Adaptive binary artificial bee colony algorithm
Metaheuristics and swarm intelligence algorithms are bio-inspired algorithms, which have long standing track record of success in problem solving. Due to the nature and the complexity of the problems, problem solving approaches may not achieve the same success level in every type of problems. Artifi...
Saved in:
Published in | Applied soft computing Vol. 101; p. 107054 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2020.107054 |
Cover
Abstract | Metaheuristics and swarm intelligence algorithms are bio-inspired algorithms, which have long standing track record of success in problem solving. Due to the nature and the complexity of the problems, problem solving approaches may not achieve the same success level in every type of problems. Artificial bee colony (ABC) algorithm is a swarm intelligence algorithm and has originally been developed to solve numerical optimisation problems. It has a sound track record in numerical problems, but has not yet been tested sufficiently for combinatorial and binary problems. This paper proposes an adaptive hybrid approach to devise ABC algorithms with multiple and complementary binary operators for higher efficiency in solving binary problems. Three prominent operator selection schemes have been comparatively investigated for the best configuration in this regard. The proposed approach has been applied to uncapacitated facility location problems, a renown NP-Hard combinatorial problem type modelled with 0–1 programming, and successfully solved the well-known benchmarks outperforming state-of-art algorithms.
•This paper proposes ensemble of different binary neighbourhood operators for ABC algorithms.•Three operator selection mechanisms have been tested.•Different reward types are used for credit assignment problem.•Instantaneous and sliding windows based reward values are used.•The best adaptive configuration has successfully solved uncapacitated facility location problems to optimum. |
---|---|
AbstractList | Metaheuristics and swarm intelligence algorithms are bio-inspired algorithms, which have long standing track record of success in problem solving. Due to the nature and the complexity of the problems, problem solving approaches may not achieve the same success level in every type of problems. Artificial bee colony (ABC) algorithm is a swarm intelligence algorithm and has originally been developed to solve numerical optimisation problems. It has a sound track record in numerical problems, but has not yet been tested sufficiently for combinatorial and binary problems. This paper proposes an adaptive hybrid approach to devise ABC algorithms with multiple and complementary binary operators for higher efficiency in solving binary problems. Three prominent operator selection schemes have been comparatively investigated for the best configuration in this regard. The proposed approach has been applied to uncapacitated facility location problems, a renown NP-Hard combinatorial problem type modelled with 0–1 programming, and successfully solved the well-known benchmarks outperforming state-of-art algorithms.
•This paper proposes ensemble of different binary neighbourhood operators for ABC algorithms.•Three operator selection mechanisms have been tested.•Different reward types are used for credit assignment problem.•Instantaneous and sliding windows based reward values are used.•The best adaptive configuration has successfully solved uncapacitated facility location problems to optimum. |
ArticleNumber | 107054 |
Author | Aydin, Mehmet Emin Durgut, Rafet |
Author_xml | – sequence: 1 givenname: Rafet surname: Durgut fullname: Durgut, Rafet email: rafetdurgut@karabuk.edu.tr organization: Karabuk University, Dept. of Computer Engineering, Karabuk, Turkey – sequence: 2 givenname: Mehmet Emin surname: Aydin fullname: Aydin, Mehmet Emin email: mehmet.aydin@uwe.ac.uk organization: UWE Bristol, Dept. of Computer Science and Creative Technologies, Bristol, UK |
BookMark | eNp9j8FKAzEURYNUsK3-gKv5gWmTNJNmwE0paoWCG12HzMsbfWU6KZlQ8O_NUFcuurqPC-dxz4xN-tAjY4-CLwQXenlYuCHAQnI5FmteqRs2FWYty1obMcl3pU2paqXv2GwYDjxDtTRTttx4d0p0xqKh3sWfwsVELQG5rmgQCwhd6HPbfYVI6ft4z25b1w348Jdz9vny_LHdlfv317ftZl_CivNUGg1NKxFWlVbonODKNLr2jTN5ghIC1uB15QCdr7yohdPAUfG20lLKpobVnJnLX4hhGCK2Fii5RKFP0VFnBbejuD3YUdyO4vYinlH5Dz1FOma369DTBcIsdSaMdgDCHtBTREjWB7qG_wJOqnPn |
CitedBy_id | crossref_primary_10_1007_s12530_023_09560_7 crossref_primary_10_1007_s11356_023_28678_4 crossref_primary_10_1016_j_engfailanal_2024_108570 crossref_primary_10_3390_math11010129 crossref_primary_10_1016_j_clet_2024_100800 crossref_primary_10_1038_s41598_024_74432_2 crossref_primary_10_3390_a15010024 crossref_primary_10_1007_s13369_021_05688_3 crossref_primary_10_1007_s10472_022_09799_x crossref_primary_10_1016_j_est_2023_108160 crossref_primary_10_38016_jista_854584 crossref_primary_10_17341_gazimmfd_804858 crossref_primary_10_3390_computers12120249 crossref_primary_10_1007_s11831_025_10269_w crossref_primary_10_1016_j_eswa_2023_119956 crossref_primary_10_1007_s10489_023_05202_2 crossref_primary_10_1007_s13369_024_08839_4 crossref_primary_10_1007_s40747_022_00746_1 crossref_primary_10_1016_j_asoc_2024_112605 crossref_primary_10_1016_j_ins_2021_10_025 crossref_primary_10_1007_s00521_021_06107_2 crossref_primary_10_1016_j_eswa_2024_124176 crossref_primary_10_3390_app11125620 |
Cites_doi | 10.1016/j.ins.2014.10.060 10.1287/mnsc.9.4.586 10.1109/MCI.2006.329691 10.1109/TEVC.2013.2239648 10.1023/B:HEUR.0000026896.44360.f9 10.1109/TEVC.2010.2059031 10.1016/j.ins.2014.12.043 10.1007/s10100-013-0305-8 10.1007/s00500-005-0044-4 10.12785/amis/080619 10.1016/j.amc.2015.09.019 10.1016/j.cie.2014.08.016 10.1016/0378-4266(91)90037-M 10.1007/s00500-017-2547-1 10.15302/J-FEM-2018038 10.1002/asmb.874 10.1007/s10472-010-9213-y 10.1007/s00521-019-04533-x 10.1145/321864.321873 10.1287/moor.4.3.233 10.1016/j.swevo.2018.08.015 10.1016/j.swevo.2019.04.008 10.1007/s10462-012-9328-0 10.1016/j.asoc.2019.105576 10.1007/s10845-010-0435-y 10.1016/j.swevo.2019.01.003 10.1016/j.asoc.2015.04.007 10.1145/1830483.1830619 10.1016/j.aeue.2017.06.008 10.1080/00207540600621003 10.1051/ro:2001107 10.1016/j.future.2019.03.032 10.1007/s00521-017-3027-3 10.3906/elk-1203-104 10.1016/j.asoc.2014.11.040 10.1016/j.future.2017.05.044 10.1007/s10898-007-9149-x 10.1016/j.asoc.2011.08.038 10.1109/4235.585893 10.1007/s13042-017-0772-7 10.1057/jors.1990.166 10.1016/j.asoc.2016.02.027 10.1016/j.ins.2014.04.013 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.107054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_107054 S1568494620309923 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-86cbf2ec3564eaa1048b69dba8946411c7cd65acead5d191a6c0e40f56222b9c3 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:02:18 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Fri Feb 23 02:41:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 0–1 programming Adaptive operator selection Artificial bee colony Uncapacitated facility location problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-86cbf2ec3564eaa1048b69dba8946411c7cd65acead5d191a6c0e40f56222b9c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_107054 crossref_primary_10_1016_j_asoc_2020_107054 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_107054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Á. Fialho, M. Schoenauer, M. Sebag, Toward comparison-based adaptive operator selection, in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010, pp. 767–774. Espahbodi (b16) 1991; 15 Li, Fialho, Kwong, Zhang (b25) 2013; 18 Karaboga, Basturk (b8) 2007; 39 He, Xie, Wong, Wang (b41) 2018; 78 Fialho, Da Costa, Schoenauer, Sebag (b27) 2010; 60 Kashan, Nahavandi, Kashan (b32) 2012; 12 Zhang, Wu, Li, Wang, Yang, Lee, Jung (b55) 2016; 43 Dorigo, Birattari, Stutzle (b6) 2006; 1 Zhang, Wang, Ji (b10) 2015; 2015 Karaboga (b30) 2005 Chen, Tianfield, Li (b38) 2019; 45 Santana, Macedo, Siqueira, Gokhale, Bastos-Filho (b34) 2019; 98 Jia, Duan, Khan (b42) 2014; 76 Xue, Jiang, Zhao, Ma (b22) 2018; 22 Drake, Marks (b3) 2002 Beasley (b28) 1990; 41 Gao, Huang, Liu, Chan, Dai, Shan (b37) 2015; 271 Kiran, Hakli, Gunduz, Uguz (b39) 2015; 300 Ozturk, Hancer, Karaboga (b40) 2015; 297 Korkmaz, Babalik, Kiran (b52) 2018; 9 Hiermann, Prandtstetter, Rendl, Puchinger, Raidl (b4) 2015; 23 Kennedy, Eberhart (b7) 1995 Sevkli, Aydin (b43) 2006 Kumar, Kumar (b20) 2017; 79 Sahni (b17) 1975; 22 Kiran, Gündüz (b33) 2013; 21 Chan, Aydin, Fogarty (b48) 2006; 10 Glover, Hanafi, Guemri, Crevits (b50) 2018; 5 Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (b1) 2019; 48 Ozturk, Hancer, Karaboga (b15) 2015; 28 Sadeghi-Moghaddam, Hajiaghaei-Keshteli, Mahmoodjanloo (b2) 2019; 31 Wang, Wu, Rahnamayan, Sun, Liu, Pan (b36) 2014; 279 L. Davis, Adapting operator probabilities in genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 61–69. Karaboga, Gorkemli, Ozturk, Karaboga (b12) 2014; 42 Fialho, Da Costa, Schoenauer, Sebag (b45) 2008 Kennedy, Eberhart (b54) 1997 Yang (b5) 2010 Wolpert, Macready (b9) 1997; 1 Kiran (b31) 2015; 33 Yigit, Aydin, Turkbey (b49) 2006; 44 Chvatal (b18) 1979; 4 Durgut (b35) 2020 Düğenci, Aydin (b21) 2018 Das, Suganthan (b11) 2010; 15 Tuba, Bacanin (b19) 2014; 8 Aydin (b44) 2012; 23 Kratica, Tošic, Filipović, Ljubić (b51) 2001; 35 Lawler (b14) 1963; 9 Wu, Mallipeddi, Suganthan (b29) 2019; 44 Niehaus, Banzhaf (b24) 2001 Aydin, Fogarty (b47) 2004; 10 Scott (b23) 2010; 26 Düğenci, Aydin (b13) 2020; 32 Aslan, Gunduz, Kiran (b53) 2019; 82 Wolpert (10.1016/j.asoc.2020.107054_b9) 1997; 1 Yang (10.1016/j.asoc.2020.107054_b5) 2010 Düğenci (10.1016/j.asoc.2020.107054_b13) 2020; 32 Chvatal (10.1016/j.asoc.2020.107054_b18) 1979; 4 Kennedy (10.1016/j.asoc.2020.107054_b54) 1997 Espahbodi (10.1016/j.asoc.2020.107054_b16) 1991; 15 Fialho (10.1016/j.asoc.2020.107054_b45) 2008 Kiran (10.1016/j.asoc.2020.107054_b33) 2013; 21 Ozturk (10.1016/j.asoc.2020.107054_b40) 2015; 297 Aydin (10.1016/j.asoc.2020.107054_b44) 2012; 23 Zhang (10.1016/j.asoc.2020.107054_b10) 2015; 2015 Niehaus (10.1016/j.asoc.2020.107054_b24) 2001 Hiermann (10.1016/j.asoc.2020.107054_b4) 2015; 23 Karaboga (10.1016/j.asoc.2020.107054_b8) 2007; 39 Jia (10.1016/j.asoc.2020.107054_b42) 2014; 76 Zhang (10.1016/j.asoc.2020.107054_b55) 2016; 43 Wang (10.1016/j.asoc.2020.107054_b36) 2014; 279 Düğenci (10.1016/j.asoc.2020.107054_b21) 2018 10.1016/j.asoc.2020.107054_b46 Sahni (10.1016/j.asoc.2020.107054_b17) 1975; 22 Wu (10.1016/j.asoc.2020.107054_b29) 2019; 44 Kumar (10.1016/j.asoc.2020.107054_b20) 2017; 79 Kiran (10.1016/j.asoc.2020.107054_b39) 2015; 300 Sevkli (10.1016/j.asoc.2020.107054_b43) 2006 Xue (10.1016/j.asoc.2020.107054_b22) 2018; 22 Scott (10.1016/j.asoc.2020.107054_b23) 2010; 26 Gao (10.1016/j.asoc.2020.107054_b37) 2015; 271 Drake (10.1016/j.asoc.2020.107054_b3) 2002 Korkmaz (10.1016/j.asoc.2020.107054_b52) 2018; 9 Ozturk (10.1016/j.asoc.2020.107054_b15) 2015; 28 Karaboga (10.1016/j.asoc.2020.107054_b30) 2005 Aydin (10.1016/j.asoc.2020.107054_b47) 2004; 10 Kratica (10.1016/j.asoc.2020.107054_b51) 2001; 35 Kiran (10.1016/j.asoc.2020.107054_b31) 2015; 33 Tuba (10.1016/j.asoc.2020.107054_b19) 2014; 8 Kennedy (10.1016/j.asoc.2020.107054_b7) 1995 Li (10.1016/j.asoc.2020.107054_b25) 2013; 18 Kashan (10.1016/j.asoc.2020.107054_b32) 2012; 12 Fialho (10.1016/j.asoc.2020.107054_b27) 2010; 60 Lawler (10.1016/j.asoc.2020.107054_b14) 1963; 9 Yigit (10.1016/j.asoc.2020.107054_b49) 2006; 44 Aslan (10.1016/j.asoc.2020.107054_b53) 2019; 82 Del Ser (10.1016/j.asoc.2020.107054_b1) 2019; 48 Santana (10.1016/j.asoc.2020.107054_b34) 2019; 98 Chen (10.1016/j.asoc.2020.107054_b38) 2019; 45 10.1016/j.asoc.2020.107054_b26 Chan (10.1016/j.asoc.2020.107054_b48) 2006; 10 Das (10.1016/j.asoc.2020.107054_b11) 2010; 15 Durgut (10.1016/j.asoc.2020.107054_b35) 2020 Glover (10.1016/j.asoc.2020.107054_b50) 2018; 5 Sadeghi-Moghaddam (10.1016/j.asoc.2020.107054_b2) 2019; 31 Beasley (10.1016/j.asoc.2020.107054_b28) 1990; 41 He (10.1016/j.asoc.2020.107054_b41) 2018; 78 Dorigo (10.1016/j.asoc.2020.107054_b6) 2006; 1 Karaboga (10.1016/j.asoc.2020.107054_b12) 2014; 42 |
References_xml | – volume: 79 start-page: 219 year: 2017 end-page: 233 ident: b20 article-title: Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator publication-title: AEU-Int. J. Electron. Commun. – volume: 4 start-page: 233 year: 1979 end-page: 235 ident: b18 article-title: A greedy heuristic for the set-covering problem publication-title: Math. Oper. Res. – volume: 23 start-page: 991 year: 2012 end-page: 999 ident: b44 article-title: Coordinating metaheuristic agents with swarm intelligence publication-title: J. Intell. Manuf. – volume: 23 start-page: 89 year: 2015 end-page: 113 ident: b4 article-title: Metaheuristics for solving a multimodal home-healthcare scheduling problem publication-title: CEJOR Cent. Eur. J. Oper. Res. – volume: 15 start-page: 4 year: 2010 end-page: 31 ident: b11 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 2307 year: 2013 end-page: 2328 ident: b33 article-title: XOR-based artificial bee colony algorithm for binary optimization publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 44 start-page: 4773 year: 2006 end-page: 4791 ident: b49 article-title: Solving large-scale uncapacitated facility location problems with evolutionary simulated annealing publication-title: Int. J. Prod. Res. – volume: 35 start-page: 127 year: 2001 end-page: 142 ident: b51 article-title: Solving the simple plant location problem by genetic algorithm publication-title: RAIRO Oper. Res. – volume: 22 start-page: 115 year: 1975 end-page: 124 ident: b17 article-title: Approximate algorithms for the 0/1 knapsack problem publication-title: J. ACM – volume: 10 start-page: 1075 year: 2006 end-page: 1090 ident: b48 article-title: Main effect fine-tuning of the mutation operator and the neighbourhood function for uncapacitated facility location problems publication-title: Soft Comput. – volume: 271 start-page: 269 year: 2015 end-page: 287 ident: b37 article-title: Artificial bee colony algorithm with multiple search strategies publication-title: Appl. Math. Comput. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b8 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. – volume: 33 start-page: 15 year: 2015 end-page: 23 ident: b31 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Appl. Soft Comput. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b6 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 279 start-page: 587 year: 2014 end-page: 603 ident: b36 article-title: Multi-strategy ensemble artificial bee colony algorithm publication-title: Inform. Sci. – start-page: 325 year: 2001 end-page: 336 ident: b24 article-title: Adaption of operator probabilities in genetic programming publication-title: European Conference on Genetic Programming – volume: 18 start-page: 114 year: 2013 end-page: 130 ident: b25 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 5 start-page: 451 year: 2018 end-page: 465 ident: b50 article-title: A simple multi-wave algorithm for the uncapacitated facility location problem publication-title: Front. Eng. Manag. – volume: 8 start-page: 2831 year: 2014 ident: b19 article-title: Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem publication-title: Appl. Math. Inf. Sci. – volume: 2015 year: 2015 ident: b10 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Math. Probl. Eng. – start-page: 4104 year: 1997 end-page: 4108 ident: b54 article-title: A discrete binary version of the particle swarm algorithm publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Vol. 5 – volume: 9 start-page: 1233 year: 2018 end-page: 1247 ident: b52 article-title: An artificial algae algorithm for solving binary optimization problems publication-title: Int. J. Mach. Learn. Cybern. – volume: 41 start-page: 1069 year: 1990 end-page: 1072 ident: b28 article-title: OR-Library: distributing test problems by electronic mail publication-title: J. Oper. Res. Soc. – start-page: 29 year: 2002 end-page: 54 ident: b3 article-title: Genetic algorithms in economics and finance: Forecasting stock market prices and foreign exchange—A review publication-title: Genetic Algorithms and Genetic Programming in Computational Finance – volume: 60 start-page: 25 year: 2010 end-page: 64 ident: b27 article-title: Analyzing bandit-based adaptive operator selection mechanisms publication-title: Ann. Math. Artif. Intell. – volume: 32 year: 2020 ident: b13 article-title: A honeybees-inspired heuristic algorithm for numerical optimisation publication-title: Neural Comput. Appl. – start-page: 261 year: 2006 end-page: 271 ident: b43 article-title: A variable neighbourhood search algorithm for job shop scheduling problems publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization – volume: 297 start-page: 154 year: 2015 end-page: 170 ident: b40 article-title: A novel binary artificial bee colony algorithm based on genetic operators publication-title: Inform. Sci. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b9 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 300 start-page: 140 year: 2015 end-page: 157 ident: b39 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Inform. Sci. – volume: 82 year: 2019 ident: b53 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Appl. Soft Comput. – start-page: 1942 year: 1995 end-page: 1948 ident: b7 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4 – volume: 9 start-page: 586 year: 1963 end-page: 599 ident: b14 article-title: The quadratic assignment problem publication-title: Manag. Sci. – volume: 12 start-page: 342 year: 2012 end-page: 352 ident: b32 article-title: DisABC: A new artificial bee colony algorithm for binary optimization publication-title: Appl. Soft Comput. – start-page: 132 year: 2018 end-page: 144 ident: b21 article-title: Diversifying search in bee algorithms for numerical optimisation publication-title: International Conference on Computational Collective Intelligence – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: b1 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. – volume: 98 start-page: 180 year: 2019 end-page: 196 ident: b34 article-title: A novel binary artificial bee colony algorithm publication-title: Future Gener. Comput. Syst. – volume: 78 start-page: 77 year: 2018 end-page: 86 ident: b41 article-title: A novel binary artificial bee colony algorithm for the set-union knapsack problem publication-title: Future Gener. Comput. Syst. – volume: 44 start-page: 695 year: 2019 end-page: 711 ident: b29 article-title: Ensemble strategies for population-based optimization algorithms–A survey publication-title: Swarm Evol. Comput. – volume: 26 start-page: 639 year: 2010 end-page: 658 ident: b23 article-title: A modern Bayesian look at the multi-armed bandit publication-title: Appl. Stoch. Models Bus. Ind. – year: 2005 ident: b30 article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – year: 2020 ident: b35 article-title: Improved binary artificial bee colony algorithm publication-title: Front. Inf. Technol. Electron. Eng. – volume: 45 start-page: 70 year: 2019 end-page: 91 ident: b38 article-title: Self-adaptive differential artificial bee colony algorithm for global optimization problems publication-title: Swarm Evol. Comput. – volume: 22 start-page: 2935 year: 2018 end-page: 2952 ident: b22 article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization publication-title: Soft Comput. – reference: Á. Fialho, M. Schoenauer, M. Sebag, Toward comparison-based adaptive operator selection, in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, 2010, pp. 767–774. – reference: L. Davis, Adapting operator probabilities in genetic algorithms, in: Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp. 61–69. – volume: 76 start-page: 360 year: 2014 end-page: 365 ident: b42 article-title: Binary artificial bee colony optimization using bitwise operation publication-title: Comput. Ind. Eng. – volume: 43 start-page: 583 year: 2016 end-page: 595 ident: b55 article-title: Binary artificial algae algorithm for multidimensional knapsack problems publication-title: Appl. Soft Comput. – volume: 31 start-page: 477 year: 2019 end-page: 497 ident: b2 article-title: New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment publication-title: Neural Comput. Appl. – volume: 10 start-page: 269 year: 2004 end-page: 292 ident: b47 article-title: A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems publication-title: J. Heuristics – start-page: 175 year: 2008 end-page: 184 ident: b45 article-title: Extreme value based adaptive operator selection publication-title: International Conference on Parallel Problem Solving from Nature – year: 2010 ident: b5 article-title: Engineering Optimization: An Introduction with Metaheuristic Applications – volume: 28 start-page: 69 year: 2015 end-page: 80 ident: b15 article-title: Dynamic clustering with improved binary artificial bee colony algorithm publication-title: Appl. Soft Comput. – volume: 15 start-page: 53 year: 1991 end-page: 71 ident: b16 article-title: Identification of problem banks and binary choice models publication-title: J. Bank. Financ. – volume: 42 start-page: 21 year: 2014 end-page: 57 ident: b12 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. – volume: 297 start-page: 154 year: 2015 ident: 10.1016/j.asoc.2020.107054_b40 article-title: A novel binary artificial bee colony algorithm based on genetic operators publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.10.060 – start-page: 132 year: 2018 ident: 10.1016/j.asoc.2020.107054_b21 article-title: Diversifying search in bee algorithms for numerical optimisation – volume: 9 start-page: 586 issue: 4 year: 1963 ident: 10.1016/j.asoc.2020.107054_b14 article-title: The quadratic assignment problem publication-title: Manag. Sci. doi: 10.1287/mnsc.9.4.586 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.asoc.2020.107054_b6 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 18 start-page: 114 issue: 1 year: 2013 ident: 10.1016/j.asoc.2020.107054_b25 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2239648 – volume: 10 start-page: 269 issue: 3 year: 2004 ident: 10.1016/j.asoc.2020.107054_b47 article-title: A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems publication-title: J. Heuristics doi: 10.1023/B:HEUR.0000026896.44360.f9 – volume: 15 start-page: 4 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.107054_b11 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 300 start-page: 140 year: 2015 ident: 10.1016/j.asoc.2020.107054_b39 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.12.043 – volume: 2015 year: 2015 ident: 10.1016/j.asoc.2020.107054_b10 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Math. Probl. Eng. – volume: 23 start-page: 89 issue: 1 year: 2015 ident: 10.1016/j.asoc.2020.107054_b4 article-title: Metaheuristics for solving a multimodal home-healthcare scheduling problem publication-title: CEJOR Cent. Eur. J. Oper. Res. doi: 10.1007/s10100-013-0305-8 – start-page: 4104 year: 1997 ident: 10.1016/j.asoc.2020.107054_b54 article-title: A discrete binary version of the particle swarm algorithm – volume: 10 start-page: 1075 issue: 11 year: 2006 ident: 10.1016/j.asoc.2020.107054_b48 article-title: Main effect fine-tuning of the mutation operator and the neighbourhood function for uncapacitated facility location problems publication-title: Soft Comput. doi: 10.1007/s00500-005-0044-4 – volume: 8 start-page: 2831 issue: 6 year: 2014 ident: 10.1016/j.asoc.2020.107054_b19 article-title: Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/080619 – volume: 271 start-page: 269 year: 2015 ident: 10.1016/j.asoc.2020.107054_b37 article-title: Artificial bee colony algorithm with multiple search strategies publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.09.019 – volume: 76 start-page: 360 year: 2014 ident: 10.1016/j.asoc.2020.107054_b42 article-title: Binary artificial bee colony optimization using bitwise operation publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2014.08.016 – start-page: 175 year: 2008 ident: 10.1016/j.asoc.2020.107054_b45 article-title: Extreme value based adaptive operator selection – volume: 15 start-page: 53 issue: 1 year: 1991 ident: 10.1016/j.asoc.2020.107054_b16 article-title: Identification of problem banks and binary choice models publication-title: J. Bank. Financ. doi: 10.1016/0378-4266(91)90037-M – volume: 22 start-page: 2935 issue: 9 year: 2018 ident: 10.1016/j.asoc.2020.107054_b22 article-title: A self-adaptive artificial bee colony algorithm based on global best for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-017-2547-1 – ident: 10.1016/j.asoc.2020.107054_b26 – start-page: 261 year: 2006 ident: 10.1016/j.asoc.2020.107054_b43 article-title: A variable neighbourhood search algorithm for job shop scheduling problems – volume: 5 start-page: 451 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.107054_b50 article-title: A simple multi-wave algorithm for the uncapacitated facility location problem publication-title: Front. Eng. Manag. doi: 10.15302/J-FEM-2018038 – year: 2005 ident: 10.1016/j.asoc.2020.107054_b30 – volume: 26 start-page: 639 issue: 6 year: 2010 ident: 10.1016/j.asoc.2020.107054_b23 article-title: A modern Bayesian look at the multi-armed bandit publication-title: Appl. Stoch. Models Bus. Ind. doi: 10.1002/asmb.874 – volume: 60 start-page: 25 issue: 1–2 year: 2010 ident: 10.1016/j.asoc.2020.107054_b27 article-title: Analyzing bandit-based adaptive operator selection mechanisms publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-010-9213-y – volume: 32 issue: 16 year: 2020 ident: 10.1016/j.asoc.2020.107054_b13 article-title: A honeybees-inspired heuristic algorithm for numerical optimisation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04533-x – volume: 22 start-page: 115 issue: 1 year: 1975 ident: 10.1016/j.asoc.2020.107054_b17 article-title: Approximate algorithms for the 0/1 knapsack problem publication-title: J. ACM doi: 10.1145/321864.321873 – volume: 4 start-page: 233 issue: 3 year: 1979 ident: 10.1016/j.asoc.2020.107054_b18 article-title: A greedy heuristic for the set-covering problem publication-title: Math. Oper. Res. doi: 10.1287/moor.4.3.233 – volume: 44 start-page: 695 year: 2019 ident: 10.1016/j.asoc.2020.107054_b29 article-title: Ensemble strategies for population-based optimization algorithms–A survey publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.015 – start-page: 325 year: 2001 ident: 10.1016/j.asoc.2020.107054_b24 article-title: Adaption of operator probabilities in genetic programming – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.asoc.2020.107054_b1 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.04.008 – volume: 42 start-page: 21 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.107054_b12 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – volume: 82 year: 2019 ident: 10.1016/j.asoc.2020.107054_b53 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105576 – volume: 23 start-page: 991 issue: 4 year: 2012 ident: 10.1016/j.asoc.2020.107054_b44 article-title: Coordinating metaheuristic agents with swarm intelligence publication-title: J. Intell. Manuf. doi: 10.1007/s10845-010-0435-y – volume: 45 start-page: 70 year: 2019 ident: 10.1016/j.asoc.2020.107054_b38 article-title: Self-adaptive differential artificial bee colony algorithm for global optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.01.003 – volume: 33 start-page: 15 year: 2015 ident: 10.1016/j.asoc.2020.107054_b31 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.04.007 – year: 2020 ident: 10.1016/j.asoc.2020.107054_b35 article-title: Improved binary artificial bee colony algorithm publication-title: Front. Inf. Technol. Electron. Eng. – year: 2010 ident: 10.1016/j.asoc.2020.107054_b5 – ident: 10.1016/j.asoc.2020.107054_b46 doi: 10.1145/1830483.1830619 – volume: 79 start-page: 219 year: 2017 ident: 10.1016/j.asoc.2020.107054_b20 article-title: Hybridized ABC-GA optimized fractional order fuzzy pre-compensated FOPID control design for 2-DOF robot manipulator publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2017.06.008 – volume: 44 start-page: 4773 issue: 22 year: 2006 ident: 10.1016/j.asoc.2020.107054_b49 article-title: Solving large-scale uncapacitated facility location problems with evolutionary simulated annealing publication-title: Int. J. Prod. Res. doi: 10.1080/00207540600621003 – volume: 35 start-page: 127 issue: 1 year: 2001 ident: 10.1016/j.asoc.2020.107054_b51 article-title: Solving the simple plant location problem by genetic algorithm publication-title: RAIRO Oper. Res. doi: 10.1051/ro:2001107 – volume: 98 start-page: 180 year: 2019 ident: 10.1016/j.asoc.2020.107054_b34 article-title: A novel binary artificial bee colony algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.03.032 – volume: 31 start-page: 477 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.107054_b2 article-title: New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3027-3 – volume: 21 start-page: 2307 issue: Sup. 2 year: 2013 ident: 10.1016/j.asoc.2020.107054_b33 article-title: XOR-based artificial bee colony algorithm for binary optimization publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1203-104 – volume: 28 start-page: 69 year: 2015 ident: 10.1016/j.asoc.2020.107054_b15 article-title: Dynamic clustering with improved binary artificial bee colony algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.11.040 – volume: 78 start-page: 77 year: 2018 ident: 10.1016/j.asoc.2020.107054_b41 article-title: A novel binary artificial bee colony algorithm for the set-union knapsack problem publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.05.044 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.asoc.2020.107054_b8 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 12 start-page: 342 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.107054_b32 article-title: DisABC: A new artificial bee colony algorithm for binary optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.038 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.107054_b9 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 9 start-page: 1233 issue: 7 year: 2018 ident: 10.1016/j.asoc.2020.107054_b52 article-title: An artificial algae algorithm for solving binary optimization problems publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0772-7 – start-page: 29 year: 2002 ident: 10.1016/j.asoc.2020.107054_b3 article-title: Genetic algorithms in economics and finance: Forecasting stock market prices and foreign exchange—A review – volume: 41 start-page: 1069 issue: 11 year: 1990 ident: 10.1016/j.asoc.2020.107054_b28 article-title: OR-Library: distributing test problems by electronic mail publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1990.166 – volume: 43 start-page: 583 year: 2016 ident: 10.1016/j.asoc.2020.107054_b55 article-title: Binary artificial algae algorithm for multidimensional knapsack problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.027 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2020.107054_b7 article-title: Particle swarm optimization – volume: 279 start-page: 587 year: 2014 ident: 10.1016/j.asoc.2020.107054_b36 article-title: Multi-strategy ensemble artificial bee colony algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.04.013 |
SSID | ssj0016928 |
Score | 2.450891 |
Snippet | Metaheuristics and swarm intelligence algorithms are bio-inspired algorithms, which have long standing track record of success in problem solving. Due to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107054 |
SubjectTerms | 0–1 programming Adaptive operator selection Artificial bee colony Uncapacitated facility location problems |
Title | Adaptive binary artificial bee colony algorithm |
URI | https://dx.doi.org/10.1016/j.asoc.2020.107054 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLb2uHDhjRiPqQduqLRJ06w9ThPTeE0ImLRblVdhaHTTNK78dpw1nUBCO3C1YrX-4ji24gfABYk1EYokfq619FmS4pFSsfJFmkfUEDthxL7oPgz5YMRux_G4Br2qFsamVTrbX9r0lbV2lMChGcwnk-AZI4-EpYxT-0qAfkodmjRKedyAZvfmbjBcPybwdDVi1a73LYOrnSnTvASCgGEitYROGLO_76cfd05_F7ads-h1y__Zg5op9mGnGsTguXN5AEFXi7m1W55cldd6VoKyNYQnjfFsZ-oCqdPX2WKyfPs4hFH_-qU38N0kBF9FYbj0E65kTo2KYs6MEBhCJZKnWooExWGEqI7SPBYK1QKxT4ngKjQszNG5oVSmKjqCRjErzDF4MmJMR7SjNboeQgsRoT1kueb4iVCqvAWkkj9Trk24nVYxzap8sPfMYpZZzLISsxZcrnnmZZOMjavjCtbs11ZnaMU38J38k-8UtqhNRFkljp1BY7n4NOfoSSxlG-pXX6SN-tJ7un9sO735BokcyJw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjSjPDGwoNH4mGauKqkDbhVbqZvkVKCppVYWV346dOBVIqAPr6azYX-zznfzdHQC3kGooFEzCTGsZkiS1R0pRFYo0w8hA12HEvegOR6w_IU9TOm2Abp0L42iV3vZXNr201l7S9mi2l7NZ-8VGHglJCUPulcD6KVtgm1AcO17f_dea5wFZWjZYddqhU_eZMxXJS1gIbJCInCCOKPn7dvpx4_QOwJ53FYNONZtD0DD5Ediv2zAE_lQeg3ZHi6WzWoEsk2sDN_-qMEQgjQlcXercSuevi9WsePs4AZPew7jbD30fhFDhKCrChCmZIaMwZcQIYQOoRLJUS5HY5RAIVaw0o0LZTWGRT6FgKjIkyqxrg5BMFT4FzXyRmzMQSEyIxijW2joeQguBrTUkmWb2E5FUWQvAev1c-SLhrlfFnNdssHfuMOMOM15h1gJ36zHLqkTGRm1aw8p__WhubfiGcef_HHcDdvrj4YAPHkfPF2AXOUpKSSG7BM1i9WmurE9RyOtyz3wD8k_H0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+binary+artificial+bee+colony+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Durgut%2C+Rafet&rft.au=Aydin%2C+Mehmet+Emin&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=101&rft_id=info:doi/10.1016%2Fj.asoc.2020.107054&rft.externalDocID=S1568494620309923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |