Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition

•We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG signal.•The recognition performance of the proposed method on the sEMG signal of two muscles is evaluated.•The accurate recognition of lower...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 74; p. 103487
Main Authors Wei, Chunfeng, Wang, Hong, Hu, Fo, Zhou, Bin, Feng, Naishi, Lu, Yanzheng, Tang, Hao, Jia, Xiaocong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103487

Cover

Abstract •We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG signal.•The recognition performance of the proposed method on the sEMG signal of two muscles is evaluated.•The accurate recognition of lower limbs movements based on single-channel sEMG signals improves the usability of lower limbs wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.•Using only sEMG signal sensors effectively avoids system complexity problems caused by multi-sensor fusion. Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.
AbstractList •We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG signal.•The recognition performance of the proposed method on the sEMG signal of two muscles is evaluated.•The accurate recognition of lower limbs movements based on single-channel sEMG signals improves the usability of lower limbs wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.•Using only sEMG signal sensors effectively avoids system complexity problems caused by multi-sensor fusion. Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.
ArticleNumber 103487
Author Zhou, Bin
Jia, Xiaocong
Lu, Yanzheng
Wei, Chunfeng
Wang, Hong
Hu, Fo
Feng, Naishi
Tang, Hao
Author_xml – sequence: 1
  givenname: Chunfeng
  surname: Wei
  fullname: Wei, Chunfeng
– sequence: 2
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  email: hongwang@mail.neu.edu.cn
– sequence: 3
  givenname: Fo
  surname: Hu
  fullname: Hu, Fo
– sequence: 4
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
– sequence: 5
  givenname: Naishi
  surname: Feng
  fullname: Feng, Naishi
– sequence: 6
  givenname: Yanzheng
  surname: Lu
  fullname: Lu, Yanzheng
– sequence: 7
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
– sequence: 8
  givenname: Xiaocong
  surname: Jia
  fullname: Jia, Xiaocong
BookMark eNp9kM1OAjEYRRuDiYi-gKu-wGA77UBJ3BjiX0LiQl03nfYrlMy0k3aA8Co-rQV044JNf-_5knuu0cAHDwjdUTKmhE7u1-M6dXpckrLMD4yL6QUa0imfFIISMfg7kxm_QtcprQnJEcqH6PvD-WUDhV4p76HBaROt0oChAd3H0O7DMqputcfJLb1qsG5USs46rXoXPN65foW3KrrjNf-3wQA2oEPbheSOGeUNBp-HdXtsQfWbCNiGiJuwg7y6ts7UFtqcSThmdOmP4A26tKpJcPu7j9DX89Pn_LVYvL-8zR8XhWaE9IUQVS0IrQydzUpKpsrWNVGCEah5XVW25sYAn-pKC6azK2a54mxCJ6QkpmKMjZA4zdUxpBTBSu36Y58-KtdISuTBsVzLg2N5cCxPjjNa_kO76FoV9-ehhxMEudTWQZRJO_AajMvte2mCO4f_AA2xnPI
CitedBy_id crossref_primary_10_1088_1361_6501_ad93f2
crossref_primary_10_1016_j_bspc_2025_107563
crossref_primary_10_1016_j_bspc_2024_106551
crossref_primary_10_3389_fnbot_2022_978014
crossref_primary_10_1109_TIM_2023_3243612
crossref_primary_10_1016_j_bspc_2024_106803
crossref_primary_10_1146_annurev_bioeng_082222_012531
crossref_primary_10_1109_TNSRE_2023_3336317
crossref_primary_10_1371_journal_pone_0285015
crossref_primary_10_1016_j_engappai_2023_107761
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_3934_mbe_2023241
crossref_primary_10_1016_j_eswa_2023_120257
crossref_primary_10_1109_ACCESS_2024_3388913
Cites_doi 10.1111/exsy.12381
10.1007/s00221-005-0126-7
10.1016/j.engfailanal.2019.104204
10.1016/j.cmpb.2020.105486
10.1016/j.bbe.2019.07.002
10.1016/j.future.2018.10.005
10.1016/j.gaitpost.2015.11.015
10.1109/TSP.2013.2288675
10.1007/s11062-019-09812-w
10.3389/fnbot.2020.00040
10.1504/IJSNET.2020.105562
10.3390/app10207144
10.1109/LSP.2016.2636320
10.3390/sym9080147
10.1007/s13246-018-0646-7
10.3390/app10082638
10.1109/51.982277
10.1007/s11370-017-0239-4
10.5755/j01.eee.122.6.1816
10.1103/PhysRevLett.88.174102
10.1023/A:1009715923555
10.1016/j.bspc.2020.102210
10.1016/j.eswa.2013.02.023
10.1016/j.cmpb.2020.105643
10.1007/s11517-016-1551-4
10.1103/PhysRevE.70.046217
10.1145/1961189.1961199
10.2478/v10048-011-0009-y
10.3390/s18030869
10.1016/S1050-6411(02)00083-4
10.1016/j.eswa.2012.01.102
10.1631/jzus.2007.A1246
10.1186/s12984-018-0396-5
10.1016/j.jelekin.2021.102528
10.1016/j.bspc.2017.09.007
10.1155/2020/5684812
10.1016/j.ijleo.2018.09.040
10.1007/s11063-019-10008-w
10.1109/ACCESS.2020.3008901
10.1155/2016/3196465
10.1016/j.bbe.2020.05.010
10.3390/s17061287
10.1016/j.jneumeth.2009.02.017
10.1016/j.bspc.2012.08.005
10.1109/ACCESS.2019.2914728
10.3390/s17061229
10.1007/s00422-002-0309-2
10.3390/e14081553
10.3390/sym12040541
10.1016/j.jocs.2018.04.019
10.1007/s40846-016-0201-5
10.1007/s13369-018-3193-3
10.1016/j.bspc.2020.102045
10.3390/s20061613
10.1063/1.5120470
10.1007/s10586-017-0985-2
10.1016/j.ymssp.2015.02.020
10.1016/j.csda.2007.06.012
10.3390/s16081304
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103487
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103487
S174680942200009X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-885b8015d1992107afbb0a830eb4b55fb4dde47c5c83c0163f4a43616020d5333
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 01:34:13 EDT 2025
Fri Feb 23 02:40:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational mode decomposition
Surface electromyography
Lower limb movements recognition
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-885b8015d1992107afbb0a830eb4b55fb4dde47c5c83c0163f4a43616020d5333
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_103487
crossref_primary_10_1016_j_bspc_2022_103487
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gupta, Agarwal (b0120) 2019; 51
Dimitrova, Dimitrov (b0010) 2003; 13
Arozi, Caesarendra, Ariyanto, Munadi, Setiawan, Glowacz (b0125) 2020; 12
Qi, Jiang, Li, Sun, Tao (b0060) 2019; 7
Sun, Zhang, Zhao, Zhang, Zhong, Fan (b0065) 2018; 18
Hussain, Iqbal, Maqbool, Khan, Awad, Dehghani-Sanij (b0090) 2020; 40
Phinyomark, Limsakul, Phukpattaranont (b0145) 2011; 11
Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (b0200) 2013; 40
Burges (b0260) 1998; 2
Croux, Joossens, Lemmens (b0275) 2007; 52
Nazmi, Rahman, Yamamoto, Ahmad, Zamzuri, Mazlan (b0220) 2016; 16
Farina, Cescon, Merletti (b0005) 2002; 86
Keenan, Farina, Merletti, Enoka (b0015) 2006; 169
Wahid, Tafreshi, Al-Sowaidi, Langari (b0285) 2018; 27
Zanin, Zunino, Rosso, Papo (b0240) 2012; 14
Nishad, Upadhyay, Pachori, Acharya (b0290) 2019; 93
Wang, Markert, Xiang, Zheng (b0185) 2015; 60–61
Farina, Merletti, Nazzaro, Caruso (b0230) 2001; 20
Bandt, Pompe (b0245) 2002; 88
Lv, Tang, Zhou, Zhou (b0190) 2016; 2016
Tapia, Daud, Ruiz-del-Solar (b0175) 2017; 37
Gallina, Pollock, Vieira, Ivanova, Garland (b0130) 2016; 44
Mengarelli, Tigrini, Fioretti, Cardarelli, Verdini (b0225) 2020; 10
Dragomiretskiy, Zosso (b0180) 2014; 62
Phinyomark, Phukpattaranont, Limsakul (b0205) 2012; 39
Zhou, Wang, Hu, Feng, Xi, Zhang, Tang (b0040) 2020; 193
Gao, Wang, Fang, Xu (b0025) 2020; 10
Chang, Lin (b0255) 2011; 2
Xi, Yang, Shi, Luo, Zhao (b0165) 2019; 50
Gupta, Agarwal (b0140) 2018; 43
Campbell, Phinyomark, Scheme (b0070) 2020; 20
Purushothaman, Vikas (b0280) 2018; 41
Davila, Cretu, Zaremba (b0215) 2017; 17
Hussain, Iqbal, Maqbool, Khan, Tahir (b0075) 2020; 32
Kuang, Wu, Shao, Wu, Wu (b0100) 2017; 20
Chen, Wang (b0270) 2013; 8
Yin, Zhang, Chen, Li, Chen, Chen, Lemos (b0045) 2020; 14
Sui, Wan, Zhang (b0155) 2019; 176
Xi, Tang, Miran, Luo (b0085) 2017; 17
Ryu, Lee, Kim (b0080) 2017; 24
Garikayi, Van den Heever, Matope (b0030) 2018; 40
Ai, Zhang, Qi, Liu, Chen (b0055) 2017; 9
Dhindsa, Agarwal, Ryait (b0095) 2019; 36
Shi, Qin, Zhu, Xu, Shi (b0170) 2020; 2020
Gupta, Agarwal (b0115) 2019; 39
Tan, Ho, Goh, Ng, Latif, Mazlan (b0295) 2020; 61
Sharma, Parey (b0195) 2020; 107
Ylinen, Pennanen, Weir, Hakkinen, Multanen (b0300) 2021; 57
Bahador, Yousefi, Marashi, Bahador (b0050) 2020; 195
Khoshdel, Akbarzadeh, Naghavi, Sharifnezhad, Souzanchi-Kashani (b0035) 2018; 11
Batzianoulis, Krausz, Simon, Hargrove, Billard (b0265) 2018; 15
Yan, Wang, Ren (b0160) 2007; 8
Yang, Xi, Chen, Miran, Hua, Luo (b0020) 2019; 9
Zhang, Li, Zhu, Su, Guo, Xu, Yao (b0135) 2017; 12
Al-Quraishi, Ishak, Ahmad, Hasan, Al-Qurishi, Ghapanchizadeh, Alamri (b0105) 2017; 55
Phinyomark, Nuidod, Phukpattaranont, Limsakul (b0150) 2012; 122
Cao, Tung, Gao, Protopopescu, Hively (b0250) 2004; 70
Sacco, Gomes, Otuzi, Pripas, Onodera (b0235) 2009; 180
Fajardo, Gomez, Prieto (b0210) 2021; 63
Shi, Qin, Zhu, Zhai, Shi (b0110) 2020; 8
Lv (10.1016/j.bspc.2022.103487_b0190) 2016; 2016
Sun (10.1016/j.bspc.2022.103487_b0065) 2018; 18
Khoshdel (10.1016/j.bspc.2022.103487_b0035) 2018; 11
Gao (10.1016/j.bspc.2022.103487_b0025) 2020; 10
Hussain (10.1016/j.bspc.2022.103487_b0090) 2020; 40
Keenan (10.1016/j.bspc.2022.103487_b0015) 2006; 169
Xi (10.1016/j.bspc.2022.103487_b0165) 2019; 50
Wahid (10.1016/j.bspc.2022.103487_b0285) 2018; 27
Zhang (10.1016/j.bspc.2022.103487_b0135) 2017; 12
Gupta (10.1016/j.bspc.2022.103487_b0140) 2018; 43
Bandt (10.1016/j.bspc.2022.103487_b0245) 2002; 88
Bahador (10.1016/j.bspc.2022.103487_b0050) 2020; 195
Chang (10.1016/j.bspc.2022.103487_b0255) 2011; 2
Tapia (10.1016/j.bspc.2022.103487_b0175) 2017; 37
Ylinen (10.1016/j.bspc.2022.103487_b0300) 2021; 57
Arozi (10.1016/j.bspc.2022.103487_b0125) 2020; 12
Al-Quraishi (10.1016/j.bspc.2022.103487_b0105) 2017; 55
Cao (10.1016/j.bspc.2022.103487_b0250) 2004; 70
Farina (10.1016/j.bspc.2022.103487_b0005) 2002; 86
Ai (10.1016/j.bspc.2022.103487_b0055) 2017; 9
Zanin (10.1016/j.bspc.2022.103487_b0240) 2012; 14
Ryu (10.1016/j.bspc.2022.103487_b0080) 2017; 24
Dhindsa (10.1016/j.bspc.2022.103487_b0095) 2019; 36
Nishad (10.1016/j.bspc.2022.103487_b0290) 2019; 93
Sharma (10.1016/j.bspc.2022.103487_b0195) 2020; 107
Purushothaman (10.1016/j.bspc.2022.103487_b0280) 2018; 41
Qi (10.1016/j.bspc.2022.103487_b0060) 2019; 7
Wang (10.1016/j.bspc.2022.103487_b0185) 2015; 60–61
Campbell (10.1016/j.bspc.2022.103487_b0070) 2020; 20
Batzianoulis (10.1016/j.bspc.2022.103487_b0265) 2018; 15
Yin (10.1016/j.bspc.2022.103487_b0045) 2020; 14
Gupta (10.1016/j.bspc.2022.103487_b0120) 2019; 51
Hussain (10.1016/j.bspc.2022.103487_b0075) 2020; 32
Dimitrova (10.1016/j.bspc.2022.103487_b0010) 2003; 13
Sacco (10.1016/j.bspc.2022.103487_b0235) 2009; 180
Gupta (10.1016/j.bspc.2022.103487_b0115) 2019; 39
Yan (10.1016/j.bspc.2022.103487_b0160) 2007; 8
Burges (10.1016/j.bspc.2022.103487_b0260) 1998; 2
Nazmi (10.1016/j.bspc.2022.103487_b0220) 2016; 16
Farina (10.1016/j.bspc.2022.103487_b0230) 2001; 20
Shi (10.1016/j.bspc.2022.103487_b0170) 2020; 2020
Sui (10.1016/j.bspc.2022.103487_b0155) 2019; 176
Dragomiretskiy (10.1016/j.bspc.2022.103487_b0180) 2014; 62
Tan (10.1016/j.bspc.2022.103487_b0295) 2020; 61
Mengarelli (10.1016/j.bspc.2022.103487_b0225) 2020; 10
Phinyomark (10.1016/j.bspc.2022.103487_b0205) 2012; 39
Yang (10.1016/j.bspc.2022.103487_b0020) 2019; 9
Fajardo (10.1016/j.bspc.2022.103487_b0210) 2021; 63
Zhou (10.1016/j.bspc.2022.103487_b0040) 2020; 193
Chen (10.1016/j.bspc.2022.103487_b0270) 2013; 8
Phinyomark (10.1016/j.bspc.2022.103487_b0150) 2012; 122
Croux (10.1016/j.bspc.2022.103487_b0275) 2007; 52
Xi (10.1016/j.bspc.2022.103487_b0085) 2017; 17
Garikayi (10.1016/j.bspc.2022.103487_b0030) 2018; 40
Kuang (10.1016/j.bspc.2022.103487_b0100) 2017; 20
Shi (10.1016/j.bspc.2022.103487_b0110) 2020; 8
Phinyomark (10.1016/j.bspc.2022.103487_b0145) 2011; 11
Gallina (10.1016/j.bspc.2022.103487_b0130) 2016; 44
Phinyomark (10.1016/j.bspc.2022.103487_b0200) 2013; 40
Davila (10.1016/j.bspc.2022.103487_b0215) 2017; 17
References_xml – volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0180
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 1246
  year: 2007
  end-page: 1255
  ident: b0160
  article-title: Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification
  publication-title: J. Zhejiang Univ-Sci. A.
– volume: 32
  start-page: 139
  year: 2020
  end-page: 149
  ident: b0075
  article-title: Amputee walking mode recognition based on mel frequency cepstral coefficients using surface electromyography sensor
  publication-title: Int. J. Sens. Netw.
– volume: 169
  start-page: 37
  year: 2006
  end-page: 49
  ident: b0015
  article-title: Influence of motor unit properties on the size of the simulated evoked surface EMG potential
  publication-title: Exp. Brain Res.
– volume: 20
  start-page: 3051
  year: 2017
  end-page: 3059
  ident: b0100
  article-title: Extreme learning machine classification method for lower limb movement recognition
  publication-title: Cluster Comput.
– volume: 12
  year: 2017
  ident: b0135
  article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition
  publication-title: PLoS ONE
– volume: 7
  start-page: 61378
  year: 2019
  end-page: 61387
  ident: b0060
  article-title: Intelligent human-computer interaction based on surface EMG gesture recognition
  publication-title: IEEE Access
– volume: 11
  start-page: 97
  year: 2018
  end-page: 108
  ident: b0035
  article-title: sEMG-based impedance control for lower-limb rehabilitation robot
  publication-title: Intell. Serv. Robot.
– volume: 61
  year: 2020
  ident: b0295
  article-title: Revealing stroke survivor gait deficits during rehabilitation using ensemble empirical mode decomposition of surface electromyography signals
  publication-title: Biomed. Signal Process. Control
– volume: 70
  year: 2004
  ident: b0250
  article-title: Detecting dynamical changes in time series using the permutation entropy
  publication-title: Phys. Rev. E
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7431
  ident: b0205
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 2638
  year: 2020
  ident: b0025
  article-title: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation
  publication-title: Appl. Sci.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: b0260
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
– volume: 50
  start-page: 2265
  year: 2019
  end-page: 2280
  ident: b0165
  article-title: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine
  publication-title: Neural Process. Lett.
– volume: 18
  start-page: 869
  year: 2018
  ident: b0065
  article-title: A novel feature optimization for wearable human-computer interfaces using surface electromyography sensors
  publication-title: Sensors
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0190
  article-title: A novel method for mechanical fault diagnosis based on variational mode decomposition and multikernel support vector machine
  publication-title: Shock Vib.
– volume: 13
  start-page: 13
  year: 2003
  end-page: 36
  ident: b0010
  article-title: Interpretation of EMG changes with fatigue: Facts, pitfalls, and fallacies
  publication-title: J. Electromyogr. Kinesiol.
– volume: 16
  start-page: 1304
  year: 2016
  ident: b0220
  article-title: A review of classification techniques of EMG signals during isotonic and isometric contractions
  publication-title: Sensors
– volume: 86
  start-page: 445
  year: 2002
  end-page: 456
  ident: b0005
  article-title: Influence of anatomical, physical, and detection-system parameters on surface EMG
  publication-title: Biol. Cybern.
– volume: 176
  start-page: 228
  year: 2019
  end-page: 235
  ident: b0155
  article-title: Pattern recognition of SEMG based on wavelet packet transform and improved SVM
  publication-title: Optik
– volume: 44
  start-page: 103
  year: 2016
  end-page: 109
  ident: b0130
  article-title: Between-day reliability of triceps surae responses to standing perturbations in people post-stroke and healthy controls: A high-density surface EMG investigation
  publication-title: Gait Posture
– volume: 40
  start-page: 4832
  year: 2013
  end-page: 4840
  ident: b0200
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 27
  year: 2011
  ident: b0255
  article-title: Libsvm: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 17
  start-page: 1229
  year: 2017
  ident: b0085
  article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors
  publication-title: Sensors
– volume: 122
  start-page: 27
  year: 2012
  end-page: 32
  ident: b0150
  article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification
  publication-title: Elektronika. Ir. Elektrotechnika.
– volume: 11
  start-page: 45
  year: 2011
  end-page: 52
  ident: b0145
  article-title: Application of wavelet analysis in EMG feature extraction for pattern classification
  publication-title: Meas. Sci. Rev.
– volume: 88
  year: 2002
  ident: b0245
  article-title: Permutation entropy: A natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
– volume: 40
  start-page: 1110
  year: 2020
  end-page: 1123
  ident: b0090
  article-title: Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses
  publication-title: Biocybern. Biomed. Eng.
– volume: 8
  start-page: 184
  year: 2013
  end-page: 192
  ident: b0270
  article-title: Pattern recognition of number gestures based on a wireless surface EMG system
  publication-title: Biomed. Signal Process. Control
– volume: 20
  start-page: 1613
  year: 2020
  ident: b0070
  article-title: Current trends and confounding factors in myoelectric control: Limb position and contraction intensity
  publication-title: Sensors
– volume: 41
  start-page: 549
  year: 2018
  end-page: 559
  ident: b0280
  article-title: Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 55
  start-page: 747
  year: 2017
  end-page: 758
  ident: b0105
  article-title: Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications
  publication-title: Med. Biol. Eng. Compu.
– volume: 10
  start-page: 7144
  year: 2020
  ident: b0225
  article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from EMG signals: parameters selection and comparison
  publication-title: Appl. Sci.
– volume: 51
  start-page: 191
  year: 2019
  end-page: 208
  ident: b0120
  article-title: Single muscle surface EMGs locomotion identification module for prosthesis control
  publication-title: Neurophysiology
– volume: 107
  year: 2020
  ident: b0195
  article-title: Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed
  publication-title: Eng. Fail. Anal.
– volume: 9
  start-page: 19
  year: 2017
  ident: b0055
  article-title: Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals
  publication-title: Symmetry
– volume: 193
  year: 2020
  ident: b0040
  article-title: Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning
  publication-title: Comput. Methods Programs Biomed.
– volume: 2020
  start-page: 5684812
  year: 2020
  ident: b0170
  article-title: Lower limb motion recognition method based on improved wavelet packet transform and unscented kalman neural network
  publication-title: Math. Probl. Eng.
– volume: 27
  start-page: 69
  year: 2018
  end-page: 76
  ident: b0285
  article-title: Subject-independent hand gesture recognition using normalization and machine learning algorithms
  publication-title: J. Comput. Sci.
– volume: 20
  start-page: 62
  year: 2001
  end-page: 71
  ident: b0230
  article-title: Effect of joint angle on EMG variables in leg and thigh muscles
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 180
  start-page: 133
  year: 2009
  end-page: 137
  ident: b0235
  article-title: A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions
  publication-title: J. Neurosci. Methods
– volume: 39
  start-page: 775
  year: 2019
  end-page: 788
  ident: b0115
  article-title: Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis
  publication-title: Biocybern. Biomed. Eng.
– volume: 43
  start-page: 7817
  year: 2018
  end-page: 7835
  ident: b0140
  article-title: Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control
  publication-title: Arabian J. Sci. Eng.
– volume: 93
  start-page: 96
  year: 2019
  end-page: 110
  ident: b0290
  article-title: Automated classification of hand movements using tunable-q wavelet transform based filter-bank with surface electromyogram signals
  publication-title: Futur. Gener. Comp. Syst.
– volume: 40
  start-page: 10
  year: 2018
  end-page: 22
  ident: b0030
  article-title: Analysis of surface electromyography signal features on osteomyoplastic transtibial amputees for pattern recognition control architectures
  publication-title: Biomed. Signal Process Control
– volume: 57
  year: 2021
  ident: b0300
  article-title: Effect of biomechanical footwear on upper and lower leg muscle activity in comparison with knee brace and normal walking
  publication-title: J. Electromyogr. Kinesiol.
– volume: 37
  start-page: 140
  year: 2017
  end-page: 155
  ident: b0175
  article-title: EMG signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns
  publication-title: J. Med. Bio. Eng.
– volume: 195
  year: 2020
  ident: b0050
  article-title: High accurate lightweight deep learning method for gesture recognition based on surface electromyography
  publication-title: Comput. Methods Programs Biomed.
– volume: 9
  year: 2019
  ident: b0020
  article-title: SEMG-based multifeatures and predictive model for knee-joint-angle estimation
  publication-title: AIP Adv.
– volume: 52
  start-page: 362
  year: 2007
  end-page: 368
  ident: b0275
  article-title: Trimmed bagging
  publication-title: Comput. Stat. Data Anal.
– volume: 14
  start-page: 40
  year: 2020
  ident: b0045
  article-title: Processing surface EMG signals for exoskeleton motion control
  publication-title: Front. Neurorob.
– volume: 63
  start-page: 102210
  year: 2021
  ident: b0210
  article-title: EMG hand gesture classification using handcrafted and deep features
  publication-title: Biomed. Signal Process. Control
– volume: 60–61
  start-page: 243
  year: 2015
  end-page: 251
  ident: b0185
  article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
  publication-title: Mech. Syst. Signal Proc.
– volume: 17
  start-page: 1287
  year: 2017
  ident: b0215
  article-title: Wearable sensor data classification for human activity recognition based on an iterative learning framework
  publication-title: Sensors
– volume: 12
  start-page: 541
  year: 2020
  ident: b0125
  article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements
  publication-title: Symmetry
– volume: 15
  start-page: 57
  year: 2018
  ident: b0265
  article-title: Decoding the grasping intention from electromyography during reaching motions
  publication-title: J. NeuroEng. Rehabil.
– volume: 24
  start-page: 929
  year: 2017
  end-page: 932
  ident: b0080
  article-title: sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm
  publication-title: IEEE Signal Process Lett.
– volume: 14
  start-page: 1553
  year: 2012
  end-page: 1577
  ident: b0240
  article-title: Permutation entropy and its main biomedical and econophysics applications: A review
  publication-title: Entropy
– volume: 8
  start-page: 132882
  year: 2020
  end-page: 132892
  ident: b0110
  article-title: Feature extraction and classification of lower limb motion based on sEMG signals
  publication-title: IEEE Access
– volume: 36
  start-page: e12381
  year: 2019
  ident: b0095
  article-title: Performance evaluation of various classifiers for predicting knee angle from electromyography signals
  publication-title: Expert Syst.
– volume: 36
  start-page: e12381
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0095
  article-title: Performance evaluation of various classifiers for predicting knee angle from electromyography signals
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12381
– volume: 169
  start-page: 37
  issue: 1
  year: 2006
  ident: 10.1016/j.bspc.2022.103487_b0015
  article-title: Influence of motor unit properties on the size of the simulated evoked surface EMG potential
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-005-0126-7
– volume: 107
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0195
  article-title: Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.104204
– volume: 193
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0040
  article-title: Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105486
– volume: 39
  start-page: 775
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0115
  article-title: Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.07.002
– volume: 93
  start-page: 96
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0290
  article-title: Automated classification of hand movements using tunable-q wavelet transform based filter-bank with surface electromyogram signals
  publication-title: Futur. Gener. Comp. Syst.
  doi: 10.1016/j.future.2018.10.005
– volume: 44
  start-page: 103
  year: 2016
  ident: 10.1016/j.bspc.2022.103487_b0130
  article-title: Between-day reliability of triceps surae responses to standing perturbations in people post-stroke and healthy controls: A high-density surface EMG investigation
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.11.015
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2022.103487_b0180
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 51
  start-page: 191
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0120
  article-title: Single muscle surface EMGs locomotion identification module for prosthesis control
  publication-title: Neurophysiology
  doi: 10.1007/s11062-019-09812-w
– volume: 14
  start-page: 40
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0045
  article-title: Processing surface EMG signals for exoskeleton motion control
  publication-title: Front. Neurorob.
  doi: 10.3389/fnbot.2020.00040
– volume: 32
  start-page: 139
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0075
  article-title: Amputee walking mode recognition based on mel frequency cepstral coefficients using surface electromyography sensor
  publication-title: Int. J. Sens. Netw.
  doi: 10.1504/IJSNET.2020.105562
– volume: 10
  start-page: 7144
  issue: 20
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0225
  article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from EMG signals: parameters selection and comparison
  publication-title: Appl. Sci.
  doi: 10.3390/app10207144
– volume: 24
  start-page: 929
  issue: 7
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0080
  article-title: sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2016.2636320
– volume: 9
  start-page: 19
  issue: 8
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0055
  article-title: Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals
  publication-title: Symmetry
  doi: 10.3390/sym9080147
– volume: 41
  start-page: 549
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0280
  article-title: Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-018-0646-7
– volume: 10
  start-page: 2638
  issue: 8
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0025
  article-title: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation
  publication-title: Appl. Sci.
  doi: 10.3390/app10082638
– volume: 20
  start-page: 62
  issue: 6
  year: 2001
  ident: 10.1016/j.bspc.2022.103487_b0230
  article-title: Effect of joint angle on EMG variables in leg and thigh muscles
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.982277
– volume: 11
  start-page: 97
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0035
  article-title: sEMG-based impedance control for lower-limb rehabilitation robot
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-017-0239-4
– volume: 122
  start-page: 27
  issue: 6
  year: 2012
  ident: 10.1016/j.bspc.2022.103487_b0150
  article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification
  publication-title: Elektronika. Ir. Elektrotechnika.
  doi: 10.5755/j01.eee.122.6.1816
– volume: 88
  issue: 17
  year: 2002
  ident: 10.1016/j.bspc.2022.103487_b0245
  article-title: Permutation entropy: A natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.bspc.2022.103487_b0260
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 63
  start-page: 102210
  year: 2021
  ident: 10.1016/j.bspc.2022.103487_b0210
  article-title: EMG hand gesture classification using handcrafted and deep features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102210
– volume: 40
  start-page: 4832
  issue: 12
  year: 2013
  ident: 10.1016/j.bspc.2022.103487_b0200
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.023
– volume: 195
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0050
  article-title: High accurate lightweight deep learning method for gesture recognition based on surface electromyography
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105643
– volume: 55
  start-page: 747
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0105
  article-title: Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-016-1551-4
– volume: 70
  issue: 4
  year: 2004
  ident: 10.1016/j.bspc.2022.103487_b0250
  article-title: Detecting dynamical changes in time series using the permutation entropy
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.046217
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.bspc.2022.103487_b0255
  article-title: Libsvm: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 11
  start-page: 45
  issue: 2
  year: 2011
  ident: 10.1016/j.bspc.2022.103487_b0145
  article-title: Application of wavelet analysis in EMG feature extraction for pattern classification
  publication-title: Meas. Sci. Rev.
  doi: 10.2478/v10048-011-0009-y
– volume: 18
  start-page: 869
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0065
  article-title: A novel feature optimization for wearable human-computer interfaces using surface electromyography sensors
  publication-title: Sensors
  doi: 10.3390/s18030869
– volume: 13
  start-page: 13
  issue: 1
  year: 2003
  ident: 10.1016/j.bspc.2022.103487_b0010
  article-title: Interpretation of EMG changes with fatigue: Facts, pitfalls, and fallacies
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(02)00083-4
– volume: 39
  start-page: 7420
  issue: 8
  year: 2012
  ident: 10.1016/j.bspc.2022.103487_b0205
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
– volume: 8
  start-page: 1246
  issue: 8
  year: 2007
  ident: 10.1016/j.bspc.2022.103487_b0160
  article-title: Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification
  publication-title: J. Zhejiang Univ-Sci. A.
  doi: 10.1631/jzus.2007.A1246
– volume: 15
  start-page: 57
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0265
  article-title: Decoding the grasping intention from electromyography during reaching motions
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-018-0396-5
– volume: 57
  year: 2021
  ident: 10.1016/j.bspc.2022.103487_b0300
  article-title: Effect of biomechanical footwear on upper and lower leg muscle activity in comparison with knee brace and normal walking
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2021.102528
– volume: 40
  start-page: 10
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0030
  article-title: Analysis of surface electromyography signal features on osteomyoplastic transtibial amputees for pattern recognition control architectures
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2017.09.007
– volume: 2020
  start-page: 5684812
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0170
  article-title: Lower limb motion recognition method based on improved wavelet packet transform and unscented kalman neural network
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/5684812
– volume: 176
  start-page: 228
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0155
  article-title: Pattern recognition of SEMG based on wavelet packet transform and improved SVM
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.09.040
– volume: 50
  start-page: 2265
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0165
  article-title: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10008-w
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0135
  article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition
  publication-title: PLoS ONE
– volume: 8
  start-page: 132882
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0110
  article-title: Feature extraction and classification of lower limb motion based on sEMG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008901
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2022.103487_b0190
  article-title: A novel method for mechanical fault diagnosis based on variational mode decomposition and multikernel support vector machine
  publication-title: Shock Vib.
  doi: 10.1155/2016/3196465
– volume: 40
  start-page: 1110
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0090
  article-title: Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.05.010
– volume: 17
  start-page: 1287
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0215
  article-title: Wearable sensor data classification for human activity recognition based on an iterative learning framework
  publication-title: Sensors
  doi: 10.3390/s17061287
– volume: 180
  start-page: 133
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2022.103487_b0235
  article-title: A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.02.017
– volume: 8
  start-page: 184
  issue: 2
  year: 2013
  ident: 10.1016/j.bspc.2022.103487_b0270
  article-title: Pattern recognition of number gestures based on a wireless surface EMG system
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.08.005
– volume: 7
  start-page: 61378
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0060
  article-title: Intelligent human-computer interaction based on surface EMG gesture recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914728
– volume: 17
  start-page: 1229
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0085
  article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors
  publication-title: Sensors
  doi: 10.3390/s17061229
– volume: 86
  start-page: 445
  issue: 6
  year: 2002
  ident: 10.1016/j.bspc.2022.103487_b0005
  article-title: Influence of anatomical, physical, and detection-system parameters on surface EMG
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-002-0309-2
– volume: 14
  start-page: 1553
  issue: 8
  year: 2012
  ident: 10.1016/j.bspc.2022.103487_b0240
  article-title: Permutation entropy and its main biomedical and econophysics applications: A review
  publication-title: Entropy
  doi: 10.3390/e14081553
– volume: 12
  start-page: 541
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0125
  article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements
  publication-title: Symmetry
  doi: 10.3390/sym12040541
– volume: 27
  start-page: 69
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0285
  article-title: Subject-independent hand gesture recognition using normalization and machine learning algorithms
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.04.019
– volume: 37
  start-page: 140
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0175
  article-title: EMG signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns
  publication-title: J. Med. Bio. Eng.
  doi: 10.1007/s40846-016-0201-5
– volume: 43
  start-page: 7817
  issue: 12
  year: 2018
  ident: 10.1016/j.bspc.2022.103487_b0140
  article-title: Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-018-3193-3
– volume: 61
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0295
  article-title: Revealing stroke survivor gait deficits during rehabilitation using ensemble empirical mode decomposition of surface electromyography signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102045
– volume: 20
  start-page: 1613
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2022.103487_b0070
  article-title: Current trends and confounding factors in myoelectric control: Limb position and contraction intensity
  publication-title: Sensors
  doi: 10.3390/s20061613
– volume: 9
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2022.103487_b0020
  article-title: SEMG-based multifeatures and predictive model for knee-joint-angle estimation
  publication-title: AIP Adv.
  doi: 10.1063/1.5120470
– volume: 20
  start-page: 3051
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2022.103487_b0100
  article-title: Extreme learning machine classification method for lower limb movement recognition
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0985-2
– volume: 60–61
  start-page: 243
  year: 2015
  ident: 10.1016/j.bspc.2022.103487_b0185
  article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2015.02.020
– volume: 52
  start-page: 362
  issue: 1
  year: 2007
  ident: 10.1016/j.bspc.2022.103487_b0275
  article-title: Trimmed bagging
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.06.012
– volume: 16
  start-page: 1304
  issue: 8
  year: 2016
  ident: 10.1016/j.bspc.2022.103487_b0220
  article-title: A review of classification techniques of EMG signals during isotonic and isometric contractions
  publication-title: Sensors
  doi: 10.3390/s16081304
SSID ssj0048714
Score 2.3860636
Snippet •We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103487
SubjectTerms Lower limb movements recognition
Machine learning
Surface electromyography
Variational mode decomposition
Title Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition
URI https://dx.doi.org/10.1016/j.bspc.2022.103487
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOL6WHLwJnXbJul2jyLKquhFhb2VJE1gpXaXfQhe_CH-WmfaVBRkD55KS6aUmTLzJXzzDcCps9zYXMig4laIfo8HqempIE4j56zkOlfUO3z_kAyexe1QDlfgsumFIVqlz_11Tq-ytX_S9d7sTkaj7iNi6STF3UkcV0BnuAprMe8nsgVrFzd3g4cmISMkryS-aX1ABr53pqZ56dmElAzjmNrPBTHr_qpPP2rO9RZserDILurv2YYVW-7Axg8JwV34fMRLYQNq4C1twWaLqVPGMj_e5vXdS1IzImrguwyhZaIHVRFhdAzL3nC_7M8EGU3GYbklprmnczFV5ozOgMeTd-ZsJQTKEOqyggassWL0qtGqkh2fz9g3IWlc7sHz9dXT5SDw8xYCw8NwHqSp1FiwZE6UVNwWKqd1qFIeWi20lE4LzIWiZ6RJuUHvcSeU4EmUIOTMETbyfWiV49IeAOsnNoxNZKVCp1qDcUqUQuSlcDujtHJtiBovZ8aLkdNMjCJrWGcvGUUmo8hkdWTacPZtM6mlOJaulk3wsl8_VIa1Yond4T_tjmCd7mpSzzG05tOFPUG8MtcdWD3_iDr-r_wC7YHuWQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagH8RO_3YM3CU2zu2l6FFFaq72o0FvY3exCJabFVqF_xV_rTLIpCuLBUyDZCWEmzL5Z3rwBuHCWG5sJGZTcCtHt8CAxHRVESds5K7nOFPUOPwzj3rO4G8lRA67rXhiiVfrcX-X0Mlv7Oy3vzdZ0PG49IpaOE6xOoqgEOqMVWBUSq70mrF71B71hnZARkpcS37Q-IAPfO1PRvPRsSkqGUUTt54KYdb_tT9_2nNst2PRgkV1V37MNDVvswMY3CcFd-HzES24DauAtbM5m729OGcv8eJvXhZekZkTUwHcZQstEDyojwugYln1gvezPBBlNxmGZJaa5p3MxVWSMzoAn0wVzthQCZQh1WU4D1lg-ftVoVcqOz2dsSUiaFHvwfHvzdN0L_LyFwPAwnAdJIjVuWDIjSiqWhcppHaqEh1YLLaXTAnOh6BhpEm7Qe9wJJXjcjhFyZggb-T40i0lhD4B1YxtGpm2lQqdag3GKlULkpbCcUVq5Q2jXXk6NFyOnmRh5WrPOXlKKTEqRSavIHMLl0mZaSXH8uVrWwUt__FAp7hV_2B390-4c1npPD_fpfX84OIZ1elIRfE6gOX97t6eIXeb6zP-bX6Tz8Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-channel+surface+electromyography+signal+classification+with+variational+mode+decomposition+and+entropy+feature+for+lower+limb+movements+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wei%2C+Chunfeng&rft.au=Wang%2C+Hong&rft.au=Hu%2C+Fo&rft.au=Zhou%2C+Bin&rft.date=2022-04-01&rft.issn=1746-8094&rft.volume=74&rft.spage=103487&rft_id=info:doi/10.1016%2Fj.bspc.2022.103487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon