Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene
In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene (Ti3C2Tx) at 633 nm. To investigate the prominence of each layer, we categorized it into Kretschmann configuration based different simple structure...
Saved in:
Published in | Superlattices and microstructures Vol. 145; p. 106591 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene (Ti3C2Tx) at 633 nm. To investigate the prominence of each layer, we categorized it into Kretschmann configuration based different simple structures. The performance of each sensor structure is theoretically analyzed after systematically optimizing their layer thicknesses and layer numbers. Highest sensitivity (264 0/RIU) and optimum figure of merit (41.25/RIU) is achieved for the proposed SPR structure. Results shows, pronounced sensitivity enhancement of 127.58% for proposed sensor over conventional SPR. Enhanced sensitivity is attained due to attractive optical sensing properties of silicon (high refractive index), black phosphorus (high charge carrier mobility, carrier confinement) and MXene-Ti3C2Tx (high metallic conductivity, biocompatibility, larger hydrophilic surface area). The proposed design can be fabricated as SPR chip by careful control of Ti3C2Tx surface terminations with available fabrication technologies.
•Proposed SPR biosensor is based on silicon and hybrid nanostructure of black phosphorus and MXene-Ti3C2TX.•Attained highest sensitivity (264ο/RIU) among all MXene-Ti3C2TX based SPR biosensor proposed till date.•Sensitivity enhancement of 127.58% over conventional SPR sensor.•BP layers plays important role in sensitivity improvement.•Larger surface area and hydrophilic surfaces of MXene-Ti3C2TX makes it efficient for SPR biosensing application. |
---|---|
AbstractList | In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene (Ti3C2Tx) at 633 nm. To investigate the prominence of each layer, we categorized it into Kretschmann configuration based different simple structures. The performance of each sensor structure is theoretically analyzed after systematically optimizing their layer thicknesses and layer numbers. Highest sensitivity (264 0/RIU) and optimum figure of merit (41.25/RIU) is achieved for the proposed SPR structure. Results shows, pronounced sensitivity enhancement of 127.58% for proposed sensor over conventional SPR. Enhanced sensitivity is attained due to attractive optical sensing properties of silicon (high refractive index), black phosphorus (high charge carrier mobility, carrier confinement) and MXene-Ti3C2Tx (high metallic conductivity, biocompatibility, larger hydrophilic surface area). The proposed design can be fabricated as SPR chip by careful control of Ti3C2Tx surface terminations with available fabrication technologies.
•Proposed SPR biosensor is based on silicon and hybrid nanostructure of black phosphorus and MXene-Ti3C2TX.•Attained highest sensitivity (264ο/RIU) among all MXene-Ti3C2TX based SPR biosensor proposed till date.•Sensitivity enhancement of 127.58% over conventional SPR sensor.•BP layers plays important role in sensitivity improvement.•Larger surface area and hydrophilic surfaces of MXene-Ti3C2TX makes it efficient for SPR biosensing application. |
ArticleNumber | 106591 |
Author | Prajapati, Y.K. Kumar, Rajeev Saini, J.P. Pal, Sarika Verma, Alka |
Author_xml | – sequence: 1 givenname: Rajeev surname: Kumar fullname: Kumar, Rajeev email: rajeevkumar.phd2020@nituk.ac.in, rajeevkrc@gmail.com organization: EC Department, National Institute of Technology, Uttarakhand, 246174, Uttarakhand, India – sequence: 2 givenname: Sarika surname: Pal fullname: Pal, Sarika email: sarikapal@nituk.ac.in, narensarru@gmail.com organization: EC Department, National Institute of Technology, Uttarakhand, 246174, Uttarakhand, India – sequence: 3 givenname: Alka surname: Verma fullname: Verma, Alka email: alkapra25@iert.ac.in organization: ECE Department, Institute of Engineering and Rural Technology, Prayagraj, 211002, (U.P.), India – sequence: 4 givenname: Y.K. surname: Prajapati fullname: Prajapati, Y.K. email: yogendrapra@mnnit.ac.in organization: ECE Department, Motilal Nehru National Institute of Technology, Allahabad, 211004, Prayagraj, (U.P.), India – sequence: 5 givenname: J.P. surname: Saini fullname: Saini, J.P. email: jps@nsut.ac.in organization: ECE Department, Netaji Subhas University of Technology, New Delhi, 110078, India |
BookMark | eNp9kNtqAyEQhqWk0CTtC_TKF9hU96ARelNCeoCUlh6gd-Kq20y60aBuIG_fXdKrXgRGBn_nG_CboJHzziJ0TcmMEspuNrO428IsJ_kQsErQMzSmRLCsYJyP0JjwUmSMFOwCTWLcEEJESfkYbZZNY3XCvsERWtDe4b6idRES7CEdhpf31zdcgx9SH3AXwX3j9aEOYLBTzscUOp26YIfZulX6B-_WPvYndBErZ_Dzl3X2Ep03qo326q9P0ef98mPxmK1eHp4Wd6tMF4SkbM50YTSpmpxTZXSV11VVlzkrCsqpmAvdCNFfc1qXis-14UL3cxXjjamLsjTFFM2Pe3XwMQbbSA1JJfAuBQWtpEQOzuRGDs7k4EwenfVo_g_dBdiqcDgN3R4h239qDzbIqME6bQ2EXq00Hk7hv8vuiWI |
CitedBy_id | crossref_primary_10_1109_TPS_2023_3276371 crossref_primary_10_1364_PRJ_439861 crossref_primary_10_1007_s11082_022_04191_9 crossref_primary_10_1007_s11468_021_01507_5 crossref_primary_10_1007_s11468_022_01692_x crossref_primary_10_3390_coatings13030546 crossref_primary_10_1007_s00604_024_06442_w crossref_primary_10_1109_JSEN_2021_3138770 crossref_primary_10_1007_s11468_023_02097_0 crossref_primary_10_1016_j_envpol_2024_123522 crossref_primary_10_1109_JSEN_2023_3291731 crossref_primary_10_1007_s00339_021_04408_w crossref_primary_10_1007_s10825_022_01959_w crossref_primary_10_1007_s11468_024_02426_x crossref_primary_10_1007_s11468_024_02678_7 crossref_primary_10_1016_j_ijleo_2024_171612 crossref_primary_10_1016_j_spmi_2021_106969 crossref_primary_10_1007_s00339_021_04985_w crossref_primary_10_1007_s11082_023_05418_z crossref_primary_10_1007_s11468_023_02144_w crossref_primary_10_1007_s11468_022_01685_w crossref_primary_10_1016_j_jpbao_2023_100019 crossref_primary_10_1007_s00339_020_04126_9 crossref_primary_10_1016_j_spmi_2021_106886 crossref_primary_10_1016_j_trac_2023_117497 crossref_primary_10_1109_JSEN_2024_3523178 crossref_primary_10_3390_bios14010025 crossref_primary_10_1007_s11082_023_05219_4 crossref_primary_10_1007_s11468_024_02500_4 crossref_primary_10_3390_bios13040465 crossref_primary_10_1007_s00339_020_03998_1 crossref_primary_10_1016_j_hybadv_2022_100005 crossref_primary_10_1016_j_rio_2023_100407 crossref_primary_10_1007_s11082_021_02862_7 crossref_primary_10_1007_s11468_023_02174_4 crossref_primary_10_1007_s11468_024_02322_4 crossref_primary_10_1109_TNB_2023_3246535 crossref_primary_10_1016_j_physb_2022_413965 crossref_primary_10_1002_pssa_202200482 crossref_primary_10_1007_s11468_024_02246_z crossref_primary_10_1007_s11468_023_01885_y crossref_primary_10_1002_SMMD_20220027 crossref_primary_10_1007_s11082_024_07317_3 crossref_primary_10_1007_s11082_021_03347_3 crossref_primary_10_1007_s11468_023_01848_3 crossref_primary_10_1016_j_susmat_2024_e00900 crossref_primary_10_3390_photonics8070270 crossref_primary_10_1007_s10854_022_09721_5 crossref_primary_10_1109_JSEN_2023_3270133 crossref_primary_10_1007_s12596_024_02433_5 crossref_primary_10_1109_JSEN_2024_3355766 crossref_primary_10_1080_10408347_2021_1927669 crossref_primary_10_1016_j_micrna_2023_207656 crossref_primary_10_1109_JSEN_2024_3362335 crossref_primary_10_1016_j_bios_2022_113995 crossref_primary_10_7498_aps_70_20210812 crossref_primary_10_1016_j_ijleo_2021_168506 crossref_primary_10_3390_magnetochemistry8030031 crossref_primary_10_3390_bios12090743 crossref_primary_10_1007_s11468_023_01928_4 crossref_primary_10_1016_j_photonics_2021_100984 crossref_primary_10_1016_j_optcom_2021_127421 crossref_primary_10_1007_s11082_023_05419_y crossref_primary_10_1364_OE_510859 crossref_primary_10_1016_j_rio_2022_100217 crossref_primary_10_1007_s00339_022_05947_6 crossref_primary_10_1109_JSEN_2022_3172115 crossref_primary_10_1007_s11468_024_02545_5 crossref_primary_10_1007_s11468_023_01951_5 crossref_primary_10_1016_j_optmat_2023_113862 crossref_primary_10_3390_nano11123399 crossref_primary_10_1080_17435889_2024_2422806 crossref_primary_10_1039_D1TA02027G crossref_primary_10_3390_s24123851 crossref_primary_10_1016_j_trac_2023_117468 crossref_primary_10_1007_s11468_024_02643_4 crossref_primary_10_1039_D1TB00410G crossref_primary_10_3390_bios13060600 crossref_primary_10_1016_j_rinp_2022_105454 |
Cites_doi | 10.1016/j.ijleo.2019.163430 10.1007/s12633-017-9625-y 10.1021/acsomega.8b02032 10.1039/C9NR10178K 10.1103/PhysRevB.94.104103 10.1007/s00339-018-1804-1 10.1007/s13204-020-01252-x 10.1021/acsnano.5b03591 10.1002/adma.201601167 10.1021/jp409585v 10.3390/s131013928 10.1103/PhysRevB.87.235441 10.1364/OE.27.010159 10.1088/1612-202X/aab43f 10.1007/s10043-019-00564-w 10.1016/j.electacta.2017.03.073 10.1038/nmat4386 10.1049/iet-opt.2018.5023 10.1021/acssensors.9b01308 10.1016/j.snb.2018.08.154 10.1007/s11082-015-0233-z 10.1016/j.snb.2015.04.090 10.1016/j.snb.2016.08.165 10.1007/s00339-015-9442-3 10.1007/s11082-014-9976-1 10.1038/s41598-019-49998-x 10.1038/srep28190 10.1016/j.spmi.2019.03.016 10.3390/nano9020165 10.1007/s00216-003-2101-0 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2020.106591 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2020_106591 S0749603620307898 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-86c3dc05f271adc52b55b42633171989cf9942621b4a78cd79c1ad567fdb344d3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 23:01:58 EDT 2025 Tue Jul 01 01:35:15 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Sensitivity Surface plasmon resonance Silicon MXene Ti3C2Tx Black phosphorus |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-86c3dc05f271adc52b55b42633171989cf9942621b4a78cd79c1ad567fdb344d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2020_106591 crossref_primary_10_1016_j_spmi_2020_106591 elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Prajapati, Srivastava (bib10) 2019; 129 Jena, Shrivastava, Saxena (bib7) 2019; 9 Liu, Duan, Yang, Shen, Wang, Zhu (bib29) 2015; 218 Pal, Verma, Saini, Prajapati (bib17) 2019; 13 Xie, Kent (bib19) 2013; 87 Keshavarz, Zangenehzadeh, Hatef (bib1) 2020; 10 Wu, He, Hu, Wu, Sun, Xie, Zhang, Zhu, Zhou (bib27) 2019; 4 Cho, Lee, Koh (bib14) 2016; 28 Wang, Kurra, Alhabeb, Chang, Alshareef, Gogotsi (bib26) 2018; 3 Long, Zhu, Shi (bib3) 2013; 13 Wu, You, Shan, Gan, Zhao, Dai, Xiang (bib30) 2018; 277 Vaisocherová, Homola (bib5) 2006 Verma, Prakash, Tripathi (bib11) 2015; 47 Homola (bib8) 2003; 377 Maurya, Prajapati, Singh, Saini, Tripathi (bib13) 2015; 47 Firdous, Anwar, Rafya (bib2) 2018; 15 Jabbari, Dabirmanesh, Arab, Amanlou, Daneshjou, Gholami, Khajeh (bib4) 2016; 240 Lorencova, Bertok, Dosekova (bib28) 2017; 235 Xu, Ang, Wu, Ang (bib31) 2019; 9 Wu, Chen, Wang, Wu, Jiang, Zhang, Jin, Jiang, Zheng, Li, Zhang, Zhang (bib23) 2019; 4 Gogotsi (bib25) 2015; 14 Prajapati, Pal, Saini (bib9) 2017; 10 Pal, Verma, Raikwar, Prajapati, Saini (bib33) 2018; 124 Anasori, Xie, Beidaghi, Lu, Hosler, Hultman, Barsoum (bib21) 2015; 9 Pal, Verma, Prajapati, Saini (bib12) 2017; 49 Tyagi, Wang, Huang, Hu, Tang, Guo, Ouyang, Zhang (bib15) 2020; 12 Wu, Jin, Chen, Jiang, Hu, Jiang, Wu, Li, Zheng, Zhang, Zhang (bib24) 2019; 27 Maurya, Prajapati, Singh, Saini (bib16) 2015; 121 Srivastava, Verma, Das, Prajapati (bib32) 2020; 203 Pal, Prajapati, Saini (bib6) 2020; 27 Hu, Sun, Wu, Wang, Wang, Liu, He (bib20) 2013; 117 Ouyang, Zeng, Jiang, Hong, Xu, Dinh, Yong (bib18) 2016; 6 Fu, Zhang, Legut, Si, Germann, Lookman, Du, Francisco, Zhang (bib22) 2016; 94 Wu (10.1016/j.spmi.2020.106591_bib30) 2018; 277 Keshavarz (10.1016/j.spmi.2020.106591_bib1) 2020; 10 Jabbari (10.1016/j.spmi.2020.106591_bib4) 2016; 240 Pal (10.1016/j.spmi.2020.106591_bib6) 2020; 27 Cho (10.1016/j.spmi.2020.106591_bib14) 2016; 28 Hu (10.1016/j.spmi.2020.106591_bib20) 2013; 117 Srivastava (10.1016/j.spmi.2020.106591_bib32) 2020; 203 Pal (10.1016/j.spmi.2020.106591_bib33) 2018; 124 Homola (10.1016/j.spmi.2020.106591_bib8) 2003; 377 Vaisocherová (10.1016/j.spmi.2020.106591_bib5) 2006 Prajapati (10.1016/j.spmi.2020.106591_bib9) 2017; 10 Wu (10.1016/j.spmi.2020.106591_bib23) 2019; 4 Xu (10.1016/j.spmi.2020.106591_bib31) 2019; 9 Ouyang (10.1016/j.spmi.2020.106591_bib18) 2016; 6 Liu (10.1016/j.spmi.2020.106591_bib29) 2015; 218 Maurya (10.1016/j.spmi.2020.106591_bib16) 2015; 121 Verma (10.1016/j.spmi.2020.106591_bib11) 2015; 47 Pal (10.1016/j.spmi.2020.106591_bib12) 2017; 49 Wu (10.1016/j.spmi.2020.106591_bib24) 2019; 27 Wang (10.1016/j.spmi.2020.106591_bib26) 2018; 3 Long (10.1016/j.spmi.2020.106591_bib3) 2013; 13 Xie (10.1016/j.spmi.2020.106591_bib19) 2013; 87 Pal (10.1016/j.spmi.2020.106591_bib17) 2019; 13 Firdous (10.1016/j.spmi.2020.106591_bib2) 2018; 15 Wu (10.1016/j.spmi.2020.106591_bib27) 2019; 4 Jena (10.1016/j.spmi.2020.106591_bib7) 2019; 9 Prajapati (10.1016/j.spmi.2020.106591_bib10) 2019; 129 Gogotsi (10.1016/j.spmi.2020.106591_bib25) 2015; 14 Lorencova (10.1016/j.spmi.2020.106591_bib28) 2017; 235 Fu (10.1016/j.spmi.2020.106591_bib22) 2016; 94 Anasori (10.1016/j.spmi.2020.106591_bib21) 2015; 9 Maurya (10.1016/j.spmi.2020.106591_bib13) 2015; 47 Tyagi (10.1016/j.spmi.2020.106591_bib15) 2020; 12 |
References_xml | – volume: 14 start-page: 1079 year: 2015 end-page: 1080 ident: bib25 article-title: Chemical vapour deposition: transition metal carbides Go 2D publication-title: Nat. Mater. – volume: 235 start-page: 471 year: 2017 end-page: 479 ident: bib28 article-title: Electrochemical performance of Ti publication-title: Electrochim. Acta – volume: 15 year: 2018 ident: bib2 article-title: Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases publication-title: Laser Phys. Lett. – volume: 6 start-page: 28190 year: 2016 ident: bib18 article-title: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor publication-title: Sci. Rep. – volume: 9 start-page: 9507 year: 2015 end-page: 9516 ident: bib21 article-title: Two-dimensional, ordered, double transition metals carbides (MXenes) publication-title: ACS Nano – volume: 47 start-page: 1197 year: 2015 end-page: 1205 ident: bib11 article-title: Performance analysis of graphene-based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria publication-title: Opt. Quant. Electron. – volume: 3 start-page: 12489 year: 2018 end-page: 12494 ident: bib26 article-title: Titanium carbide (MXene) as a current collector for lithium-ion batteries publication-title: ACS Omega – volume: 203 start-page: 163430 year: 2020 ident: bib32 article-title: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus publication-title: Optik – volume: 13 start-page: 196 year: 2019 end-page: 201 ident: bib17 article-title: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor publication-title: IET Optoelectron. – start-page: 229 year: 2006 end-page: 247 ident: bib5 article-title: SPR biosensors for medical diagnostics publication-title: Surface Plasmon Resonance Based Sensors – volume: 4 start-page: 2763 year: 2019 end-page: 2770 ident: bib27 article-title: Ti publication-title: ACS Sens. – volume: 12 start-page: 3535 year: 2020 end-page: 3559 ident: bib15 article-title: Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications publication-title: Nanoscale – volume: 49 start-page: 1 year: 2017 end-page: 13 ident: bib12 article-title: Influence of black phosphorous on performance of surface plasmon resonance biosensor publication-title: Opt. Quant. Electron. – volume: 10 start-page: 1465 year: 2020 end-page: 1474 ident: bib1 article-title: Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood publication-title: Appl. Nanosci. – volume: 13 start-page: 13928 year: 2013 end-page: 13948 ident: bib3 article-title: Recent advances in optical biosensors for environmental monitoring and early warning publication-title: Sensors – volume: 377 start-page: 528 year: 2003 end-page: 539 ident: bib8 article-title: Present and future of surface plasmon resonance biosensors publication-title: Anal. Bioanal. Chem. – volume: 27 start-page: 57 year: 2020 end-page: 64 ident: bib6 article-title: Influence of graphene's chemical potential on SPR biosensor using ZnO for DNA hybridization publication-title: Opt. Rev. – volume: 47 start-page: 3599 year: 2015 end-page: 3611 ident: bib13 article-title: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer publication-title: Opt. Quant. Electron. – volume: 117 start-page: 14253 year: 2013 end-page: 14260 ident: bib20 article-title: MXene: a new family of promising hydrogen storage medium publication-title: J. Phys. Chem. – volume: 10 start-page: 1451 year: 2017 end-page: 1460 ident: bib9 article-title: Effect of metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range publication-title: Siliconindia – volume: 129 start-page: 152 year: 2019 end-page: 162 ident: bib10 article-title: Effect of BlueP/MoS publication-title: Superlattice. Microst. – volume: 87 start-page: 235441 year: 2013 ident: bib19 article-title: Hybrid density functional study of structural and ElectronicProperties of functionalized Ti n publication-title: Phys. Rev. B. – volume: 9 start-page: 165 year: 2019 ident: bib31 article-title: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study publication-title: Nanomaterials – volume: 27 start-page: 10159 year: 2019 end-page: 10170 ident: bib24 article-title: MXene-based saturable absorber for femtosecond mode-locked fiber lasers publication-title: Optic Express – volume: 124 start-page: 394 year: 2018 ident: bib33 article-title: Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor publication-title: Appl. Phys. A – volume: 121 start-page: 525 year: 2015 end-page: 533 ident: bib16 article-title: Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS publication-title: Appl. Phys. Mater. Sci. Process – volume: 9 start-page: 13485 year: 2019 ident: bib7 article-title: Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours publication-title: Sci. Rep. – volume: 28 start-page: 7020 year: 2016 end-page: 7028 ident: bib14 article-title: Superior chemical sensing performance of black phosphorus: comparison with MoS publication-title: Adv. Mater. – volume: 4 start-page: 1800532 year: 2019 ident: bib23 article-title: MZI‐Based all‐optical modulator using MXene Ti publication-title: Deposited Microfiber – volume: 240 start-page: 519 year: 2016 end-page: 527 ident: bib4 article-title: A novel enzyme based SPR-biosensor to detect bromocriptine as anergoline derivative drug publication-title: Sensor. Actuator. B Chem. – volume: 94 start-page: 104103 year: 2016 ident: bib22 article-title: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide publication-title: Phys. Rev. B – volume: 277 start-page: 210 year: 2018 end-page: 215 ident: bib30 article-title: Few-layer Ti publication-title: Sensor. Actuator. B Chem. – volume: 218 start-page: 60 year: 2015 end-page: 66 ident: bib29 article-title: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti publication-title: Sensor. Actuator. B Chem. – volume: 203 start-page: 163430 year: 2020 ident: 10.1016/j.spmi.2020.106591_bib32 article-title: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus publication-title: Optik doi: 10.1016/j.ijleo.2019.163430 – volume: 10 start-page: 1451 issue: 4 year: 2017 ident: 10.1016/j.spmi.2020.106591_bib9 article-title: Effect of metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range publication-title: Siliconindia doi: 10.1007/s12633-017-9625-y – volume: 3 start-page: 12489 issue: 10 year: 2018 ident: 10.1016/j.spmi.2020.106591_bib26 article-title: Titanium carbide (MXene) as a current collector for lithium-ion batteries publication-title: ACS Omega doi: 10.1021/acsomega.8b02032 – start-page: 229 year: 2006 ident: 10.1016/j.spmi.2020.106591_bib5 article-title: SPR biosensors for medical diagnostics – volume: 12 start-page: 3535 year: 2020 ident: 10.1016/j.spmi.2020.106591_bib15 article-title: Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications publication-title: Nanoscale doi: 10.1039/C9NR10178K – volume: 94 start-page: 104103 year: 2016 ident: 10.1016/j.spmi.2020.106591_bib22 article-title: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.104103 – volume: 124 start-page: 394 year: 2018 ident: 10.1016/j.spmi.2020.106591_bib33 article-title: Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1804-1 – volume: 49 start-page: 1 issue: 403 year: 2017 ident: 10.1016/j.spmi.2020.106591_bib12 article-title: Influence of black phosphorous on performance of surface plasmon resonance biosensor publication-title: Opt. Quant. Electron. – volume: 10 start-page: 1465 year: 2020 ident: 10.1016/j.spmi.2020.106591_bib1 article-title: Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01252-x – volume: 9 start-page: 9507 issue: 10 year: 2015 ident: 10.1016/j.spmi.2020.106591_bib21 article-title: Two-dimensional, ordered, double transition metals carbides (MXenes) publication-title: ACS Nano doi: 10.1021/acsnano.5b03591 – volume: 28 start-page: 7020 issue: 32 year: 2016 ident: 10.1016/j.spmi.2020.106591_bib14 article-title: Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene publication-title: Adv. Mater. doi: 10.1002/adma.201601167 – volume: 4 start-page: 1800532 issue: 4 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib23 article-title: MZI‐Based all‐optical modulator using MXene Ti3C2Tx (T = F, O, or OH) publication-title: Deposited Microfiber – volume: 117 start-page: 14253 issue: 51 year: 2013 ident: 10.1016/j.spmi.2020.106591_bib20 article-title: MXene: a new family of promising hydrogen storage medium publication-title: J. Phys. Chem. doi: 10.1021/jp409585v – volume: 13 start-page: 13928 issue: 10 year: 2013 ident: 10.1016/j.spmi.2020.106591_bib3 article-title: Recent advances in optical biosensors for environmental monitoring and early warning publication-title: Sensors doi: 10.3390/s131013928 – volume: 87 start-page: 235441 year: 2013 ident: 10.1016/j.spmi.2020.106591_bib19 article-title: Hybrid density functional study of structural and ElectronicProperties of functionalized Ti n+1Xn (X=C, N) monolayers publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.87.235441 – volume: 27 start-page: 10159 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib24 article-title: MXene-based saturable absorber for femtosecond mode-locked fiber lasers publication-title: Optic Express doi: 10.1364/OE.27.010159 – volume: 15 issue: 6 year: 2018 ident: 10.1016/j.spmi.2020.106591_bib2 article-title: Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/aab43f – volume: 27 start-page: 57 year: 2020 ident: 10.1016/j.spmi.2020.106591_bib6 article-title: Influence of graphene's chemical potential on SPR biosensor using ZnO for DNA hybridization publication-title: Opt. Rev. doi: 10.1007/s10043-019-00564-w – volume: 235 start-page: 471 year: 2017 ident: 10.1016/j.spmi.2020.106591_bib28 article-title: Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.073 – volume: 14 start-page: 1079 issue: 11 year: 2015 ident: 10.1016/j.spmi.2020.106591_bib25 article-title: Chemical vapour deposition: transition metal carbides Go 2D publication-title: Nat. Mater. doi: 10.1038/nmat4386 – volume: 13 start-page: 196 issue: 4 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib17 article-title: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor publication-title: IET Optoelectron. doi: 10.1049/iet-opt.2018.5023 – volume: 4 start-page: 2763 issue: 10 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib27 article-title: Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature publication-title: ACS Sens. doi: 10.1021/acssensors.9b01308 – volume: 277 start-page: 210 year: 2018 ident: 10.1016/j.spmi.2020.106591_bib30 article-title: Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.08.154 – volume: 47 start-page: 3599 issue: 11 year: 2015 ident: 10.1016/j.spmi.2020.106591_bib13 article-title: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-015-0233-z – volume: 218 start-page: 60 year: 2015 ident: 10.1016/j.spmi.2020.106591_bib29 article-title: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.04.090 – volume: 240 start-page: 519 year: 2016 ident: 10.1016/j.spmi.2020.106591_bib4 article-title: A novel enzyme based SPR-biosensor to detect bromocriptine as anergoline derivative drug publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.08.165 – volume: 121 start-page: 525 issue: 2 year: 2015 ident: 10.1016/j.spmi.2020.106591_bib16 article-title: Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer publication-title: Appl. Phys. Mater. Sci. Process doi: 10.1007/s00339-015-9442-3 – volume: 47 start-page: 1197 year: 2015 ident: 10.1016/j.spmi.2020.106591_bib11 article-title: Performance analysis of graphene-based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-014-9976-1 – volume: 9 start-page: 13485 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib7 article-title: Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours publication-title: Sci. Rep. doi: 10.1038/s41598-019-49998-x – volume: 6 start-page: 28190 year: 2016 ident: 10.1016/j.spmi.2020.106591_bib18 article-title: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor publication-title: Sci. Rep. doi: 10.1038/srep28190 – volume: 129 start-page: 152 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib10 article-title: Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: theoretical insight publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.03.016 – volume: 9 start-page: 165 issue: 2 year: 2019 ident: 10.1016/j.spmi.2020.106591_bib31 article-title: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study publication-title: Nanomaterials doi: 10.3390/nano9020165 – volume: 377 start-page: 528 issue: 3 year: 2003 ident: 10.1016/j.spmi.2020.106591_bib8 article-title: Present and future of surface plasmon resonance biosensors publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-003-2101-0 |
SSID | ssj0009417 |
Score | 2.2203183 |
Snippet | In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106591 |
SubjectTerms | Black phosphorus MXene Ti3C2Tx Sensitivity Silicon Surface plasmon resonance |
Title | Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene |
URI | https://dx.doi.org/10.1016/j.spmi.2020.106591 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm8Q2TTabHEuxVKVFrIXewu4msSk1CU178OJvdyab-ADpQUgO2cxCmBlmZsM33xByzTmOiZPMCFypDNsOHMNVQhjc7ApwGSs0i9mAo7EznNoPMzarkX7VC4OwyjL265heROtypV1qs53FcXsCyQ_KbwjA6Keuhw2_ts3Ry28_vmEenl1M3UVhA6XLxhmN8cqztxjOiF1ccJhn_p2cfiScwSE5KCtF2tMfc0RqYdIge_1qQFuD7BboTZUfk4XmIKZpRPN4CbZNKFw5YtP1cAh8M3l6pjJOcTVdUcS7v9L5OzZs0UQkqSaS3axClJX4W49m8zSHe7XJqUgCOppBXDwh08HdS39olEMUDGV1OmvDdZQVqA6LutwUgWJdyZhElnYoHBAvpSLPQ1Z6U9qCuyrgngI55vAokBbYzjol9SRNwjNChYlESBzOFMID1btuaEkWmVEkkQew4zWJWWnPVyXDOA66WPoVlGzho8Z91LivNd4kN197Ms2vsVWaVUbxf3mJDwlgy77zf-67IPv4pDFll6QOlgivoAhZy1bhZS2y07t_HI4_Acpv2q8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60InoRrYr1uQdvEto02TyOpSit2iK2Qm9hd5PYlJqEpj34753pJj5APAjJZXcGwswwMxu-_Qbg2nVpTJzkRuhJZdh26BieEsJwzbbAkLEicz0bcDB0ei_2_YRPNqBb3YUhWGWZ-3VOX2frcqVZWrOZJ0lzhMUP229MwBSnnu9twhaxU_EabHX6D73hF_euvR68S_IGKZR3ZzTMq8jfEjwmtmnB4b75e336VnPu9mGvbBZZR3_PAWxEaR12utWMtjpsrwGcqjiEmaYhZlnMimSO7k0ZPgXB0_V8CNoZPT0zmWS0mi0YQd5f2fSd7myxVKSZ5pJdLSKSlfRnj-XTrMB3sSqYSEM2mGBqPIKXu9txt2eUcxQMZbVaS8NzlBWqFo_brilCxduSc0lE7dg7EGRKxb5PxPSmtIXrqdD1Fcpxx41DaaH7rGOopVkanQATJnEhuXisED5a3_MiS_LYjGNJVIAtvwFmZb1AlSTjNOtiHlRosllAFg_I4oG2eANuPnVyTbHxpzSvnBL8CJQAa8Afeqf_1LuCnd548Bg89ocPZ7BLOxpidg419Ep0gT3JUl6WMfcBVordYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+silicon+on+sensitivity+of+SPR+biosensor+using+hybrid+nanostructure+of+black+phosphorus+and+MXene&rft.jtitle=Superlattices+and+microstructures&rft.au=Kumar%2C+Rajeev&rft.au=Pal%2C+Sarika&rft.au=Verma%2C+Alka&rft.au=Prajapati%2C+Y.K.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=145&rft_id=info:doi/10.1016%2Fj.spmi.2020.106591&rft.externalDocID=S0749603620307898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |