Region-scalable fitting-assisted medical image segmentation with noisy labels

To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many images with precise labels. However, medical images are inherently complex and noisy, making it difficult for medical image segmentation to ob...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 238; p. 121926
Main Authors Liu, Shangkun, Li, Yanxin, Chai, Qing-wei, Zheng, Weimin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2024
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2023.121926

Cover

Abstract To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many images with precise labels. However, medical images are inherently complex and noisy, making it difficult for medical image segmentation to obtain many accurate labels. That means the study of learning with noisy labels is particularly important. In order to make use of all the samples, some methods correct the noisy labels during the training process. However, in the correction process, a label correction error may occur according to the set policy. Therefore, we propose a method that incorporates image features based on region-scalable fitting (RSF) to assist in the label correction process, called RSF-assisted. We tested the performance of our RSF-assisted method on two learning frameworks of learning with noisy labels based on segmentation: mean-teacher-assisted confident learning (MTCL) and adaptive early-learning correction (ADELE). The experimental results indicate that the performance is improved by using RSF-assisted. To be specific, compared with the original methods, the mean intersection over union (mIOU) is improved by 2.41% after RSF-assisted on thoracic organs (SegTHOR) dataset. Similarly, the 95% Hausdorff distance (95HD) is reduced by up to 2.96 mm after RSF-assisted based on left atrium (LA) segmentation dataset. •The original image information is added to assist the pixel-wise labels correction.•Original image information is added by Region-Scalable Fitting.•A new loss function is proposed to pay more attention to contour information.•Region-Scalable Fitting can help correct the pixel-wise labels better.
AbstractList To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many images with precise labels. However, medical images are inherently complex and noisy, making it difficult for medical image segmentation to obtain many accurate labels. That means the study of learning with noisy labels is particularly important. In order to make use of all the samples, some methods correct the noisy labels during the training process. However, in the correction process, a label correction error may occur according to the set policy. Therefore, we propose a method that incorporates image features based on region-scalable fitting (RSF) to assist in the label correction process, called RSF-assisted. We tested the performance of our RSF-assisted method on two learning frameworks of learning with noisy labels based on segmentation: mean-teacher-assisted confident learning (MTCL) and adaptive early-learning correction (ADELE). The experimental results indicate that the performance is improved by using RSF-assisted. To be specific, compared with the original methods, the mean intersection over union (mIOU) is improved by 2.41% after RSF-assisted on thoracic organs (SegTHOR) dataset. Similarly, the 95% Hausdorff distance (95HD) is reduced by up to 2.96 mm after RSF-assisted based on left atrium (LA) segmentation dataset. •The original image information is added to assist the pixel-wise labels correction.•Original image information is added by Region-Scalable Fitting.•A new loss function is proposed to pay more attention to contour information.•Region-Scalable Fitting can help correct the pixel-wise labels better.
ArticleNumber 121926
Author Chai, Qing-wei
Li, Yanxin
Zheng, Weimin
Liu, Shangkun
Author_xml – sequence: 1
  givenname: Shangkun
  orcidid: 0000-0001-5728-5092
  surname: Liu
  fullname: Liu, Shangkun
  email: liushangkun97@163.com
– sequence: 2
  givenname: Yanxin
  orcidid: 0000-0001-8321-8352
  surname: Li
  fullname: Li, Yanxin
  email: lyx94lyx@126.com
– sequence: 3
  givenname: Qing-wei
  orcidid: 0000-0001-5587-0589
  surname: Chai
  fullname: Chai, Qing-wei
  email: mimanxiaowei@163.com
– sequence: 4
  givenname: Weimin
  orcidid: 0000-0003-3860-4208
  surname: Zheng
  fullname: Zheng, Weimin
  email: zhengwm901@126.com
BookMark eNp9kE1Lw0AQhhepYFv9A57yBxJnd5P9AC9S1AoVQfS8bDeTuCVNJLtY-u_dEk8eeprDzDO877Mgs37okZBbCgUFKu52BYaDLRgwXlBGNRMXZE6V5LmQms_IHHQl85LK8oosQtgBUAkg5-T1HVs_9HlwtrPbDrPGx-j7Nrch-BCxzvZY-7TM_N62mAVs99hHGxOUHXz8yvrBh2OWYOzCNblsbBfw5m8uyefT48dqnW_enl9WD5vccYCYK1VCwxgicGRaC-VoIzVgU8k6JeMSZCOV4FpKta1gm-5d6SQTtaaVEoIvCZv-unEIYcTGfI8p33g0FMxJiNmZkxBzEmImIQlS_yDnpyJxtL47j95PaOqIPx5HE5zH3iU1I7po6sGfw38B0HJ9rg
CitedBy_id crossref_primary_10_1007_s40747_024_01574_1
crossref_primary_10_1016_j_compmedimag_2024_102421
crossref_primary_10_1109_ACCESS_2024_3379135
crossref_primary_10_3390_electronics13010142
crossref_primary_10_1016_j_eswa_2024_124672
Cites_doi 10.1109/CVPR.2019.01190
10.1016/j.nanoen.2020.105437
10.1109/ICCV.2019.00342
10.1016/j.sigpro.2009.03.014
10.1049/ipr2.12419
10.1007/s10994-013-5412-1
10.1016/j.compag.2020.105783
10.1016/j.bspc.2017.07.007
10.1016/j.compmedimag.2020.101799
10.1016/j.knosys.2021.106771
10.1609/aaai.v31i1.10894
10.1016/j.patcog.2011.11.019
10.1109/83.902291
10.1002/mp.13264
10.1016/j.isprsjprs.2020.01.013
10.1109/ICCV.2019.00041
10.1016/j.media.2020.101832
10.1016/j.ejmp.2021.02.006
10.1109/CVPR52688.2022.00263
10.1002/acm2.13121
10.1007/s10278-019-00227-x
10.1186/s12880-020-00543-7
10.1613/jair.1.12125
10.1109/WACV51458.2022.00181
10.1007/BF00133570
10.4108/eai.12-4-2021.169184
10.1109/TMI.2022.3176915
10.1016/j.precisioneng.2019.06.007
10.1016/j.jiph.2020.06.028
10.1016/j.patcog.2009.10.010
10.1109/TIP.2008.2002304
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121926
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121926
S0957417423024284
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-8840f22ee03e29968c1f790ef57d0013707f78639778b50b884c4c726d9158663
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Thu Apr 24 23:02:42 EDT 2025
Tue Jul 01 04:06:15 EDT 2025
Fri Feb 23 02:34:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Learning with noisy labels
Region-Scalable Fitting
Medical image segmentation
Active contours
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-8840f22ee03e29968c1f790ef57d0013707f78639778b50b884c4c726d9158663
ORCID 0000-0001-8321-8352
0000-0001-5728-5092
0000-0003-3860-4208
0000-0001-5587-0589
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_121926
crossref_citationtrail_10_1016_j_eswa_2023_121926
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Gao, Lyu, Zhao, Wang, Ding (b54) 2020
Nguyen, Mummadi, Ngo, Nguyen, Beggel, Brox (b35) 2019
Tarvainen, Valpola (b42) 2017
Wang, Lei, Fu, Wynne, Curran, Liu (b46) 2021; 22
Dolz, Desrosiers, Ayed (b11) 2021
Albahri, Zaidan, Albahri, Zaidan, Abdulkareem, Al-Qaysi (b1) 2020; 13
(pp. 2606–2616).
Song, Kim, Park, Shin, Lee (b41) 2022
(pp. 574–584).
Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., & Bailey, J. (2019). Symmetric cross entropy for robust learning with noisy labels. In
Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In
Wang, Lei, Cui, Zhang, Meng, Nandi (b45) 2022; 16
Ghosh, A., Kumar, H., & Sastry, P. S. (2017). Robust loss functions under label noise for deep neural networks. In
Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., et al. (2022). Unetr: Transformers for 3d medical image segmentation. In
Li, Socher, Hoi (b25) 2020
Cao, Wang, Chen, Jiang, Zhang, Tian (b3) 2021
Luo, Yang (b30) 2020
Chan, Samala, Hadjiiski, Zhou (b6) 2020
Northcutt, Jiang, Chuang (b36) 2021; 70
Ramesh, Kumar, Swapna, Datta, Rajest (b37) 2021; 7
Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen (b20) 2019
.
Sahiner, Pezeshk, Hadjiiski, Wang, Drukker, Cha (b39) 2019; 46
Liu, Niles-Weed, Razavian, Fernandez-Granda (b27) 2020; 33
(pp. 3326–3334).
Liu, Peng (b28) 2012; 45
Li, Kao, Gore, Ding (b24) 2008; 17
Castiglioni, Rundo, Codari, Di Leo, Salvatore, Interlenghi (b4) 2021; 83
Zhu, Shi, Wu (b57) 2019
Wang, He, Mishra, Li (b44) 2009; 89
Hesamian, Jia, He, Kennedy (b16) 2019; 32
Liu, S., Liu, K., Zhu, W., Shen, Y., & Fernandez-Granda, C. (2022). Adaptive early-learning correction for segmentation from noisy annotations. In
Ronneberger, Fischer, Brox (b38) 2015
Shen, Sanghavi (b40) 2019
Chen, Liao, Chen, Zhang (b8) 2019
Zhang, Song, Zhang (b55) 2010; 43
Mohan, Subashini (b33) 2018; 39
Xiong, Xia, Hu, Huang, Bian, Zheng (b49) 2021; 67
Castillo-Martínez, Gallegos-Funes, Carvajal-Gámez, Urriolagoitia-Sosa, Rosales-Silva (b5) 2020; 178
Yu, Han, Yao, Niu, Tsang, Sugiyama (b53) 2019
Diakogiannis, Waldner, Caccetta, Wu (b10) 2020; 162
Xia, Liu, Wang, Han, Gong, Niu (b48) 2019
Villarraga-Gómez, Herazo, Smith (b43) 2019; 60
Xu, Lu, Luo, Wang, Yan, Ma (b51) 2022; 41
Lu, Sun, Lu, Wu, Huang (b29) 2021; 79
Algan, Ulusoy (b2) 2021; 215
Müller, Kramer (b34) 2021; 21
Huang, J., Qu, L., Jia, R., & Zhao, B. (2019). O2u-net: A simple noisy label detection approach for deep neural networks. In
Gu, Fang, Gao, Tian (b13) 2020; 86
Yan, Rosales, Fung, Subramanian, Dy (b52) 2014; 95
Huang, Lin, Tong, Hu, Zhang, Iwamoto (b17) 2020
(pp. 11632–11640).
(pp. 322–330).
Chan, Vese (b7) 2001; 10
Han, Yao, Yu, Niu, Xu, Hu (b14) 2018
Zhang, Yu, Hu, Lv, Gu (b56) 2020
Lambert, Petitjean, Dubray, Kuan (b23) 2020
Jacob, Ciccarelli, Barkhof, Alexander (b19) 2021
Kass, Witkin, Terzopoulos (b22) 1988; 1
Malach, Shalev-Shwartz (b32) 2017
Maier, Steidl, Christlein, Hornegger (b31) 2018
Jiang, Zhou, Leung, Li, Fei-Fei (b21) 2018
Xu, Cao, Kong, Wang (b50) 2019
10.1016/j.eswa.2023.121926_b26
Malach (10.1016/j.eswa.2023.121926_b32) 2017
Shen (10.1016/j.eswa.2023.121926_b40) 2019
10.1016/j.eswa.2023.121926_b9
Dolz (10.1016/j.eswa.2023.121926_b11) 2021
Huang (10.1016/j.eswa.2023.121926_b17) 2020
Northcutt (10.1016/j.eswa.2023.121926_b36) 2021; 70
Castillo-Martínez (10.1016/j.eswa.2023.121926_b5) 2020; 178
Mohan (10.1016/j.eswa.2023.121926_b33) 2018; 39
Hesamian (10.1016/j.eswa.2023.121926_b16) 2019; 32
Ronneberger (10.1016/j.eswa.2023.121926_b38) 2015
Kass (10.1016/j.eswa.2023.121926_b22) 1988; 1
Wang (10.1016/j.eswa.2023.121926_b45) 2022; 16
Zhang (10.1016/j.eswa.2023.121926_b54) 2020
Xu (10.1016/j.eswa.2023.121926_b51) 2022; 41
Jacob (10.1016/j.eswa.2023.121926_b19) 2021
Song (10.1016/j.eswa.2023.121926_b41) 2022
10.1016/j.eswa.2023.121926_b15
10.1016/j.eswa.2023.121926_b12
Albahri (10.1016/j.eswa.2023.121926_b1) 2020; 13
Castiglioni (10.1016/j.eswa.2023.121926_b4) 2021; 83
Nguyen (10.1016/j.eswa.2023.121926_b35) 2019
Tarvainen (10.1016/j.eswa.2023.121926_b42) 2017
Cao (10.1016/j.eswa.2023.121926_b3) 2021
Chan (10.1016/j.eswa.2023.121926_b7) 2001; 10
Zhang (10.1016/j.eswa.2023.121926_b56) 2020
Chen (10.1016/j.eswa.2023.121926_b8) 2019
Wang (10.1016/j.eswa.2023.121926_b46) 2021; 22
10.1016/j.eswa.2023.121926_b18
Sahiner (10.1016/j.eswa.2023.121926_b39) 2019; 46
10.1016/j.eswa.2023.121926_b47
Maier (10.1016/j.eswa.2023.121926_b31) 2018
Algan (10.1016/j.eswa.2023.121926_b2) 2021; 215
Villarraga-Gómez (10.1016/j.eswa.2023.121926_b43) 2019; 60
Li (10.1016/j.eswa.2023.121926_b25) 2020
Zhang (10.1016/j.eswa.2023.121926_b55) 2010; 43
Yu (10.1016/j.eswa.2023.121926_b53) 2019
Liu (10.1016/j.eswa.2023.121926_b28) 2012; 45
Liu (10.1016/j.eswa.2023.121926_b27) 2020; 33
Lu (10.1016/j.eswa.2023.121926_b29) 2021; 79
Müller (10.1016/j.eswa.2023.121926_b34) 2021; 21
Yan (10.1016/j.eswa.2023.121926_b52) 2014; 95
Diakogiannis (10.1016/j.eswa.2023.121926_b10) 2020; 162
Xu (10.1016/j.eswa.2023.121926_b50) 2019
Wang (10.1016/j.eswa.2023.121926_b44) 2009; 89
Jha (10.1016/j.eswa.2023.121926_b20) 2019
Li (10.1016/j.eswa.2023.121926_b24) 2008; 17
Xiong (10.1016/j.eswa.2023.121926_b49) 2021; 67
Zhu (10.1016/j.eswa.2023.121926_b57) 2019
Luo (10.1016/j.eswa.2023.121926_b30) 2020
Chan (10.1016/j.eswa.2023.121926_b6) 2020
Xia (10.1016/j.eswa.2023.121926_b48) 2019
Han (10.1016/j.eswa.2023.121926_b14) 2018
Jiang (10.1016/j.eswa.2023.121926_b21) 2018
Gu (10.1016/j.eswa.2023.121926_b13) 2020; 86
Ramesh (10.1016/j.eswa.2023.121926_b37) 2021; 7
Lambert (10.1016/j.eswa.2023.121926_b23) 2020
References_xml – year: 2022
  ident: b41
  article-title: Learning from noisy labels with deep neural networks: A survey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 249
  year: 2020
  end-page: 258
  ident: b56
  article-title: Robust medical image segmentation from non-expert annotations with tri-network
  publication-title: Medical image computing and computer assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru, october 4–8, 2020, proceedings, part IV 23
– start-page: 1062
  year: 2019
  end-page: 1070
  ident: b8
  article-title: Understanding and utilizing deep neural networks trained with noisy labels
  publication-title: International conference on machine learning
– volume: 46
  start-page: e1
  year: 2019
  end-page: e36
  ident: b39
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Medical Physics
– volume: 22
  start-page: 11
  year: 2021
  end-page: 36
  ident: b46
  article-title: A review on medical imaging synthesis using deep learning and its clinical applications
  publication-title: Journal of Applied Clinical Medical Physics
– start-page: 576
  year: 2019
  end-page: 584
  ident: b57
  article-title: Pick-and-learn: Automatic quality evaluation for noisy-labeled image segmentation
  publication-title: Medical image computing and computer assisted intervention–MICCAI 2019: 22nd international conference, Shenzhen, China, october 13–17, 2019, proceedings, part VI 22
– start-page: 234
  year: 2015
  end-page: 241
  ident: b38
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, october 5-9, 2015, proceedings, part III 18
– start-page: 1055
  year: 2020
  end-page: 1059
  ident: b17
  article-title: Unet 3+: A full-scale connected unet for medical image segmentation
  publication-title: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– reference: Chen, X., Williams, B. M., Vallabhaneni, S. R., Czanner, G., Williams, R., & Zheng, Y. (2019). Learning active contour models for medical image segmentation. In
– year: 2020
  ident: b25
  article-title: Dividemix: Learning with noisy labels as semi-supervised learning
– start-page: 5739
  year: 2019
  end-page: 5748
  ident: b40
  article-title: Learning with bad training data via iterative trimmed loss minimization
  publication-title: International conference on machine learning
– volume: 41
  start-page: 3062
  year: 2022
  end-page: 3073
  ident: b51
  article-title: Anti-interference from noisy labels: Mean-teacher-assisted confident learning for medical image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 60
  start-page: 544
  year: 2019
  end-page: 569
  ident: b43
  article-title: X-ray computed tomography: from medical imaging to dimensional metrology
  publication-title: Precision Engineering
– start-page: 30
  year: 2017
  ident: b32
  article-title: Decoupling when to update from how to update
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: b3
  article-title: Swin-unet: unet-like pure transformer for medical image segmentation
– volume: 32
  start-page: 582
  year: 2019
  end-page: 596
  ident: b16
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: Journal of Digital Imaging
– volume: 43
  start-page: 1199
  year: 2010
  end-page: 1206
  ident: b55
  article-title: Active contours driven by local image fitting energy
  publication-title: Pattern Recognition
– volume: 86
  year: 2020
  ident: b13
  article-title: Segmentation of coronary arteries images using global feature embedded network with active contour loss
  publication-title: Computerized Medical Imaging and Graphics
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: b10
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– start-page: 2304
  year: 2018
  end-page: 2313
  ident: b21
  article-title: Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels
  publication-title: International conference on machine learning
– volume: 79
  year: 2021
  ident: b29
  article-title: High energy x-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy
  publication-title: Nano Energy
– volume: 17
  start-page: 1940
  year: 2008
  end-page: 1949
  ident: b24
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Transactions on Image Processing
– volume: 10
  start-page: 266
  year: 2001
  end-page: 277
  ident: b7
  article-title: Active contours without edges
  publication-title: IEEE Transactions on Image Processing
– year: 2021
  ident: b19
  article-title: Disentangling human error from the ground truth in segmentation of medical images
– volume: 45
  start-page: 2769
  year: 2012
  end-page: 2779
  ident: b28
  article-title: A local region-based chan–vese model for image segmentation
  publication-title: Pattern Recognition
– volume: 21
  start-page: 1
  year: 2021
  end-page: 11
  ident: b34
  article-title: Miscnn: a framework for medical image segmentation with convolutional neural networks and deep learning
  publication-title: BMC Medical Imaging
– reference: Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., & Bailey, J. (2019). Symmetric cross entropy for robust learning with noisy labels. In
– reference: Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., et al. (2022). Unetr: Transformers for 3d medical image segmentation. In
– reference: (pp. 574–584).
– reference: (pp. 3326–3334).
– start-page: 3
  year: 2020
  end-page: 21
  ident: b6
  article-title: Deep learning in medical image analysis
  publication-title: Deep learning in medical image analysis: challenges and applications
– start-page: 31
  year: 2018
  ident: b14
  article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels
  publication-title: Advances in Neural Information Processing Systems
– start-page: 7164
  year: 2019
  end-page: 7173
  ident: b53
  article-title: How does disagreement help generalization against label corruption?
  publication-title: International conference on machine learning
– year: 2019
  ident: b35
  article-title: Self: Learning to filter noisy labels with self-ensembling
– volume: 7
  year: 2021
  ident: b37
  article-title: A review of medical image segmentation algorithms
  publication-title: EAI Endorsed Transactions on Pervasive Health and Technology
– reference: (pp. 2606–2616).
– start-page: 721
  year: 2020
  end-page: 730
  ident: b54
  article-title: Characterizing label errors: confident learning for noisy-labeled image segmentation
  publication-title: Medical image computing and computer assisted intervention–MICCAI 2020: 23rd international conference, Lima, Peru, october 4–8, 2020, proceedings, part I 23
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  ident: b22
  article-title: Snakes: Active contour models
  publication-title: International Journal of Computer Vision
– start-page: 225
  year: 2019
  end-page: 2255
  ident: b20
  article-title: Resunet++: An advanced architecture for medical image segmentation
  publication-title: 2019 IEEE international symposium on multimedia (ISM)
– volume: 95
  start-page: 291
  year: 2014
  end-page: 327
  ident: b52
  article-title: Learning from multiple annotators with varying expertise
  publication-title: Machine Learning
– start-page: 784
  year: 2020
  end-page: 800
  ident: b30
  article-title: Semi-supervised semantic segmentation via strong-weak dual-branch network
  publication-title: Computer vision–ECCV 2020: 16th European conference, Glasgow, UK, august 23–28, 2020, proceedings, part V 16
– year: 2018
  ident: b31
  article-title: Medical imaging systems: An introductory guide
– volume: 83
  start-page: 9
  year: 2021
  end-page: 24
  ident: b4
  article-title: Ai applications to medical images: From machine learning to deep learning
  publication-title: Physica Medica
– start-page: 32
  year: 2019
  ident: b48
  article-title: Are anchor points really indispensable in label-noise learning?
  publication-title: Advances in Neural Information Processing Systems
– start-page: 30
  year: 2017
  ident: b42
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Advances in Neural Information Processing Systems
– volume: 178
  year: 2020
  ident: b5
  article-title: Color index based thresholding method for background and foreground segmentation of plant images
  publication-title: Computers and Electronics in Agriculture
– reference: (pp. 322–330).
– reference: Ghosh, A., Kumar, H., & Sastry, P. S. (2017). Robust loss functions under label noise for deep neural networks. In
– volume: 39
  start-page: 139
  year: 2018
  end-page: 161
  ident: b33
  article-title: Mri based medical image analysis: Survey on brain tumor grade classification
  publication-title: Biomedical Signal Processing and Control
– volume: 70
  start-page: 1373
  year: 2021
  end-page: 1411
  ident: b36
  article-title: Confident learning: Estimating uncertainty in dataset labels
  publication-title: Journal of Artificial Intelligence Research
– volume: 13
  start-page: 1381
  year: 2020
  end-page: 1396
  ident: b1
  article-title: Systematic review of artificial intelligence techniques in the detection and classification of covid-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects
  publication-title: Journal of Infection and Public Health
– volume: 16
  start-page: 1243
  year: 2022
  end-page: 1267
  ident: b45
  article-title: Medical image segmentation using deep learning: A survey
  publication-title: IET Image Processing
– start-page: 1
  year: 2020
  end-page: 6
  ident: b23
  article-title: Segthor: Segmentation of thoracic organs at risk in ct images
  publication-title: 2020 tenth international conference on image processing theory, tools and applications (IPTA)
– reference: Huang, J., Qu, L., Jia, R., & Zhao, B. (2019). O2u-net: A simple noisy label detection approach for deep neural networks. In
– start-page: 32
  year: 2019
  ident: b50
  article-title: L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise
  publication-title: Advances in Neural Information Processing Systems
– reference: Liu, S., Liu, K., Zhu, W., Shen, Y., & Fernandez-Granda, C. (2022). Adaptive early-learning correction for segmentation from noisy annotations. In
– start-page: 517
  year: 2021
  end-page: 529
  ident: b11
  article-title: Teach me to segment with mixed supervision: Confident students become masters
  publication-title: Information processing in medical imaging: 27th international conference, IPMI 2021, virtual event, june 28–june 30, 2021, proceedings 27
– reference: .
– volume: 67
  year: 2021
  ident: b49
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging
  publication-title: Medical Image Analysis
– volume: 215
  year: 2021
  ident: b2
  article-title: Image classification with deep learning in the presence of noisy labels: A survey
  publication-title: Knowledge-Based Systems
– volume: 33
  start-page: 20331
  year: 2020
  end-page: 20342
  ident: b27
  article-title: Early-learning regularization prevents memorization of noisy labels
  publication-title: Advances in Neural Information Processing Systems
– reference: (pp. 11632–11640).
– volume: 89
  start-page: 2435
  year: 2009
  end-page: 2447
  ident: b44
  article-title: Active contours driven by local Gaussian distribution fitting energy
  publication-title: Signal Processing
– ident: 10.1016/j.eswa.2023.121926_b9
  doi: 10.1109/CVPR.2019.01190
– volume: 79
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b29
  article-title: High energy x-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105437
– ident: 10.1016/j.eswa.2023.121926_b18
  doi: 10.1109/ICCV.2019.00342
– start-page: 234
  year: 2015
  ident: 10.1016/j.eswa.2023.121926_b38
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 89
  start-page: 2435
  year: 2009
  ident: 10.1016/j.eswa.2023.121926_b44
  article-title: Active contours driven by local Gaussian distribution fitting energy
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2009.03.014
– volume: 16
  start-page: 1243
  year: 2022
  ident: 10.1016/j.eswa.2023.121926_b45
  article-title: Medical image segmentation using deep learning: A survey
  publication-title: IET Image Processing
  doi: 10.1049/ipr2.12419
– volume: 95
  start-page: 291
  year: 2014
  ident: 10.1016/j.eswa.2023.121926_b52
  article-title: Learning from multiple annotators with varying expertise
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5412-1
– start-page: 225
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b20
  article-title: Resunet++: An advanced architecture for medical image segmentation
– volume: 178
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b5
  article-title: Color index based thresholding method for background and foreground segmentation of plant images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105783
– volume: 39
  start-page: 139
  year: 2018
  ident: 10.1016/j.eswa.2023.121926_b33
  article-title: Mri based medical image analysis: Survey on brain tumor grade classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.07.007
– year: 2020
  ident: 10.1016/j.eswa.2023.121926_b25
– volume: 86
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b13
  article-title: Segmentation of coronary arteries images using global feature embedded network with active contour loss
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2020.101799
– volume: 215
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b2
  article-title: Image classification with deep learning in the presence of noisy labels: A survey
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106771
– start-page: 517
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b11
  article-title: Teach me to segment with mixed supervision: Confident students become masters
– ident: 10.1016/j.eswa.2023.121926_b12
  doi: 10.1609/aaai.v31i1.10894
– volume: 45
  start-page: 2769
  year: 2012
  ident: 10.1016/j.eswa.2023.121926_b28
  article-title: A local region-based chan–vese model for image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.11.019
– start-page: 249
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b56
  article-title: Robust medical image segmentation from non-expert annotations with tri-network
– volume: 10
  start-page: 266
  year: 2001
  ident: 10.1016/j.eswa.2023.121926_b7
  article-title: Active contours without edges
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.902291
– volume: 46
  start-page: e1
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b39
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Medical Physics
  doi: 10.1002/mp.13264
– volume: 162
  start-page: 94
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b10
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.01.013
– ident: 10.1016/j.eswa.2023.121926_b47
  doi: 10.1109/ICCV.2019.00041
– start-page: 32
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b48
  article-title: Are anchor points really indispensable in label-noise learning?
  publication-title: Advances in Neural Information Processing Systems
– start-page: 721
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b54
  article-title: Characterizing label errors: confident learning for noisy-labeled image segmentation
– volume: 67
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b49
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101832
– start-page: 576
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b57
  article-title: Pick-and-learn: Automatic quality evaluation for noisy-labeled image segmentation
– volume: 83
  start-page: 9
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b4
  article-title: Ai applications to medical images: From machine learning to deep learning
  publication-title: Physica Medica
  doi: 10.1016/j.ejmp.2021.02.006
– ident: 10.1016/j.eswa.2023.121926_b26
  doi: 10.1109/CVPR52688.2022.00263
– start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2023.121926_b32
  article-title: Decoupling when to update from how to update
  publication-title: Advances in Neural Information Processing Systems
– volume: 22
  start-page: 11
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b46
  article-title: A review on medical imaging synthesis using deep learning and its clinical applications
  publication-title: Journal of Applied Clinical Medical Physics
  doi: 10.1002/acm2.13121
– start-page: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b6
  article-title: Deep learning in medical image analysis
– year: 2019
  ident: 10.1016/j.eswa.2023.121926_b35
– year: 2018
  ident: 10.1016/j.eswa.2023.121926_b31
– year: 2022
  ident: 10.1016/j.eswa.2023.121926_b41
  article-title: Learning from noisy labels with deep neural networks: A survey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 32
  start-page: 582
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b16
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-019-00227-x
– start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2023.121926_b42
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 20331
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b27
  article-title: Early-learning regularization prevents memorization of noisy labels
  publication-title: Advances in Neural Information Processing Systems
– start-page: 784
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b30
  article-title: Semi-supervised semantic segmentation via strong-weak dual-branch network
– start-page: 1055
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b17
  article-title: Unet 3+: A full-scale connected unet for medical image segmentation
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b34
  article-title: Miscnn: a framework for medical image segmentation with convolutional neural networks and deep learning
  publication-title: BMC Medical Imaging
  doi: 10.1186/s12880-020-00543-7
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b23
  article-title: Segthor: Segmentation of thoracic organs at risk in ct images
– start-page: 31
  year: 2018
  ident: 10.1016/j.eswa.2023.121926_b14
  article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: 10.1016/j.eswa.2023.121926_b19
– volume: 70
  start-page: 1373
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b36
  article-title: Confident learning: Estimating uncertainty in dataset labels
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.12125
– start-page: 1062
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b8
  article-title: Understanding and utilizing deep neural networks trained with noisy labels
– start-page: 32
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b50
  article-title: L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise
  publication-title: Advances in Neural Information Processing Systems
– start-page: 5739
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b40
  article-title: Learning with bad training data via iterative trimmed loss minimization
– ident: 10.1016/j.eswa.2023.121926_b15
  doi: 10.1109/WACV51458.2022.00181
– volume: 1
  start-page: 321
  year: 1988
  ident: 10.1016/j.eswa.2023.121926_b22
  article-title: Snakes: Active contour models
  publication-title: International Journal of Computer Vision
  doi: 10.1007/BF00133570
– volume: 7
  year: 2021
  ident: 10.1016/j.eswa.2023.121926_b37
  article-title: A review of medical image segmentation algorithms
  publication-title: EAI Endorsed Transactions on Pervasive Health and Technology
  doi: 10.4108/eai.12-4-2021.169184
– start-page: 2304
  year: 2018
  ident: 10.1016/j.eswa.2023.121926_b21
  article-title: Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels
– volume: 41
  start-page: 3062
  year: 2022
  ident: 10.1016/j.eswa.2023.121926_b51
  article-title: Anti-interference from noisy labels: Mean-teacher-assisted confident learning for medical image segmentation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3176915
– volume: 60
  start-page: 544
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b43
  article-title: X-ray computed tomography: from medical imaging to dimensional metrology
  publication-title: Precision Engineering
  doi: 10.1016/j.precisioneng.2019.06.007
– year: 2021
  ident: 10.1016/j.eswa.2023.121926_b3
– start-page: 7164
  year: 2019
  ident: 10.1016/j.eswa.2023.121926_b53
  article-title: How does disagreement help generalization against label corruption?
– volume: 13
  start-page: 1381
  year: 2020
  ident: 10.1016/j.eswa.2023.121926_b1
  article-title: Systematic review of artificial intelligence techniques in the detection and classification of covid-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects
  publication-title: Journal of Infection and Public Health
  doi: 10.1016/j.jiph.2020.06.028
– volume: 43
  start-page: 1199
  year: 2010
  ident: 10.1016/j.eswa.2023.121926_b55
  article-title: Active contours driven by local image fitting energy
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.10.010
– volume: 17
  start-page: 1940
  year: 2008
  ident: 10.1016/j.eswa.2023.121926_b24
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2008.2002304
SSID ssj0017007
Score 2.4687598
Snippet To aid in diagnosis and analysis, deep learning has been applied to medical image analysis by many researchers. Most existing methods train models using many...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121926
SubjectTerms Active contours
Learning with noisy labels
Medical image segmentation
Region-Scalable Fitting
Title Region-scalable fitting-assisted medical image segmentation with noisy labels
URI https://dx.doi.org/10.1016/j.eswa.2023.121926
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC50vHhxXR_o7ip92Ju0k0c_jyLKrLIefIC3kHS6JeJkxBkRL_52qyYdURAPHhOqoPm6U1Wd-qoK4C9usjDeKO6tozSjDBzDkIqHNJjSKZ3bak6QPVOjK3FyLa8X4LCvhSFaZbT9nU2fW-v4ZhjRHN43zfACgwN0h5RpJD9jxCIsZblVcgBLB_9OR2dvyQSddFXTKM9JIdbOdDQvP32i9kNZTn0WLPVY-Mw_vfM5x6uwEoNFdtCt5ycs-HYNfvSDGFj8Ltfh_7knWjGfIuBUCsVCM6czc4yMaRtrNu7yMawZo_1gU38zjjVHLaM_saydNNNnhsq4lA24Oj66PBzxOCeBuzxJZtzgJS1kmfdJ7tG7KOPSoG3ig9T1vG9oooM2lMHTppJJhfJOOJ2p2qbSYMixCYN20votYKK0pTSJKlUQQuMNU9jKOVubulTeyXQb0h6dwsUm4jTL4q7o2WK3BSFaEKJFh-g27L3p3HctNL6Ulj3oxYeDUKCN_0Lv1zf1fsMyPgmilaXyDwxmD49-B-OMWbULi_sv6W48Ta_G7NAl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjShPD2zIatLasTNWFVV5tAMPiS1KHBsF0bSiRYh_z13jIJAQA2vik6zPzj1y390BnOEhC211xG1sKM0oHUc3JOMudDo1kerE2YIgO4oGD-LqUT4uQa-uhSFapdf9lU5faGv_pOXRbE2LonWHzgGaQ8o0kp3RYhlWhMRorwEr3cvrwegrmaCCqmoa13MS8LUzFc3Lzt6p_VC7Q30WYuqx8Jt9-mZz-puw7p1F1q32swVLttyGjXoQA_Pf5Q4Mby3RivkMAadSKOaKBZ2Zo2dMx5izcZWPYcUY9Qeb2aexrzkqGf2JZeWkmH0wFMat7MJD_-K-N-B-TgI3nSCYc41Bmmu3rQ06Fq1LpE3oVBxYJ1W-6BsaKKc0ZfCUzmSQ4XojjGpHeRxKjS7HHjTKSWn3gYk0TqUOojRyQiiMMEWcGRPnOk8ja2TYhLBGJzG-iTjNsnhJarbYc0KIJoRoUiHahPMvmWnVQuPP1bIGPflxERLU8X_IHfxT7hRWB_fDm-TmcnR9CGv4RhDFLJRH0Ji_vtlj9Dnm2Ym_U5_H99IU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Region-scalable+fitting-assisted+medical+image+segmentation+with+noisy+labels&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Shangkun&rft.au=Li%2C+Yanxin&rft.au=Chai%2C+Qing-wei&rft.au=Zheng%2C+Weimin&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=121926&rft_id=info:doi/10.1016%2Fj.eswa.2023.121926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon