Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition
•We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG signal.•The recognition performance of the proposed method on the sEMG signal of two muscles is evaluated.•The accurate recognition of lower...
Saved in:
Published in | Biomedical signal processing and control Vol. 74; p. 103487 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2022.103487 |
Cover
Abstract | •We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG signal.•The recognition performance of the proposed method on the sEMG signal of two muscles is evaluated.•The accurate recognition of lower limbs movements based on single-channel sEMG signals improves the usability of lower limbs wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.•Using only sEMG signal sensors effectively avoids system complexity problems caused by multi-sensor fusion.
Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. |
---|---|
AbstractList | •We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG signal.•The recognition performance of the proposed method on the sEMG signal of two muscles is evaluated.•The accurate recognition of lower limbs movements based on single-channel sEMG signals improves the usability of lower limbs wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.•Using only sEMG signal sensors effectively avoids system complexity problems caused by multi-sensor fusion.
Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. |
ArticleNumber | 103487 |
Author | Zhou, Bin Jia, Xiaocong Lu, Yanzheng Wei, Chunfeng Wang, Hong Hu, Fo Feng, Naishi Tang, Hao |
Author_xml | – sequence: 1 givenname: Chunfeng surname: Wei fullname: Wei, Chunfeng – sequence: 2 givenname: Hong surname: Wang fullname: Wang, Hong email: hongwang@mail.neu.edu.cn – sequence: 3 givenname: Fo surname: Hu fullname: Hu, Fo – sequence: 4 givenname: Bin surname: Zhou fullname: Zhou, Bin – sequence: 5 givenname: Naishi surname: Feng fullname: Feng, Naishi – sequence: 6 givenname: Yanzheng surname: Lu fullname: Lu, Yanzheng – sequence: 7 givenname: Hao surname: Tang fullname: Tang, Hao – sequence: 8 givenname: Xiaocong surname: Jia fullname: Jia, Xiaocong |
BookMark | eNp9kM1OAjEYRRuDiYi-gKu-wGA77UBJ3BjiX0LiQl03nfYrlMy0k3aA8Co-rQV044JNf-_5knuu0cAHDwjdUTKmhE7u1-M6dXpckrLMD4yL6QUa0imfFIISMfg7kxm_QtcprQnJEcqH6PvD-WUDhV4p76HBaROt0oChAd3H0O7DMqputcfJLb1qsG5USs46rXoXPN65foW3KrrjNf-3wQA2oEPbheSOGeUNBp-HdXtsQfWbCNiGiJuwg7y6ts7UFtqcSThmdOmP4A26tKpJcPu7j9DX89Pn_LVYvL-8zR8XhWaE9IUQVS0IrQydzUpKpsrWNVGCEah5XVW25sYAn-pKC6azK2a54mxCJ6QkpmKMjZA4zdUxpBTBSu36Y58-KtdISuTBsVzLg2N5cCxPjjNa_kO76FoV9-ehhxMEudTWQZRJO_AajMvte2mCO4f_AA2xnPI |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad93f2 crossref_primary_10_1016_j_bspc_2025_107563 crossref_primary_10_1016_j_bspc_2024_106551 crossref_primary_10_3389_fnbot_2022_978014 crossref_primary_10_1109_TIM_2023_3243612 crossref_primary_10_1016_j_bspc_2024_106803 crossref_primary_10_1146_annurev_bioeng_082222_012531 crossref_primary_10_1109_TNSRE_2023_3336317 crossref_primary_10_1371_journal_pone_0285015 crossref_primary_10_1016_j_engappai_2023_107761 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_3934_mbe_2023241 crossref_primary_10_1016_j_eswa_2023_120257 crossref_primary_10_1109_ACCESS_2024_3388913 |
Cites_doi | 10.1111/exsy.12381 10.1007/s00221-005-0126-7 10.1016/j.engfailanal.2019.104204 10.1016/j.cmpb.2020.105486 10.1016/j.bbe.2019.07.002 10.1016/j.future.2018.10.005 10.1016/j.gaitpost.2015.11.015 10.1109/TSP.2013.2288675 10.1007/s11062-019-09812-w 10.3389/fnbot.2020.00040 10.1504/IJSNET.2020.105562 10.3390/app10207144 10.1109/LSP.2016.2636320 10.3390/sym9080147 10.1007/s13246-018-0646-7 10.3390/app10082638 10.1109/51.982277 10.1007/s11370-017-0239-4 10.5755/j01.eee.122.6.1816 10.1103/PhysRevLett.88.174102 10.1023/A:1009715923555 10.1016/j.bspc.2020.102210 10.1016/j.eswa.2013.02.023 10.1016/j.cmpb.2020.105643 10.1007/s11517-016-1551-4 10.1103/PhysRevE.70.046217 10.1145/1961189.1961199 10.2478/v10048-011-0009-y 10.3390/s18030869 10.1016/S1050-6411(02)00083-4 10.1016/j.eswa.2012.01.102 10.1631/jzus.2007.A1246 10.1186/s12984-018-0396-5 10.1016/j.jelekin.2021.102528 10.1016/j.bspc.2017.09.007 10.1155/2020/5684812 10.1016/j.ijleo.2018.09.040 10.1007/s11063-019-10008-w 10.1109/ACCESS.2020.3008901 10.1155/2016/3196465 10.1016/j.bbe.2020.05.010 10.3390/s17061287 10.1016/j.jneumeth.2009.02.017 10.1016/j.bspc.2012.08.005 10.1109/ACCESS.2019.2914728 10.3390/s17061229 10.1007/s00422-002-0309-2 10.3390/e14081553 10.3390/sym12040541 10.1016/j.jocs.2018.04.019 10.1007/s40846-016-0201-5 10.1007/s13369-018-3193-3 10.1016/j.bspc.2020.102045 10.3390/s20061613 10.1063/1.5120470 10.1007/s10586-017-0985-2 10.1016/j.ymssp.2015.02.020 10.1016/j.csda.2007.06.012 10.3390/s16081304 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103487 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103487 S174680942200009X |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-885b8015d1992107afbb0a830eb4b55fb4dde47c5c83c0163f4a43616020d5333 |
IEDL.DBID | AIKHN |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 01:34:13 EDT 2025 Fri Feb 23 02:40:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Variational mode decomposition Surface electromyography Lower limb movements recognition Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-885b8015d1992107afbb0a830eb4b55fb4dde47c5c83c0163f4a43616020d5333 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_103487 crossref_primary_10_1016_j_bspc_2022_103487 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gupta, Agarwal (b0120) 2019; 51 Dimitrova, Dimitrov (b0010) 2003; 13 Arozi, Caesarendra, Ariyanto, Munadi, Setiawan, Glowacz (b0125) 2020; 12 Qi, Jiang, Li, Sun, Tao (b0060) 2019; 7 Sun, Zhang, Zhao, Zhang, Zhong, Fan (b0065) 2018; 18 Hussain, Iqbal, Maqbool, Khan, Awad, Dehghani-Sanij (b0090) 2020; 40 Phinyomark, Limsakul, Phukpattaranont (b0145) 2011; 11 Phinyomark, Quaine, Charbonnier, Serviere, Tarpin-Bernard, Laurillau (b0200) 2013; 40 Burges (b0260) 1998; 2 Croux, Joossens, Lemmens (b0275) 2007; 52 Nazmi, Rahman, Yamamoto, Ahmad, Zamzuri, Mazlan (b0220) 2016; 16 Farina, Cescon, Merletti (b0005) 2002; 86 Keenan, Farina, Merletti, Enoka (b0015) 2006; 169 Wahid, Tafreshi, Al-Sowaidi, Langari (b0285) 2018; 27 Zanin, Zunino, Rosso, Papo (b0240) 2012; 14 Nishad, Upadhyay, Pachori, Acharya (b0290) 2019; 93 Wang, Markert, Xiang, Zheng (b0185) 2015; 60–61 Farina, Merletti, Nazzaro, Caruso (b0230) 2001; 20 Bandt, Pompe (b0245) 2002; 88 Lv, Tang, Zhou, Zhou (b0190) 2016; 2016 Tapia, Daud, Ruiz-del-Solar (b0175) 2017; 37 Gallina, Pollock, Vieira, Ivanova, Garland (b0130) 2016; 44 Mengarelli, Tigrini, Fioretti, Cardarelli, Verdini (b0225) 2020; 10 Dragomiretskiy, Zosso (b0180) 2014; 62 Phinyomark, Phukpattaranont, Limsakul (b0205) 2012; 39 Zhou, Wang, Hu, Feng, Xi, Zhang, Tang (b0040) 2020; 193 Gao, Wang, Fang, Xu (b0025) 2020; 10 Chang, Lin (b0255) 2011; 2 Xi, Yang, Shi, Luo, Zhao (b0165) 2019; 50 Gupta, Agarwal (b0140) 2018; 43 Campbell, Phinyomark, Scheme (b0070) 2020; 20 Purushothaman, Vikas (b0280) 2018; 41 Davila, Cretu, Zaremba (b0215) 2017; 17 Hussain, Iqbal, Maqbool, Khan, Tahir (b0075) 2020; 32 Kuang, Wu, Shao, Wu, Wu (b0100) 2017; 20 Chen, Wang (b0270) 2013; 8 Yin, Zhang, Chen, Li, Chen, Chen, Lemos (b0045) 2020; 14 Sui, Wan, Zhang (b0155) 2019; 176 Xi, Tang, Miran, Luo (b0085) 2017; 17 Ryu, Lee, Kim (b0080) 2017; 24 Garikayi, Van den Heever, Matope (b0030) 2018; 40 Ai, Zhang, Qi, Liu, Chen (b0055) 2017; 9 Dhindsa, Agarwal, Ryait (b0095) 2019; 36 Shi, Qin, Zhu, Xu, Shi (b0170) 2020; 2020 Gupta, Agarwal (b0115) 2019; 39 Tan, Ho, Goh, Ng, Latif, Mazlan (b0295) 2020; 61 Sharma, Parey (b0195) 2020; 107 Ylinen, Pennanen, Weir, Hakkinen, Multanen (b0300) 2021; 57 Bahador, Yousefi, Marashi, Bahador (b0050) 2020; 195 Khoshdel, Akbarzadeh, Naghavi, Sharifnezhad, Souzanchi-Kashani (b0035) 2018; 11 Batzianoulis, Krausz, Simon, Hargrove, Billard (b0265) 2018; 15 Yan, Wang, Ren (b0160) 2007; 8 Yang, Xi, Chen, Miran, Hua, Luo (b0020) 2019; 9 Zhang, Li, Zhu, Su, Guo, Xu, Yao (b0135) 2017; 12 Al-Quraishi, Ishak, Ahmad, Hasan, Al-Qurishi, Ghapanchizadeh, Alamri (b0105) 2017; 55 Phinyomark, Nuidod, Phukpattaranont, Limsakul (b0150) 2012; 122 Cao, Tung, Gao, Protopopescu, Hively (b0250) 2004; 70 Sacco, Gomes, Otuzi, Pripas, Onodera (b0235) 2009; 180 Fajardo, Gomez, Prieto (b0210) 2021; 63 Shi, Qin, Zhu, Zhai, Shi (b0110) 2020; 8 Lv (10.1016/j.bspc.2022.103487_b0190) 2016; 2016 Sun (10.1016/j.bspc.2022.103487_b0065) 2018; 18 Khoshdel (10.1016/j.bspc.2022.103487_b0035) 2018; 11 Gao (10.1016/j.bspc.2022.103487_b0025) 2020; 10 Hussain (10.1016/j.bspc.2022.103487_b0090) 2020; 40 Keenan (10.1016/j.bspc.2022.103487_b0015) 2006; 169 Xi (10.1016/j.bspc.2022.103487_b0165) 2019; 50 Wahid (10.1016/j.bspc.2022.103487_b0285) 2018; 27 Zhang (10.1016/j.bspc.2022.103487_b0135) 2017; 12 Gupta (10.1016/j.bspc.2022.103487_b0140) 2018; 43 Bandt (10.1016/j.bspc.2022.103487_b0245) 2002; 88 Bahador (10.1016/j.bspc.2022.103487_b0050) 2020; 195 Chang (10.1016/j.bspc.2022.103487_b0255) 2011; 2 Tapia (10.1016/j.bspc.2022.103487_b0175) 2017; 37 Ylinen (10.1016/j.bspc.2022.103487_b0300) 2021; 57 Arozi (10.1016/j.bspc.2022.103487_b0125) 2020; 12 Al-Quraishi (10.1016/j.bspc.2022.103487_b0105) 2017; 55 Cao (10.1016/j.bspc.2022.103487_b0250) 2004; 70 Farina (10.1016/j.bspc.2022.103487_b0005) 2002; 86 Ai (10.1016/j.bspc.2022.103487_b0055) 2017; 9 Zanin (10.1016/j.bspc.2022.103487_b0240) 2012; 14 Ryu (10.1016/j.bspc.2022.103487_b0080) 2017; 24 Dhindsa (10.1016/j.bspc.2022.103487_b0095) 2019; 36 Nishad (10.1016/j.bspc.2022.103487_b0290) 2019; 93 Sharma (10.1016/j.bspc.2022.103487_b0195) 2020; 107 Purushothaman (10.1016/j.bspc.2022.103487_b0280) 2018; 41 Qi (10.1016/j.bspc.2022.103487_b0060) 2019; 7 Wang (10.1016/j.bspc.2022.103487_b0185) 2015; 60–61 Campbell (10.1016/j.bspc.2022.103487_b0070) 2020; 20 Batzianoulis (10.1016/j.bspc.2022.103487_b0265) 2018; 15 Yin (10.1016/j.bspc.2022.103487_b0045) 2020; 14 Gupta (10.1016/j.bspc.2022.103487_b0120) 2019; 51 Hussain (10.1016/j.bspc.2022.103487_b0075) 2020; 32 Dimitrova (10.1016/j.bspc.2022.103487_b0010) 2003; 13 Sacco (10.1016/j.bspc.2022.103487_b0235) 2009; 180 Gupta (10.1016/j.bspc.2022.103487_b0115) 2019; 39 Yan (10.1016/j.bspc.2022.103487_b0160) 2007; 8 Burges (10.1016/j.bspc.2022.103487_b0260) 1998; 2 Nazmi (10.1016/j.bspc.2022.103487_b0220) 2016; 16 Farina (10.1016/j.bspc.2022.103487_b0230) 2001; 20 Shi (10.1016/j.bspc.2022.103487_b0170) 2020; 2020 Sui (10.1016/j.bspc.2022.103487_b0155) 2019; 176 Dragomiretskiy (10.1016/j.bspc.2022.103487_b0180) 2014; 62 Tan (10.1016/j.bspc.2022.103487_b0295) 2020; 61 Mengarelli (10.1016/j.bspc.2022.103487_b0225) 2020; 10 Phinyomark (10.1016/j.bspc.2022.103487_b0205) 2012; 39 Yang (10.1016/j.bspc.2022.103487_b0020) 2019; 9 Fajardo (10.1016/j.bspc.2022.103487_b0210) 2021; 63 Zhou (10.1016/j.bspc.2022.103487_b0040) 2020; 193 Chen (10.1016/j.bspc.2022.103487_b0270) 2013; 8 Phinyomark (10.1016/j.bspc.2022.103487_b0150) 2012; 122 Croux (10.1016/j.bspc.2022.103487_b0275) 2007; 52 Xi (10.1016/j.bspc.2022.103487_b0085) 2017; 17 Garikayi (10.1016/j.bspc.2022.103487_b0030) 2018; 40 Kuang (10.1016/j.bspc.2022.103487_b0100) 2017; 20 Shi (10.1016/j.bspc.2022.103487_b0110) 2020; 8 Phinyomark (10.1016/j.bspc.2022.103487_b0145) 2011; 11 Gallina (10.1016/j.bspc.2022.103487_b0130) 2016; 44 Phinyomark (10.1016/j.bspc.2022.103487_b0200) 2013; 40 Davila (10.1016/j.bspc.2022.103487_b0215) 2017; 17 |
References_xml | – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0180 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 8 start-page: 1246 year: 2007 end-page: 1255 ident: b0160 article-title: Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification publication-title: J. Zhejiang Univ-Sci. A. – volume: 32 start-page: 139 year: 2020 end-page: 149 ident: b0075 article-title: Amputee walking mode recognition based on mel frequency cepstral coefficients using surface electromyography sensor publication-title: Int. J. Sens. Netw. – volume: 169 start-page: 37 year: 2006 end-page: 49 ident: b0015 article-title: Influence of motor unit properties on the size of the simulated evoked surface EMG potential publication-title: Exp. Brain Res. – volume: 20 start-page: 3051 year: 2017 end-page: 3059 ident: b0100 article-title: Extreme learning machine classification method for lower limb movement recognition publication-title: Cluster Comput. – volume: 12 year: 2017 ident: b0135 article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition publication-title: PLoS ONE – volume: 7 start-page: 61378 year: 2019 end-page: 61387 ident: b0060 article-title: Intelligent human-computer interaction based on surface EMG gesture recognition publication-title: IEEE Access – volume: 11 start-page: 97 year: 2018 end-page: 108 ident: b0035 article-title: sEMG-based impedance control for lower-limb rehabilitation robot publication-title: Intell. Serv. Robot. – volume: 61 year: 2020 ident: b0295 article-title: Revealing stroke survivor gait deficits during rehabilitation using ensemble empirical mode decomposition of surface electromyography signals publication-title: Biomed. Signal Process. Control – volume: 70 year: 2004 ident: b0250 article-title: Detecting dynamical changes in time series using the permutation entropy publication-title: Phys. Rev. E – volume: 39 start-page: 7420 year: 2012 end-page: 7431 ident: b0205 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. – volume: 10 start-page: 2638 year: 2020 ident: b0025 article-title: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation publication-title: Appl. Sci. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: b0260 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. – volume: 50 start-page: 2265 year: 2019 end-page: 2280 ident: b0165 article-title: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine publication-title: Neural Process. Lett. – volume: 18 start-page: 869 year: 2018 ident: b0065 article-title: A novel feature optimization for wearable human-computer interfaces using surface electromyography sensors publication-title: Sensors – volume: 2016 start-page: 1 year: 2016 end-page: 11 ident: b0190 article-title: A novel method for mechanical fault diagnosis based on variational mode decomposition and multikernel support vector machine publication-title: Shock Vib. – volume: 13 start-page: 13 year: 2003 end-page: 36 ident: b0010 article-title: Interpretation of EMG changes with fatigue: Facts, pitfalls, and fallacies publication-title: J. Electromyogr. Kinesiol. – volume: 16 start-page: 1304 year: 2016 ident: b0220 article-title: A review of classification techniques of EMG signals during isotonic and isometric contractions publication-title: Sensors – volume: 86 start-page: 445 year: 2002 end-page: 456 ident: b0005 article-title: Influence of anatomical, physical, and detection-system parameters on surface EMG publication-title: Biol. Cybern. – volume: 176 start-page: 228 year: 2019 end-page: 235 ident: b0155 article-title: Pattern recognition of SEMG based on wavelet packet transform and improved SVM publication-title: Optik – volume: 44 start-page: 103 year: 2016 end-page: 109 ident: b0130 article-title: Between-day reliability of triceps surae responses to standing perturbations in people post-stroke and healthy controls: A high-density surface EMG investigation publication-title: Gait Posture – volume: 40 start-page: 4832 year: 2013 end-page: 4840 ident: b0200 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. – volume: 2 start-page: 27 year: 2011 ident: b0255 article-title: Libsvm: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 17 start-page: 1229 year: 2017 ident: b0085 article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors publication-title: Sensors – volume: 122 start-page: 27 year: 2012 end-page: 32 ident: b0150 article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification publication-title: Elektronika. Ir. Elektrotechnika. – volume: 11 start-page: 45 year: 2011 end-page: 52 ident: b0145 article-title: Application of wavelet analysis in EMG feature extraction for pattern classification publication-title: Meas. Sci. Rev. – volume: 88 year: 2002 ident: b0245 article-title: Permutation entropy: A natural complexity measure for time series publication-title: Phys. Rev. Lett. – volume: 40 start-page: 1110 year: 2020 end-page: 1123 ident: b0090 article-title: Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses publication-title: Biocybern. Biomed. Eng. – volume: 8 start-page: 184 year: 2013 end-page: 192 ident: b0270 article-title: Pattern recognition of number gestures based on a wireless surface EMG system publication-title: Biomed. Signal Process. Control – volume: 20 start-page: 1613 year: 2020 ident: b0070 article-title: Current trends and confounding factors in myoelectric control: Limb position and contraction intensity publication-title: Sensors – volume: 41 start-page: 549 year: 2018 end-page: 559 ident: b0280 article-title: Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals publication-title: Australas. Phys. Eng. Sci. Med. – volume: 55 start-page: 747 year: 2017 end-page: 758 ident: b0105 article-title: Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications publication-title: Med. Biol. Eng. Compu. – volume: 10 start-page: 7144 year: 2020 ident: b0225 article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from EMG signals: parameters selection and comparison publication-title: Appl. Sci. – volume: 51 start-page: 191 year: 2019 end-page: 208 ident: b0120 article-title: Single muscle surface EMGs locomotion identification module for prosthesis control publication-title: Neurophysiology – volume: 107 year: 2020 ident: b0195 article-title: Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed publication-title: Eng. Fail. Anal. – volume: 9 start-page: 19 year: 2017 ident: b0055 article-title: Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals publication-title: Symmetry – volume: 193 year: 2020 ident: b0040 article-title: Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning publication-title: Comput. Methods Programs Biomed. – volume: 2020 start-page: 5684812 year: 2020 ident: b0170 article-title: Lower limb motion recognition method based on improved wavelet packet transform and unscented kalman neural network publication-title: Math. Probl. Eng. – volume: 27 start-page: 69 year: 2018 end-page: 76 ident: b0285 article-title: Subject-independent hand gesture recognition using normalization and machine learning algorithms publication-title: J. Comput. Sci. – volume: 20 start-page: 62 year: 2001 end-page: 71 ident: b0230 article-title: Effect of joint angle on EMG variables in leg and thigh muscles publication-title: IEEE Eng. Med. Biol. Mag. – volume: 180 start-page: 133 year: 2009 end-page: 137 ident: b0235 article-title: A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions publication-title: J. Neurosci. Methods – volume: 39 start-page: 775 year: 2019 end-page: 788 ident: b0115 article-title: Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis publication-title: Biocybern. Biomed. Eng. – volume: 43 start-page: 7817 year: 2018 end-page: 7835 ident: b0140 article-title: Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control publication-title: Arabian J. Sci. Eng. – volume: 93 start-page: 96 year: 2019 end-page: 110 ident: b0290 article-title: Automated classification of hand movements using tunable-q wavelet transform based filter-bank with surface electromyogram signals publication-title: Futur. Gener. Comp. Syst. – volume: 40 start-page: 10 year: 2018 end-page: 22 ident: b0030 article-title: Analysis of surface electromyography signal features on osteomyoplastic transtibial amputees for pattern recognition control architectures publication-title: Biomed. Signal Process Control – volume: 57 year: 2021 ident: b0300 article-title: Effect of biomechanical footwear on upper and lower leg muscle activity in comparison with knee brace and normal walking publication-title: J. Electromyogr. Kinesiol. – volume: 37 start-page: 140 year: 2017 end-page: 155 ident: b0175 article-title: EMG signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns publication-title: J. Med. Bio. Eng. – volume: 195 year: 2020 ident: b0050 article-title: High accurate lightweight deep learning method for gesture recognition based on surface electromyography publication-title: Comput. Methods Programs Biomed. – volume: 9 year: 2019 ident: b0020 article-title: SEMG-based multifeatures and predictive model for knee-joint-angle estimation publication-title: AIP Adv. – volume: 52 start-page: 362 year: 2007 end-page: 368 ident: b0275 article-title: Trimmed bagging publication-title: Comput. Stat. Data Anal. – volume: 14 start-page: 40 year: 2020 ident: b0045 article-title: Processing surface EMG signals for exoskeleton motion control publication-title: Front. Neurorob. – volume: 63 start-page: 102210 year: 2021 ident: b0210 article-title: EMG hand gesture classification using handcrafted and deep features publication-title: Biomed. Signal Process. Control – volume: 60–61 start-page: 243 year: 2015 end-page: 251 ident: b0185 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Proc. – volume: 17 start-page: 1287 year: 2017 ident: b0215 article-title: Wearable sensor data classification for human activity recognition based on an iterative learning framework publication-title: Sensors – volume: 12 start-page: 541 year: 2020 ident: b0125 article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements publication-title: Symmetry – volume: 15 start-page: 57 year: 2018 ident: b0265 article-title: Decoding the grasping intention from electromyography during reaching motions publication-title: J. NeuroEng. Rehabil. – volume: 24 start-page: 929 year: 2017 end-page: 932 ident: b0080 article-title: sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm publication-title: IEEE Signal Process Lett. – volume: 14 start-page: 1553 year: 2012 end-page: 1577 ident: b0240 article-title: Permutation entropy and its main biomedical and econophysics applications: A review publication-title: Entropy – volume: 8 start-page: 132882 year: 2020 end-page: 132892 ident: b0110 article-title: Feature extraction and classification of lower limb motion based on sEMG signals publication-title: IEEE Access – volume: 36 start-page: e12381 year: 2019 ident: b0095 article-title: Performance evaluation of various classifiers for predicting knee angle from electromyography signals publication-title: Expert Syst. – volume: 36 start-page: e12381 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0095 article-title: Performance evaluation of various classifiers for predicting knee angle from electromyography signals publication-title: Expert Syst. doi: 10.1111/exsy.12381 – volume: 169 start-page: 37 issue: 1 year: 2006 ident: 10.1016/j.bspc.2022.103487_b0015 article-title: Influence of motor unit properties on the size of the simulated evoked surface EMG potential publication-title: Exp. Brain Res. doi: 10.1007/s00221-005-0126-7 – volume: 107 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0195 article-title: Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.104204 – volume: 193 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0040 article-title: Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105486 – volume: 39 start-page: 775 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0115 article-title: Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.07.002 – volume: 93 start-page: 96 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0290 article-title: Automated classification of hand movements using tunable-q wavelet transform based filter-bank with surface electromyogram signals publication-title: Futur. Gener. Comp. Syst. doi: 10.1016/j.future.2018.10.005 – volume: 44 start-page: 103 year: 2016 ident: 10.1016/j.bspc.2022.103487_b0130 article-title: Between-day reliability of triceps surae responses to standing perturbations in people post-stroke and healthy controls: A high-density surface EMG investigation publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.11.015 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.bspc.2022.103487_b0180 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 51 start-page: 191 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0120 article-title: Single muscle surface EMGs locomotion identification module for prosthesis control publication-title: Neurophysiology doi: 10.1007/s11062-019-09812-w – volume: 14 start-page: 40 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0045 article-title: Processing surface EMG signals for exoskeleton motion control publication-title: Front. Neurorob. doi: 10.3389/fnbot.2020.00040 – volume: 32 start-page: 139 issue: 3 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0075 article-title: Amputee walking mode recognition based on mel frequency cepstral coefficients using surface electromyography sensor publication-title: Int. J. Sens. Netw. doi: 10.1504/IJSNET.2020.105562 – volume: 10 start-page: 7144 issue: 20 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0225 article-title: On the use of fuzzy and permutation entropy in hand gesture characterization from EMG signals: parameters selection and comparison publication-title: Appl. Sci. doi: 10.3390/app10207144 – volume: 24 start-page: 929 issue: 7 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0080 article-title: sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2016.2636320 – volume: 9 start-page: 19 issue: 8 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0055 article-title: Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals publication-title: Symmetry doi: 10.3390/sym9080147 – volume: 41 start-page: 549 issue: 2 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0280 article-title: Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-018-0646-7 – volume: 10 start-page: 2638 issue: 8 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0025 article-title: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation publication-title: Appl. Sci. doi: 10.3390/app10082638 – volume: 20 start-page: 62 issue: 6 year: 2001 ident: 10.1016/j.bspc.2022.103487_b0230 article-title: Effect of joint angle on EMG variables in leg and thigh muscles publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.982277 – volume: 11 start-page: 97 issue: 1 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0035 article-title: sEMG-based impedance control for lower-limb rehabilitation robot publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-017-0239-4 – volume: 122 start-page: 27 issue: 6 year: 2012 ident: 10.1016/j.bspc.2022.103487_b0150 article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification publication-title: Elektronika. Ir. Elektrotechnika. doi: 10.5755/j01.eee.122.6.1816 – volume: 88 issue: 17 year: 2002 ident: 10.1016/j.bspc.2022.103487_b0245 article-title: Permutation entropy: A natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.bspc.2022.103487_b0260 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 63 start-page: 102210 year: 2021 ident: 10.1016/j.bspc.2022.103487_b0210 article-title: EMG hand gesture classification using handcrafted and deep features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102210 – volume: 40 start-page: 4832 issue: 12 year: 2013 ident: 10.1016/j.bspc.2022.103487_b0200 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.023 – volume: 195 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0050 article-title: High accurate lightweight deep learning method for gesture recognition based on surface electromyography publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105643 – volume: 55 start-page: 747 issue: 5 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0105 article-title: Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-016-1551-4 – volume: 70 issue: 4 year: 2004 ident: 10.1016/j.bspc.2022.103487_b0250 article-title: Detecting dynamical changes in time series using the permutation entropy publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.046217 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.bspc.2022.103487_b0255 article-title: Libsvm: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 11 start-page: 45 issue: 2 year: 2011 ident: 10.1016/j.bspc.2022.103487_b0145 article-title: Application of wavelet analysis in EMG feature extraction for pattern classification publication-title: Meas. Sci. Rev. doi: 10.2478/v10048-011-0009-y – volume: 18 start-page: 869 issue: 3 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0065 article-title: A novel feature optimization for wearable human-computer interfaces using surface electromyography sensors publication-title: Sensors doi: 10.3390/s18030869 – volume: 13 start-page: 13 issue: 1 year: 2003 ident: 10.1016/j.bspc.2022.103487_b0010 article-title: Interpretation of EMG changes with fatigue: Facts, pitfalls, and fallacies publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(02)00083-4 – volume: 39 start-page: 7420 issue: 8 year: 2012 ident: 10.1016/j.bspc.2022.103487_b0205 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.102 – volume: 8 start-page: 1246 issue: 8 year: 2007 ident: 10.1016/j.bspc.2022.103487_b0160 article-title: Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification publication-title: J. Zhejiang Univ-Sci. A. doi: 10.1631/jzus.2007.A1246 – volume: 15 start-page: 57 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0265 article-title: Decoding the grasping intention from electromyography during reaching motions publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-018-0396-5 – volume: 57 year: 2021 ident: 10.1016/j.bspc.2022.103487_b0300 article-title: Effect of biomechanical footwear on upper and lower leg muscle activity in comparison with knee brace and normal walking publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2021.102528 – volume: 40 start-page: 10 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0030 article-title: Analysis of surface electromyography signal features on osteomyoplastic transtibial amputees for pattern recognition control architectures publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2017.09.007 – volume: 2020 start-page: 5684812 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0170 article-title: Lower limb motion recognition method based on improved wavelet packet transform and unscented kalman neural network publication-title: Math. Probl. Eng. doi: 10.1155/2020/5684812 – volume: 176 start-page: 228 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0155 article-title: Pattern recognition of SEMG based on wavelet packet transform and improved SVM publication-title: Optik doi: 10.1016/j.ijleo.2018.09.040 – volume: 50 start-page: 2265 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0165 article-title: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10008-w – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0135 article-title: Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition publication-title: PLoS ONE – volume: 8 start-page: 132882 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0110 article-title: Feature extraction and classification of lower limb motion based on sEMG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008901 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2022.103487_b0190 article-title: A novel method for mechanical fault diagnosis based on variational mode decomposition and multikernel support vector machine publication-title: Shock Vib. doi: 10.1155/2016/3196465 – volume: 40 start-page: 1110 issue: 3 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0090 article-title: Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.05.010 – volume: 17 start-page: 1287 issue: 6 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0215 article-title: Wearable sensor data classification for human activity recognition based on an iterative learning framework publication-title: Sensors doi: 10.3390/s17061287 – volume: 180 start-page: 133 issue: 1 year: 2009 ident: 10.1016/j.bspc.2022.103487_b0235 article-title: A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.02.017 – volume: 8 start-page: 184 issue: 2 year: 2013 ident: 10.1016/j.bspc.2022.103487_b0270 article-title: Pattern recognition of number gestures based on a wireless surface EMG system publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2012.08.005 – volume: 7 start-page: 61378 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0060 article-title: Intelligent human-computer interaction based on surface EMG gesture recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914728 – volume: 17 start-page: 1229 issue: 6 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0085 article-title: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors publication-title: Sensors doi: 10.3390/s17061229 – volume: 86 start-page: 445 issue: 6 year: 2002 ident: 10.1016/j.bspc.2022.103487_b0005 article-title: Influence of anatomical, physical, and detection-system parameters on surface EMG publication-title: Biol. Cybern. doi: 10.1007/s00422-002-0309-2 – volume: 14 start-page: 1553 issue: 8 year: 2012 ident: 10.1016/j.bspc.2022.103487_b0240 article-title: Permutation entropy and its main biomedical and econophysics applications: A review publication-title: Entropy doi: 10.3390/e14081553 – volume: 12 start-page: 541 issue: 4 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0125 article-title: Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements publication-title: Symmetry doi: 10.3390/sym12040541 – volume: 27 start-page: 69 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0285 article-title: Subject-independent hand gesture recognition using normalization and machine learning algorithms publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.04.019 – volume: 37 start-page: 140 issue: 1 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0175 article-title: EMG signal filtering based on independent component analysis and empirical mode decomposition for estimation of motor activation patterns publication-title: J. Med. Bio. Eng. doi: 10.1007/s40846-016-0201-5 – volume: 43 start-page: 7817 issue: 12 year: 2018 ident: 10.1016/j.bspc.2022.103487_b0140 article-title: Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-018-3193-3 – volume: 61 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0295 article-title: Revealing stroke survivor gait deficits during rehabilitation using ensemble empirical mode decomposition of surface electromyography signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102045 – volume: 20 start-page: 1613 issue: 6 year: 2020 ident: 10.1016/j.bspc.2022.103487_b0070 article-title: Current trends and confounding factors in myoelectric control: Limb position and contraction intensity publication-title: Sensors doi: 10.3390/s20061613 – volume: 9 issue: 9 year: 2019 ident: 10.1016/j.bspc.2022.103487_b0020 article-title: SEMG-based multifeatures and predictive model for knee-joint-angle estimation publication-title: AIP Adv. doi: 10.1063/1.5120470 – volume: 20 start-page: 3051 issue: 4 year: 2017 ident: 10.1016/j.bspc.2022.103487_b0100 article-title: Extreme learning machine classification method for lower limb movement recognition publication-title: Cluster Comput. doi: 10.1007/s10586-017-0985-2 – volume: 60–61 start-page: 243 year: 2015 ident: 10.1016/j.bspc.2022.103487_b0185 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2015.02.020 – volume: 52 start-page: 362 issue: 1 year: 2007 ident: 10.1016/j.bspc.2022.103487_b0275 article-title: Trimmed bagging publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.06.012 – volume: 16 start-page: 1304 issue: 8 year: 2016 ident: 10.1016/j.bspc.2022.103487_b0220 article-title: A review of classification techniques of EMG signals during isotonic and isometric contractions publication-title: Sensors doi: 10.3390/s16081304 |
SSID | ssj0048714 |
Score | 2.3860636 |
Snippet | •We propose a precise feature extraction method based on VMD to highlight the prominent structure and effective feature information in the single-channel sEMG... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103487 |
SubjectTerms | Lower limb movements recognition Machine learning Surface electromyography Variational mode decomposition |
Title | Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103487 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOL6WHLwJnXbJul2jyLKquhFhb2VJE1gpXaXfQhe_CH-WmfaVBRkD55KS6aUmTLzJXzzDcCps9zYXMig4laIfo8HqempIE4j56zkOlfUO3z_kAyexe1QDlfgsumFIVqlz_11Tq-ytX_S9d7sTkaj7iNi6STF3UkcV0BnuAprMe8nsgVrFzd3g4cmISMkryS-aX1ABr53pqZ56dmElAzjmNrPBTHr_qpPP2rO9RZserDILurv2YYVW-7Axg8JwV34fMRLYQNq4C1twWaLqVPGMj_e5vXdS1IzImrguwyhZaIHVRFhdAzL3nC_7M8EGU3GYbklprmnczFV5ozOgMeTd-ZsJQTKEOqyggassWL0qtGqkh2fz9g3IWlc7sHz9dXT5SDw8xYCw8NwHqSp1FiwZE6UVNwWKqd1qFIeWi20lE4LzIWiZ6RJuUHvcSeU4EmUIOTMETbyfWiV49IeAOsnNoxNZKVCp1qDcUqUQuSlcDujtHJtiBovZ8aLkdNMjCJrWGcvGUUmo8hkdWTacPZtM6mlOJaulk3wsl8_VIa1Yond4T_tjmCd7mpSzzG05tOFPUG8MtcdWD3_iDr-r_wC7YHuWQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagH8RO_3YM3CU2zu2l6FFFaq72o0FvY3exCJabFVqF_xV_rTLIpCuLBUyDZCWEmzL5Z3rwBuHCWG5sJGZTcCtHt8CAxHRVESds5K7nOFPUOPwzj3rO4G8lRA67rXhiiVfrcX-X0Mlv7Oy3vzdZ0PG49IpaOE6xOoqgEOqMVWBUSq70mrF71B71hnZARkpcS37Q-IAPfO1PRvPRsSkqGUUTt54KYdb_tT9_2nNst2PRgkV1V37MNDVvswMY3CcFd-HzES24DauAtbM5m729OGcv8eJvXhZekZkTUwHcZQstEDyojwugYln1gvezPBBlNxmGZJaa5p3MxVWSMzoAn0wVzthQCZQh1WU4D1lg-ftVoVcqOz2dsSUiaFHvwfHvzdN0L_LyFwPAwnAdJIjVuWDIjSiqWhcppHaqEh1YLLaXTAnOh6BhpEm7Qe9wJJXjcjhFyZggb-T40i0lhD4B1YxtGpm2lQqdag3GKlULkpbCcUVq5Q2jXXk6NFyOnmRh5WrPOXlKKTEqRSavIHMLl0mZaSXH8uVrWwUt__FAp7hV_2B390-4c1npPD_fpfX84OIZ1elIRfE6gOX97t6eIXeb6zP-bX6Tz8Eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-channel+surface+electromyography+signal+classification+with+variational+mode+decomposition+and+entropy+feature+for+lower+limb+movements+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wei%2C+Chunfeng&rft.au=Wang%2C+Hong&rft.au=Hu%2C+Fo&rft.au=Zhou%2C+Bin&rft.date=2022-04-01&rft.issn=1746-8094&rft.volume=74&rft.spage=103487&rft_id=info:doi/10.1016%2Fj.bspc.2022.103487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |