Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process
•Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source information.•Temporal fusion transformer was proven to be able to mechanical process prediction.•Task incremental learning was adopted for r...
Saved in:
Published in | Robotics and computer-integrated manufacturing Vol. 85; p. 102647 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0736-5845 1879-2537 |
DOI | 10.1016/j.rcim.2023.102647 |
Cover
Loading…
Abstract | •Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source information.•Temporal fusion transformer was proven to be able to mechanical process prediction.•Task incremental learning was adopted for rapid and scalable predictive modeling.•Digital-Twin method accurately predicted ovality in the tube bending process.
Customized metal forming products entail personalized requirements in terms of dimensions, materials, and other specifications, while the processing conditions involved are subject to dynamic changes. Digital-Twin (DT) predictive models have become essential tools for optimizing the complex manufacturing process. However, the traditional approach exhibits limitations in handling dynamic data, capturing complex nonlinear relationships, and leveraging multi-source information. Additionally, retraining predictive models for novel tasks with unique operating conditions in specific scenarios can lead to substantial time and resource inefficiencies. Therefore, a task incremental learning-based approach for DT predictive modeling is proposed in this paper. Firstly, a DT framework and a comprehensive information model are established for real-time monitoring and integration of multi-source information. Moreover, the pre-trained Temporal Fusion Transformer model is utilized to capture valuable knowledge from historical tasks. Subsequently, task incremental learning is adopted to fine-tune the model using new task data, thereby enhancing adaptability and enabling rapid and scalable modeling. Finally, the effectiveness of the proposed method is validated on a customized metal tube bending forming platform, demonstrating accurate prediction of tube cross-section deformation. |
---|---|
AbstractList | •Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source information.•Temporal fusion transformer was proven to be able to mechanical process prediction.•Task incremental learning was adopted for rapid and scalable predictive modeling.•Digital-Twin method accurately predicted ovality in the tube bending process.
Customized metal forming products entail personalized requirements in terms of dimensions, materials, and other specifications, while the processing conditions involved are subject to dynamic changes. Digital-Twin (DT) predictive models have become essential tools for optimizing the complex manufacturing process. However, the traditional approach exhibits limitations in handling dynamic data, capturing complex nonlinear relationships, and leveraging multi-source information. Additionally, retraining predictive models for novel tasks with unique operating conditions in specific scenarios can lead to substantial time and resource inefficiencies. Therefore, a task incremental learning-based approach for DT predictive modeling is proposed in this paper. Firstly, a DT framework and a comprehensive information model are established for real-time monitoring and integration of multi-source information. Moreover, the pre-trained Temporal Fusion Transformer model is utilized to capture valuable knowledge from historical tasks. Subsequently, task incremental learning is adopted to fine-tune the model using new task data, thereby enhancing adaptability and enabling rapid and scalable modeling. Finally, the effectiveness of the proposed method is validated on a customized metal tube bending forming platform, demonstrating accurate prediction of tube cross-section deformation. |
ArticleNumber | 102647 |
Author | Tan, Jianrong Wang, Zili Lin, Yaochen Li, Jie Zhang, Shuyou Jiang, Lanfang |
Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 2 givenname: Zili surname: Wang fullname: Wang, Zili email: ziliwang@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 3 givenname: Shuyou surname: Zhang fullname: Zhang, Shuyou organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 4 givenname: Yaochen surname: Lin fullname: Lin, Yaochen organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 5 givenname: Lanfang surname: Jiang fullname: Jiang, Lanfang organization: King-Mazon Co., Ltd., Lishui, 323000, China – sequence: 6 givenname: Jianrong surname: Tan fullname: Tan, Jianrong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A1uT_Uiy4EXqJxS81HPIJrMldTdbkrSi-OPN0p489DID78wzMM8MTdzgAKFbShaUUHa3XXht-0VO8iIFOSv5BZpSwessrwo-QVPCC5ZVoqyu0CyELSEkL6tiin7XKnxi67SHHlxUHe5AeWfdJjPeHsDhR7uxKc_WX9bhnQdjdUwD3A8GurSH28FjvQ9x6O0PGNzDeCWF_Tjc-cHsdcS9cvtW6bj3p1RDCNfoslVdgJtTn6OP56f18jVbvb-8LR9WmS4IiZkQTVs1quSkrFlpcqqooELVDVGCgyYtV7XRrNU0N1Vd1Yw1nBWGCFqKNpVijvLjXe2HEDy0cudtr_y3pESO_uRWjv7k6E8e_SVI_IN08hDt4KJXtjuP3h9RSE8dLHgZtAWnkzsPOkoz2HP4H6QwkRs |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_143876 crossref_primary_10_1080_15376494_2024_2362418 crossref_primary_10_1016_j_ast_2024_108980 crossref_primary_10_3390_math12193146 crossref_primary_10_3390_pr12091968 crossref_primary_10_1108_ILT_06_2024_0213 crossref_primary_10_1080_15376494_2024_2375368 crossref_primary_10_1142_S0218625X25500465 crossref_primary_10_1002_zamm_202400662 crossref_primary_10_1016_j_engfailanal_2024_108740 crossref_primary_10_1080_15376494_2024_2362960 crossref_primary_10_1016_j_aei_2024_102967 crossref_primary_10_1080_15376494_2024_2427922 crossref_primary_10_1016_j_compstruct_2025_118933 crossref_primary_10_1080_15376494_2024_2420259 crossref_primary_10_1016_j_heliyon_2024_e33726 crossref_primary_10_1016_j_istruc_2024_106633 crossref_primary_10_1080_15376494_2024_2373976 crossref_primary_10_1016_j_istruc_2024_107483 crossref_primary_10_1142_S0218126625500586 crossref_primary_10_1177_02670836241285334 crossref_primary_10_1002_srin_202400598 crossref_primary_10_1016_j_rcim_2024_102860 crossref_primary_10_1038_s41598_024_66379_1 crossref_primary_10_1039_D4RA06555G crossref_primary_10_1007_s00170_025_15058_0 crossref_primary_10_1016_j_asoc_2024_112684 crossref_primary_10_1177_09544062241274862 crossref_primary_10_1038_s41598_024_84309_z crossref_primary_10_1080_15376494_2024_2416470 crossref_primary_10_1016_j_measurement_2024_114511 crossref_primary_10_1080_17445302_2025_2453208 crossref_primary_10_1080_15376494_2024_2385008 crossref_primary_10_1007_s11837_024_07015_1 crossref_primary_10_1016_j_aei_2025_103120 crossref_primary_10_1007_s00170_025_15020_0 crossref_primary_10_1007_s12221_024_00757_4 crossref_primary_10_3390_app15020700 crossref_primary_10_1038_s41598_024_79338_7 crossref_primary_10_1142_S0218625X25500908 crossref_primary_10_1080_15376494_2024_2442493 crossref_primary_10_1016_j_mtcomm_2024_108524 crossref_primary_10_1088_2053_1591_ad3db5 crossref_primary_10_1016_j_compind_2025_104262 crossref_primary_10_1038_s41598_024_74291_x crossref_primary_10_1007_s10973_024_13741_0 crossref_primary_10_1007_s42417_024_01517_7 crossref_primary_10_3390_app142311113 crossref_primary_10_1080_24725854_2024_2428642 crossref_primary_10_1080_15376494_2024_2412307 crossref_primary_10_1088_1402_4896_ad87c9 crossref_primary_10_1016_j_jmrt_2024_07_082 |
Cites_doi | 10.1016/j.aei.2021.101470 10.1504/IJPD.2005.006669 10.3390/machines7010002 10.1007/s10489-022-03507-2 10.1016/j.procir.2020.03.031 10.1016/j.jmsy.2020.06.017 10.3389/fenrg.2022.1008216 10.1016/j.rcim.2022.102390 10.3390/buildings11110554 10.1016/j.knosys.2022.108730 10.1007/s00170-021-08018-x 10.1016/j.jmsy.2022.06.015 10.3390/machines10010002 10.3390/s21041470 10.1016/j.rcim.2019.101839 10.1016/j.matpr.2021.03.209 10.1155/2020/3758730 10.1109/ACCESS.2022.3147602 10.3390/app12052537 10.1007/s10845-019-01500-0 10.1016/j.jmsy.2022.03.006 10.1016/j.eswa.2012.05.012 10.1016/j.ijforecast.2021.03.012 10.1007/s12652-018-0946-5 10.1007/s00158-022-03372-0 10.1109/JPROC.2020.3004555 10.1155/2011/154798 10.1016/j.rcim.2019.101837 10.1088/2053-1591/ab09b1 10.1016/j.aei.2021.101395 10.3390/s22041647 10.1016/j.aei.2022.101737 10.1038/s42256-022-00568-3 10.1115/1.4048414 10.1016/j.matdes.2021.110008 10.1109/TII.2022.3168309 10.1007/s00170-021-07422-7 10.1016/j.jmsy.2020.02.003 10.1007/s00170-017-0233-1 10.1016/j.rcim.2021.102123 10.1016/j.ijpvp.2022.104612 10.1007/s00170-020-05977-5 10.1016/j.matdes.2011.03.049 10.3390/buildings12020087 10.1016/j.ijforecast.2019.07.001 10.1016/j.compind.2021.103586 10.1016/j.compind.2021.103558 10.1109/JIOT.2021.3079510 10.1007/s00170-022-09073-8 10.1016/j.rcim.2021.102309 10.1109/TII.2022.3201977 10.1016/j.jmsy.2020.04.014 10.1016/j.neucom.2022.05.083 10.1016/j.rcim.2020.101974 10.3390/mi13040620 10.1016/j.jmsy.2021.03.015 10.1007/s00170-023-10838-y |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rcim.2023.102647 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1879-2537 |
ExternalDocumentID | 10_1016_j_rcim_2023_102647 S0736584523001229 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-88bf5ba4704964d21a1818a9b0a87ec0f7a9dc6fc12d595966b763d08148f8143 |
IEDL.DBID | .~1 |
ISSN | 0736-5845 |
IngestDate | Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 02:40:48 EDT 2025 Fri Feb 23 02:36:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digital-Twin task incremental learning Temporal Fusion Transformer metal forming predictive modeling custom product manufacturing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-88bf5ba4704964d21a1818a9b0a87ec0f7a9dc6fc12d595966b763d08148f8143 |
ParticipantIDs | crossref_primary_10_1016_j_rcim_2023_102647 crossref_citationtrail_10_1016_j_rcim_2023_102647 elsevier_sciencedirect_doi_10_1016_j_rcim_2023_102647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Robotics and computer-integrated manufacturing |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Hu (bib0066) 2022; 196 Zhou, Yang, Hospedales, Xiang (bib0061) 2020 Gou, Shuang, Zhou, Mao, Ding, Cai, Zhao (bib0067) 2019; 6 Zheng, Tian (bib0015) 2021; 10 Grieves (bib0019) 2005; 2 Liu, Lu, Zheng, Shen, Bao (bib0057) 2022; 78 van de Ven, Tuytelaars, Tolias (bib0058) 2022; 4 Grieves, Vickers (bib0020) 2017 Zhang, Gao (bib0051) 2022; 63 Wang, Zhu, Xiao, Bai, Zhang (bib0056) 2022; 10 Zhang, Zhang, Yan, Yang, Liu (bib0065) 2022; 75 Li, Liu, Liu, Zhou, Zhou (bib0045) 2020; 2020 Xin, Chen, Li, Li, Wu (bib0017) 2022; 13 Tuegel, Ingraffea, Eason, Spottswood (bib0022) 2011; 2011 Hinchy, O'Dowd, McCarthy (bib0037) 2019; 38 Ma, Chen, Zhang, Guo, Ren, Mo, Liu (bib0007) 2020; 110 Salinas, Flunkert, Gasthaus, Januschowski (bib0052) 2020; 36 Tan, Yang, Yoshida, Takakuwa (bib0005) 2019; 7 Caesar, Hänel, Wenkler, Corinth, Ihlenfeldt, Fay (bib0032) 2020 Hänel, Seidel, Frieß, Teicher, Wiemer, Wang, Wenkler, Penter, Hellmich, Ihlenfeldt (bib0033) 2021; 5 Tong, Liu, Pi, Xiao (bib0028) 2020; 31 Liu, Du, Chai, Lu, Cong (bib0012) 2022; 18 Tao, Liu, Liu, Liu, Liu, Qu, Hu, Zhang, Xiang, Xu (bib0025) 2018; 24 Liu, Cao, Zhou, Li, Liu, Zhao, Dong (bib0011) 2021; 50 Hinchy, Carcagno, O'Dowd, McCarthy (bib0069) 2020; 93 Cao, Jia, Ding, Zhao, Ding (bib0064) 2022; 19 Friederich, Francis, Lazarova-Molnar, Mohamed (bib0027) 2022; 136 Perno, Hvam, Haug (bib0024) 2022; 134 Zhang, Zou, Yang, Yang (bib0055) 2022; 500 Liu, Yuan, Sun, Cao (bib0044) 2022; 22 Liu, Fang, Dong, Xu (bib0041) 2021; 58 Zhao, Wang, Liu, Mu (bib0043) 2022; 12 Qiu, Chen, Zhang, Yi, Li (bib0016) 2023; 53 Glaessgen, Stargel (bib0021) 2012 Fahim, Sharma, Cao, Canberk, Duong (bib0050) 2022; 10 Li, Wang, Zhang, Lin, Wang, Sun, Tan (bib0002) 2023; 124 Dixit (bib0013) 2020 Lim, Arık, Loeff, Pfister (bib0054) 2021; 37 Bao, Zhao, Yu, Dai (bib0030) 2021 Wu, Zhang, Zhang (bib0040) 2021; 8 Zhuang, Qi, Duan, Xi, Zhu, Zhu, Xiong, He (bib0059) 2020; 109 Luo, Hu, Ye, Zhang, Wei (bib0009) 2020; 65 Fu, Cao, Chen, Ding (bib0063) 2022; 246 Sun, Wang, Zhang, Zhou, Li, Tan (bib0047) 2022; 65 Kong, Hu, Zhou, Ye (bib0029) 2021; 58 Luo, Hu, Zhang, Wei, Computing (bib0034) 2019; 10 Sun, Bao, Li, Zhang, Liu, Zhou (bib0042) 2020; 61 Tao, Cheng, Qi, Zhang, Zhang, Sui (bib0026) 2018; 94 Minjun, Shimin, Hui, Jinsong (bib0014) 2022; 118 Zhang, He, Li, Mao, Liang, Hao (bib0018) 2022; 12 Liu, Lu, Li, Song, Sun, Bao (bib0004) 2021; 71 Zhou, Zhang, Wei, Lin, He, Du (bib0038) 2021; 116 Pech, Vrchota, Bednář (bib0006) 2021; 21 Banko, Abonyi (bib0070) 2012; 39 Liu, Wen, Zhou, Sheng, Zhao, Liu, Kang, Chen (bib0036) 2022; 54 Dixit, Joshi, Davim (bib0003) 2011; 32 Envelope, Envelope, Envelope, Envelope, Envelope (bib0048) 2022; 257 Kouw, Loog (bib0060) 2018 Liu, Zhang, Wan, Zhou, Gao (bib0046) 2022; 51 Zhu, Xi, Xu, Cai (bib0039) 2021; 59 Oreshkin, Carpov, Chapados, Bengio (bib0053) 2019 Razali, Chung, Chung, Joun (bib0068) 2022; 120 Kalpana, Arunachalam (bib0010) 2018; 141 Tao, Xiao, Qi, Cheng, Ji (bib0023) 2022; 64 Liu, Bao, Lu, Li, Lu, Sun (bib0035) 2021; 58 Blakey-Milner, Gradl, Snedden, Brooks, Pitot, Lopez, Leary, Berto, Plessis (bib0001) 2021; 209 A. Anbalagan, B. Shivakrishna, K. Srikanth, A digital twin study for immediate design/redesign of impellers and blades: part 1: CAD modelling and tool path simulation, Mater. Today: Proc.. 46 (2021) 8209–8217. 10.1016/j.matpr.2021.03.209. Hu, He, Liu, Tan, Yang, Chen (bib0049) 2021; 143 Mêda, Calvetti, Hjelseth, Sousa (bib0062) 2021; 11 Lu, Liu, Kevin, Wang, Huang, Xu (bib0031) 2020; 61 Ma (10.1016/j.rcim.2023.102647_bib0007) 2020; 110 Hinchy (10.1016/j.rcim.2023.102647_bib0069) 2020; 93 Zhuang (10.1016/j.rcim.2023.102647_bib0059) 2020; 109 Tuegel (10.1016/j.rcim.2023.102647_bib0022) 2011; 2011 Zhang (10.1016/j.rcim.2023.102647_bib0018) 2022; 12 Tong (10.1016/j.rcim.2023.102647_bib0028) 2020; 31 Minjun (10.1016/j.rcim.2023.102647_bib0014) 2022; 118 Luo (10.1016/j.rcim.2023.102647_bib0034) 2019; 10 Dixit (10.1016/j.rcim.2023.102647_bib0013) 2020 Tao (10.1016/j.rcim.2023.102647_bib0023) 2022; 64 Fu (10.1016/j.rcim.2023.102647_bib0063) 2022; 246 Perno (10.1016/j.rcim.2023.102647_bib0024) 2022; 134 Grieves (10.1016/j.rcim.2023.102647_bib0020) 2017 Kong (10.1016/j.rcim.2023.102647_bib0029) 2021; 58 Fahim (10.1016/j.rcim.2023.102647_bib0050) 2022; 10 Lim (10.1016/j.rcim.2023.102647_bib0054) 2021; 37 Hänel (10.1016/j.rcim.2023.102647_bib0033) 2021; 5 Friederich (10.1016/j.rcim.2023.102647_bib0027) 2022; 136 Lu (10.1016/j.rcim.2023.102647_bib0031) 2020; 61 Hu (10.1016/j.rcim.2023.102647_bib0049) 2021; 143 Xin (10.1016/j.rcim.2023.102647_bib0017) 2022; 13 Cao (10.1016/j.rcim.2023.102647_bib0064) 2022; 19 Dixit (10.1016/j.rcim.2023.102647_bib0003) 2011; 32 Liu (10.1016/j.rcim.2023.102647_bib0041) 2021; 58 Li (10.1016/j.rcim.2023.102647_bib0002) 2023; 124 Banko (10.1016/j.rcim.2023.102647_bib0070) 2012; 39 Hinchy (10.1016/j.rcim.2023.102647_bib0037) 2019; 38 Razali (10.1016/j.rcim.2023.102647_bib0068) 2022; 120 Luo (10.1016/j.rcim.2023.102647_bib0009) 2020; 65 Zhu (10.1016/j.rcim.2023.102647_bib0039) 2021; 59 Zhang (10.1016/j.rcim.2023.102647_bib0066) 2022; 196 Bao (10.1016/j.rcim.2023.102647_bib0030) 2021 Liu (10.1016/j.rcim.2023.102647_bib0035) 2021; 58 Liu (10.1016/j.rcim.2023.102647_bib0012) 2022; 18 Caesar (10.1016/j.rcim.2023.102647_bib0032) 2020 Liu (10.1016/j.rcim.2023.102647_bib0004) 2021; 71 Salinas (10.1016/j.rcim.2023.102647_bib0052) 2020; 36 Zhou (10.1016/j.rcim.2023.102647_bib0061) 2020 Tao (10.1016/j.rcim.2023.102647_bib0026) 2018; 94 Tan (10.1016/j.rcim.2023.102647_bib0005) 2019; 7 Envelope (10.1016/j.rcim.2023.102647_bib0048) 2022; 257 Wang (10.1016/j.rcim.2023.102647_bib0056) 2022; 10 Blakey-Milner (10.1016/j.rcim.2023.102647_bib0001) 2021; 209 Oreshkin (10.1016/j.rcim.2023.102647_bib0053) 2019 Zhang (10.1016/j.rcim.2023.102647_bib0055) 2022; 500 Liu (10.1016/j.rcim.2023.102647_bib0036) 2022; 54 Wu (10.1016/j.rcim.2023.102647_bib0040) 2021; 8 Kouw (10.1016/j.rcim.2023.102647_bib0060) 2018 Zhang (10.1016/j.rcim.2023.102647_bib0051) 2022; 63 Sun (10.1016/j.rcim.2023.102647_bib0047) 2022; 65 Liu (10.1016/j.rcim.2023.102647_bib0044) 2022; 22 Zhou (10.1016/j.rcim.2023.102647_bib0038) 2021; 116 Pech (10.1016/j.rcim.2023.102647_bib0006) 2021; 21 Grieves (10.1016/j.rcim.2023.102647_bib0019) 2005; 2 Li (10.1016/j.rcim.2023.102647_bib0045) 2020; 2020 Kalpana (10.1016/j.rcim.2023.102647_bib0010) 2018; 141 Zhao (10.1016/j.rcim.2023.102647_bib0043) 2022; 12 van de Ven (10.1016/j.rcim.2023.102647_bib0058) 2022; 4 Mêda (10.1016/j.rcim.2023.102647_bib0062) 2021; 11 Qiu (10.1016/j.rcim.2023.102647_bib0016) 2023; 53 Zhang (10.1016/j.rcim.2023.102647_bib0065) 2022; 75 Liu (10.1016/j.rcim.2023.102647_bib0057) 2022; 78 Tao (10.1016/j.rcim.2023.102647_bib0025) 2018; 24 Sun (10.1016/j.rcim.2023.102647_bib0042) 2020; 61 10.1016/j.rcim.2023.102647_bib0008 Gou (10.1016/j.rcim.2023.102647_bib0067) 2019; 6 Zheng (10.1016/j.rcim.2023.102647_bib0015) 2021; 10 Glaessgen (10.1016/j.rcim.2023.102647_bib0021) 2012 Liu (10.1016/j.rcim.2023.102647_bib0046) 2022; 51 Liu (10.1016/j.rcim.2023.102647_bib0011) 2021; 50 |
References_xml | – volume: 59 start-page: 453 year: 2021 end-page: 466 ident: bib0039 article-title: Digital Twin-driven machining process for thin-walled part manufacturing publication-title: J. Manuf. Syst. – volume: 58 start-page: 346 year: 2021 end-page: 361 ident: bib0041 article-title: Review of Digital Twin about concepts, technologies, and industrial applications publication-title: J. Manuf. Syst. – volume: 65 start-page: 296 year: 2022 ident: bib0047 article-title: Digital-Twin-enhanced metal tube bending forming real-time prediction method based on multi-source-input MTL publication-title: Struct. Multidisc. Optim. – volume: 141 year: 2018 ident: bib0010 article-title: A digital Twin for grinding wheel: an information sharing platform for sustainable grinding process publication-title: J. Manuf. Sci. Eng. – volume: 31 start-page: 1113 year: 2020 end-page: 1132 ident: bib0028 article-title: Real-time machining data application and service based on IMT Digital Twin publication-title: J. Intell. Manuf. – volume: 24 start-page: 1 year: 2018 end-page: 18 ident: bib0025 article-title: Digital Twin and its potential application exploration publication-title: Comput. Integr. Manuf. Syst. – volume: 2020 year: 2020 ident: bib0045 article-title: Quality prediction and control of assembly and welding process for ship group product based on Digital Twin publication-title: Scanning – volume: 93 start-page: 568 year: 2020 end-page: 574 ident: bib0069 article-title: Using finite element analysis to develop a Digital Twin of a manufacturing bending operation publication-title: Proc. CIRP – volume: 12 start-page: 87 year: 2022 ident: bib0043 article-title: Construction theory for a building intelligent operation and maintenance system based on Digital Twins and machine learning publication-title: Buildings – start-page: 1818 year: 2012 ident: bib0021 article-title: The Digital Twin paradigm for future NASA and US Air Force vehicles publication-title: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA – volume: 10 start-page: 2 year: 2021 ident: bib0015 article-title: A hierarchical integrated modeling method for the Digital Twin of mechanical products publication-title: Machines – volume: 2 start-page: 71 year: 2005 end-page: 84 ident: bib0019 article-title: Product lifecycle management: the new paradigm for enterprises publication-title: Int. J. Prod. Dev. – volume: 136 year: 2022 ident: bib0027 article-title: A framework for data-driven Digital Twins for smart manufacturing publication-title: Comput. Ind. – volume: 209 year: 2021 ident: bib0001 article-title: Metal additive manufacturing in aerospace: a review publication-title: Mater. Des. – volume: 116 start-page: 389 year: 2021 end-page: 401 ident: bib0038 article-title: Digital Twin–based stamping system for incremental bending publication-title: Int. J. Adv. Manuf. Technol. – volume: 54 year: 2022 ident: bib0036 article-title: Digital Twin-enabled machining process modeling publication-title: Adv. Eng. Inform. – volume: 4 start-page: 1185 year: 2022 end-page: 1197 ident: bib0058 article-title: Three types of incremental learning publication-title: Nat. Mach. Intell. – volume: 63 start-page: 238 year: 2022 end-page: 249 ident: bib0051 article-title: A Digital Twin dosing system for iron reverse flotation publication-title: J. Manuf. Syst. – volume: 94 start-page: 3563 year: 2018 end-page: 3576 ident: bib0026 article-title: Digital Twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. – volume: 58 start-page: 323 year: 2021 end-page: 328 ident: bib0029 article-title: Data construction method for the applications of workshop Digital Twin system publication-title: J. Manuf. Syst. – reference: A. Anbalagan, B. Shivakrishna, K. Srikanth, A digital twin study for immediate design/redesign of impellers and blades: part 1: CAD modelling and tool path simulation, Mater. Today: Proc.. 46 (2021) 8209–8217. 10.1016/j.matpr.2021.03.209. – volume: 51 year: 2022 ident: bib0046 article-title: Digital twin-driven surface roughness prediction and process parameter adaptive optimization publication-title: Adv. Eng. Inform. – volume: 39 start-page: 12814 year: 2012 end-page: 12823 ident: bib0070 article-title: Correlation based dynamic time warping of multivariate time series publication-title: Expert Syst. Appl. – volume: 118 start-page: 1749 year: 2022 end-page: 1765 ident: bib0014 article-title: Process-oriented unstable state monitoring and strategy recommendation for burr suppression of weak rigid drilling system driven by Digital Twin publication-title: Int. J. Adv. Manuf. Technol. – volume: 53 start-page: 6178 year: 2023 end-page: 6194 ident: bib0016 article-title: Evolutionary Digital Twin model with an agent-based discrete-event simulation method publication-title: Appl. Intell. – start-page: 1765 year: 2020 end-page: 1772 ident: bib0032 article-title: Information model of a digital process twin for machining processes publication-title: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) – volume: 75 year: 2022 ident: bib0065 article-title: Rapid construction method of equipment model for discrete manufacturing Digital Twin workshop system publication-title: Robot. Comput. Integr. Manuf. – volume: 11 start-page: 554 year: 2021 ident: bib0062 article-title: Incremental Digital Twin conceptualisations targeting data-driven circular construction publication-title: Buildings – volume: 257 year: 2022 ident: bib0048 article-title: Machine learning enhancement of manoeuvring prediction for ship Digital Twin using full-scale recordings publication-title: Ocean. Eng. – volume: 64 start-page: 372 year: 2022 end-page: 389 ident: bib0023 article-title: Digital Twin modeling publication-title: J. Manuf. Syst. – volume: 21 start-page: 1470 year: 2021 ident: bib0006 article-title: Predictive maintenance and intelligent sensors in smart factory publication-title: Sensors – volume: 143 year: 2021 ident: bib0049 article-title: Toward a Digital Twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks publication-title: J. Mech. Des. – volume: 110 start-page: 1385 year: 2020 end-page: 1397 ident: bib0007 article-title: A digital twin-driven production management system for production workshop publication-title: Int. J. Adv. Manuf. Technol. – start-page: 561 year: 2020 end-page: 578 ident: bib0061 article-title: Learning to generate novel domains for domain generalization publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16 – volume: 61 year: 2020 ident: bib0042 article-title: A Digital Twin-driven approach for the assembly-commissioning of high precision products publication-title: Robot. Comput. Integr. Manuf. – volume: 61 year: 2020 ident: bib0031 article-title: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues publication-title: Robot. Comput. Integr. Manuf. – start-page: 85 year: 2017 end-page: 113 ident: bib0020 article-title: Approaches, Digital Twin: mitigating unpredictable, undesirable emergent behavior in complex systems publication-title: Transdisciplinary Perspectives on Complex Systems – volume: 71 year: 2021 ident: bib0004 article-title: Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model publication-title: Robot. Comput. Integr. Manuf. – volume: 10 start-page: 1129 year: 2019 end-page: 1140 ident: bib0034 article-title: Digital Twin for CNC machine tool: modeling and using strategy publication-title: J. Ambient. Intell. Human. Comput. – volume: 109 start-page: 43 year: 2020 end-page: 76 ident: bib0059 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE Inst. Electr. Electron. Eng. – volume: 5 start-page: 80 year: 2021 ident: bib0033 article-title: Digital Twins for high-tech machining applications—a model-based analytics-ready approach publication-title: J. Manuf. Mater. Process. – volume: 8 start-page: 13789 year: 2021 end-page: 13804 ident: bib0040 article-title: Digital Twin networks: a survey publication-title: IEEE Internet Things J. – volume: 10 year: 2022 ident: bib0056 article-title: A Transformer-based multi-entity load forecasting method for integrated energy systems publication-title: Front. Energy Res. – volume: 12 start-page: 2537 year: 2022 ident: bib0018 article-title: Research on the modelling and development of flexibility in production system design phase driven by Digital Twins publication-title: Appl. Sci. – volume: 18 start-page: 8119 year: 2022 end-page: 8128 ident: bib0012 article-title: Digital Twin and data-driven quality prediction of complex die-casting manufacturing publication-title: IEEE Trans. Ind. Informat. – volume: 36 start-page: 1181 year: 2020 end-page: 1191 ident: bib0052 article-title: DeepAR: probabilistic forecasting with autoregressive recurrent networks publication-title: Int. J. Forecast. – volume: 6 year: 2019 ident: bib0067 article-title: Effect of additional axial tension on formability of equal curvature-diameter bending without mandrel for 0Cr18Ni9 stainless steel tube publication-title: Mater. Res. Express. – volume: 32 start-page: 3655 year: 2011 end-page: 3670 ident: bib0003 article-title: Incorporation of material behavior in modeling of metal forming and machining processes: a review publication-title: Mater. Des. – volume: 22 start-page: 1647 year: 2022 ident: bib0044 article-title: Digital Twins-based impact response prediction of prestressed steel structure publication-title: Sensors – volume: 500 start-page: 329 year: 2022 end-page: 340 ident: bib0055 article-title: A temporal fusion transformer for short-term freeway traffic speed multistep prediction publication-title: Neurocomputing – volume: 124 start-page: 4615 year: 2023 end-page: 4637 ident: bib0002 article-title: A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel publication-title: Int. J. Adv. Manuf. Technol. – volume: 134 year: 2022 ident: bib0024 article-title: Implementation of Digital Twins in the process industry: a systematic literature review of enablers and barriers publication-title: Comput. Ind. – year: 2018 ident: bib0060 article-title: An introduction to domain adaptation and transfer learning publication-title: arXiv Preprint – volume: 58 start-page: 180 year: 2021 end-page: 195 ident: bib0035 article-title: Digital Twin modeling method based on biomimicry for machining aerospace components publication-title: J. Manuf. Syst. – year: 2021 ident: bib0030 article-title: Product information units modeling oriented to Digital Twin publication-title: IOP Conference Series: Earth and Environmental Science – volume: 7 start-page: 2 year: 2019 ident: bib0005 article-title: Application of IoT-aided simulation to manufacturing systems in cyber-physical system publication-title: Machines – volume: 120 start-page: 6377 year: 2022 end-page: 6391 ident: bib0068 article-title: Implicit elastoplastic finite element analysis of tube-bending with an emphasis on springback prediction publication-title: Int. J. Adv. Manuf. Technol. – volume: 13 start-page: 620 year: 2022 ident: bib0017 article-title: Refined Simulation method for computer-aided process planning based on Digital Twin technology publication-title: Micromachines – volume: 19 start-page: 6234 year: 2022 end-page: 6245 ident: bib0064 article-title: Incremental learning for remaining useful life prediction via temporal cascade broad learning system with newly acquired data publication-title: IEEE Trans. Industr. Inform. – volume: 38 start-page: 1213 year: 2019 end-page: 1219 ident: bib0037 article-title: Using open-source microcontrollers to enable Digital Twin communication for smart manufacturing publication-title: Proc. Manuf. – volume: 2011 year: 2011 ident: bib0022 article-title: Reengineering aircraft structural life prediction using a Digital Twin publication-title: Int. J. Aerospace Eng. – volume: 50 year: 2021 ident: bib0011 article-title: A Digital Twin-driven approach towards traceability and dynamic control for processing quality publication-title: Adv. Eng. Inform. – year: 2020 ident: bib0013 article-title: Modeling of metal forming: a review publication-title: Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques – volume: 37 start-page: 1748 year: 2021 end-page: 1764 ident: bib0054 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int. J. Forecast. – volume: 246 year: 2022 ident: bib0063 article-title: Task-incremental broad learning system for multi-component intelligent fault diagnosis of machinery publication-title: Knowl. Based. Syst. – volume: 10 start-page: 14184 year: 2022 end-page: 14194 ident: bib0050 article-title: Machine learning-based Digital Twin for predictive modeling in wind turbines publication-title: IEEE Access – year: 2019 ident: bib0053 article-title: N-BEATS: neural basis expansion analysis for interpretable time series forecasting publication-title: arXiv Preprint – volume: 78 year: 2022 ident: bib0057 article-title: Adaptive reconstruction of Digital Twins for machining systems: a transfer learning approach publication-title: Robot. Comput. Integr. Manuf. – volume: 196 year: 2022 ident: bib0066 article-title: Influence of pressure die's boosting on forming quality in bending process of thin-walled tube publication-title: Int. J. Press. Vessel. Pip. – volume: 65 year: 2020 ident: bib0009 article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin publication-title: Robot. Comput. Integr. Manuf. – volume: 51 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0046 article-title: Digital twin-driven surface roughness prediction and process parameter adaptive optimization publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101470 – volume: 2 start-page: 71 issue: 1–2 year: 2005 ident: 10.1016/j.rcim.2023.102647_bib0019 article-title: Product lifecycle management: the new paradigm for enterprises publication-title: Int. J. Prod. Dev. doi: 10.1504/IJPD.2005.006669 – volume: 5 start-page: 80 issue: 3 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0033 article-title: Digital Twins for high-tech machining applications—a model-based analytics-ready approach publication-title: J. Manuf. Mater. Process. – year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0030 article-title: Product information units modeling oriented to Digital Twin – volume: 7 start-page: 2 year: 2019 ident: 10.1016/j.rcim.2023.102647_bib0005 article-title: Application of IoT-aided simulation to manufacturing systems in cyber-physical system publication-title: Machines doi: 10.3390/machines7010002 – volume: 53 start-page: 6178 year: 2023 ident: 10.1016/j.rcim.2023.102647_bib0016 article-title: Evolutionary Digital Twin model with an agent-based discrete-event simulation method publication-title: Appl. Intell. doi: 10.1007/s10489-022-03507-2 – volume: 93 start-page: 568 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0069 article-title: Using finite element analysis to develop a Digital Twin of a manufacturing bending operation publication-title: Proc. CIRP doi: 10.1016/j.procir.2020.03.031 – volume: 58 start-page: 346 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0041 article-title: Review of Digital Twin about concepts, technologies, and industrial applications publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.06.017 – volume: 10 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0056 article-title: A Transformer-based multi-entity load forecasting method for integrated energy systems publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.1008216 – volume: 78 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0057 article-title: Adaptive reconstruction of Digital Twins for machining systems: a transfer learning approach publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2022.102390 – volume: 11 start-page: 554 issue: 11 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0062 article-title: Incremental Digital Twin conceptualisations targeting data-driven circular construction publication-title: Buildings doi: 10.3390/buildings11110554 – volume: 24 start-page: 1 year: 2018 ident: 10.1016/j.rcim.2023.102647_bib0025 article-title: Digital Twin and its potential application exploration publication-title: Comput. Integr. Manuf. Syst. – volume: 246 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0063 article-title: Task-incremental broad learning system for multi-component intelligent fault diagnosis of machinery publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2022.108730 – volume: 118 start-page: 1749 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0014 article-title: Process-oriented unstable state monitoring and strategy recommendation for burr suppression of weak rigid drilling system driven by Digital Twin publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-08018-x – volume: 64 start-page: 372 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0023 article-title: Digital Twin modeling publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.06.015 – volume: 10 start-page: 2 issue: 1 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0015 article-title: A hierarchical integrated modeling method for the Digital Twin of mechanical products publication-title: Machines doi: 10.3390/machines10010002 – volume: 21 start-page: 1470 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0006 article-title: Predictive maintenance and intelligent sensors in smart factory publication-title: Sensors doi: 10.3390/s21041470 – year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0013 article-title: Modeling of metal forming: a review – volume: 61 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0042 article-title: A Digital Twin-driven approach for the assembly-commissioning of high precision products publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.101839 – ident: 10.1016/j.rcim.2023.102647_bib0008 doi: 10.1016/j.matpr.2021.03.209 – volume: 2020 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0045 article-title: Quality prediction and control of assembly and welding process for ship group product based on Digital Twin publication-title: Scanning doi: 10.1155/2020/3758730 – volume: 10 start-page: 14184 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0050 article-title: Machine learning-based Digital Twin for predictive modeling in wind turbines publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147602 – volume: 12 start-page: 2537 issue: 5 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0018 article-title: Research on the modelling and development of flexibility in production system design phase driven by Digital Twins publication-title: Appl. Sci. doi: 10.3390/app12052537 – volume: 31 start-page: 1113 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0028 article-title: Real-time machining data application and service based on IMT Digital Twin publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01500-0 – volume: 63 start-page: 238 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0051 article-title: A Digital Twin dosing system for iron reverse flotation publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.03.006 – volume: 39 start-page: 12814 year: 2012 ident: 10.1016/j.rcim.2023.102647_bib0070 article-title: Correlation based dynamic time warping of multivariate time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.012 – volume: 141 issue: 2 year: 2018 ident: 10.1016/j.rcim.2023.102647_bib0010 article-title: A digital Twin for grinding wheel: an information sharing platform for sustainable grinding process publication-title: J. Manuf. Sci. Eng. – volume: 37 start-page: 1748 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0054 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.03.012 – volume: 10 start-page: 1129 year: 2019 ident: 10.1016/j.rcim.2023.102647_bib0034 article-title: Digital Twin for CNC machine tool: modeling and using strategy publication-title: J. Ambient. Intell. Human. Comput. doi: 10.1007/s12652-018-0946-5 – start-page: 1818 year: 2012 ident: 10.1016/j.rcim.2023.102647_bib0021 article-title: The Digital Twin paradigm for future NASA and US Air Force vehicles – volume: 65 start-page: 296 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0047 article-title: Digital-Twin-enhanced metal tube bending forming real-time prediction method based on multi-source-input MTL publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-022-03372-0 – volume: 109 start-page: 43 issue: 1 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0059 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE Inst. Electr. Electron. Eng. doi: 10.1109/JPROC.2020.3004555 – volume: 2011 year: 2011 ident: 10.1016/j.rcim.2023.102647_bib0022 article-title: Reengineering aircraft structural life prediction using a Digital Twin publication-title: Int. J. Aerospace Eng. doi: 10.1155/2011/154798 – volume: 61 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0031 article-title: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.101837 – volume: 6 year: 2019 ident: 10.1016/j.rcim.2023.102647_bib0067 article-title: Effect of additional axial tension on formability of equal curvature-diameter bending without mandrel for 0Cr18Ni9 stainless steel tube publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/ab09b1 – volume: 50 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0011 article-title: A Digital Twin-driven approach towards traceability and dynamic control for processing quality publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101395 – volume: 22 start-page: 1647 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0044 article-title: Digital Twins-based impact response prediction of prestressed steel structure publication-title: Sensors doi: 10.3390/s22041647 – volume: 54 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0036 article-title: Digital Twin-enabled machining process modeling publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101737 – volume: 4 start-page: 1185 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0058 article-title: Three types of incremental learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00568-3 – volume: 143 issue: 5 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0049 article-title: Toward a Digital Twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks publication-title: J. Mech. Des. doi: 10.1115/1.4048414 – volume: 209 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0001 article-title: Metal additive manufacturing in aerospace: a review publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110008 – volume: 18 start-page: 8119 issue: 11 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0012 article-title: Digital Twin and data-driven quality prediction of complex die-casting manufacturing publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2022.3168309 – volume: 116 start-page: 389 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0038 article-title: Digital Twin–based stamping system for incremental bending publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07422-7 – volume: 58 start-page: 323 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0029 article-title: Data construction method for the applications of workshop Digital Twin system publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.02.003 – volume: 94 start-page: 3563 year: 2018 ident: 10.1016/j.rcim.2023.102647_bib0026 article-title: Digital Twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0233-1 – start-page: 561 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0061 article-title: Learning to generate novel domains for domain generalization – volume: 71 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0004 article-title: Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2021.102123 – volume: 257 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0048 article-title: Machine learning enhancement of manoeuvring prediction for ship Digital Twin using full-scale recordings publication-title: Ocean. Eng. – volume: 196 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0066 article-title: Influence of pressure die's boosting on forming quality in bending process of thin-walled tube publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2022.104612 – volume: 110 start-page: 1385 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0007 article-title: A digital twin-driven production management system for production workshop publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05977-5 – volume: 32 start-page: 3655 year: 2011 ident: 10.1016/j.rcim.2023.102647_bib0003 article-title: Incorporation of material behavior in modeling of metal forming and machining processes: a review publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.03.049 – start-page: 85 year: 2017 ident: 10.1016/j.rcim.2023.102647_bib0020 article-title: Approaches, Digital Twin: mitigating unpredictable, undesirable emergent behavior in complex systems – volume: 12 start-page: 87 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0043 article-title: Construction theory for a building intelligent operation and maintenance system based on Digital Twins and machine learning publication-title: Buildings doi: 10.3390/buildings12020087 – volume: 36 start-page: 1181 issue: 3 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0052 article-title: DeepAR: probabilistic forecasting with autoregressive recurrent networks publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.07.001 – start-page: 1765 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0032 article-title: Information model of a digital process twin for machining processes – volume: 136 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0027 article-title: A framework for data-driven Digital Twins for smart manufacturing publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103586 – volume: 134 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0024 article-title: Implementation of Digital Twins in the process industry: a systematic literature review of enablers and barriers publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103558 – volume: 8 start-page: 13789 issue: 18 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0040 article-title: Digital Twin networks: a survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3079510 – volume: 120 start-page: 6377 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0068 article-title: Implicit elastoplastic finite element analysis of tube-bending with an emphasis on springback prediction publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-09073-8 – volume: 75 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0065 article-title: Rapid construction method of equipment model for discrete manufacturing Digital Twin workshop system publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2021.102309 – volume: 19 start-page: 6234 issue: 4 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0064 article-title: Incremental learning for remaining useful life prediction via temporal cascade broad learning system with newly acquired data publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2022.3201977 – volume: 58 start-page: 180 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0035 article-title: Digital Twin modeling method based on biomimicry for machining aerospace components publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.04.014 – volume: 500 start-page: 329 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0055 article-title: A temporal fusion transformer for short-term freeway traffic speed multistep prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.083 – volume: 65 year: 2020 ident: 10.1016/j.rcim.2023.102647_bib0009 article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2020.101974 – volume: 38 start-page: 1213 year: 2019 ident: 10.1016/j.rcim.2023.102647_bib0037 article-title: Using open-source microcontrollers to enable Digital Twin communication for smart manufacturing publication-title: Proc. Manuf. – volume: 13 start-page: 620 issue: 4 year: 2022 ident: 10.1016/j.rcim.2023.102647_bib0017 article-title: Refined Simulation method for computer-aided process planning based on Digital Twin technology publication-title: Micromachines doi: 10.3390/mi13040620 – volume: 59 start-page: 453 year: 2021 ident: 10.1016/j.rcim.2023.102647_bib0039 article-title: Digital Twin-driven machining process for thin-walled part manufacturing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.03.015 – volume: 124 start-page: 4615 year: 2023 ident: 10.1016/j.rcim.2023.102647_bib0002 article-title: A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-10838-y – year: 2018 ident: 10.1016/j.rcim.2023.102647_bib0060 article-title: An introduction to domain adaptation and transfer learning publication-title: arXiv Preprint – year: 2019 ident: 10.1016/j.rcim.2023.102647_bib0053 article-title: N-BEATS: neural basis expansion analysis for interpretable time series forecasting publication-title: arXiv Preprint |
SSID | ssj0002453 |
Score | 2.592851 |
Snippet | •Digital-Twin model for custom metal forming process quality prediction was developed.•Comprehensive information model was created for integrating multi-source... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102647 |
SubjectTerms | custom product manufacturing Digital-Twin metal forming predictive modeling task incremental learning Temporal Fusion Transformer |
Title | Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process |
URI | https://dx.doi.org/10.1016/j.rcim.2023.102647 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMCBxwAxHlMO3FBY16Wv4zSYxmtCsEm7VWmaTgVWqrEJCSF-O3aTwpDQDlxatXWiKHZtJ7E_E3JiB26UcM9lwlGccd9yWOA6MVMt0H3ckpYs0PZv-25vyK9GzmiFdMpcGAyrNLpf6_RCW5s3DTObjTxNGw8gnGg-cVsTz4cwiQ_R60Cmzz5_wjxsrpEogZghtUmc0TFeU5liNrrdQgQDF0us_GWcFgxOd4tsGE-RtvVgtsmKyqpks6zCQM1PWSXrC5CCO-RjIF6faJpJve8HHZi6EGMWT1Gz0fN0jIVC2OAtzWg-xYMaVHm0qIkDdBTcWCrn4BRO0ncV04nCXtC3xY-5RoilE5HNMSmiyHKkuU432CXD7sWg02OmwgKTMGkz5vtR4kSCe7BOcHlsNwUYfF8EkSV8T0kr8UQQSzeRTTt2AgeWRhHooxjcCO4ncGntkUr2kql9QoVb4OQkHtByP_Yi1RTgXbT8xPI8K7BqpFlObSgN_DhWwXgOyzizxxDZESI7Qs2OGjn9bpNr8I2l1E7JsfCXCIVgHZa0O_hnu0OyBk9ch3AfkcpsOlfH4KHMonohgnWy2u7c39zh_fK61_8CwKjniQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PbAhq2nqvEbEQ-XRLrRSt8hxHBSgISqtkBA_nrvYQSChDiwZ4rMV-ZzvzvbddwCnbuQnmQh8Lj0tuAgdj0e-l3LdQewTjnJUxbbf6_vdobgdeaMFuKhzYSis0mK_wfQKre2blp3NVpnnrQdcnGQ-6ViT7oeiRVgidirRgKXzm7tu_xuQXWHIKFGeUwebO2PCvCYqp4R0t0MkBj5VWfnLPv2wOdcbsGadRXZuvmcTFnSxBet1IQZm_8stWP3BKrgNnwP59szyQpmjPxzAloZ45OmEwI1d5o9UK4QP3vOClRO6qyHUY1VZHJRj6MkyNUO_cJx_6JSNNY1C7i01loYklo1lMaO8iCrRkZUm42AHhtdXg4sut0UWuMJ5m_IwTDIvkSLArYIvUrct0eaHMkocGQZaOVkgo1T5mWq7qRd5uDtKEJJS9CREmOGjswuN4rXQe8CkX1HlZAHKijANEt2W6GB0wswJAidymtCupzZWloGcCmG8xHWo2VNM6ohJHbFRRxPOvvuUhn9jrrRXayz-tYpiNBBz-u3_s98JLHcHvfv4_qZ_dwAr2CJMRPchNKaTmT5Ch2WaHNsF-QVwS-il |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+incremental+learning-driven+Digital-Twin+predictive+modeling+for+customized+metal+forming+product+manufacturing+process&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Li%2C+Jie&rft.au=Wang%2C+Zili&rft.au=Zhang%2C+Shuyou&rft.au=Lin%2C+Yaochen&rft.date=2024-02-01&rft.issn=0736-5845&rft.volume=85&rft.spage=102647&rft_id=info:doi/10.1016%2Fj.rcim.2023.102647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rcim_2023_102647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |