Proximal causal inference for complex longitudinal studies
A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as ‘sequential randomization assumption (SRA)’. S...
Saved in:
Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 85; no. 3; pp. 684 - 704 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as ‘sequential randomization assumption (SRA)’. SRA is often criticized as it requires one to accurately measure all confounders. Realistically, measured covariates can rarely capture all confounders with certainty. Often covariate measurements are at best proxies of confounders, thus invalidating inferences under SRA. In this paper, we extend the proximal causal inference (PCI) framework of Miao, Geng, et al. (2018. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika, 105(4), 987–993. https://doi.org/10.1093/biomet/asy038) to the longitudinal setting under a semiparametric marginal structural mean model (MSMM). PCI offers an opportunity to learn about joint causal effects in settings where SRA based on measured time-varying covariates fails, by formally accounting for the covariate measurements as imperfect proxies of underlying confounding mechanisms. We establish nonparametric identification with a pair of time-varying proxies and provide a corresponding characterization of regular and asymptotically linear estimators of the parameter indexing the MSMM, including a rich class of doubly robust estimators, and establish the corresponding semiparametric efficiency bound for the MSMM. Extensive simulation studies and a data application illustrate the finite sample behaviour of proposed methods. |
---|---|
AbstractList | A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as ‘sequential randomization assumption (SRA)’. SRA is often criticized as it requires one to accurately measure all confounders. Realistically, measured covariates can rarely capture all confounders with certainty. Often covariate measurements are at best proxies of confounders, thus invalidating inferences under SRA. In this paper, we extend the proximal causal inference (PCI) framework of Miao, Geng, et al. (2018. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika, 105(4), 987–993. https://doi.org/10.1093/biomet/asy038) to the longitudinal setting under a semiparametric marginal structural mean model (MSMM). PCI offers an opportunity to learn about joint causal effects in settings where SRA based on measured time-varying covariates fails, by formally accounting for the covariate measurements as imperfect proxies of underlying confounding mechanisms. We establish nonparametric identification with a pair of time-varying proxies and provide a corresponding characterization of regular and asymptotically linear estimators of the parameter indexing the MSMM, including a rich class of doubly robust estimators, and establish the corresponding semiparametric efficiency bound for the MSMM. Extensive simulation studies and a data application illustrate the finite sample behaviour of proposed methods. |
Author | Ying, Andrew Tchetgen Tchetgen, Eric J Shi, Xu Miao, Wang |
Author_xml | – sequence: 1 givenname: Andrew surname: Ying fullname: Ying, Andrew – sequence: 2 givenname: Wang surname: Miao fullname: Miao, Wang – sequence: 3 givenname: Xu surname: Shi fullname: Shi, Xu – sequence: 4 givenname: Eric J surname: Tchetgen Tchetgen fullname: Tchetgen Tchetgen, Eric J |
BookMark | eNp1kM1LAzEQxYNUsK1ePS943jbZbL68SfELCnrQc0jTrGTdJtvMLtT_3pT2JDiXN4f3G-a9GZqEGBxCtwQvCFZ02SYA2Cz332aLK3yBpqTmolSSy0neKVelqEl1hWYALc7DBZ2i-_cUD35nusKaEbL40LjkgnVFE1Nh467v3KHoYvjyw7j1IVvguDi4RpeN6cDdnHWOPp8eP1Yv5frt-XX1sC4txXgopZAWO0kUbhirWEO4II5aojhjUjArjZNUUCtrIzbCELnBVaWY4kRkozB0ju5Od_sU96ODQbdxTPkR0LSqcwyBMz9Hi5PLpgiQXKP7lHOlH02wPvajT_3ocz8ZqP8A1g9m8DEMyfjuP-wXFzlukQ |
CitedBy_id | crossref_primary_10_1080_24754269_2024_2390748 crossref_primary_10_1093_jrsssb_qkae037 crossref_primary_10_1214_23_STS911 crossref_primary_10_2139_ssrn_4687430 crossref_primary_10_1093_biomtc_ujae027 crossref_primary_10_1038_s43586_023_00249_4 crossref_primary_10_1080_21568316_2024_2392788 |
Cites_doi | 10.1016/j.jeconom.2017.05.011 10.1214/16-STS558 10.1111/rssb.12361 10.1097/00001648-200009000-00011 10.1214/16-AOS1511 10.1017/S0266466610000368 10.1097/EDE.0b013e3181fdcabe 10.1111/1468-0262.00459 10.1016/S0140-6736(02)08213-2 10.1093/aje/kwx013 10.1198/016214501753168154 10.1007/s40471-020-00243-4 10.1017/S0266466617000251 10.1023/A:1005285815569 10.1016/S0021-9681(87)80018-8 10.3982/ECTA6539 10.1016/0270-0255(86)90088-6 10.3982/ECTA9988 10.1093/biomet/asy038 10.1080/01621459.2020.1783272 10.1093/aje/kwt303 10.1093/biostatistics/kxr034 10.1097/EDE.0b013e3181d61eeb 10.1093/biomet/ast066 |
ContentType | Journal Article |
Copyright | (RSS) Royal Statistical Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com |
Copyright_xml | – notice: (RSS) Royal Statistical Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com |
DBID | AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1093/jrsssb/qkad020 |
DatabaseName | CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1467-9868 |
EndPage | 704 |
ExternalDocumentID | 10_1093_jrsssb_qkad020 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 10A 1OC 29L 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHBH AAHHS AAONW AAPXW AARHZ AAUAY AAXRX AAYXX AAZKR ABCQN ABCUV ABDFA ABEHJ ABEML ABFAN ABIVO ABLJU ABPFR ABPQP ABPTD ABPVW ABWST ABYWD ABZEH ACAHQ ACCFJ ACCZN ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADQBN ADRDM ADVEK ADZMN AEEZP AEGXH AEIMD AEMOZ AEQDE AFBPY AFEBI AFGKR AFVYC AFXHP AFZJQ AHQJS AIWBW AJBDE AJNCP AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMVHM AMYDB ARCSS ASPBG ATGXG ATUGU AUFTA AVWKF AZBYB AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION CJ0 CO8 CS3 D-E DCZOG DPXWK DR2 DRFUL DRSTM EBA EBO EBR EBS EBU EDO EMK F00 F5P G-S G.N GODZA H.T H.X H13 HZI HZ~ IHE IX1 J0M JAS K1G K48 LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RNS ROX RX1 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZL0 ZZTAW ~02 ~IA ~KM ~WT 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c300t-878c0e8190f5525f1671e3c19655875c8ae8373c84a7b7a18b02295961771e7a3 |
ISSN | 1369-7412 |
IngestDate | Tue Aug 19 10:11:05 EDT 2025 Tue Jul 01 03:43:12 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-878c0e8190f5525f1671e3c19655875c8ae8373c84a7b7a18b02295961771e7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3240677037 |
PQPubID | 39359 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3240677037 crossref_primary_10_1093_jrsssb_qkad020 crossref_citationtrail_10_1093_jrsssb_qkad020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lipsitch (2023071211304822400_qkad020-B18) 2010; 21 Miao (2023071211304822400_qkad020-B20) 2018; 105 Gagnon-Bartsch (2023071211304822400_qkad020-B11) 2012; 13 Tennenholtz (2023071211304822400_qkad020-B37) 2020 D’Haultfoeuille (2023071211304822400_qkad020-B8) 2011; 27 Wang (2023071211304822400_qkad020-B38) 2017; 45 Flanders (2023071211304822400_qkad020-B9) 2011; 22 Sofer (2023071211304822400_qkad020-B33) 2016; 31 Cui (2023071211304822400_qkad020-B5) 2021; 116 Robins (2023071211304822400_qkad020-B26) 1987; 40 Cui (2023071211304822400_qkad020-B4) 2020 Hernán (2023071211304822400_qkad020-B13) 2001; 96 Hernán (2023071211304822400_qkad020-B14) 2020 Kuroki (2023071211304822400_qkad020-B17) 2014; 101 Chen (2023071211304822400_qkad020-B2) 2014; 82 Darolles (2023071211304822400_qkad020-B6) 2011; 79 Mastouri (2023071211304822400_qkad020-B19) 2021 Robins (2023071211304822400_qkad020-B25) 1986; 7 Robins (2023071211304822400_qkad020-B28) 1998 Robins (2023071211304822400_qkad020-B30) 2000 Hu (2023071211304822400_qkad020-B15) 2018; 34 Ghassami (2023071211304822400_qkad020-B12) 2022 Michael (2023071211304822400_qkad020-B22) 2020 Miao (2023071211304822400_qkad020-B21) 2018 Tchetgen Tchetgen (2023071211304822400_qkad020-B35) 2018 Shi (2023071211304822400_qkad020-B31) 2020; 82 Kallus (2023071211304822400_qkad020-B16) 2021 Robins (2023071211304822400_qkad020-B27) 1997 Robins (2023071211304822400_qkad020-B24) 2000; 11 Tchetgen Tchetgen (2023071211304822400_qkad020-B34) 2014; 179 Tchetgen Tchetgen (2023071211304822400_qkad020-B36) 2020 Newey (2023071211304822400_qkad020-B23) 2003; 71 Shi (2023071211304822400_qkad020-B32) 2020; 7 Robins (2023071211304822400_qkad020-B29) 1999; 121 Flanders (2023071211304822400_qkad020-B10) 2017; 185 Andrews (2023071211304822400_qkad020-B1) 2017; 199 Choi (2023071211304822400_qkad020-B3) 2002; 359 Deaner (2023071211304822400_qkad020-B7) 2020 |
References_xml | – volume: 199 start-page: 213 issue: 2 year: 2017 ident: 2023071211304822400_qkad020-B1 article-title: Examples of L2-complete and boundedly-complete distributions publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2017.05.011 – volume: 31 start-page: 348 issue: 3 year: 2016 ident: 2023071211304822400_qkad020-B33 article-title: On negative outcome control of unobserved confounding as a generalization of difference-in-differences publication-title: Statistical Science: A Review Journal of the Institute of Mathematical Statistics doi: 10.1214/16-STS558 – volume: 82 start-page: 521 issue: 2 year: 2020 ident: 2023071211304822400_qkad020-B31 article-title: Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12361 – volume: 11 start-page: 550 issue: 5 year: 2000 ident: 2023071211304822400_qkad020-B24 article-title: Marginal structural models and causal inference in epidemiology publication-title: Epidemiology doi: 10.1097/00001648-200009000-00011 – volume: 45 start-page: 1863 issue: 5 year: 2017 ident: 2023071211304822400_qkad020-B38 article-title: Confounder adjustment in multiple hypothesis testing publication-title: Annals of Statistics doi: 10.1214/16-AOS1511 – volume: 27 start-page: 460 issue: 3 year: 2011 ident: 2023071211304822400_qkad020-B8 article-title: On the completeness condition in nonparametric instrumental problems publication-title: Econometric Theory doi: 10.1017/S0266466610000368 – volume: 22 start-page: 59 issue: 1 year: 2011 ident: 2023071211304822400_qkad020-B9 article-title: A method for detection of residual confounding in time-series and other observational studies publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181fdcabe – volume: 71 start-page: 1565 issue: 5 year: 2003 ident: 2023071211304822400_qkad020-B23 article-title: Instrumental variable estimation of nonparametric models publication-title: Econometrica doi: 10.1111/1468-0262.00459 – year: 2018 ident: 2023071211304822400_qkad020-B35 – volume: 359 start-page: 1173 issue: 9313 year: 2002 ident: 2023071211304822400_qkad020-B3 article-title: Methotrexate and mortality in patients with rheumatoid arthritis: A prospective study publication-title: The Lancet doi: 10.1016/S0140-6736(02)08213-2 – volume: 185 start-page: 941 issue: 10 year: 2017 ident: 2023071211304822400_qkad020-B10 article-title: A new method for partial correction of residual confounding in time-series and other observational studies publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwx013 – volume: 96 start-page: 440 issue: 454 year: 2001 ident: 2023071211304822400_qkad020-B13 article-title: Marginal structural models to estimate the joint causal effect of nonrandomized treatments publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753168154 – volume: 7 start-page: 190 issue: 4 year: 2020 ident: 2023071211304822400_qkad020-B32 article-title: A selective review of negative control methods in epidemiology publication-title: Current Epidemiology Reports doi: 10.1007/s40471-020-00243-4 – year: 2020 ident: 2023071211304822400_qkad020-B22 – year: 2020 ident: 2023071211304822400_qkad020-B4 – volume: 34 start-page: 659 issue: 3 year: 2018 ident: 2023071211304822400_qkad020-B15 article-title: Nonparametric identification using instrumental variables: Sufficient conditions for completeness publication-title: Econometric Theory doi: 10.1017/S0266466617000251 – year: 2021 ident: 2023071211304822400_qkad020-B19 – year: 2021 ident: 2023071211304822400_qkad020-B16 – volume: 121 start-page: 151 issue: 1/2 year: 1999 ident: 2023071211304822400_qkad020-B29 article-title: Association, causation, and marginal structural models publication-title: Synthese doi: 10.1023/A:1005285815569 – year: 1997 ident: 2023071211304822400_qkad020-B27 – year: 2020 ident: 2023071211304822400_qkad020-B37 – volume: 40 start-page: 139S year: 1987 ident: 2023071211304822400_qkad020-B26 article-title: A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods publication-title: Journal of Chronic Diseases doi: 10.1016/S0021-9681(87)80018-8 – year: 2022 ident: 2023071211304822400_qkad020-B12 – year: 1998 ident: 2023071211304822400_qkad020-B28 – volume: 79 start-page: 1541 issue: 5 year: 2011 ident: 2023071211304822400_qkad020-B6 article-title: Nonparametric instrumental regression publication-title: Econometrica doi: 10.3982/ECTA6539 – year: 2020 ident: 2023071211304822400_qkad020-B7 – volume: 7 start-page: 1393 issue: 9–12 year: 1986 ident: 2023071211304822400_qkad020-B25 article-title: A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect publication-title: Mathematical Modelling doi: 10.1016/0270-0255(86)90088-6 – volume: 82 start-page: 785 issue: 2 year: 2014 ident: 2023071211304822400_qkad020-B2 article-title: Local identification of nonparametric and semiparametric models publication-title: Econometrica doi: 10.3982/ECTA9988 – volume-title: Causal inference: What if year: 2020 ident: 2023071211304822400_qkad020-B14 – volume: 105 start-page: 987 issue: 4 year: 2018 ident: 2023071211304822400_qkad020-B20 article-title: Identifying causal effects with proxy variables of an unmeasured confounder publication-title: Biometrika doi: 10.1093/biomet/asy038 – volume: 116 start-page: 162 issue: 533 year: 2021 ident: 2023071211304822400_qkad020-B5 article-title: A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2020.1783272 – volume: 179 start-page: 633 issue: 5 year: 2014 ident: 2023071211304822400_qkad020-B34 article-title: The control outcome calibration approach for causal inference with unobserved confounding publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwt303 – year: 2020 ident: 2023071211304822400_qkad020-B36 – volume: 13 start-page: 539 issue: 3 year: 2012 ident: 2023071211304822400_qkad020-B11 article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics doi: 10.1093/biostatistics/kxr034 – year: 2018 ident: 2023071211304822400_qkad020-B21 – volume: 21 start-page: 383 issue: 3 year: 2010 ident: 2023071211304822400_qkad020-B18 article-title: Negative controls: A tool for detecting confounding and bias in observational studies publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181d61eeb – year: 2000 ident: 2023071211304822400_qkad020-B30 – volume: 101 start-page: 423 issue: 2 year: 2014 ident: 2023071211304822400_qkad020-B17 article-title: Measurement bias and effect restoration in causal inference publication-title: Biometrika doi: 10.1093/biomet/ast066 |
SSID | ssj0000673 |
Score | 2.512318 |
Snippet | A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 684 |
SubjectTerms | Estimators Indexing Inference Longitudinal studies Proxies Simulation Time measurement |
Title | Proximal causal inference for complex longitudinal studies |
URI | https://www.proquest.com/docview/3240677037 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeNkLYvwQGxvKAxIPVbY0TmyHN0CbpmkbCKVSeYocxxaFrYUmkSb-Ef5dzj4nTTWYgJfIcl0r9Z3vPl_P9xHykrM0VSk1ITUyCZMM9pxkxoSmAvenxESJ0sYhLy7Z6TQ5m6Wz0ejnIGupbcpD9eO390r-R6rQB3K1t2T_QbL9pNABbZAvPEHC8PwrGX9YLW_m17bCh2xrVz2jqxprkwddtri-GV8tLSdRWzn-q3qQN3gbk1oUigEFC0JdDWfbxszOQ2tY4Lvjt5geth6ANNQbAfpPnitlkDDpwvbYezGXy65v1rrpPs97cG-T-8_GOahTAz-9bwwDFDHtk1mbuy4-DmwuZVkIwAaNssY-a78zgYw7naFGbh-vkHRgdRmyzHkHzpHP-JZvwLpZX1Z1XZfQ-P5VVlEcrf1g99__5fviZHp-XuTHs_weuR_D-cOd1T_GQxdP8UIfvnlfDZQe4fxHfvZNtLPp7B2CyR-SB17MwRvUox0y0otHZLuXY_2YvO4UKkCFCnqFCmB1A69QwVChAq9QT8j05Dh_dxp6co1Q0ShqwAsKFWmLB02axqmZMD7RVNkCkymcYZWQWlAO2zWRvORyIsrIMr9ngHhhIJf0KdlaLBf6GQlYnBlmoiqq4HCqYiWozAzMqkWiAS6WuyTsFqFQvvK8JUC5KjADgha4aIVftF3yqh__DWuu_HHkfremhd-XdWFLTDIOnozv3f3xc7K91td9stWsWn0AELMpXzhx_wJIU4Q7 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+causal+inference+for+complex+longitudinal+studies&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Ying%2C+Andrew&rft.au=Wang%2C+Miao&rft.au=Xu%2C+Shi&rft.au=Eric+J+Tchetgen+Tchetgen&rft.date=2023-07-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=85&rft.issue=3&rft.spage=684&rft.epage=704&rft_id=info:doi/10.1093%2Fjrsssb%2Fqkad020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |