Region-scalable fitting-assisted medical image segmentation with noisy labels
To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many images with precise labels. However, medical images are inherently complex and noisy, making it difficult for medical image segmentation to ob...
Saved in:
Published in | Expert systems with applications Vol. 238; p. 121926 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2023.121926 |
Cover
Abstract | To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many images with precise labels. However, medical images are inherently complex and noisy, making it difficult for medical image segmentation to obtain many accurate labels. That means the study of learning with noisy labels is particularly important. In order to make use of all the samples, some methods correct the noisy labels during the training process. However, in the correction process, a label correction error may occur according to the set policy. Therefore, we propose a method that incorporates image features based on region-scalable fitting (RSF) to assist in the label correction process, called RSF-assisted. We tested the performance of our RSF-assisted method on two learning frameworks of learning with noisy labels based on segmentation: mean-teacher-assisted confident learning (MTCL) and adaptive early-learning correction (ADELE). The experimental results indicate that the performance is improved by using RSF-assisted. To be specific, compared with the original methods, the mean intersection over union (mIOU) is improved by 2.41% after RSF-assisted on thoracic organs (SegTHOR) dataset. Similarly, the 95% Hausdorff distance (95HD) is reduced by up to 2.96 mm after RSF-assisted based on left atrium (LA) segmentation dataset.
•The original image information is added to assist the pixel-wise labels correction.•Original image information is added by Region-Scalable Fitting.•A new loss function is proposed to pay more attention to contour information.•Region-Scalable Fitting can help correct the pixel-wise labels better. |
---|---|
AbstractList | To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many images with precise labels. However, medical images are inherently complex and noisy, making it difficult for medical image segmentation to obtain many accurate labels. That means the study of learning with noisy labels is particularly important. In order to make use of all the samples, some methods correct the noisy labels during the training process. However, in the correction process, a label correction error may occur according to the set policy. Therefore, we propose a method that incorporates image features based on region-scalable fitting (RSF) to assist in the label correction process, called RSF-assisted. We tested the performance of our RSF-assisted method on two learning frameworks of learning with noisy labels based on segmentation: mean-teacher-assisted confident learning (MTCL) and adaptive early-learning correction (ADELE). The experimental results indicate that the performance is improved by using RSF-assisted. To be specific, compared with the original methods, the mean intersection over union (mIOU) is improved by 2.41% after RSF-assisted on thoracic organs (SegTHOR) dataset. Similarly, the 95% Hausdorff distance (95HD) is reduced by up to 2.96 mm after RSF-assisted based on left atrium (LA) segmentation dataset.
•The original image information is added to assist the pixel-wise labels correction.•Original image information is added by Region-Scalable Fitting.•A new loss function is proposed to pay more attention to contour information.•Region-Scalable Fitting can help correct the pixel-wise labels better. |
ArticleNumber | 121926 |
Author | Chai, Qing-wei Li, Yanxin Zheng, Weimin Liu, Shangkun |
Author_xml | – sequence: 1 givenname: Shangkun orcidid: 0000-0001-5728-5092 surname: Liu fullname: Liu, Shangkun email: liushangkun97@163.com – sequence: 2 givenname: Yanxin orcidid: 0000-0001-8321-8352 surname: Li fullname: Li, Yanxin email: lyx94lyx@126.com – sequence: 3 givenname: Qing-wei orcidid: 0000-0001-5587-0589 surname: Chai fullname: Chai, Qing-wei email: mimanxiaowei@163.com – sequence: 4 givenname: Weimin orcidid: 0000-0003-3860-4208 surname: Zheng fullname: Zheng, Weimin email: zhengwm901@126.com |
BookMark | eNp9kE1Lw0AQhhepYFv9A57yBxJnd5P9AC9S1AoVQfS8bDeTuCVNJLtY-u_dEk8eeprDzDO877Mgs37okZBbCgUFKu52BYaDLRgwXlBGNRMXZE6V5LmQms_IHHQl85LK8oosQtgBUAkg5-T1HVs_9HlwtrPbDrPGx-j7Nrch-BCxzvZY-7TM_N62mAVs99hHGxOUHXz8yvrBh2OWYOzCNblsbBfw5m8uyefT48dqnW_enl9WD5vccYCYK1VCwxgicGRaC-VoIzVgU8k6JeMSZCOV4FpKta1gm-5d6SQTtaaVEoIvCZv-unEIYcTGfI8p33g0FMxJiNmZkxBzEmImIQlS_yDnpyJxtL47j95PaOqIPx5HE5zH3iU1I7po6sGfw38B0HJ9rg |
CitedBy_id | crossref_primary_10_1007_s40747_024_01574_1 crossref_primary_10_1016_j_compmedimag_2024_102421 crossref_primary_10_1109_ACCESS_2024_3379135 crossref_primary_10_3390_electronics13010142 crossref_primary_10_1016_j_eswa_2024_124672 |
Cites_doi | 10.1109/CVPR.2019.01190 10.1016/j.nanoen.2020.105437 10.1109/ICCV.2019.00342 10.1016/j.sigpro.2009.03.014 10.1049/ipr2.12419 10.1007/s10994-013-5412-1 10.1016/j.compag.2020.105783 10.1016/j.bspc.2017.07.007 10.1016/j.compmedimag.2020.101799 10.1016/j.knosys.2021.106771 10.1609/aaai.v31i1.10894 10.1016/j.patcog.2011.11.019 10.1109/83.902291 10.1002/mp.13264 10.1016/j.isprsjprs.2020.01.013 10.1109/ICCV.2019.00041 10.1016/j.media.2020.101832 10.1016/j.ejmp.2021.02.006 10.1109/CVPR52688.2022.00263 10.1002/acm2.13121 10.1007/s10278-019-00227-x 10.1186/s12880-020-00543-7 10.1613/jair.1.12125 10.1109/WACV51458.2022.00181 10.1007/BF00133570 10.4108/eai.12-4-2021.169184 10.1109/TMI.2022.3176915 10.1016/j.precisioneng.2019.06.007 10.1016/j.jiph.2020.06.028 10.1016/j.patcog.2009.10.010 10.1109/TIP.2008.2002304 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.121926 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_121926 S0957417423024284 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-8840f22ee03e29968c1f790ef57d0013707f78639778b50b884c4c726d9158663 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Thu Apr 24 23:02:42 EDT 2025 Tue Jul 01 04:06:15 EDT 2025 Fri Feb 23 02:34:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Learning with noisy labels Region-Scalable Fitting Medical image segmentation Active contours |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-8840f22ee03e29968c1f790ef57d0013707f78639778b50b884c4c726d9158663 |
ORCID | 0000-0001-8321-8352 0000-0001-5728-5092 0000-0003-3860-4208 0000-0001-5587-0589 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_121926 crossref_citationtrail_10_1016_j_eswa_2023_121926 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Gao, Lyu, Zhao, Wang, Ding (b54) 2020 Nguyen, Mummadi, Ngo, Nguyen, Beggel, Brox (b35) 2019 Tarvainen, Valpola (b42) 2017 Wang, Lei, Fu, Wynne, Curran, Liu (b46) 2021; 22 Dolz, Desrosiers, Ayed (b11) 2021 Albahri, Zaidan, Albahri, Zaidan, Abdulkareem, Al-Qaysi (b1) 2020; 13 (pp. 2606–2616). Song, Kim, Park, Shin, Lee (b41) 2022 (pp. 574–584). Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., & Bailey, J. (2019). Symmetric cross entropy for robust learning with noisy labels. In Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In Wang, Lei, Cui, Zhang, Meng, Nandi (b45) 2022; 16 Ghosh, A., Kumar, H., & Sastry, P. S. (2017). Robust loss functions under label noise for deep neural networks. In Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., et al. (2022). Unetr: Transformers for 3d medical image segmentation. In Li, Socher, Hoi (b25) 2020 Cao, Wang, Chen, Jiang, Zhang, Tian (b3) 2021 Luo, Yang (b30) 2020 Chan, Samala, Hadjiiski, Zhou (b6) 2020 Northcutt, Jiang, Chuang (b36) 2021; 70 Ramesh, Kumar, Swapna, Datta, Rajest (b37) 2021; 7 Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen (b20) 2019 . Sahiner, Pezeshk, Hadjiiski, Wang, Drukker, Cha (b39) 2019; 46 Liu, Niles-Weed, Razavian, Fernandez-Granda (b27) 2020; 33 (pp. 3326–3334). Liu, Peng (b28) 2012; 45 Li, Kao, Gore, Ding (b24) 2008; 17 Castiglioni, Rundo, Codari, Di Leo, Salvatore, Interlenghi (b4) 2021; 83 Zhu, Shi, Wu (b57) 2019 Wang, He, Mishra, Li (b44) 2009; 89 Hesamian, Jia, He, Kennedy (b16) 2019; 32 Liu, S., Liu, K., Zhu, W., Shen, Y., & Fernandez-Granda, C. (2022). Adaptive early-learning correction for segmentation from noisy annotations. In Ronneberger, Fischer, Brox (b38) 2015 Shen, Sanghavi (b40) 2019 Chen, Liao, Chen, Zhang (b8) 2019 Zhang, Song, Zhang (b55) 2010; 43 Mohan, Subashini (b33) 2018; 39 Xiong, Xia, Hu, Huang, Bian, Zheng (b49) 2021; 67 Castillo-Martínez, Gallegos-Funes, Carvajal-Gámez, Urriolagoitia-Sosa, Rosales-Silva (b5) 2020; 178 Yu, Han, Yao, Niu, Tsang, Sugiyama (b53) 2019 Diakogiannis, Waldner, Caccetta, Wu (b10) 2020; 162 Xia, Liu, Wang, Han, Gong, Niu (b48) 2019 Villarraga-Gómez, Herazo, Smith (b43) 2019; 60 Xu, Lu, Luo, Wang, Yan, Ma (b51) 2022; 41 Lu, Sun, Lu, Wu, Huang (b29) 2021; 79 Algan, Ulusoy (b2) 2021; 215 Müller, Kramer (b34) 2021; 21 Huang, J., Qu, L., Jia, R., & Zhao, B. (2019). O2u-net: A simple noisy label detection approach for deep neural networks. In Gu, Fang, Gao, Tian (b13) 2020; 86 Yan, Rosales, Fung, Subramanian, Dy (b52) 2014; 95 Huang, Lin, Tong, Hu, Zhang, Iwamoto (b17) 2020 (pp. 11632–11640). (pp. 322–330). Chan, Vese (b7) 2001; 10 Han, Yao, Yu, Niu, Xu, Hu (b14) 2018 Zhang, Yu, Hu, Lv, Gu (b56) 2020 Lambert, Petitjean, Dubray, Kuan (b23) 2020 Jacob, Ciccarelli, Barkhof, Alexander (b19) 2021 Kass, Witkin, Terzopoulos (b22) 1988; 1 Malach, Shalev-Shwartz (b32) 2017 Maier, Steidl, Christlein, Hornegger (b31) 2018 Jiang, Zhou, Leung, Li, Fei-Fei (b21) 2018 Xu, Cao, Kong, Wang (b50) 2019 10.1016/j.eswa.2023.121926_b26 Malach (10.1016/j.eswa.2023.121926_b32) 2017 Shen (10.1016/j.eswa.2023.121926_b40) 2019 10.1016/j.eswa.2023.121926_b9 Dolz (10.1016/j.eswa.2023.121926_b11) 2021 Huang (10.1016/j.eswa.2023.121926_b17) 2020 Northcutt (10.1016/j.eswa.2023.121926_b36) 2021; 70 Castillo-Martínez (10.1016/j.eswa.2023.121926_b5) 2020; 178 Mohan (10.1016/j.eswa.2023.121926_b33) 2018; 39 Hesamian (10.1016/j.eswa.2023.121926_b16) 2019; 32 Ronneberger (10.1016/j.eswa.2023.121926_b38) 2015 Kass (10.1016/j.eswa.2023.121926_b22) 1988; 1 Wang (10.1016/j.eswa.2023.121926_b45) 2022; 16 Zhang (10.1016/j.eswa.2023.121926_b54) 2020 Xu (10.1016/j.eswa.2023.121926_b51) 2022; 41 Jacob (10.1016/j.eswa.2023.121926_b19) 2021 Song (10.1016/j.eswa.2023.121926_b41) 2022 10.1016/j.eswa.2023.121926_b15 10.1016/j.eswa.2023.121926_b12 Albahri (10.1016/j.eswa.2023.121926_b1) 2020; 13 Castiglioni (10.1016/j.eswa.2023.121926_b4) 2021; 83 Nguyen (10.1016/j.eswa.2023.121926_b35) 2019 Tarvainen (10.1016/j.eswa.2023.121926_b42) 2017 Cao (10.1016/j.eswa.2023.121926_b3) 2021 Chan (10.1016/j.eswa.2023.121926_b7) 2001; 10 Zhang (10.1016/j.eswa.2023.121926_b56) 2020 Chen (10.1016/j.eswa.2023.121926_b8) 2019 Wang (10.1016/j.eswa.2023.121926_b46) 2021; 22 10.1016/j.eswa.2023.121926_b18 Sahiner (10.1016/j.eswa.2023.121926_b39) 2019; 46 10.1016/j.eswa.2023.121926_b47 Maier (10.1016/j.eswa.2023.121926_b31) 2018 Algan (10.1016/j.eswa.2023.121926_b2) 2021; 215 Villarraga-Gómez (10.1016/j.eswa.2023.121926_b43) 2019; 60 Li (10.1016/j.eswa.2023.121926_b25) 2020 Zhang (10.1016/j.eswa.2023.121926_b55) 2010; 43 Yu (10.1016/j.eswa.2023.121926_b53) 2019 Liu (10.1016/j.eswa.2023.121926_b28) 2012; 45 Liu (10.1016/j.eswa.2023.121926_b27) 2020; 33 Lu (10.1016/j.eswa.2023.121926_b29) 2021; 79 Müller (10.1016/j.eswa.2023.121926_b34) 2021; 21 Yan (10.1016/j.eswa.2023.121926_b52) 2014; 95 Diakogiannis (10.1016/j.eswa.2023.121926_b10) 2020; 162 Xu (10.1016/j.eswa.2023.121926_b50) 2019 Wang (10.1016/j.eswa.2023.121926_b44) 2009; 89 Jha (10.1016/j.eswa.2023.121926_b20) 2019 Li (10.1016/j.eswa.2023.121926_b24) 2008; 17 Xiong (10.1016/j.eswa.2023.121926_b49) 2021; 67 Zhu (10.1016/j.eswa.2023.121926_b57) 2019 Luo (10.1016/j.eswa.2023.121926_b30) 2020 Chan (10.1016/j.eswa.2023.121926_b6) 2020 Xia (10.1016/j.eswa.2023.121926_b48) 2019 Han (10.1016/j.eswa.2023.121926_b14) 2018 Jiang (10.1016/j.eswa.2023.121926_b21) 2018 Gu (10.1016/j.eswa.2023.121926_b13) 2020; 86 Ramesh (10.1016/j.eswa.2023.121926_b37) 2021; 7 Lambert (10.1016/j.eswa.2023.121926_b23) 2020 |
References_xml | – year: 2022 ident: b41 article-title: Learning from noisy labels with deep neural networks: A survey publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 249 year: 2020 end-page: 258 ident: b56 article-title: Robust medical image segmentation from non-expert annotations with tri-network publication-title: Medical image computing and computer assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru, october 4–8, 2020, proceedings, part IV 23 – start-page: 1062 year: 2019 end-page: 1070 ident: b8 article-title: Understanding and utilizing deep neural networks trained with noisy labels publication-title: International conference on machine learning – volume: 46 start-page: e1 year: 2019 end-page: e36 ident: b39 article-title: Deep learning in medical imaging and radiation therapy publication-title: Medical Physics – volume: 22 start-page: 11 year: 2021 end-page: 36 ident: b46 article-title: A review on medical imaging synthesis using deep learning and its clinical applications publication-title: Journal of Applied Clinical Medical Physics – start-page: 576 year: 2019 end-page: 584 ident: b57 article-title: Pick-and-learn: Automatic quality evaluation for noisy-labeled image segmentation publication-title: Medical image computing and computer assisted intervention–MICCAI 2019: 22nd international conference, Shenzhen, China, october 13–17, 2019, proceedings, part VI 22 – start-page: 234 year: 2015 end-page: 241 ident: b38 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, october 5-9, 2015, proceedings, part III 18 – start-page: 1055 year: 2020 end-page: 1059 ident: b17 article-title: Unet 3+: A full-scale connected unet for medical image segmentation publication-title: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP) – reference: Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In – year: 2020 ident: b25 article-title: Dividemix: Learning with noisy labels as semi-supervised learning – start-page: 5739 year: 2019 end-page: 5748 ident: b40 article-title: Learning with bad training data via iterative trimmed loss minimization publication-title: International conference on machine learning – volume: 41 start-page: 3062 year: 2022 end-page: 3073 ident: b51 article-title: Anti-interference from noisy labels: Mean-teacher-assisted confident learning for medical image segmentation publication-title: IEEE Transactions on Medical Imaging – volume: 60 start-page: 544 year: 2019 end-page: 569 ident: b43 article-title: X-ray computed tomography: from medical imaging to dimensional metrology publication-title: Precision Engineering – start-page: 30 year: 2017 ident: b32 article-title: Decoupling when to update from how to update publication-title: Advances in Neural Information Processing Systems – year: 2021 ident: b3 article-title: Swin-unet: unet-like pure transformer for medical image segmentation – volume: 32 start-page: 582 year: 2019 end-page: 596 ident: b16 article-title: Deep learning techniques for medical image segmentation: achievements and challenges publication-title: Journal of Digital Imaging – volume: 43 start-page: 1199 year: 2010 end-page: 1206 ident: b55 article-title: Active contours driven by local image fitting energy publication-title: Pattern Recognition – volume: 86 year: 2020 ident: b13 article-title: Segmentation of coronary arteries images using global feature embedded network with active contour loss publication-title: Computerized Medical Imaging and Graphics – volume: 162 start-page: 94 year: 2020 end-page: 114 ident: b10 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – start-page: 2304 year: 2018 end-page: 2313 ident: b21 article-title: Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels publication-title: International conference on machine learning – volume: 79 year: 2021 ident: b29 article-title: High energy x-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy publication-title: Nano Energy – volume: 17 start-page: 1940 year: 2008 end-page: 1949 ident: b24 article-title: Minimization of region-scalable fitting energy for image segmentation publication-title: IEEE Transactions on Image Processing – volume: 10 start-page: 266 year: 2001 end-page: 277 ident: b7 article-title: Active contours without edges publication-title: IEEE Transactions on Image Processing – year: 2021 ident: b19 article-title: Disentangling human error from the ground truth in segmentation of medical images – volume: 45 start-page: 2769 year: 2012 end-page: 2779 ident: b28 article-title: A local region-based chan–vese model for image segmentation publication-title: Pattern Recognition – volume: 21 start-page: 1 year: 2021 end-page: 11 ident: b34 article-title: Miscnn: a framework for medical image segmentation with convolutional neural networks and deep learning publication-title: BMC Medical Imaging – reference: Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., & Bailey, J. (2019). Symmetric cross entropy for robust learning with noisy labels. In – reference: Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., et al. (2022). Unetr: Transformers for 3d medical image segmentation. In – reference: (pp. 574–584). – reference: (pp. 3326–3334). – start-page: 3 year: 2020 end-page: 21 ident: b6 article-title: Deep learning in medical image analysis publication-title: Deep learning in medical image analysis: challenges and applications – start-page: 31 year: 2018 ident: b14 article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels publication-title: Advances in Neural Information Processing Systems – start-page: 7164 year: 2019 end-page: 7173 ident: b53 article-title: How does disagreement help generalization against label corruption? publication-title: International conference on machine learning – year: 2019 ident: b35 article-title: Self: Learning to filter noisy labels with self-ensembling – volume: 7 year: 2021 ident: b37 article-title: A review of medical image segmentation algorithms publication-title: EAI Endorsed Transactions on Pervasive Health and Technology – reference: (pp. 2606–2616). – start-page: 721 year: 2020 end-page: 730 ident: b54 article-title: Characterizing label errors: confident learning for noisy-labeled image segmentation publication-title: Medical image computing and computer assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru, october 4–8, 2020, proceedings, part I 23 – volume: 1 start-page: 321 year: 1988 end-page: 331 ident: b22 article-title: Snakes: Active contour models publication-title: International Journal of Computer Vision – start-page: 225 year: 2019 end-page: 2255 ident: b20 article-title: Resunet++: An advanced architecture for medical image segmentation publication-title: 2019 IEEE international symposium on multimedia (ISM) – volume: 95 start-page: 291 year: 2014 end-page: 327 ident: b52 article-title: Learning from multiple annotators with varying expertise publication-title: Machine Learning – start-page: 784 year: 2020 end-page: 800 ident: b30 article-title: Semi-supervised semantic segmentation via strong-weak dual-branch network publication-title: Computer vision–ECCV 2020: 16th European conference, Glasgow, UK, august 23–28, 2020, proceedings, part V 16 – year: 2018 ident: b31 article-title: Medical imaging systems: An introductory guide – volume: 83 start-page: 9 year: 2021 end-page: 24 ident: b4 article-title: Ai applications to medical images: From machine learning to deep learning publication-title: Physica Medica – start-page: 32 year: 2019 ident: b48 article-title: Are anchor points really indispensable in label-noise learning? publication-title: Advances in Neural Information Processing Systems – start-page: 30 year: 2017 ident: b42 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Advances in Neural Information Processing Systems – volume: 178 year: 2020 ident: b5 article-title: Color index based thresholding method for background and foreground segmentation of plant images publication-title: Computers and Electronics in Agriculture – reference: (pp. 322–330). – reference: Ghosh, A., Kumar, H., & Sastry, P. S. (2017). Robust loss functions under label noise for deep neural networks. In – volume: 39 start-page: 139 year: 2018 end-page: 161 ident: b33 article-title: Mri based medical image analysis: Survey on brain tumor grade classification publication-title: Biomedical Signal Processing and Control – volume: 70 start-page: 1373 year: 2021 end-page: 1411 ident: b36 article-title: Confident learning: Estimating uncertainty in dataset labels publication-title: Journal of Artificial Intelligence Research – volume: 13 start-page: 1381 year: 2020 end-page: 1396 ident: b1 article-title: Systematic review of artificial intelligence techniques in the detection and classification of covid-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects publication-title: Journal of Infection and Public Health – volume: 16 start-page: 1243 year: 2022 end-page: 1267 ident: b45 article-title: Medical image segmentation using deep learning: A survey publication-title: IET Image Processing – start-page: 1 year: 2020 end-page: 6 ident: b23 article-title: Segthor: Segmentation of thoracic organs at risk in ct images publication-title: 2020 tenth international conference on image processing theory, tools and applications (IPTA) – reference: Huang, J., Qu, L., Jia, R., & Zhao, B. (2019). O2u-net: A simple noisy label detection approach for deep neural networks. In – start-page: 32 year: 2019 ident: b50 article-title: L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise publication-title: Advances in Neural Information Processing Systems – reference: Liu, S., Liu, K., Zhu, W., Shen, Y., & Fernandez-Granda, C. (2022). Adaptive early-learning correction for segmentation from noisy annotations. In – start-page: 517 year: 2021 end-page: 529 ident: b11 article-title: Teach me to segment with mixed supervision: Confident students become masters publication-title: Information processing in medical imaging: 27th international conference, IPMI 2021, virtual event, june 28–june 30, 2021, proceedings 27 – reference: . – volume: 67 year: 2021 ident: b49 article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging publication-title: Medical Image Analysis – volume: 215 year: 2021 ident: b2 article-title: Image classification with deep learning in the presence of noisy labels: A survey publication-title: Knowledge-Based Systems – volume: 33 start-page: 20331 year: 2020 end-page: 20342 ident: b27 article-title: Early-learning regularization prevents memorization of noisy labels publication-title: Advances in Neural Information Processing Systems – reference: (pp. 11632–11640). – volume: 89 start-page: 2435 year: 2009 end-page: 2447 ident: b44 article-title: Active contours driven by local Gaussian distribution fitting energy publication-title: Signal Processing – ident: 10.1016/j.eswa.2023.121926_b9 doi: 10.1109/CVPR.2019.01190 – volume: 79 year: 2021 ident: 10.1016/j.eswa.2023.121926_b29 article-title: High energy x-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105437 – ident: 10.1016/j.eswa.2023.121926_b18 doi: 10.1109/ICCV.2019.00342 – start-page: 234 year: 2015 ident: 10.1016/j.eswa.2023.121926_b38 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 89 start-page: 2435 year: 2009 ident: 10.1016/j.eswa.2023.121926_b44 article-title: Active contours driven by local Gaussian distribution fitting energy publication-title: Signal Processing doi: 10.1016/j.sigpro.2009.03.014 – volume: 16 start-page: 1243 year: 2022 ident: 10.1016/j.eswa.2023.121926_b45 article-title: Medical image segmentation using deep learning: A survey publication-title: IET Image Processing doi: 10.1049/ipr2.12419 – volume: 95 start-page: 291 year: 2014 ident: 10.1016/j.eswa.2023.121926_b52 article-title: Learning from multiple annotators with varying expertise publication-title: Machine Learning doi: 10.1007/s10994-013-5412-1 – start-page: 225 year: 2019 ident: 10.1016/j.eswa.2023.121926_b20 article-title: Resunet++: An advanced architecture for medical image segmentation – volume: 178 year: 2020 ident: 10.1016/j.eswa.2023.121926_b5 article-title: Color index based thresholding method for background and foreground segmentation of plant images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105783 – volume: 39 start-page: 139 year: 2018 ident: 10.1016/j.eswa.2023.121926_b33 article-title: Mri based medical image analysis: Survey on brain tumor grade classification publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.07.007 – year: 2020 ident: 10.1016/j.eswa.2023.121926_b25 – volume: 86 year: 2020 ident: 10.1016/j.eswa.2023.121926_b13 article-title: Segmentation of coronary arteries images using global feature embedded network with active contour loss publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2020.101799 – volume: 215 year: 2021 ident: 10.1016/j.eswa.2023.121926_b2 article-title: Image classification with deep learning in the presence of noisy labels: A survey publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106771 – start-page: 517 year: 2021 ident: 10.1016/j.eswa.2023.121926_b11 article-title: Teach me to segment with mixed supervision: Confident students become masters – ident: 10.1016/j.eswa.2023.121926_b12 doi: 10.1609/aaai.v31i1.10894 – volume: 45 start-page: 2769 year: 2012 ident: 10.1016/j.eswa.2023.121926_b28 article-title: A local region-based chan–vese model for image segmentation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.11.019 – start-page: 249 year: 2020 ident: 10.1016/j.eswa.2023.121926_b56 article-title: Robust medical image segmentation from non-expert annotations with tri-network – volume: 10 start-page: 266 year: 2001 ident: 10.1016/j.eswa.2023.121926_b7 article-title: Active contours without edges publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.902291 – volume: 46 start-page: e1 year: 2019 ident: 10.1016/j.eswa.2023.121926_b39 article-title: Deep learning in medical imaging and radiation therapy publication-title: Medical Physics doi: 10.1002/mp.13264 – volume: 162 start-page: 94 year: 2020 ident: 10.1016/j.eswa.2023.121926_b10 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2020.01.013 – ident: 10.1016/j.eswa.2023.121926_b47 doi: 10.1109/ICCV.2019.00041 – start-page: 32 year: 2019 ident: 10.1016/j.eswa.2023.121926_b48 article-title: Are anchor points really indispensable in label-noise learning? publication-title: Advances in Neural Information Processing Systems – start-page: 721 year: 2020 ident: 10.1016/j.eswa.2023.121926_b54 article-title: Characterizing label errors: confident learning for noisy-labeled image segmentation – volume: 67 year: 2021 ident: 10.1016/j.eswa.2023.121926_b49 article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101832 – start-page: 576 year: 2019 ident: 10.1016/j.eswa.2023.121926_b57 article-title: Pick-and-learn: Automatic quality evaluation for noisy-labeled image segmentation – volume: 83 start-page: 9 year: 2021 ident: 10.1016/j.eswa.2023.121926_b4 article-title: Ai applications to medical images: From machine learning to deep learning publication-title: Physica Medica doi: 10.1016/j.ejmp.2021.02.006 – ident: 10.1016/j.eswa.2023.121926_b26 doi: 10.1109/CVPR52688.2022.00263 – start-page: 30 year: 2017 ident: 10.1016/j.eswa.2023.121926_b32 article-title: Decoupling when to update from how to update publication-title: Advances in Neural Information Processing Systems – volume: 22 start-page: 11 year: 2021 ident: 10.1016/j.eswa.2023.121926_b46 article-title: A review on medical imaging synthesis using deep learning and its clinical applications publication-title: Journal of Applied Clinical Medical Physics doi: 10.1002/acm2.13121 – start-page: 3 year: 2020 ident: 10.1016/j.eswa.2023.121926_b6 article-title: Deep learning in medical image analysis – year: 2019 ident: 10.1016/j.eswa.2023.121926_b35 – year: 2018 ident: 10.1016/j.eswa.2023.121926_b31 – year: 2022 ident: 10.1016/j.eswa.2023.121926_b41 article-title: Learning from noisy labels with deep neural networks: A survey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 32 start-page: 582 year: 2019 ident: 10.1016/j.eswa.2023.121926_b16 article-title: Deep learning techniques for medical image segmentation: achievements and challenges publication-title: Journal of Digital Imaging doi: 10.1007/s10278-019-00227-x – start-page: 30 year: 2017 ident: 10.1016/j.eswa.2023.121926_b42 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Advances in Neural Information Processing Systems – volume: 33 start-page: 20331 year: 2020 ident: 10.1016/j.eswa.2023.121926_b27 article-title: Early-learning regularization prevents memorization of noisy labels publication-title: Advances in Neural Information Processing Systems – start-page: 784 year: 2020 ident: 10.1016/j.eswa.2023.121926_b30 article-title: Semi-supervised semantic segmentation via strong-weak dual-branch network – start-page: 1055 year: 2020 ident: 10.1016/j.eswa.2023.121926_b17 article-title: Unet 3+: A full-scale connected unet for medical image segmentation – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.121926_b34 article-title: Miscnn: a framework for medical image segmentation with convolutional neural networks and deep learning publication-title: BMC Medical Imaging doi: 10.1186/s12880-020-00543-7 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.121926_b23 article-title: Segthor: Segmentation of thoracic organs at risk in ct images – start-page: 31 year: 2018 ident: 10.1016/j.eswa.2023.121926_b14 article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels publication-title: Advances in Neural Information Processing Systems – year: 2021 ident: 10.1016/j.eswa.2023.121926_b19 – volume: 70 start-page: 1373 year: 2021 ident: 10.1016/j.eswa.2023.121926_b36 article-title: Confident learning: Estimating uncertainty in dataset labels publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1.12125 – start-page: 1062 year: 2019 ident: 10.1016/j.eswa.2023.121926_b8 article-title: Understanding and utilizing deep neural networks trained with noisy labels – start-page: 32 year: 2019 ident: 10.1016/j.eswa.2023.121926_b50 article-title: L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise publication-title: Advances in Neural Information Processing Systems – start-page: 5739 year: 2019 ident: 10.1016/j.eswa.2023.121926_b40 article-title: Learning with bad training data via iterative trimmed loss minimization – ident: 10.1016/j.eswa.2023.121926_b15 doi: 10.1109/WACV51458.2022.00181 – volume: 1 start-page: 321 year: 1988 ident: 10.1016/j.eswa.2023.121926_b22 article-title: Snakes: Active contour models publication-title: International Journal of Computer Vision doi: 10.1007/BF00133570 – volume: 7 year: 2021 ident: 10.1016/j.eswa.2023.121926_b37 article-title: A review of medical image segmentation algorithms publication-title: EAI Endorsed Transactions on Pervasive Health and Technology doi: 10.4108/eai.12-4-2021.169184 – start-page: 2304 year: 2018 ident: 10.1016/j.eswa.2023.121926_b21 article-title: Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels – volume: 41 start-page: 3062 year: 2022 ident: 10.1016/j.eswa.2023.121926_b51 article-title: Anti-interference from noisy labels: Mean-teacher-assisted confident learning for medical image segmentation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2022.3176915 – volume: 60 start-page: 544 year: 2019 ident: 10.1016/j.eswa.2023.121926_b43 article-title: X-ray computed tomography: from medical imaging to dimensional metrology publication-title: Precision Engineering doi: 10.1016/j.precisioneng.2019.06.007 – year: 2021 ident: 10.1016/j.eswa.2023.121926_b3 – start-page: 7164 year: 2019 ident: 10.1016/j.eswa.2023.121926_b53 article-title: How does disagreement help generalization against label corruption? – volume: 13 start-page: 1381 year: 2020 ident: 10.1016/j.eswa.2023.121926_b1 article-title: Systematic review of artificial intelligence techniques in the detection and classification of covid-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects publication-title: Journal of Infection and Public Health doi: 10.1016/j.jiph.2020.06.028 – volume: 43 start-page: 1199 year: 2010 ident: 10.1016/j.eswa.2023.121926_b55 article-title: Active contours driven by local image fitting energy publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.10.010 – volume: 17 start-page: 1940 year: 2008 ident: 10.1016/j.eswa.2023.121926_b24 article-title: Minimization of region-scalable fitting energy for image segmentation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2008.2002304 |
SSID | ssj0017007 |
Score | 2.4687598 |
Snippet | To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121926 |
SubjectTerms | Active contours Learning with noisy labels Medical image segmentation Region-Scalable Fitting |
Title | Region-scalable fitting-assisted medical image segmentation with noisy labels |
URI | https://dx.doi.org/10.1016/j.eswa.2023.121926 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC50vHhxXR_o7ip92Ju0k0c_jyLKrLIefIC3kHS6JeJkxBkRL_52qyYdURAPHhOqoPm6U1Wd-qoK4C9usjDeKO6tozSjDBzDkIqHNJjSKZ3bak6QPVOjK3FyLa8X4LCvhSFaZbT9nU2fW-v4ZhjRHN43zfACgwN0h5RpJD9jxCIsZblVcgBLB_9OR2dvyQSddFXTKM9JIdbOdDQvP32i9kNZTn0WLPVY-Mw_vfM5x6uwEoNFdtCt5ycs-HYNfvSDGFj8Ltfh_7knWjGfIuBUCsVCM6czc4yMaRtrNu7yMawZo_1gU38zjjVHLaM_saydNNNnhsq4lA24Oj66PBzxOCeBuzxJZtzgJS1kmfdJ7tG7KOPSoG3ig9T1vG9oooM2lMHTppJJhfJOOJ2p2qbSYMixCYN20votYKK0pTSJKlUQQuMNU9jKOVubulTeyXQb0h6dwsUm4jTL4q7o2WK3BSFaEKJFh-g27L3p3HctNL6Ulj3oxYeDUKCN_0Lv1zf1fsMyPgmilaXyDwxmD49-B-OMWbULi_sv6W48Ta_G7NAl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjShPD2zIatLasTNWFVV5tAMPiS1KHBsF0bSiRYh_z13jIJAQA2vik6zPzj1y390BnOEhC211xG1sKM0oHUc3JOMudDo1kerE2YIgO4oGD-LqUT4uQa-uhSFapdf9lU5faGv_pOXRbE2LonWHzgGaQ8o0kp3RYhlWhMRorwEr3cvrwegrmaCCqmoa13MS8LUzFc3Lzt6p_VC7Q30WYuqx8Jt9-mZz-puw7p1F1q32swVLttyGjXoQA_Pf5Q4Mby3RivkMAadSKOaKBZ2Zo2dMx5izcZWPYcUY9Qeb2aexrzkqGf2JZeWkmH0wFMat7MJD_-K-N-B-TgI3nSCYc41Bmmu3rQ06Fq1LpE3oVBxYJ1W-6BsaKKc0ZfCUzmSQ4XojjGpHeRxKjS7HHjTKSWn3gYk0TqUOojRyQiiMMEWcGRPnOk8ja2TYhLBGJzG-iTjNsnhJarbYc0KIJoRoUiHahPMvmWnVQuPP1bIGPflxERLU8X_IHfxT7hRWB_fDm-TmcnR9CGv4RhDFLJRH0Ji_vtlj9Dnm2Ym_U5_H99IU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Region-scalable+fitting-assisted+medical+image+segmentation+with+noisy+labels&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Shangkun&rft.au=Li%2C+Yanxin&rft.au=Chai%2C+Qing-wei&rft.au=Zheng%2C+Weimin&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=121926&rft_id=info:doi/10.1016%2Fj.eswa.2023.121926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |