Proximal causal inference for complex longitudinal studies

A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as ‘sequential randomization assumption (SRA)’. S...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 85; no. 3; pp. 684 - 704
Main Authors Ying, Andrew, Miao, Wang, Shi, Xu, Tchetgen Tchetgen, Eric J
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as ‘sequential randomization assumption (SRA)’. SRA is often criticized as it requires one to accurately measure all confounders. Realistically, measured covariates can rarely capture all confounders with certainty. Often covariate measurements are at best proxies of confounders, thus invalidating inferences under SRA. In this paper, we extend the proximal causal inference (PCI) framework of Miao, Geng, et al. (2018. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika, 105(4), 987–993. https://doi.org/10.1093/biomet/asy038) to the longitudinal setting under a semiparametric marginal structural mean model (MSMM). PCI offers an opportunity to learn about joint causal effects in settings where SRA based on measured time-varying covariates fails, by formally accounting for the covariate measurements as imperfect proxies of underlying confounding mechanisms. We establish nonparametric identification with a pair of time-varying proxies and provide a corresponding characterization of regular and asymptotically linear estimators of the parameter indexing the MSMM, including a rich class of doubly robust estimators, and establish the corresponding semiparametric efficiency bound for the MSMM. Extensive simulation studies and a data application illustrate the finite sample behaviour of proposed methods.
AbstractList A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as ‘sequential randomization assumption (SRA)’. SRA is often criticized as it requires one to accurately measure all confounders. Realistically, measured covariates can rarely capture all confounders with certainty. Often covariate measurements are at best proxies of confounders, thus invalidating inferences under SRA. In this paper, we extend the proximal causal inference (PCI) framework of Miao, Geng, et al. (2018. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika, 105(4), 987–993. https://doi.org/10.1093/biomet/asy038) to the longitudinal setting under a semiparametric marginal structural mean model (MSMM). PCI offers an opportunity to learn about joint causal effects in settings where SRA based on measured time-varying covariates fails, by formally accounting for the covariate measurements as imperfect proxies of underlying confounding mechanisms. We establish nonparametric identification with a pair of time-varying proxies and provide a corresponding characterization of regular and asymptotically linear estimators of the parameter indexing the MSMM, including a rich class of doubly robust estimators, and establish the corresponding semiparametric efficiency bound for the MSMM. Extensive simulation studies and a data application illustrate the finite sample behaviour of proposed methods.
Author Ying, Andrew
Tchetgen Tchetgen, Eric J
Shi, Xu
Miao, Wang
Author_xml – sequence: 1
  givenname: Andrew
  surname: Ying
  fullname: Ying, Andrew
– sequence: 2
  givenname: Wang
  surname: Miao
  fullname: Miao, Wang
– sequence: 3
  givenname: Xu
  surname: Shi
  fullname: Shi, Xu
– sequence: 4
  givenname: Eric J
  surname: Tchetgen Tchetgen
  fullname: Tchetgen Tchetgen, Eric J
BookMark eNp1kM1LAzEQxYNUsK1ePS943jbZbL68SfELCnrQc0jTrGTdJtvMLtT_3pT2JDiXN4f3G-a9GZqEGBxCtwQvCFZ02SYA2Cz332aLK3yBpqTmolSSy0neKVelqEl1hWYALc7DBZ2i-_cUD35nusKaEbL40LjkgnVFE1Nh467v3KHoYvjyw7j1IVvguDi4RpeN6cDdnHWOPp8eP1Yv5frt-XX1sC4txXgopZAWO0kUbhirWEO4II5aojhjUjArjZNUUCtrIzbCELnBVaWY4kRkozB0ju5Od_sU96ODQbdxTPkR0LSqcwyBMz9Hi5PLpgiQXKP7lHOlH02wPvajT_3ocz8ZqP8A1g9m8DEMyfjuP-wXFzlukQ
CitedBy_id crossref_primary_10_1080_24754269_2024_2390748
crossref_primary_10_1093_jrsssb_qkae037
crossref_primary_10_1214_23_STS911
crossref_primary_10_2139_ssrn_4687430
crossref_primary_10_1093_biomtc_ujae027
crossref_primary_10_1038_s43586_023_00249_4
crossref_primary_10_1080_21568316_2024_2392788
Cites_doi 10.1016/j.jeconom.2017.05.011
10.1214/16-STS558
10.1111/rssb.12361
10.1097/00001648-200009000-00011
10.1214/16-AOS1511
10.1017/S0266466610000368
10.1097/EDE.0b013e3181fdcabe
10.1111/1468-0262.00459
10.1016/S0140-6736(02)08213-2
10.1093/aje/kwx013
10.1198/016214501753168154
10.1007/s40471-020-00243-4
10.1017/S0266466617000251
10.1023/A:1005285815569
10.1016/S0021-9681(87)80018-8
10.3982/ECTA6539
10.1016/0270-0255(86)90088-6
10.3982/ECTA9988
10.1093/biomet/asy038
10.1080/01621459.2020.1783272
10.1093/aje/kwt303
10.1093/biostatistics/kxr034
10.1097/EDE.0b013e3181d61eeb
10.1093/biomet/ast066
ContentType Journal Article
Copyright (RSS) Royal Statistical Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Copyright_xml – notice: (RSS) Royal Statistical Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1093/jrsssb/qkad020
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 704
ExternalDocumentID 10_1093_jrsssb_qkad020
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AAPXW
AARHZ
AAUAY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQP
ABPTD
ABPVW
ABWST
ABYWD
ABZEH
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADQBN
ADRDM
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AEMOZ
AEQDE
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AHQJS
AIWBW
AJBDE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBA
EBO
EBR
EBS
EBU
EDO
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
H13
HZI
HZ~
IHE
IX1
J0M
JAS
K1G
K48
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROX
RX1
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c300t-878c0e8190f5525f1671e3c19655875c8ae8373c84a7b7a18b02295961771e7a3
ISSN 1369-7412
IngestDate Tue Aug 19 10:11:05 EDT 2025
Tue Jul 01 03:43:12 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-878c0e8190f5525f1671e3c19655875c8ae8373c84a7b7a18b02295961771e7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3240677037
PQPubID 39359
PageCount 21
ParticipantIDs proquest_journals_3240677037
crossref_primary_10_1093_jrsssb_qkad020
crossref_citationtrail_10_1093_jrsssb_qkad020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lipsitch (2023071211304822400_qkad020-B18) 2010; 21
Miao (2023071211304822400_qkad020-B20) 2018; 105
Gagnon-Bartsch (2023071211304822400_qkad020-B11) 2012; 13
Tennenholtz (2023071211304822400_qkad020-B37) 2020
D’Haultfoeuille (2023071211304822400_qkad020-B8) 2011; 27
Wang (2023071211304822400_qkad020-B38) 2017; 45
Flanders (2023071211304822400_qkad020-B9) 2011; 22
Sofer (2023071211304822400_qkad020-B33) 2016; 31
Cui (2023071211304822400_qkad020-B5) 2021; 116
Robins (2023071211304822400_qkad020-B26) 1987; 40
Cui (2023071211304822400_qkad020-B4) 2020
Hernán (2023071211304822400_qkad020-B13) 2001; 96
Hernán (2023071211304822400_qkad020-B14) 2020
Kuroki (2023071211304822400_qkad020-B17) 2014; 101
Chen (2023071211304822400_qkad020-B2) 2014; 82
Darolles (2023071211304822400_qkad020-B6) 2011; 79
Mastouri (2023071211304822400_qkad020-B19) 2021
Robins (2023071211304822400_qkad020-B25) 1986; 7
Robins (2023071211304822400_qkad020-B28) 1998
Robins (2023071211304822400_qkad020-B30) 2000
Hu (2023071211304822400_qkad020-B15) 2018; 34
Ghassami (2023071211304822400_qkad020-B12) 2022
Michael (2023071211304822400_qkad020-B22) 2020
Miao (2023071211304822400_qkad020-B21) 2018
Tchetgen Tchetgen (2023071211304822400_qkad020-B35) 2018
Shi (2023071211304822400_qkad020-B31) 2020; 82
Kallus (2023071211304822400_qkad020-B16) 2021
Robins (2023071211304822400_qkad020-B27) 1997
Robins (2023071211304822400_qkad020-B24) 2000; 11
Tchetgen Tchetgen (2023071211304822400_qkad020-B34) 2014; 179
Tchetgen Tchetgen (2023071211304822400_qkad020-B36) 2020
Newey (2023071211304822400_qkad020-B23) 2003; 71
Shi (2023071211304822400_qkad020-B32) 2020; 7
Robins (2023071211304822400_qkad020-B29) 1999; 121
Flanders (2023071211304822400_qkad020-B10) 2017; 185
Andrews (2023071211304822400_qkad020-B1) 2017; 199
Choi (2023071211304822400_qkad020-B3) 2002; 359
Deaner (2023071211304822400_qkad020-B7) 2020
References_xml – volume: 199
  start-page: 213
  issue: 2
  year: 2017
  ident: 2023071211304822400_qkad020-B1
  article-title: Examples of L2-complete and boundedly-complete distributions
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2017.05.011
– volume: 31
  start-page: 348
  issue: 3
  year: 2016
  ident: 2023071211304822400_qkad020-B33
  article-title: On negative outcome control of unobserved confounding as a generalization of difference-in-differences
  publication-title: Statistical Science: A Review Journal of the Institute of Mathematical Statistics
  doi: 10.1214/16-STS558
– volume: 82
  start-page: 521
  issue: 2
  year: 2020
  ident: 2023071211304822400_qkad020-B31
  article-title: Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12361
– volume: 11
  start-page: 550
  issue: 5
  year: 2000
  ident: 2023071211304822400_qkad020-B24
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
  doi: 10.1097/00001648-200009000-00011
– volume: 45
  start-page: 1863
  issue: 5
  year: 2017
  ident: 2023071211304822400_qkad020-B38
  article-title: Confounder adjustment in multiple hypothesis testing
  publication-title: Annals of Statistics
  doi: 10.1214/16-AOS1511
– volume: 27
  start-page: 460
  issue: 3
  year: 2011
  ident: 2023071211304822400_qkad020-B8
  article-title: On the completeness condition in nonparametric instrumental problems
  publication-title: Econometric Theory
  doi: 10.1017/S0266466610000368
– volume: 22
  start-page: 59
  issue: 1
  year: 2011
  ident: 2023071211304822400_qkad020-B9
  article-title: A method for detection of residual confounding in time-series and other observational studies
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181fdcabe
– volume: 71
  start-page: 1565
  issue: 5
  year: 2003
  ident: 2023071211304822400_qkad020-B23
  article-title: Instrumental variable estimation of nonparametric models
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00459
– year: 2018
  ident: 2023071211304822400_qkad020-B35
– volume: 359
  start-page: 1173
  issue: 9313
  year: 2002
  ident: 2023071211304822400_qkad020-B3
  article-title: Methotrexate and mortality in patients with rheumatoid arthritis: A prospective study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(02)08213-2
– volume: 185
  start-page: 941
  issue: 10
  year: 2017
  ident: 2023071211304822400_qkad020-B10
  article-title: A new method for partial correction of residual confounding in time-series and other observational studies
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwx013
– volume: 96
  start-page: 440
  issue: 454
  year: 2001
  ident: 2023071211304822400_qkad020-B13
  article-title: Marginal structural models to estimate the joint causal effect of nonrandomized treatments
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753168154
– volume: 7
  start-page: 190
  issue: 4
  year: 2020
  ident: 2023071211304822400_qkad020-B32
  article-title: A selective review of negative control methods in epidemiology
  publication-title: Current Epidemiology Reports
  doi: 10.1007/s40471-020-00243-4
– year: 2020
  ident: 2023071211304822400_qkad020-B22
– year: 2020
  ident: 2023071211304822400_qkad020-B4
– volume: 34
  start-page: 659
  issue: 3
  year: 2018
  ident: 2023071211304822400_qkad020-B15
  article-title: Nonparametric identification using instrumental variables: Sufficient conditions for completeness
  publication-title: Econometric Theory
  doi: 10.1017/S0266466617000251
– year: 2021
  ident: 2023071211304822400_qkad020-B19
– year: 2021
  ident: 2023071211304822400_qkad020-B16
– volume: 121
  start-page: 151
  issue: 1/2
  year: 1999
  ident: 2023071211304822400_qkad020-B29
  article-title: Association, causation, and marginal structural models
  publication-title: Synthese
  doi: 10.1023/A:1005285815569
– year: 1997
  ident: 2023071211304822400_qkad020-B27
– year: 2020
  ident: 2023071211304822400_qkad020-B37
– volume: 40
  start-page: 139S
  year: 1987
  ident: 2023071211304822400_qkad020-B26
  article-title: A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
  publication-title: Journal of Chronic Diseases
  doi: 10.1016/S0021-9681(87)80018-8
– year: 2022
  ident: 2023071211304822400_qkad020-B12
– year: 1998
  ident: 2023071211304822400_qkad020-B28
– volume: 79
  start-page: 1541
  issue: 5
  year: 2011
  ident: 2023071211304822400_qkad020-B6
  article-title: Nonparametric instrumental regression
  publication-title: Econometrica
  doi: 10.3982/ECTA6539
– year: 2020
  ident: 2023071211304822400_qkad020-B7
– volume: 7
  start-page: 1393
  issue: 9–12
  year: 1986
  ident: 2023071211304822400_qkad020-B25
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect
  publication-title: Mathematical Modelling
  doi: 10.1016/0270-0255(86)90088-6
– volume: 82
  start-page: 785
  issue: 2
  year: 2014
  ident: 2023071211304822400_qkad020-B2
  article-title: Local identification of nonparametric and semiparametric models
  publication-title: Econometrica
  doi: 10.3982/ECTA9988
– volume-title: Causal inference: What if
  year: 2020
  ident: 2023071211304822400_qkad020-B14
– volume: 105
  start-page: 987
  issue: 4
  year: 2018
  ident: 2023071211304822400_qkad020-B20
  article-title: Identifying causal effects with proxy variables of an unmeasured confounder
  publication-title: Biometrika
  doi: 10.1093/biomet/asy038
– volume: 116
  start-page: 162
  issue: 533
  year: 2021
  ident: 2023071211304822400_qkad020-B5
  article-title: A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2020.1783272
– volume: 179
  start-page: 633
  issue: 5
  year: 2014
  ident: 2023071211304822400_qkad020-B34
  article-title: The control outcome calibration approach for causal inference with unobserved confounding
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwt303
– year: 2020
  ident: 2023071211304822400_qkad020-B36
– volume: 13
  start-page: 539
  issue: 3
  year: 2012
  ident: 2023071211304822400_qkad020-B11
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr034
– year: 2018
  ident: 2023071211304822400_qkad020-B21
– volume: 21
  start-page: 383
  issue: 3
  year: 2010
  ident: 2023071211304822400_qkad020-B18
  article-title: Negative controls: A tool for detecting confounding and bias in observational studies
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181d61eeb
– year: 2000
  ident: 2023071211304822400_qkad020-B30
– volume: 101
  start-page: 423
  issue: 2
  year: 2014
  ident: 2023071211304822400_qkad020-B17
  article-title: Measurement bias and effect restoration in causal inference
  publication-title: Biometrika
  doi: 10.1093/biomet/ast066
SSID ssj0000673
Score 2.512318
Snippet A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 684
SubjectTerms Estimators
Indexing
Inference
Longitudinal studies
Proxies
Simulation
Time measurement
Title Proximal causal inference for complex longitudinal studies
URI https://www.proquest.com/docview/3240677037
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeNkLYvwQGxvKAxIPVbY0TmyHN0CbpmkbCKVSeYocxxaFrYUmkSb-Ef5dzj4nTTWYgJfIcl0r9Z3vPl_P9xHykrM0VSk1ITUyCZMM9pxkxoSmAvenxESJ0sYhLy7Z6TQ5m6Wz0ejnIGupbcpD9eO390r-R6rQB3K1t2T_QbL9pNABbZAvPEHC8PwrGX9YLW_m17bCh2xrVz2jqxprkwddtri-GV8tLSdRWzn-q3qQN3gbk1oUigEFC0JdDWfbxszOQ2tY4Lvjt5geth6ANNQbAfpPnitlkDDpwvbYezGXy65v1rrpPs97cG-T-8_GOahTAz-9bwwDFDHtk1mbuy4-DmwuZVkIwAaNssY-a78zgYw7naFGbh-vkHRgdRmyzHkHzpHP-JZvwLpZX1Z1XZfQ-P5VVlEcrf1g99__5fviZHp-XuTHs_weuR_D-cOd1T_GQxdP8UIfvnlfDZQe4fxHfvZNtLPp7B2CyR-SB17MwRvUox0y0otHZLuXY_2YvO4UKkCFCnqFCmB1A69QwVChAq9QT8j05Dh_dxp6co1Q0ShqwAsKFWmLB02axqmZMD7RVNkCkymcYZWQWlAO2zWRvORyIsrIMr9ngHhhIJf0KdlaLBf6GQlYnBlmoiqq4HCqYiWozAzMqkWiAS6WuyTsFqFQvvK8JUC5KjADgha4aIVftF3yqh__DWuu_HHkfremhd-XdWFLTDIOnozv3f3xc7K91td9stWsWn0AELMpXzhx_wJIU4Q7
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+causal+inference+for+complex+longitudinal+studies&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Ying%2C+Andrew&rft.au=Wang%2C+Miao&rft.au=Xu%2C+Shi&rft.au=Eric+J+Tchetgen+Tchetgen&rft.date=2023-07-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=85&rft.issue=3&rft.spage=684&rft.epage=704&rft_id=info:doi/10.1093%2Fjrsssb%2Fqkad020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon