Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process

•Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source information.•Temporal fusion transformer was proven to be able to mechanical process prediction.•Task incremental learning was adopted for r...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 85; p. 102647
Main Authors Li, Jie, Wang, Zili, Zhang, Shuyou, Lin, Yaochen, Jiang, Lanfang, Tan, Jianrong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN0736-5845
1879-2537
DOI10.1016/j.rcim.2023.102647

Cover

Loading…
Abstract •Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source information.•Temporal fusion transformer was proven to be able to mechanical process prediction.•Task incremental learning was adopted for rapid and scalable predictive modeling.•Digital-Twin method accurately predicted ovality in the tube bending process. Customized metal forming products entail personalized requirements in terms of dimensions, materials, and other specifications, while the processing conditions involved are subject to dynamic changes. Digital-Twin (DT) predictive models have become essential tools for optimizing the complex manufacturing process. However, the traditional approach exhibits limitations in handling dynamic data, capturing complex nonlinear relationships, and leveraging multi-source information. Additionally, retraining predictive models for novel tasks with unique operating conditions in specific scenarios can lead to substantial time and resource inefficiencies. Therefore, a task incremental learning-based approach for DT predictive modeling is proposed in this paper. Firstly, a DT framework and a comprehensive information model are established for real-time monitoring and integration of multi-source information. Moreover, the pre-trained Temporal Fusion Transformer model is utilized to capture valuable knowledge from historical tasks. Subsequently, task incremental learning is adopted to fine-tune the model using new task data, thereby enhancing adaptability and enabling rapid and scalable modeling. Finally, the effectiveness of the proposed method is validated on a customized metal tube bending forming platform, demonstrating accurate prediction of tube cross-section deformation.
AbstractList •Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source information.•Temporal fusion transformer was proven to be able to mechanical process prediction.•Task incremental learning was adopted for rapid and scalable predictive modeling.•Digital-Twin method accurately predicted ovality in the tube bending process. Customized metal forming products entail personalized requirements in terms of dimensions, materials, and other specifications, while the processing conditions involved are subject to dynamic changes. Digital-Twin (DT) predictive models have become essential tools for optimizing the complex manufacturing process. However, the traditional approach exhibits limitations in handling dynamic data, capturing complex nonlinear relationships, and leveraging multi-source information. Additionally, retraining predictive models for novel tasks with unique operating conditions in specific scenarios can lead to substantial time and resource inefficiencies. Therefore, a task incremental learning-based approach for DT predictive modeling is proposed in this paper. Firstly, a DT framework and a comprehensive information model are established for real-time monitoring and integration of multi-source information. Moreover, the pre-trained Temporal Fusion Transformer model is utilized to capture valuable knowledge from historical tasks. Subsequently, task incremental learning is adopted to fine-tune the model using new task data, thereby enhancing adaptability and enabling rapid and scalable modeling. Finally, the effectiveness of the proposed method is validated on a customized metal tube bending forming platform, demonstrating accurate prediction of tube cross-section deformation.
ArticleNumber 102647
Author Tan, Jianrong
Wang, Zili
Lin, Yaochen
Li, Jie
Zhang, Shuyou
Jiang, Lanfang
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 2
  givenname: Zili
  surname: Wang
  fullname: Wang, Zili
  email: ziliwang@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 3
  givenname: Shuyou
  surname: Zhang
  fullname: Zhang, Shuyou
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 4
  givenname: Yaochen
  surname: Lin
  fullname: Lin, Yaochen
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 5
  givenname: Lanfang
  surname: Jiang
  fullname: Jiang, Lanfang
  organization: King-Mazon Co., Ltd., Lishui, 323000, China
– sequence: 6
  givenname: Jianrong
  surname: Tan
  fullname: Tan, Jianrong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A1uT_Uiy4EXqJxS81HPIJrMldTdbkrSi-OPN0p489DID78wzMM8MTdzgAKFbShaUUHa3XXht-0VO8iIFOSv5BZpSwessrwo-QVPCC5ZVoqyu0CyELSEkL6tiin7XKnxi67SHHlxUHe5AeWfdJjPeHsDhR7uxKc_WX9bhnQdjdUwD3A8GurSH28FjvQ9x6O0PGNzDeCWF_Tjc-cHsdcS9cvtW6bj3p1RDCNfoslVdgJtTn6OP56f18jVbvb-8LR9WmS4IiZkQTVs1quSkrFlpcqqooELVDVGCgyYtV7XRrNU0N1Vd1Yw1nBWGCFqKNpVijvLjXe2HEDy0cudtr_y3pESO_uRWjv7k6E8e_SVI_IN08hDt4KJXtjuP3h9RSE8dLHgZtAWnkzsPOkoz2HP4H6QwkRs
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_143876
crossref_primary_10_1080_15376494_2024_2362418
crossref_primary_10_1016_j_ast_2024_108980
crossref_primary_10_3390_math12193146
crossref_primary_10_3390_pr12091968
crossref_primary_10_1108_ILT_06_2024_0213
crossref_primary_10_1080_15376494_2024_2375368
crossref_primary_10_1142_S0218625X25500465
crossref_primary_10_1002_zamm_202400662
crossref_primary_10_1016_j_engfailanal_2024_108740
crossref_primary_10_1080_15376494_2024_2362960
crossref_primary_10_1016_j_aei_2024_102967
crossref_primary_10_1080_15376494_2024_2427922
crossref_primary_10_1016_j_compstruct_2025_118933
crossref_primary_10_1080_15376494_2024_2420259
crossref_primary_10_1016_j_heliyon_2024_e33726
crossref_primary_10_1016_j_istruc_2024_106633
crossref_primary_10_1080_15376494_2024_2373976
crossref_primary_10_1016_j_istruc_2024_107483
crossref_primary_10_1142_S0218126625500586
crossref_primary_10_1177_02670836241285334
crossref_primary_10_1002_srin_202400598
crossref_primary_10_1016_j_rcim_2024_102860
crossref_primary_10_1038_s41598_024_66379_1
crossref_primary_10_1039_D4RA06555G
crossref_primary_10_1007_s00170_025_15058_0
crossref_primary_10_1016_j_asoc_2024_112684
crossref_primary_10_1177_09544062241274862
crossref_primary_10_1038_s41598_024_84309_z
crossref_primary_10_1080_15376494_2024_2416470
crossref_primary_10_1016_j_measurement_2024_114511
crossref_primary_10_1080_17445302_2025_2453208
crossref_primary_10_1080_15376494_2024_2385008
crossref_primary_10_1007_s11837_024_07015_1
crossref_primary_10_1016_j_aei_2025_103120
crossref_primary_10_1007_s00170_025_15020_0
crossref_primary_10_1007_s12221_024_00757_4
crossref_primary_10_3390_app15020700
crossref_primary_10_1038_s41598_024_79338_7
crossref_primary_10_1142_S0218625X25500908
crossref_primary_10_1080_15376494_2024_2442493
crossref_primary_10_1016_j_mtcomm_2024_108524
crossref_primary_10_1088_2053_1591_ad3db5
crossref_primary_10_1016_j_compind_2025_104262
crossref_primary_10_1038_s41598_024_74291_x
crossref_primary_10_1007_s10973_024_13741_0
crossref_primary_10_1007_s42417_024_01517_7
crossref_primary_10_3390_app142311113
crossref_primary_10_1080_24725854_2024_2428642
crossref_primary_10_1080_15376494_2024_2412307
crossref_primary_10_1088_1402_4896_ad87c9
crossref_primary_10_1016_j_jmrt_2024_07_082
Cites_doi 10.1016/j.aei.2021.101470
10.1504/IJPD.2005.006669
10.3390/machines7010002
10.1007/s10489-022-03507-2
10.1016/j.procir.2020.03.031
10.1016/j.jmsy.2020.06.017
10.3389/fenrg.2022.1008216
10.1016/j.rcim.2022.102390
10.3390/buildings11110554
10.1016/j.knosys.2022.108730
10.1007/s00170-021-08018-x
10.1016/j.jmsy.2022.06.015
10.3390/machines10010002
10.3390/s21041470
10.1016/j.rcim.2019.101839
10.1016/j.matpr.2021.03.209
10.1155/2020/3758730
10.1109/ACCESS.2022.3147602
10.3390/app12052537
10.1007/s10845-019-01500-0
10.1016/j.jmsy.2022.03.006
10.1016/j.eswa.2012.05.012
10.1016/j.ijforecast.2021.03.012
10.1007/s12652-018-0946-5
10.1007/s00158-022-03372-0
10.1109/JPROC.2020.3004555
10.1155/2011/154798
10.1016/j.rcim.2019.101837
10.1088/2053-1591/ab09b1
10.1016/j.aei.2021.101395
10.3390/s22041647
10.1016/j.aei.2022.101737
10.1038/s42256-022-00568-3
10.1115/1.4048414
10.1016/j.matdes.2021.110008
10.1109/TII.2022.3168309
10.1007/s00170-021-07422-7
10.1016/j.jmsy.2020.02.003
10.1007/s00170-017-0233-1
10.1016/j.rcim.2021.102123
10.1016/j.ijpvp.2022.104612
10.1007/s00170-020-05977-5
10.1016/j.matdes.2011.03.049
10.3390/buildings12020087
10.1016/j.ijforecast.2019.07.001
10.1016/j.compind.2021.103586
10.1016/j.compind.2021.103558
10.1109/JIOT.2021.3079510
10.1007/s00170-022-09073-8
10.1016/j.rcim.2021.102309
10.1109/TII.2022.3201977
10.1016/j.jmsy.2020.04.014
10.1016/j.neucom.2022.05.083
10.1016/j.rcim.2020.101974
10.3390/mi13040620
10.1016/j.jmsy.2021.03.015
10.1007/s00170-023-10838-y
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rcim.2023.102647
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
ExternalDocumentID 10_1016_j_rcim_2023_102647
S0736584523001229
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-88bf5ba4704964d21a1818a9b0a87ec0f7a9dc6fc12d595966b763d08148f8143
IEDL.DBID .~1
ISSN 0736-5845
IngestDate Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 02:40:48 EDT 2025
Fri Feb 23 02:36:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digital-Twin
task incremental learning
Temporal Fusion Transformer
metal forming
predictive modeling
custom product manufacturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-88bf5ba4704964d21a1818a9b0a87ec0f7a9dc6fc12d595966b763d08148f8143
ParticipantIDs crossref_primary_10_1016_j_rcim_2023_102647
crossref_citationtrail_10_1016_j_rcim_2023_102647
elsevier_sciencedirect_doi_10_1016_j_rcim_2023_102647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Hu (bib0066) 2022; 196
Zhou, Yang, Hospedales, Xiang (bib0061) 2020
Gou, Shuang, Zhou, Mao, Ding, Cai, Zhao (bib0067) 2019; 6
Zheng, Tian (bib0015) 2021; 10
Grieves (bib0019) 2005; 2
Liu, Lu, Zheng, Shen, Bao (bib0057) 2022; 78
van de Ven, Tuytelaars, Tolias (bib0058) 2022; 4
Grieves, Vickers (bib0020) 2017
Zhang, Gao (bib0051) 2022; 63
Wang, Zhu, Xiao, Bai, Zhang (bib0056) 2022; 10
Zhang, Zhang, Yan, Yang, Liu (bib0065) 2022; 75
Li, Liu, Liu, Zhou, Zhou (bib0045) 2020; 2020
Xin, Chen, Li, Li, Wu (bib0017) 2022; 13
Tuegel, Ingraffea, Eason, Spottswood (bib0022) 2011; 2011
Hinchy, O'Dowd, McCarthy (bib0037) 2019; 38
Ma, Chen, Zhang, Guo, Ren, Mo, Liu (bib0007) 2020; 110
Salinas, Flunkert, Gasthaus, Januschowski (bib0052) 2020; 36
Tan, Yang, Yoshida, Takakuwa (bib0005) 2019; 7
Caesar, Hänel, Wenkler, Corinth, Ihlenfeldt, Fay (bib0032) 2020
Hänel, Seidel, Frieß, Teicher, Wiemer, Wang, Wenkler, Penter, Hellmich, Ihlenfeldt (bib0033) 2021; 5
Tong, Liu, Pi, Xiao (bib0028) 2020; 31
Liu, Du, Chai, Lu, Cong (bib0012) 2022; 18
Tao, Liu, Liu, Liu, Liu, Qu, Hu, Zhang, Xiang, Xu (bib0025) 2018; 24
Liu, Cao, Zhou, Li, Liu, Zhao, Dong (bib0011) 2021; 50
Hinchy, Carcagno, O'Dowd, McCarthy (bib0069) 2020; 93
Cao, Jia, Ding, Zhao, Ding (bib0064) 2022; 19
Friederich, Francis, Lazarova-Molnar, Mohamed (bib0027) 2022; 136
Perno, Hvam, Haug (bib0024) 2022; 134
Zhang, Zou, Yang, Yang (bib0055) 2022; 500
Liu, Yuan, Sun, Cao (bib0044) 2022; 22
Liu, Fang, Dong, Xu (bib0041) 2021; 58
Zhao, Wang, Liu, Mu (bib0043) 2022; 12
Qiu, Chen, Zhang, Yi, Li (bib0016) 2023; 53
Glaessgen, Stargel (bib0021) 2012
Fahim, Sharma, Cao, Canberk, Duong (bib0050) 2022; 10
Li, Wang, Zhang, Lin, Wang, Sun, Tan (bib0002) 2023; 124
Dixit (bib0013) 2020
Lim, Arık, Loeff, Pfister (bib0054) 2021; 37
Bao, Zhao, Yu, Dai (bib0030) 2021
Wu, Zhang, Zhang (bib0040) 2021; 8
Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He (bib0059) 2020; 109
Luo, Hu, Ye, Zhang, Wei (bib0009) 2020; 65
Fu, Cao, Chen, Ding (bib0063) 2022; 246
Sun, Wang, Zhang, Zhou, Li, Tan (bib0047) 2022; 65
Kong, Hu, Zhou, Ye (bib0029) 2021; 58
Luo, Hu, Zhang, Wei, Computing (bib0034) 2019; 10
Sun, Bao, Li, Zhang, Liu, Zhou (bib0042) 2020; 61
Tao, Cheng, Qi, Zhang, Zhang, Sui (bib0026) 2018; 94
Minjun, Shimin, Hui, Jinsong (bib0014) 2022; 118
Zhang, He, Li, Mao, Liang, Hao (bib0018) 2022; 12
Liu, Lu, Li, Song, Sun, Bao (bib0004) 2021; 71
Zhou, Zhang, Wei, Lin, He, Du (bib0038) 2021; 116
Pech, Vrchota, Bednář (bib0006) 2021; 21
Banko, Abonyi (bib0070) 2012; 39
Liu, Wen, Zhou, Sheng, Zhao, Liu, Kang, Chen (bib0036) 2022; 54
Dixit, Joshi, Davim (bib0003) 2011; 32
Envelope, Envelope, Envelope, Envelope, Envelope (bib0048) 2022; 257
Kouw, Loog (bib0060) 2018
Liu, Zhang, Wan, Zhou, Gao (bib0046) 2022; 51
Zhu, Xi, Xu, Cai (bib0039) 2021; 59
Oreshkin, Carpov, Chapados, Bengio (bib0053) 2019
Razali, Chung, Chung, Joun (bib0068) 2022; 120
Kalpana, Arunachalam (bib0010) 2018; 141
Tao, Xiao, Qi, Cheng, Ji (bib0023) 2022; 64
Liu, Bao, Lu, Li, Lu, Sun (bib0035) 2021; 58
Blakey-Milner, Gradl, Snedden, Brooks, Pitot, Lopez, Leary, Berto, Plessis (bib0001) 2021; 209
A. Anbalagan, B. Shivakrishna, K. Srikanth, A digital twin study for immediate design/redesign of impellers and blades: part 1: CAD modelling and tool path simulation, Mater. Today: Proc.. 46 (2021) 8209–8217. 10.1016/j.matpr.2021.03.209.
Hu, He, Liu, Tan, Yang, Chen (bib0049) 2021; 143
Mêda, Calvetti, Hjelseth, Sousa (bib0062) 2021; 11
Lu, Liu, Kevin, Wang, Huang, Xu (bib0031) 2020; 61
Ma (10.1016/j.rcim.2023.102647_bib0007) 2020; 110
Hinchy (10.1016/j.rcim.2023.102647_bib0069) 2020; 93
Zhuang (10.1016/j.rcim.2023.102647_bib0059) 2020; 109
Tuegel (10.1016/j.rcim.2023.102647_bib0022) 2011; 2011
Zhang (10.1016/j.rcim.2023.102647_bib0018) 2022; 12
Tong (10.1016/j.rcim.2023.102647_bib0028) 2020; 31
Minjun (10.1016/j.rcim.2023.102647_bib0014) 2022; 118
Luo (10.1016/j.rcim.2023.102647_bib0034) 2019; 10
Dixit (10.1016/j.rcim.2023.102647_bib0013) 2020
Tao (10.1016/j.rcim.2023.102647_bib0023) 2022; 64
Fu (10.1016/j.rcim.2023.102647_bib0063) 2022; 246
Perno (10.1016/j.rcim.2023.102647_bib0024) 2022; 134
Grieves (10.1016/j.rcim.2023.102647_bib0020) 2017
Kong (10.1016/j.rcim.2023.102647_bib0029) 2021; 58
Fahim (10.1016/j.rcim.2023.102647_bib0050) 2022; 10
Lim (10.1016/j.rcim.2023.102647_bib0054) 2021; 37
Hänel (10.1016/j.rcim.2023.102647_bib0033) 2021; 5
Friederich (10.1016/j.rcim.2023.102647_bib0027) 2022; 136
Lu (10.1016/j.rcim.2023.102647_bib0031) 2020; 61
Hu (10.1016/j.rcim.2023.102647_bib0049) 2021; 143
Xin (10.1016/j.rcim.2023.102647_bib0017) 2022; 13
Cao (10.1016/j.rcim.2023.102647_bib0064) 2022; 19
Dixit (10.1016/j.rcim.2023.102647_bib0003) 2011; 32
Liu (10.1016/j.rcim.2023.102647_bib0041) 2021; 58
Li (10.1016/j.rcim.2023.102647_bib0002) 2023; 124
Banko (10.1016/j.rcim.2023.102647_bib0070) 2012; 39
Hinchy (10.1016/j.rcim.2023.102647_bib0037) 2019; 38
Razali (10.1016/j.rcim.2023.102647_bib0068) 2022; 120
Luo (10.1016/j.rcim.2023.102647_bib0009) 2020; 65
Zhu (10.1016/j.rcim.2023.102647_bib0039) 2021; 59
Zhang (10.1016/j.rcim.2023.102647_bib0066) 2022; 196
Bao (10.1016/j.rcim.2023.102647_bib0030) 2021
Liu (10.1016/j.rcim.2023.102647_bib0035) 2021; 58
Liu (10.1016/j.rcim.2023.102647_bib0012) 2022; 18
Caesar (10.1016/j.rcim.2023.102647_bib0032) 2020
Liu (10.1016/j.rcim.2023.102647_bib0004) 2021; 71
Salinas (10.1016/j.rcim.2023.102647_bib0052) 2020; 36
Zhou (10.1016/j.rcim.2023.102647_bib0061) 2020
Tao (10.1016/j.rcim.2023.102647_bib0026) 2018; 94
Tan (10.1016/j.rcim.2023.102647_bib0005) 2019; 7
Envelope (10.1016/j.rcim.2023.102647_bib0048) 2022; 257
Wang (10.1016/j.rcim.2023.102647_bib0056) 2022; 10
Blakey-Milner (10.1016/j.rcim.2023.102647_bib0001) 2021; 209
Oreshkin (10.1016/j.rcim.2023.102647_bib0053) 2019
Zhang (10.1016/j.rcim.2023.102647_bib0055) 2022; 500
Liu (10.1016/j.rcim.2023.102647_bib0036) 2022; 54
Wu (10.1016/j.rcim.2023.102647_bib0040) 2021; 8
Kouw (10.1016/j.rcim.2023.102647_bib0060) 2018
Zhang (10.1016/j.rcim.2023.102647_bib0051) 2022; 63
Sun (10.1016/j.rcim.2023.102647_bib0047) 2022; 65
Liu (10.1016/j.rcim.2023.102647_bib0044) 2022; 22
Zhou (10.1016/j.rcim.2023.102647_bib0038) 2021; 116
Pech (10.1016/j.rcim.2023.102647_bib0006) 2021; 21
Grieves (10.1016/j.rcim.2023.102647_bib0019) 2005; 2
Li (10.1016/j.rcim.2023.102647_bib0045) 2020; 2020
Kalpana (10.1016/j.rcim.2023.102647_bib0010) 2018; 141
Zhao (10.1016/j.rcim.2023.102647_bib0043) 2022; 12
van de Ven (10.1016/j.rcim.2023.102647_bib0058) 2022; 4
Mêda (10.1016/j.rcim.2023.102647_bib0062) 2021; 11
Qiu (10.1016/j.rcim.2023.102647_bib0016) 2023; 53
Zhang (10.1016/j.rcim.2023.102647_bib0065) 2022; 75
Liu (10.1016/j.rcim.2023.102647_bib0057) 2022; 78
Tao (10.1016/j.rcim.2023.102647_bib0025) 2018; 24
Sun (10.1016/j.rcim.2023.102647_bib0042) 2020; 61
10.1016/j.rcim.2023.102647_bib0008
Gou (10.1016/j.rcim.2023.102647_bib0067) 2019; 6
Zheng (10.1016/j.rcim.2023.102647_bib0015) 2021; 10
Glaessgen (10.1016/j.rcim.2023.102647_bib0021) 2012
Liu (10.1016/j.rcim.2023.102647_bib0046) 2022; 51
Liu (10.1016/j.rcim.2023.102647_bib0011) 2021; 50
References_xml – volume: 59
  start-page: 453
  year: 2021
  end-page: 466
  ident: bib0039
  article-title: Digital Twin-driven machining process for thin-walled part manufacturing
  publication-title: J. Manuf. Syst.
– volume: 58
  start-page: 346
  year: 2021
  end-page: 361
  ident: bib0041
  article-title: Review of Digital Twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
– volume: 65
  start-page: 296
  year: 2022
  ident: bib0047
  article-title: Digital-Twin-enhanced metal tube bending forming real-time prediction method based on multi-source-input MTL
  publication-title: Struct. Multidisc. Optim.
– volume: 141
  year: 2018
  ident: bib0010
  article-title: A digital Twin for grinding wheel: an information sharing platform for sustainable grinding process
  publication-title: J. Manuf. Sci. Eng.
– volume: 31
  start-page: 1113
  year: 2020
  end-page: 1132
  ident: bib0028
  article-title: Real-time machining data application and service based on IMT Digital Twin
  publication-title: J. Intell. Manuf.
– volume: 24
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib0025
  article-title: Digital Twin and its potential application exploration
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 2020
  year: 2020
  ident: bib0045
  article-title: Quality prediction and control of assembly and welding process for ship group product based on Digital Twin
  publication-title: Scanning
– volume: 93
  start-page: 568
  year: 2020
  end-page: 574
  ident: bib0069
  article-title: Using finite element analysis to develop a Digital Twin of a manufacturing bending operation
  publication-title: Proc. CIRP
– volume: 12
  start-page: 87
  year: 2022
  ident: bib0043
  article-title: Construction theory for a building intelligent operation and maintenance system based on Digital Twins and machine learning
  publication-title: Buildings
– start-page: 1818
  year: 2012
  ident: bib0021
  article-title: The Digital Twin paradigm for future NASA and US Air Force vehicles
  publication-title: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA
– volume: 10
  start-page: 2
  year: 2021
  ident: bib0015
  article-title: A hierarchical integrated modeling method for the Digital Twin of mechanical products
  publication-title: Machines
– volume: 2
  start-page: 71
  year: 2005
  end-page: 84
  ident: bib0019
  article-title: Product lifecycle management: the new paradigm for enterprises
  publication-title: Int. J. Prod. Dev.
– volume: 136
  year: 2022
  ident: bib0027
  article-title: A framework for data-driven Digital Twins for smart manufacturing
  publication-title: Comput. Ind.
– volume: 209
  year: 2021
  ident: bib0001
  article-title: Metal additive manufacturing in aerospace: a review
  publication-title: Mater. Des.
– volume: 116
  start-page: 389
  year: 2021
  end-page: 401
  ident: bib0038
  article-title: Digital Twin–based stamping system for incremental bending
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 54
  year: 2022
  ident: bib0036
  article-title: Digital Twin-enabled machining process modeling
  publication-title: Adv. Eng. Inform.
– volume: 4
  start-page: 1185
  year: 2022
  end-page: 1197
  ident: bib0058
  article-title: Three types of incremental learning
  publication-title: Nat. Mach. Intell.
– volume: 63
  start-page: 238
  year: 2022
  end-page: 249
  ident: bib0051
  article-title: A Digital Twin dosing system for iron reverse flotation
  publication-title: J. Manuf. Syst.
– volume: 94
  start-page: 3563
  year: 2018
  end-page: 3576
  ident: bib0026
  article-title: Digital Twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 58
  start-page: 323
  year: 2021
  end-page: 328
  ident: bib0029
  article-title: Data construction method for the applications of workshop Digital Twin system
  publication-title: J. Manuf. Syst.
– reference: A. Anbalagan, B. Shivakrishna, K. Srikanth, A digital twin study for immediate design/redesign of impellers and blades: part 1: CAD modelling and tool path simulation, Mater. Today: Proc.. 46 (2021) 8209–8217. 10.1016/j.matpr.2021.03.209.
– volume: 51
  year: 2022
  ident: bib0046
  article-title: Digital twin-driven surface roughness prediction and process parameter adaptive optimization
  publication-title: Adv. Eng. Inform.
– volume: 39
  start-page: 12814
  year: 2012
  end-page: 12823
  ident: bib0070
  article-title: Correlation based dynamic time warping of multivariate time series
  publication-title: Expert Syst. Appl.
– volume: 118
  start-page: 1749
  year: 2022
  end-page: 1765
  ident: bib0014
  article-title: Process-oriented unstable state monitoring and strategy recommendation for burr suppression of weak rigid drilling system driven by Digital Twin
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 53
  start-page: 6178
  year: 2023
  end-page: 6194
  ident: bib0016
  article-title: Evolutionary Digital Twin model with an agent-based discrete-event simulation method
  publication-title: Appl. Intell.
– start-page: 1765
  year: 2020
  end-page: 1772
  ident: bib0032
  article-title: Information model of a digital process twin for machining processes
  publication-title: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
– volume: 75
  year: 2022
  ident: bib0065
  article-title: Rapid construction method of equipment model for discrete manufacturing Digital Twin workshop system
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 11
  start-page: 554
  year: 2021
  ident: bib0062
  article-title: Incremental Digital Twin conceptualisations targeting data-driven circular construction
  publication-title: Buildings
– volume: 257
  year: 2022
  ident: bib0048
  article-title: Machine learning enhancement of manoeuvring prediction for ship Digital Twin using full-scale recordings
  publication-title: Ocean. Eng.
– volume: 64
  start-page: 372
  year: 2022
  end-page: 389
  ident: bib0023
  article-title: Digital Twin modeling
  publication-title: J. Manuf. Syst.
– volume: 21
  start-page: 1470
  year: 2021
  ident: bib0006
  article-title: Predictive maintenance and intelligent sensors in smart factory
  publication-title: Sensors
– volume: 143
  year: 2021
  ident: bib0049
  article-title: Toward a Digital Twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks
  publication-title: J. Mech. Des.
– volume: 110
  start-page: 1385
  year: 2020
  end-page: 1397
  ident: bib0007
  article-title: A digital twin-driven production management system for production workshop
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 561
  year: 2020
  end-page: 578
  ident: bib0061
  article-title: Learning to generate novel domains for domain generalization
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16
– volume: 61
  year: 2020
  ident: bib0042
  article-title: A Digital Twin-driven approach for the assembly-commissioning of high precision products
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 61
  year: 2020
  ident: bib0031
  article-title: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues
  publication-title: Robot. Comput. Integr. Manuf.
– start-page: 85
  year: 2017
  end-page: 113
  ident: bib0020
  article-title: Approaches, Digital Twin: mitigating unpredictable, undesirable emergent behavior in complex systems
  publication-title: Transdisciplinary Perspectives on Complex Systems
– volume: 71
  year: 2021
  ident: bib0004
  article-title: Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 10
  start-page: 1129
  year: 2019
  end-page: 1140
  ident: bib0034
  article-title: Digital Twin for CNC machine tool: modeling and using strategy
  publication-title: J. Ambient. Intell. Human. Comput.
– volume: 109
  start-page: 43
  year: 2020
  end-page: 76
  ident: bib0059
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE Inst. Electr. Electron. Eng.
– volume: 5
  start-page: 80
  year: 2021
  ident: bib0033
  article-title: Digital Twins for high-tech machining applications—a model-based analytics-ready approach
  publication-title: J. Manuf. Mater. Process.
– volume: 8
  start-page: 13789
  year: 2021
  end-page: 13804
  ident: bib0040
  article-title: Digital Twin networks: a survey
  publication-title: IEEE Internet Things J.
– volume: 10
  year: 2022
  ident: bib0056
  article-title: A Transformer-based multi-entity load forecasting method for integrated energy systems
  publication-title: Front. Energy Res.
– volume: 12
  start-page: 2537
  year: 2022
  ident: bib0018
  article-title: Research on the modelling and development of flexibility in production system design phase driven by Digital Twins
  publication-title: Appl. Sci.
– volume: 18
  start-page: 8119
  year: 2022
  end-page: 8128
  ident: bib0012
  article-title: Digital Twin and data-driven quality prediction of complex die-casting manufacturing
  publication-title: IEEE Trans. Ind. Informat.
– volume: 36
  start-page: 1181
  year: 2020
  end-page: 1191
  ident: bib0052
  article-title: DeepAR: probabilistic forecasting with autoregressive recurrent networks
  publication-title: Int. J. Forecast.
– volume: 6
  year: 2019
  ident: bib0067
  article-title: Effect of additional axial tension on formability of equal curvature-diameter bending without mandrel for 0Cr18Ni9 stainless steel tube
  publication-title: Mater. Res. Express.
– volume: 32
  start-page: 3655
  year: 2011
  end-page: 3670
  ident: bib0003
  article-title: Incorporation of material behavior in modeling of metal forming and machining processes: a review
  publication-title: Mater. Des.
– volume: 22
  start-page: 1647
  year: 2022
  ident: bib0044
  article-title: Digital Twins-based impact response prediction of prestressed steel structure
  publication-title: Sensors
– volume: 500
  start-page: 329
  year: 2022
  end-page: 340
  ident: bib0055
  article-title: A temporal fusion transformer for short-term freeway traffic speed multistep prediction
  publication-title: Neurocomputing
– volume: 124
  start-page: 4615
  year: 2023
  end-page: 4637
  ident: bib0002
  article-title: A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 134
  year: 2022
  ident: bib0024
  article-title: Implementation of Digital Twins in the process industry: a systematic literature review of enablers and barriers
  publication-title: Comput. Ind.
– year: 2018
  ident: bib0060
  article-title: An introduction to domain adaptation and transfer learning
  publication-title: arXiv Preprint
– volume: 58
  start-page: 180
  year: 2021
  end-page: 195
  ident: bib0035
  article-title: Digital Twin modeling method based on biomimicry for machining aerospace components
  publication-title: J. Manuf. Syst.
– year: 2021
  ident: bib0030
  article-title: Product information units modeling oriented to Digital Twin
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 7
  start-page: 2
  year: 2019
  ident: bib0005
  article-title: Application of IoT-aided simulation to manufacturing systems in cyber-physical system
  publication-title: Machines
– volume: 120
  start-page: 6377
  year: 2022
  end-page: 6391
  ident: bib0068
  article-title: Implicit elastoplastic finite element analysis of tube-bending with an emphasis on springback prediction
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 13
  start-page: 620
  year: 2022
  ident: bib0017
  article-title: Refined Simulation method for computer-aided process planning based on Digital Twin technology
  publication-title: Micromachines
– volume: 19
  start-page: 6234
  year: 2022
  end-page: 6245
  ident: bib0064
  article-title: Incremental learning for remaining useful life prediction via temporal cascade broad learning system with newly acquired data
  publication-title: IEEE Trans. Industr. Inform.
– volume: 38
  start-page: 1213
  year: 2019
  end-page: 1219
  ident: bib0037
  article-title: Using open-source microcontrollers to enable Digital Twin communication for smart manufacturing
  publication-title: Proc. Manuf.
– volume: 2011
  year: 2011
  ident: bib0022
  article-title: Reengineering aircraft structural life prediction using a Digital Twin
  publication-title: Int. J. Aerospace Eng.
– volume: 50
  year: 2021
  ident: bib0011
  article-title: A Digital Twin-driven approach towards traceability and dynamic control for processing quality
  publication-title: Adv. Eng. Inform.
– year: 2020
  ident: bib0013
  article-title: Modeling of metal forming: a review
  publication-title: Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
– volume: 37
  start-page: 1748
  year: 2021
  end-page: 1764
  ident: bib0054
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int. J. Forecast.
– volume: 246
  year: 2022
  ident: bib0063
  article-title: Task-incremental broad learning system for multi-component intelligent fault diagnosis of machinery
  publication-title: Knowl. Based. Syst.
– volume: 10
  start-page: 14184
  year: 2022
  end-page: 14194
  ident: bib0050
  article-title: Machine learning-based Digital Twin for predictive modeling in wind turbines
  publication-title: IEEE Access
– year: 2019
  ident: bib0053
  article-title: N-BEATS: neural basis expansion analysis for interpretable time series forecasting
  publication-title: arXiv Preprint
– volume: 78
  year: 2022
  ident: bib0057
  article-title: Adaptive reconstruction of Digital Twins for machining systems: a transfer learning approach
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 196
  year: 2022
  ident: bib0066
  article-title: Influence of pressure die's boosting on forming quality in bending process of thin-walled tube
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 65
  year: 2020
  ident: bib0009
  article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 51
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0046
  article-title: Digital twin-driven surface roughness prediction and process parameter adaptive optimization
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101470
– volume: 2
  start-page: 71
  issue: 1–2
  year: 2005
  ident: 10.1016/j.rcim.2023.102647_bib0019
  article-title: Product lifecycle management: the new paradigm for enterprises
  publication-title: Int. J. Prod. Dev.
  doi: 10.1504/IJPD.2005.006669
– volume: 5
  start-page: 80
  issue: 3
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0033
  article-title: Digital Twins for high-tech machining applications—a model-based analytics-ready approach
  publication-title: J. Manuf. Mater. Process.
– year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0030
  article-title: Product information units modeling oriented to Digital Twin
– volume: 7
  start-page: 2
  year: 2019
  ident: 10.1016/j.rcim.2023.102647_bib0005
  article-title: Application of IoT-aided simulation to manufacturing systems in cyber-physical system
  publication-title: Machines
  doi: 10.3390/machines7010002
– volume: 53
  start-page: 6178
  year: 2023
  ident: 10.1016/j.rcim.2023.102647_bib0016
  article-title: Evolutionary Digital Twin model with an agent-based discrete-event simulation method
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03507-2
– volume: 93
  start-page: 568
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0069
  article-title: Using finite element analysis to develop a Digital Twin of a manufacturing bending operation
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2020.03.031
– volume: 58
  start-page: 346
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0041
  article-title: Review of Digital Twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.017
– volume: 10
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0056
  article-title: A Transformer-based multi-entity load forecasting method for integrated energy systems
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.1008216
– volume: 78
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0057
  article-title: Adaptive reconstruction of Digital Twins for machining systems: a transfer learning approach
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102390
– volume: 11
  start-page: 554
  issue: 11
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0062
  article-title: Incremental Digital Twin conceptualisations targeting data-driven circular construction
  publication-title: Buildings
  doi: 10.3390/buildings11110554
– volume: 24
  start-page: 1
  year: 2018
  ident: 10.1016/j.rcim.2023.102647_bib0025
  article-title: Digital Twin and its potential application exploration
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 246
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0063
  article-title: Task-incremental broad learning system for multi-component intelligent fault diagnosis of machinery
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2022.108730
– volume: 118
  start-page: 1749
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0014
  article-title: Process-oriented unstable state monitoring and strategy recommendation for burr suppression of weak rigid drilling system driven by Digital Twin
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-08018-x
– volume: 64
  start-page: 372
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0023
  article-title: Digital Twin modeling
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.06.015
– volume: 10
  start-page: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0015
  article-title: A hierarchical integrated modeling method for the Digital Twin of mechanical products
  publication-title: Machines
  doi: 10.3390/machines10010002
– volume: 21
  start-page: 1470
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0006
  article-title: Predictive maintenance and intelligent sensors in smart factory
  publication-title: Sensors
  doi: 10.3390/s21041470
– year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0013
  article-title: Modeling of metal forming: a review
– volume: 61
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0042
  article-title: A Digital Twin-driven approach for the assembly-commissioning of high precision products
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101839
– ident: 10.1016/j.rcim.2023.102647_bib0008
  doi: 10.1016/j.matpr.2021.03.209
– volume: 2020
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0045
  article-title: Quality prediction and control of assembly and welding process for ship group product based on Digital Twin
  publication-title: Scanning
  doi: 10.1155/2020/3758730
– volume: 10
  start-page: 14184
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0050
  article-title: Machine learning-based Digital Twin for predictive modeling in wind turbines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147602
– volume: 12
  start-page: 2537
  issue: 5
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0018
  article-title: Research on the modelling and development of flexibility in production system design phase driven by Digital Twins
  publication-title: Appl. Sci.
  doi: 10.3390/app12052537
– volume: 31
  start-page: 1113
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0028
  article-title: Real-time machining data application and service based on IMT Digital Twin
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01500-0
– volume: 63
  start-page: 238
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0051
  article-title: A Digital Twin dosing system for iron reverse flotation
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.03.006
– volume: 39
  start-page: 12814
  year: 2012
  ident: 10.1016/j.rcim.2023.102647_bib0070
  article-title: Correlation based dynamic time warping of multivariate time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.012
– volume: 141
  issue: 2
  year: 2018
  ident: 10.1016/j.rcim.2023.102647_bib0010
  article-title: A digital Twin for grinding wheel: an information sharing platform for sustainable grinding process
  publication-title: J. Manuf. Sci. Eng.
– volume: 37
  start-page: 1748
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0054
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 10
  start-page: 1129
  year: 2019
  ident: 10.1016/j.rcim.2023.102647_bib0034
  article-title: Digital Twin for CNC machine tool: modeling and using strategy
  publication-title: J. Ambient. Intell. Human. Comput.
  doi: 10.1007/s12652-018-0946-5
– start-page: 1818
  year: 2012
  ident: 10.1016/j.rcim.2023.102647_bib0021
  article-title: The Digital Twin paradigm for future NASA and US Air Force vehicles
– volume: 65
  start-page: 296
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0047
  article-title: Digital-Twin-enhanced metal tube bending forming real-time prediction method based on multi-source-input MTL
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-022-03372-0
– volume: 109
  start-page: 43
  issue: 1
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0059
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE Inst. Electr. Electron. Eng.
  doi: 10.1109/JPROC.2020.3004555
– volume: 2011
  year: 2011
  ident: 10.1016/j.rcim.2023.102647_bib0022
  article-title: Reengineering aircraft structural life prediction using a Digital Twin
  publication-title: Int. J. Aerospace Eng.
  doi: 10.1155/2011/154798
– volume: 61
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0031
  article-title: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101837
– volume: 6
  year: 2019
  ident: 10.1016/j.rcim.2023.102647_bib0067
  article-title: Effect of additional axial tension on formability of equal curvature-diameter bending without mandrel for 0Cr18Ni9 stainless steel tube
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/ab09b1
– volume: 50
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0011
  article-title: A Digital Twin-driven approach towards traceability and dynamic control for processing quality
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101395
– volume: 22
  start-page: 1647
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0044
  article-title: Digital Twins-based impact response prediction of prestressed steel structure
  publication-title: Sensors
  doi: 10.3390/s22041647
– volume: 54
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0036
  article-title: Digital Twin-enabled machining process modeling
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101737
– volume: 4
  start-page: 1185
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0058
  article-title: Three types of incremental learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00568-3
– volume: 143
  issue: 5
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0049
  article-title: Toward a Digital Twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4048414
– volume: 209
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0001
  article-title: Metal additive manufacturing in aerospace: a review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110008
– volume: 18
  start-page: 8119
  issue: 11
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0012
  article-title: Digital Twin and data-driven quality prediction of complex die-casting manufacturing
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2022.3168309
– volume: 116
  start-page: 389
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0038
  article-title: Digital Twin–based stamping system for incremental bending
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07422-7
– volume: 58
  start-page: 323
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0029
  article-title: Data construction method for the applications of workshop Digital Twin system
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.02.003
– volume: 94
  start-page: 3563
  year: 2018
  ident: 10.1016/j.rcim.2023.102647_bib0026
  article-title: Digital Twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0233-1
– start-page: 561
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0061
  article-title: Learning to generate novel domains for domain generalization
– volume: 71
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0004
  article-title: Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102123
– volume: 257
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0048
  article-title: Machine learning enhancement of manoeuvring prediction for ship Digital Twin using full-scale recordings
  publication-title: Ocean. Eng.
– volume: 196
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0066
  article-title: Influence of pressure die's boosting on forming quality in bending process of thin-walled tube
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2022.104612
– volume: 110
  start-page: 1385
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0007
  article-title: A digital twin-driven production management system for production workshop
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05977-5
– volume: 32
  start-page: 3655
  year: 2011
  ident: 10.1016/j.rcim.2023.102647_bib0003
  article-title: Incorporation of material behavior in modeling of metal forming and machining processes: a review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.03.049
– start-page: 85
  year: 2017
  ident: 10.1016/j.rcim.2023.102647_bib0020
  article-title: Approaches, Digital Twin: mitigating unpredictable, undesirable emergent behavior in complex systems
– volume: 12
  start-page: 87
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0043
  article-title: Construction theory for a building intelligent operation and maintenance system based on Digital Twins and machine learning
  publication-title: Buildings
  doi: 10.3390/buildings12020087
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0052
  article-title: DeepAR: probabilistic forecasting with autoregressive recurrent networks
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.07.001
– start-page: 1765
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0032
  article-title: Information model of a digital process twin for machining processes
– volume: 136
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0027
  article-title: A framework for data-driven Digital Twins for smart manufacturing
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103586
– volume: 134
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0024
  article-title: Implementation of Digital Twins in the process industry: a systematic literature review of enablers and barriers
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103558
– volume: 8
  start-page: 13789
  issue: 18
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0040
  article-title: Digital Twin networks: a survey
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3079510
– volume: 120
  start-page: 6377
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0068
  article-title: Implicit elastoplastic finite element analysis of tube-bending with an emphasis on springback prediction
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-09073-8
– volume: 75
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0065
  article-title: Rapid construction method of equipment model for discrete manufacturing Digital Twin workshop system
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102309
– volume: 19
  start-page: 6234
  issue: 4
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0064
  article-title: Incremental learning for remaining useful life prediction via temporal cascade broad learning system with newly acquired data
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2022.3201977
– volume: 58
  start-page: 180
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0035
  article-title: Digital Twin modeling method based on biomimicry for machining aerospace components
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.04.014
– volume: 500
  start-page: 329
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0055
  article-title: A temporal fusion transformer for short-term freeway traffic speed multistep prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.083
– volume: 65
  year: 2020
  ident: 10.1016/j.rcim.2023.102647_bib0009
  article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101974
– volume: 38
  start-page: 1213
  year: 2019
  ident: 10.1016/j.rcim.2023.102647_bib0037
  article-title: Using open-source microcontrollers to enable Digital Twin communication for smart manufacturing
  publication-title: Proc. Manuf.
– volume: 13
  start-page: 620
  issue: 4
  year: 2022
  ident: 10.1016/j.rcim.2023.102647_bib0017
  article-title: Refined Simulation method for computer-aided process planning based on Digital Twin technology
  publication-title: Micromachines
  doi: 10.3390/mi13040620
– volume: 59
  start-page: 453
  year: 2021
  ident: 10.1016/j.rcim.2023.102647_bib0039
  article-title: Digital Twin-driven machining process for thin-walled part manufacturing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.03.015
– volume: 124
  start-page: 4615
  year: 2023
  ident: 10.1016/j.rcim.2023.102647_bib0002
  article-title: A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-023-10838-y
– year: 2018
  ident: 10.1016/j.rcim.2023.102647_bib0060
  article-title: An introduction to domain adaptation and transfer learning
  publication-title: arXiv Preprint
– year: 2019
  ident: 10.1016/j.rcim.2023.102647_bib0053
  article-title: N-BEATS: neural basis expansion analysis for interpretable time series forecasting
  publication-title: arXiv Preprint
SSID ssj0002453
Score 2.592851
Snippet •Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102647
SubjectTerms custom product manufacturing
Digital-Twin
metal forming
predictive modeling
task incremental learning
Temporal Fusion Transformer
Title Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process
URI https://dx.doi.org/10.1016/j.rcim.2023.102647
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMCBxwAxHlMO3FBY16Wv4zSYxmtCsEm7VWmaTgVWqrEJCSF-O3aTwpDQDlxatXWiKHZtJ7E_E3JiB26UcM9lwlGccd9yWOA6MVMt0H3ckpYs0PZv-25vyK9GzmiFdMpcGAyrNLpf6_RCW5s3DTObjTxNGw8gnGg-cVsTz4cwiQ_R60Cmzz5_wjxsrpEogZghtUmc0TFeU5liNrrdQgQDF0us_GWcFgxOd4tsGE-RtvVgtsmKyqpks6zCQM1PWSXrC5CCO-RjIF6faJpJve8HHZi6EGMWT1Gz0fN0jIVC2OAtzWg-xYMaVHm0qIkDdBTcWCrn4BRO0ncV04nCXtC3xY-5RoilE5HNMSmiyHKkuU432CXD7sWg02OmwgKTMGkz5vtR4kSCe7BOcHlsNwUYfF8EkSV8T0kr8UQQSzeRTTt2AgeWRhHooxjcCO4ncGntkUr2kql9QoVb4OQkHtByP_Yi1RTgXbT8xPI8K7BqpFlObSgN_DhWwXgOyzizxxDZESI7Qs2OGjn9bpNr8I2l1E7JsfCXCIVgHZa0O_hnu0OyBk9ch3AfkcpsOlfH4KHMonohgnWy2u7c39zh_fK61_8CwKjniQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PbAhq2nqvEbEQ-XRLrRSt8hxHBSgISqtkBA_nrvYQSChDiwZ4rMV-ZzvzvbddwCnbuQnmQh8Lj0tuAgdj0e-l3LdQewTjnJUxbbf6_vdobgdeaMFuKhzYSis0mK_wfQKre2blp3NVpnnrQdcnGQ-6ViT7oeiRVgidirRgKXzm7tu_xuQXWHIKFGeUwebO2PCvCYqp4R0t0MkBj5VWfnLPv2wOdcbsGadRXZuvmcTFnSxBet1IQZm_8stWP3BKrgNnwP59szyQpmjPxzAloZ45OmEwI1d5o9UK4QP3vOClRO6qyHUY1VZHJRj6MkyNUO_cJx_6JSNNY1C7i01loYklo1lMaO8iCrRkZUm42AHhtdXg4sut0UWuMJ5m_IwTDIvkSLArYIvUrct0eaHMkocGQZaOVkgo1T5mWq7qRd5uDtKEJJS9CREmOGjswuN4rXQe8CkX1HlZAHKijANEt2W6GB0wswJAidymtCupzZWloGcCmG8xHWo2VNM6ohJHbFRRxPOvvuUhn9jrrRXayz-tYpiNBBz-u3_s98JLHcHvfv4_qZ_dwAr2CJMRPchNKaTmT5Ch2WaHNsF-QVwS-il
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+incremental+learning-driven+Digital-Twin+predictive+modeling+for+customized+metal+forming+product+manufacturing+process&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Li%2C+Jie&rft.au=Wang%2C+Zili&rft.au=Zhang%2C+Shuyou&rft.au=Lin%2C+Yaochen&rft.date=2024-02-01&rft.issn=0736-5845&rft.volume=85&rft.spage=102647&rft_id=info:doi/10.1016%2Fj.rcim.2023.102647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rcim_2023_102647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon