: 1 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0950 article-title: “Numerical computation on Marangoni convective flow of two-phase MHD dusty nanofluids under Brownian motion and thermophoresis effects,” Heat Transfer—Asian publication-title: Research – volume: 13 start-page: 6033 issue: 36 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1275 article-title: Modeling of active swimmer suspensions and theirinteractions with the environment publication-title: Soft Matter doi: 10.1039/C7SM00766C – volume: 291 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1260 article-title: Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111231 – volume: 45 start-page: 857 issue: 6 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0220 article-title: Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle publication-title: Heat Transfer Research – volume: 160 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0295 article-title: The effects of variable porosity and cell size on the thermal performance of functionally-graded foams publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106696 – volume: 112 start-page: 2389 issue: 7 year: 2008 ident: 10.1016/j.tsep.2022.101267_b0615 article-title: Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp0772629 – volume: 135 start-page: 1595 issue: 2 year: 2019 ident: 10.1016/j.tsep.2022.101267_b1030 article-title: Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7829-z – volume: 77 start-page: 308 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0450 article-title: Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector publication-title: Renewable Energy doi: 10.1016/j.renene.2014.12.016 – ident: 10.1016/j.tsep.2022.101267_b1420 doi: 10.1007/978-981-10-5329-0_1 – year: 2020 ident: 10.1016/j.tsep.2022.101267_b1625 article-title: Manninen’s mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 168 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0330 article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114843 – volume: 118 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1410 article-title: Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104893 – volume: 127 start-page: 914 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1135 article-title: Nanofluid unsteady heat transfer in a porous energy storage enclosure in existence of Lorentz forces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.101 – volume: 143 issue: 1 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0290 article-title: Numerical consideration of LTNE and darcy extended forchheimer models for the analysis of forced convection in a horizontal pipe in the presence of metal foam publication-title: J. Heat Transfer doi: 10.1115/1.4048622 – volume: 296 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0585 article-title: An updated review on the influential parameters on thermal conductivity of nano-fluids publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111780 – volume: 29 start-page: 432 issue: 5 year: 2008 ident: 10.1016/j.tsep.2022.101267_b0490 article-title: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements publication-title: Heat Transfer Eng. doi: 10.1080/01457630701850851 – volume: 182 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0775 article-title: Experimental study and CFD modelling on the thermal and flow behavior of EG/water ZnO nanofluid in multiport mini channels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116089 – volume: 96 issue: 5 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1535 article-title: Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes publication-title: Phys. Scr. doi: 10.1088/1402-4896/abeba2 – year: 2020 ident: 10.1016/j.tsep.2022.101267_b1425 article-title: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/num.22735 – volume: 171 start-page: 229 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0975 article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.083 – volume: 878 start-page: 62 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0825 article-title: Numerical investigation of nanofluid particle migration and convective heat transfer in microchannels using an Eulerian-Lagrangian approach publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.606 – volume: 45 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1145 article-title: A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors publication-title: Sustainable Energy Technol. Assess. – volume: 74 start-page: 252 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0830 article-title: A two-phase simulation for ferrofluid flow between two parallel plates under localized magnetic field by applying Lagrangian approach for nanoparticles publication-title: European Journal of Mechanics-B/Fluids doi: 10.1016/j.euromechflu.2018.08.010 – volume: 178 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0415 article-title: Assessment and optimization of exhaust gas heat exchanger with porous baffles and porous fins publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115446 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0315 article-title: Three-dimensional porous copper-graphene heterostructures with durability and high heat dissipation performance publication-title: Sci. Rep. doi: 10.1038/srep12710 – volume: 383 start-page: 240 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1195 article-title: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.181 – volume: 292 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0630 article-title: Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina/iron mono and hybrid nanofluids publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111377 – volume: 50 start-page: 5123 issue: 5 year: 2021 ident: 10.1016/j.tsep.2022.101267_b1585 article-title: Impact of Soret and Dufour on bioconvective flow of nanofluid in porous square cavity publication-title: Heat Transfer doi: 10.1002/htj.22118 – volume: 29 start-page: 4549 issue: 12 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0915 article-title: Free convection in an inclined cavity filled with a nanofluid and with sinusoidal temperature on the walls: Buongiorno’s mathematical model publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-04-2019-0317 – volume: 16 start-page: 811 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0920 article-title: Unsteady magnetohydrodynamic radiative liquid thin film flow of hybrid nanofluid with thermophoresis and Brownian motion publication-title: Multidiscipline Modeling in Materials and Structures doi: 10.1108/MMMS-08-2019-0160 – volume: 134 start-page: 85 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1090 article-title: Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.09.045 – ident: 10.1016/j.tsep.2022.101267_b1515 doi: 10.1177/09544089211007326 – volume: 33 start-page: 529 issue: 4 year: 2006 ident: 10.1016/j.tsep.2022.101267_b0655 article-title: Experimental investigation of oxide nanofluids laminar flow convective heat transfer publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2006.01.005 – volume: 68 start-page: 22 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0005 article-title: Passive heat transfer enhancement review in corrugation publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2015.04.012 – volume: 133 start-page: 1766 year: 1961 ident: 10.1016/j.tsep.2022.101267_b1315 article-title: “Bioconvection patterns” in cultures of free swimming organisms publication-title: Science doi: 10.1126/science.133.3466.1766 – volume: 41 start-page: 4626 issue: 11 year: 1970 ident: 10.1016/j.tsep.2022.101267_b0715 article-title: Generalized equation for the elastic moduli of composite materials publication-title: J. Appl. Phys. doi: 10.1063/1.1658506 – volume: 13 start-page: 27 issue: 1 year: 1980 ident: 10.1016/j.tsep.2022.101267_b0755 article-title: Effective thermal conductivity of dispersed materials publication-title: Wärme-und Stoffübertragung doi: 10.1007/BF00997630 – volume: 29 start-page: 175 year: 2002 ident: 10.1016/j.tsep.2022.101267_b1360 article-title: A 2D Analysis of bioconvection in a fluid saturated porous medium – estimation of the critical permeability value publication-title: International communication in heat and mass transfer doi: 10.1016/S0735-1933(02)00308-1 – volume: 52 start-page: 449 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1305 article-title: Advances in Bioconvection publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040558 – year: 2014 ident: 10.1016/j.tsep.2022.101267_b1645 – volume: 22 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1525 article-title: Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2020.100798 – volume: 81 start-page: 813 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0070 article-title: A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.060 – volume: 223 start-page: 725 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1415 article-title: On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.08.109 – volume: 103 start-page: 191 issue: 2 year: 2014 ident: 10.1016/j.tsep.2022.101267_b1590 article-title: Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms publication-title: Transp. Porous Media doi: 10.1007/s11242-014-0297-4 – volume: 190 start-page: 169 year: 2018 ident: 10.1016/j.tsep.2022.101267_b0605 article-title: Up to date review on the synthesis and thermophysical properties of hybrid nanofluids publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.04.146 – volume: 69 start-page: 47 year: 2000 ident: 10.1016/j.tsep.2022.101267_b1365 article-title: Biomass evolution in porous media and its effects on permeability under starvation conditions publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(20000705)69:1<47::AID-BIT6>3.0.CO;2-N – volume: 48 start-page: 4342 issue: 8 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0240 article-title: Numerical study and sensitivity analysis on convective heat transfer enhancement in a heat pipe partially filled with porous material using LTE and LTNE methods publication-title: Heat Transfer-Asian Research doi: 10.1002/htj.21595 – volume: 13 start-page: 3793 issue: 15 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0650 article-title: Efficient Stabilization of Mono and Hybrid Nanofluids publication-title: Energies doi: 10.3390/en13153793 – volume: 18 issue: 10 year: 2007 ident: 10.1016/j.tsep.2022.101267_b0620 article-title: Application of hybrid sphere/carbon nanotube particles in nanofluids publication-title: Nanotechnology doi: 10.1088/0957-4484/18/10/105701 – volume: 52 start-page: 2042 issue: 7–8 year: 2009 ident: 10.1016/j.tsep.2022.101267_b0725 article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.10.025 – ident: 10.1016/j.tsep.2022.101267_b1205 doi: 10.1016/j.scitotenv.2020.144202 – volume: 86 start-page: 325 year: 1952 ident: 10.1016/j.tsep.2022.101267_b1320 article-title: Concerning Pattern Formation by Free-Swimming Microorganisms publication-title: Am. Nat. doi: 10.1086/281740 – volume: 2 year: 2010 ident: 10.1016/j.tsep.2022.101267_b0485 article-title: Applications of nanofluids: current and future publication-title: Advances in mechanical engineering doi: 10.1155/2010/519659 – volume: 9 start-page: 7565 issue: 22 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0305 article-title: Porous copper–graphene heterostructures for cooling of electronic devices publication-title: Nanoscale doi: 10.1039/C7NR01869J – volume: 49 start-page: 444 year: 2015 ident: 10.1016/j.tsep.2022.101267_b0045 article-title: Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.113 – volume: 161 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0875 article-title: Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes Configuration publication-title: Int. J. Mech. Sci. – volume: 322 start-page: 3895 issue: 24 year: 2010 ident: 10.1016/j.tsep.2022.101267_b0570 article-title: Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2010.08.016 – volume: 38 start-page: 67 issue: 1 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1485 article-title: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-015-0313-9 – volume: 102 start-page: 971 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0860 article-title: Numerical simulation on forced thermal flow of nanofluid in the gap between co-axial cylinders with rotational inner spindle publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.06.095 – volume: 55 start-page: 874 issue: 4 year: 2012 ident: 10.1016/j.tsep.2022.101267_b0730 article-title: Latest developments on the viscosity of nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.10.021 – volume: 13 start-page: 46 issue: 4 year: 2016 ident: 10.1016/j.tsep.2022.101267_b0800 article-title: Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach publication-title: Iranian Journal of Chemical Engineering (IJChE) – volume: 6 issue: 12 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1405 article-title: Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05832 – volume: 36975 start-page: 2083 year: 2003 ident: 10.1016/j.tsep.2022.101267_b1555 article-title: A Theoretical Prediction of Laminar Falling Plumes in Bioconvection of Oxytactic Bacteria in Porous Media publication-title: Fluids Engineering Division Summer Meeting – volume: 26 start-page: 530 issue: 4 year: 2005 ident: 10.1016/j.tsep.2022.101267_b0795 article-title: Heat transfer enhancement by using nanofluids in forced convection flows publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2005.02.004 – volume: 139 start-page: 411 issue: 1 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0405 article-title: The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08362-x – year: 2021 ident: 10.1016/j.tsep.2022.101267_b1575 article-title: Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with Cu–water nanofluid publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 195 start-page: 462 year: 2019 ident: 10.1016/j.tsep.2022.101267_b0085 article-title: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.09.045 – ident: 10.1016/j.tsep.2022.101267_b0480 – volume: 31 start-page: 427 year: 2014 ident: 10.1016/j.tsep.2022.101267_b0530 article-title: Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.017 – year: 2013 ident: 10.1016/j.tsep.2022.101267_b0735 – volume: 325 start-page: 78 year: 2018 ident: 10.1016/j.tsep.2022.101267_b1160 article-title: Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.10.040 – volume: 114 start-page: 1086 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0100 article-title: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.07.001 – year: 2019 ident: 10.1016/j.tsep.2022.101267_b1620 article-title: Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-05-2018-0238 – volume: 42 start-page: 12485 issue: 17 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0445 article-title: Improvement of corrosion properties of porous alloy supports for solid oxide fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.170 – volume: 55 start-page: 549 issue: 6 year: 2006 ident: 10.1016/j.tsep.2022.101267_b0495 article-title: Synthesis and characterization of nanofluid for advanced heat transfer applications publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.05.030 – volume: 30 start-page: 3329 issue: 11 year: 1987 ident: 10.1016/j.tsep.2022.101267_b0185 article-title: Analysis of the Brinkman equation as a model for flow in porous media publication-title: The Physics of fluids doi: 10.1063/1.866465 – volume: 23 start-page: 2263 issue: 18 year: 2013 ident: 10.1016/j.tsep.2022.101267_b0320 article-title: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202638 – volume: 199 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0955 article-title: Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method publication-title: Energy doi: 10.1016/j.energy.2020.117402 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.tsep.2022.101267_b0970 article-title: Eulerian CFD model of direct absorption solar collector with nanofluid publication-title: J. Renewable Sustainable Energy doi: 10.1063/1.5144737 – volume: 52 start-page: 789 issue: 1 year: 2011 ident: 10.1016/j.tsep.2022.101267_b0750 article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.06.072 – volume: 55 start-page: 2048 issue: 5 year: 2017 ident: 10.1016/j.tsep.2022.101267_b1615 article-title: Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.08.005 – volume: 115 start-page: 657 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0275 article-title: Determination of the stress jump coefficient, the interstitial heat transfer coefficient and the interface heat transfer coefficient in a porous composite system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.07.083 – volume: 9 start-page: 10468 issue: 5 year: 2020 ident: 10.1016/j.tsep.2022.101267_b1500 article-title: Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy publication-title: ournal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.07.025 – volume: 107 start-page: 181 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0335 article-title: Experimental study of using γ-Al2O3–water nanofluid flow through aluminum foam heat sink: comparison with numerical approach publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.037 – volume: 188 year: 2021 ident: 10.1016/j.tsep.2022.101267_b0980 article-title: Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: an Eulerian approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116624 – volume: 12 start-page: 243 year: 2017 ident: 10.1016/j.tsep.2022.101267_b0525 article-title: Investigations on latent heat storage materials for solar water and space heating applications publication-title: J. Storage Mater. – volume: 24 start-page: 313 year: 1992 ident: 10.1016/j.tsep.2022.101267_b1240 article-title: Hydrodynamic phenomena in suspensions of swimming microorganisms publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.24.010192.001525 – volume: 220 start-page: 518 year: 2016 ident: 10.1016/j.tsep.2022.101267_b1270 article-title: Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.097 |
SSID | ssj0002584398 |
Score | 2.5384011 |
SecondaryResourceType | review_article |
Snippet | •Passive methods do not necessarily increase heat transfer unless they override further pressure drop.•In addition to resolving nanoparticle sedimentation,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101267 |
SubjectTerms | Active methods Bioconvection Heat transfer enhancement Hybrid nanofluid Microorganism Nanofluid Passive methods Porous media |
Title | A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms |
URI | https://dx.doi.org/10.1016/j.tsep.2022.101267 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zu-hB_Im_ycGbK2vTpkuPYzim4i462K2kSYoTbYft_Pt9r8nGBNnBY0MfhC_hve-F995HyG3iS78vJWQngRZeZKT08GXQizIICIGvpK-xUfh5Eo-n0eOMz1pkuOqFwbJK5_utT2-8tVvpOTR7i_m898JwMgoQXMaaQJjskA4Lkxiudmfw8DSerJ9aGATZsFHFRRMPbVz7jK30qiuDkysZwwXWKM7_EaI2ws7ogOw7vkgHdkuHpGWKI7K3MUXwmHwPqHKCBdR2otAyp-hkad3QUvNFTfGGx4tPgdSKRld0XlBgf3TRNCApg0ZAxstlRZt2ki4tZFHmH8u5rrpUFpp-YvGelYGqPqsTMh3dvw7HnpNT8FTo-7UnEi5FLiFlCoJ-oPOQKy5lwIyImIziTEkh4kD7KtJZFmoFyUrMIf2IBNcCeF94StpFWZgzQjXLFawkWRbjhDcmAFLO-wpyPQAwC89JsEIwVW7WOEpefKSrorL3FFFPEfXUon5O7tY2CztpY-vffHUw6a_7kkIo2GJ38U-7S7KLX7bU8Yq066-luQY6Umc37rr9AHG73WA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdgAGxKconx7YaNTEiVN3rCpQS6ELRWKLHNsRRSWtSMrvxxe7VZEQA6uTk6xn6-6ddXcP4KbrC78jhMlOAsW9SAvh4cugF6UmIAS-FL7CRuGncTx4iR5e2WsN-qteGCyrdL7f-vTKW7uVtkOzvZhO288UJ6MYgktpFQi7W9DA6VSsDo3ecDQYr59aqAmyYaWKiyYe2rj2GVvpVRYaJ1dSigu0Upz_JURthJ37fdhzfJH07JYOoKbzQ9jdmCJ4BF89Ip1gAbGdKGSeEXSypKxoqf4kOn_D48WnQGJFowsyzYlhf2RRNSBJjUaGjM-XBanaSVokF_k8my2nqmgRkSvygcV7Vgaq-CiO4eX-btIfeE5OwZOh75ce7zLBM2FSpiDoBCoLmWRCBFTziIooTqXgPA6ULyOVpqGSJlmJmUk_Is4UN7wvPIF6Ps_1KRBFM2lWumka44Q3yg2kjHWkyfUMgGnYhGCFYCLdrHGUvJglq6Ky9wRRTxD1xKLehNu1zcJO2vjzb7Y6mOTHfUlMKPjD7uyfdtewPZg8PSaPw_HoHHbwiy17vIB6-bnUl4aalOmVu3rf6NDgRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+review+of+heat+transfer+enhancement+methods+in+the+presence+of+porous+media%2C+nanofluids%2C+and+microorganisms&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Habibishandiz%2C+M.&rft.au=Saghir%2C+M.Z.&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=30&rft_id=info:doi/10.1016%2Fj.tsep.2022.101267&rft.externalDocID=S2451904922000749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon |