Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene

In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene (Ti3C2Tx) at 633 nm. To investigate the prominence of each layer, we categorized it into Kretschmann configuration based different simple structure...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 145; p. 106591
Main Authors Kumar, Rajeev, Pal, Sarika, Verma, Alka, Prajapati, Y.K., Saini, J.P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene (Ti3C2Tx) at 633 nm. To investigate the prominence of each layer, we categorized it into Kretschmann configuration based different simple structures. The performance of each sensor structure is theoretically analyzed after systematically optimizing their layer thicknesses and layer numbers. Highest sensitivity (264 0/RIU) and optimum figure of merit (41.25/RIU) is achieved for the proposed SPR structure. Results shows, pronounced sensitivity enhancement of 127.58% for proposed sensor over conventional SPR. Enhanced sensitivity is attained due to attractive optical sensing properties of silicon (high refractive index), black phosphorus (high charge carrier mobility, carrier confinement) and MXene-Ti3C2Tx (high metallic conductivity, biocompatibility, larger hydrophilic surface area). The proposed design can be fabricated as SPR chip by careful control of Ti3C2Tx surface terminations with available fabrication technologies. •Proposed SPR biosensor is based on silicon and hybrid nanostructure of black phosphorus and MXene-Ti3C2TX.•Attained highest sensitivity (264ο/RIU) among all MXene-Ti3C2TX based SPR biosensor proposed till date.•Sensitivity enhancement of 127.58% over conventional SPR sensor.•BP layers plays important role in sensitivity improvement.•Larger surface area and hydrophilic surfaces of MXene-Ti3C2TX makes it efficient for SPR biosensing application.
AbstractList In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene (Ti3C2Tx) at 633 nm. To investigate the prominence of each layer, we categorized it into Kretschmann configuration based different simple structures. The performance of each sensor structure is theoretically analyzed after systematically optimizing their layer thicknesses and layer numbers. Highest sensitivity (264 0/RIU) and optimum figure of merit (41.25/RIU) is achieved for the proposed SPR structure. Results shows, pronounced sensitivity enhancement of 127.58% for proposed sensor over conventional SPR. Enhanced sensitivity is attained due to attractive optical sensing properties of silicon (high refractive index), black phosphorus (high charge carrier mobility, carrier confinement) and MXene-Ti3C2Tx (high metallic conductivity, biocompatibility, larger hydrophilic surface area). The proposed design can be fabricated as SPR chip by careful control of Ti3C2Tx surface terminations with available fabrication technologies. •Proposed SPR biosensor is based on silicon and hybrid nanostructure of black phosphorus and MXene-Ti3C2TX.•Attained highest sensitivity (264ο/RIU) among all MXene-Ti3C2TX based SPR biosensor proposed till date.•Sensitivity enhancement of 127.58% over conventional SPR sensor.•BP layers plays important role in sensitivity improvement.•Larger surface area and hydrophilic surfaces of MXene-Ti3C2TX makes it efficient for SPR biosensing application.
ArticleNumber 106591
Author Prajapati, Y.K.
Kumar, Rajeev
Saini, J.P.
Pal, Sarika
Verma, Alka
Author_xml – sequence: 1
  givenname: Rajeev
  surname: Kumar
  fullname: Kumar, Rajeev
  email: rajeevkumar.phd2020@nituk.ac.in, rajeevkrc@gmail.com
  organization: EC Department, National Institute of Technology, Uttarakhand, 246174, Uttarakhand, India
– sequence: 2
  givenname: Sarika
  surname: Pal
  fullname: Pal, Sarika
  email: sarikapal@nituk.ac.in, narensarru@gmail.com
  organization: EC Department, National Institute of Technology, Uttarakhand, 246174, Uttarakhand, India
– sequence: 3
  givenname: Alka
  surname: Verma
  fullname: Verma, Alka
  email: alkapra25@iert.ac.in
  organization: ECE Department, Institute of Engineering and Rural Technology, Prayagraj, 211002, (U.P.), India
– sequence: 4
  givenname: Y.K.
  surname: Prajapati
  fullname: Prajapati, Y.K.
  email: yogendrapra@mnnit.ac.in
  organization: ECE Department, Motilal Nehru National Institute of Technology, Allahabad, 211004, Prayagraj, (U.P.), India
– sequence: 5
  givenname: J.P.
  surname: Saini
  fullname: Saini, J.P.
  email: jps@nsut.ac.in
  organization: ECE Department, Netaji Subhas University of Technology, New Delhi, 110078, India
BookMark eNp9kNtqAyEQhqWk0CTtC_TKF9hU96ARelNCeoCUlh6gd-Kq20y60aBuIG_fXdKrXgRGBn_nG_CboJHzziJ0TcmMEspuNrO428IsJ_kQsErQMzSmRLCsYJyP0JjwUmSMFOwCTWLcEEJESfkYbZZNY3XCvsERWtDe4b6idRES7CEdhpf31zdcgx9SH3AXwX3j9aEOYLBTzscUOp26YIfZulX6B-_WPvYndBErZ_Dzl3X2Ep03qo326q9P0ef98mPxmK1eHp4Wd6tMF4SkbM50YTSpmpxTZXSV11VVlzkrCsqpmAvdCNFfc1qXis-14UL3cxXjjamLsjTFFM2Pe3XwMQbbSA1JJfAuBQWtpEQOzuRGDs7k4EwenfVo_g_dBdiqcDgN3R4h239qDzbIqME6bQ2EXq00Hk7hv8vuiWI
CitedBy_id crossref_primary_10_1109_TPS_2023_3276371
crossref_primary_10_1364_PRJ_439861
crossref_primary_10_1007_s11082_022_04191_9
crossref_primary_10_1007_s11468_021_01507_5
crossref_primary_10_1007_s11468_022_01692_x
crossref_primary_10_3390_coatings13030546
crossref_primary_10_1007_s00604_024_06442_w
crossref_primary_10_1109_JSEN_2021_3138770
crossref_primary_10_1007_s11468_023_02097_0
crossref_primary_10_1016_j_envpol_2024_123522
crossref_primary_10_1109_JSEN_2023_3291731
crossref_primary_10_1007_s00339_021_04408_w
crossref_primary_10_1007_s10825_022_01959_w
crossref_primary_10_1007_s11468_024_02426_x
crossref_primary_10_1007_s11468_024_02678_7
crossref_primary_10_1016_j_ijleo_2024_171612
crossref_primary_10_1016_j_spmi_2021_106969
crossref_primary_10_1007_s00339_021_04985_w
crossref_primary_10_1007_s11082_023_05418_z
crossref_primary_10_1007_s11468_023_02144_w
crossref_primary_10_1007_s11468_022_01685_w
crossref_primary_10_1016_j_jpbao_2023_100019
crossref_primary_10_1007_s00339_020_04126_9
crossref_primary_10_1016_j_spmi_2021_106886
crossref_primary_10_1016_j_trac_2023_117497
crossref_primary_10_1109_JSEN_2024_3523178
crossref_primary_10_3390_bios14010025
crossref_primary_10_1007_s11082_023_05219_4
crossref_primary_10_1007_s11468_024_02500_4
crossref_primary_10_3390_bios13040465
crossref_primary_10_1007_s00339_020_03998_1
crossref_primary_10_1016_j_hybadv_2022_100005
crossref_primary_10_1016_j_rio_2023_100407
crossref_primary_10_1007_s11082_021_02862_7
crossref_primary_10_1007_s11468_023_02174_4
crossref_primary_10_1007_s11468_024_02322_4
crossref_primary_10_1109_TNB_2023_3246535
crossref_primary_10_1016_j_physb_2022_413965
crossref_primary_10_1002_pssa_202200482
crossref_primary_10_1007_s11468_024_02246_z
crossref_primary_10_1007_s11468_023_01885_y
crossref_primary_10_1002_SMMD_20220027
crossref_primary_10_1007_s11082_024_07317_3
crossref_primary_10_1007_s11082_021_03347_3
crossref_primary_10_1007_s11468_023_01848_3
crossref_primary_10_1016_j_susmat_2024_e00900
crossref_primary_10_3390_photonics8070270
crossref_primary_10_1007_s10854_022_09721_5
crossref_primary_10_1109_JSEN_2023_3270133
crossref_primary_10_1007_s12596_024_02433_5
crossref_primary_10_1109_JSEN_2024_3355766
crossref_primary_10_1080_10408347_2021_1927669
crossref_primary_10_1016_j_micrna_2023_207656
crossref_primary_10_1109_JSEN_2024_3362335
crossref_primary_10_1016_j_bios_2022_113995
crossref_primary_10_7498_aps_70_20210812
crossref_primary_10_1016_j_ijleo_2021_168506
crossref_primary_10_3390_magnetochemistry8030031
crossref_primary_10_3390_bios12090743
crossref_primary_10_1007_s11468_023_01928_4
crossref_primary_10_1016_j_photonics_2021_100984
crossref_primary_10_1016_j_optcom_2021_127421
crossref_primary_10_1007_s11082_023_05419_y
crossref_primary_10_1364_OE_510859
crossref_primary_10_1016_j_rio_2022_100217
crossref_primary_10_1007_s00339_022_05947_6
crossref_primary_10_1109_JSEN_2022_3172115
crossref_primary_10_1007_s11468_024_02545_5
crossref_primary_10_1007_s11468_023_01951_5
crossref_primary_10_1016_j_optmat_2023_113862
crossref_primary_10_3390_nano11123399
crossref_primary_10_1080_17435889_2024_2422806
crossref_primary_10_1039_D1TA02027G
crossref_primary_10_3390_s24123851
crossref_primary_10_1016_j_trac_2023_117468
crossref_primary_10_1007_s11468_024_02643_4
crossref_primary_10_1039_D1TB00410G
crossref_primary_10_3390_bios13060600
crossref_primary_10_1016_j_rinp_2022_105454
Cites_doi 10.1016/j.ijleo.2019.163430
10.1007/s12633-017-9625-y
10.1021/acsomega.8b02032
10.1039/C9NR10178K
10.1103/PhysRevB.94.104103
10.1007/s00339-018-1804-1
10.1007/s13204-020-01252-x
10.1021/acsnano.5b03591
10.1002/adma.201601167
10.1021/jp409585v
10.3390/s131013928
10.1103/PhysRevB.87.235441
10.1364/OE.27.010159
10.1088/1612-202X/aab43f
10.1007/s10043-019-00564-w
10.1016/j.electacta.2017.03.073
10.1038/nmat4386
10.1049/iet-opt.2018.5023
10.1021/acssensors.9b01308
10.1016/j.snb.2018.08.154
10.1007/s11082-015-0233-z
10.1016/j.snb.2015.04.090
10.1016/j.snb.2016.08.165
10.1007/s00339-015-9442-3
10.1007/s11082-014-9976-1
10.1038/s41598-019-49998-x
10.1038/srep28190
10.1016/j.spmi.2019.03.016
10.3390/nano9020165
10.1007/s00216-003-2101-0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2020.106591
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2020_106591
S0749603620307898
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-86c3dc05f271adc52b55b42633171989cf9942621b4a78cd79c1ad567fdb344d3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Thu Apr 24 23:01:58 EDT 2025
Tue Jul 01 01:35:15 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Sensitivity
Surface plasmon resonance
Silicon
MXene Ti3C2Tx
Black phosphorus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-86c3dc05f271adc52b55b42633171989cf9942621b4a78cd79c1ad567fdb344d3
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2020_106591
crossref_primary_10_1016_j_spmi_2020_106591
elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Prajapati, Srivastava (bib10) 2019; 129
Jena, Shrivastava, Saxena (bib7) 2019; 9
Liu, Duan, Yang, Shen, Wang, Zhu (bib29) 2015; 218
Pal, Verma, Saini, Prajapati (bib17) 2019; 13
Xie, Kent (bib19) 2013; 87
Keshavarz, Zangenehzadeh, Hatef (bib1) 2020; 10
Wu, He, Hu, Wu, Sun, Xie, Zhang, Zhu, Zhou (bib27) 2019; 4
Cho, Lee, Koh (bib14) 2016; 28
Wang, Kurra, Alhabeb, Chang, Alshareef, Gogotsi (bib26) 2018; 3
Long, Zhu, Shi (bib3) 2013; 13
Wu, You, Shan, Gan, Zhao, Dai, Xiang (bib30) 2018; 277
Vaisocherová, Homola (bib5) 2006
Verma, Prakash, Tripathi (bib11) 2015; 47
Homola (bib8) 2003; 377
Maurya, Prajapati, Singh, Saini, Tripathi (bib13) 2015; 47
Firdous, Anwar, Rafya (bib2) 2018; 15
Jabbari, Dabirmanesh, Arab, Amanlou, Daneshjou, Gholami, Khajeh (bib4) 2016; 240
Lorencova, Bertok, Dosekova (bib28) 2017; 235
Xu, Ang, Wu, Ang (bib31) 2019; 9
Wu, Chen, Wang, Wu, Jiang, Zhang, Jin, Jiang, Zheng, Li, Zhang, Zhang (bib23) 2019; 4
Gogotsi (bib25) 2015; 14
Prajapati, Pal, Saini (bib9) 2017; 10
Pal, Verma, Raikwar, Prajapati, Saini (bib33) 2018; 124
Anasori, Xie, Beidaghi, Lu, Hosler, Hultman, Barsoum (bib21) 2015; 9
Pal, Verma, Prajapati, Saini (bib12) 2017; 49
Tyagi, Wang, Huang, Hu, Tang, Guo, Ouyang, Zhang (bib15) 2020; 12
Wu, Jin, Chen, Jiang, Hu, Jiang, Wu, Li, Zheng, Zhang, Zhang (bib24) 2019; 27
Maurya, Prajapati, Singh, Saini (bib16) 2015; 121
Srivastava, Verma, Das, Prajapati (bib32) 2020; 203
Pal, Prajapati, Saini (bib6) 2020; 27
Hu, Sun, Wu, Wang, Wang, Liu, He (bib20) 2013; 117
Ouyang, Zeng, Jiang, Hong, Xu, Dinh, Yong (bib18) 2016; 6
Fu, Zhang, Legut, Si, Germann, Lookman, Du, Francisco, Zhang (bib22) 2016; 94
Wu (10.1016/j.spmi.2020.106591_bib30) 2018; 277
Keshavarz (10.1016/j.spmi.2020.106591_bib1) 2020; 10
Jabbari (10.1016/j.spmi.2020.106591_bib4) 2016; 240
Pal (10.1016/j.spmi.2020.106591_bib6) 2020; 27
Cho (10.1016/j.spmi.2020.106591_bib14) 2016; 28
Hu (10.1016/j.spmi.2020.106591_bib20) 2013; 117
Srivastava (10.1016/j.spmi.2020.106591_bib32) 2020; 203
Pal (10.1016/j.spmi.2020.106591_bib33) 2018; 124
Homola (10.1016/j.spmi.2020.106591_bib8) 2003; 377
Vaisocherová (10.1016/j.spmi.2020.106591_bib5) 2006
Prajapati (10.1016/j.spmi.2020.106591_bib9) 2017; 10
Wu (10.1016/j.spmi.2020.106591_bib23) 2019; 4
Xu (10.1016/j.spmi.2020.106591_bib31) 2019; 9
Ouyang (10.1016/j.spmi.2020.106591_bib18) 2016; 6
Liu (10.1016/j.spmi.2020.106591_bib29) 2015; 218
Maurya (10.1016/j.spmi.2020.106591_bib16) 2015; 121
Verma (10.1016/j.spmi.2020.106591_bib11) 2015; 47
Pal (10.1016/j.spmi.2020.106591_bib12) 2017; 49
Wu (10.1016/j.spmi.2020.106591_bib24) 2019; 27
Wang (10.1016/j.spmi.2020.106591_bib26) 2018; 3
Long (10.1016/j.spmi.2020.106591_bib3) 2013; 13
Xie (10.1016/j.spmi.2020.106591_bib19) 2013; 87
Pal (10.1016/j.spmi.2020.106591_bib17) 2019; 13
Firdous (10.1016/j.spmi.2020.106591_bib2) 2018; 15
Wu (10.1016/j.spmi.2020.106591_bib27) 2019; 4
Jena (10.1016/j.spmi.2020.106591_bib7) 2019; 9
Prajapati (10.1016/j.spmi.2020.106591_bib10) 2019; 129
Gogotsi (10.1016/j.spmi.2020.106591_bib25) 2015; 14
Lorencova (10.1016/j.spmi.2020.106591_bib28) 2017; 235
Fu (10.1016/j.spmi.2020.106591_bib22) 2016; 94
Anasori (10.1016/j.spmi.2020.106591_bib21) 2015; 9
Maurya (10.1016/j.spmi.2020.106591_bib13) 2015; 47
Tyagi (10.1016/j.spmi.2020.106591_bib15) 2020; 12
References_xml – volume: 14
  start-page: 1079
  year: 2015
  end-page: 1080
  ident: bib25
  article-title: Chemical vapour deposition: transition metal carbides Go 2D
  publication-title: Nat. Mater.
– volume: 235
  start-page: 471
  year: 2017
  end-page: 479
  ident: bib28
  article-title: Electrochemical performance of Ti
  publication-title: Electrochim. Acta
– volume: 15
  year: 2018
  ident: bib2
  article-title: Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases
  publication-title: Laser Phys. Lett.
– volume: 6
  start-page: 28190
  year: 2016
  ident: bib18
  article-title: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor
  publication-title: Sci. Rep.
– volume: 9
  start-page: 9507
  year: 2015
  end-page: 9516
  ident: bib21
  article-title: Two-dimensional, ordered, double transition metals carbides (MXenes)
  publication-title: ACS Nano
– volume: 47
  start-page: 1197
  year: 2015
  end-page: 1205
  ident: bib11
  article-title: Performance analysis of graphene-based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria
  publication-title: Opt. Quant. Electron.
– volume: 3
  start-page: 12489
  year: 2018
  end-page: 12494
  ident: bib26
  article-title: Titanium carbide (MXene) as a current collector for lithium-ion batteries
  publication-title: ACS Omega
– volume: 203
  start-page: 163430
  year: 2020
  ident: bib32
  article-title: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus
  publication-title: Optik
– volume: 13
  start-page: 196
  year: 2019
  end-page: 201
  ident: bib17
  article-title: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor
  publication-title: IET Optoelectron.
– start-page: 229
  year: 2006
  end-page: 247
  ident: bib5
  article-title: SPR biosensors for medical diagnostics
  publication-title: Surface Plasmon Resonance Based Sensors
– volume: 4
  start-page: 2763
  year: 2019
  end-page: 2770
  ident: bib27
  article-title: Ti
  publication-title: ACS Sens.
– volume: 12
  start-page: 3535
  year: 2020
  end-page: 3559
  ident: bib15
  article-title: Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications
  publication-title: Nanoscale
– volume: 49
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib12
  article-title: Influence of black phosphorous on performance of surface plasmon resonance biosensor
  publication-title: Opt. Quant. Electron.
– volume: 10
  start-page: 1465
  year: 2020
  end-page: 1474
  ident: bib1
  article-title: Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood
  publication-title: Appl. Nanosci.
– volume: 13
  start-page: 13928
  year: 2013
  end-page: 13948
  ident: bib3
  article-title: Recent advances in optical biosensors for environmental monitoring and early warning
  publication-title: Sensors
– volume: 377
  start-page: 528
  year: 2003
  end-page: 539
  ident: bib8
  article-title: Present and future of surface plasmon resonance biosensors
  publication-title: Anal. Bioanal. Chem.
– volume: 27
  start-page: 57
  year: 2020
  end-page: 64
  ident: bib6
  article-title: Influence of graphene's chemical potential on SPR biosensor using ZnO for DNA hybridization
  publication-title: Opt. Rev.
– volume: 47
  start-page: 3599
  year: 2015
  end-page: 3611
  ident: bib13
  article-title: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer
  publication-title: Opt. Quant. Electron.
– volume: 117
  start-page: 14253
  year: 2013
  end-page: 14260
  ident: bib20
  article-title: MXene: a new family of promising hydrogen storage medium
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 1451
  year: 2017
  end-page: 1460
  ident: bib9
  article-title: Effect of metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range
  publication-title: Siliconindia
– volume: 129
  start-page: 152
  year: 2019
  end-page: 162
  ident: bib10
  article-title: Effect of BlueP/MoS
  publication-title: Superlattice. Microst.
– volume: 87
  start-page: 235441
  year: 2013
  ident: bib19
  article-title: Hybrid density functional study of structural and ElectronicProperties of functionalized Ti n
  publication-title: Phys. Rev. B.
– volume: 9
  start-page: 165
  year: 2019
  ident: bib31
  article-title: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study
  publication-title: Nanomaterials
– volume: 27
  start-page: 10159
  year: 2019
  end-page: 10170
  ident: bib24
  article-title: MXene-based saturable absorber for femtosecond mode-locked fiber lasers
  publication-title: Optic Express
– volume: 124
  start-page: 394
  year: 2018
  ident: bib33
  article-title: Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor
  publication-title: Appl. Phys. A
– volume: 121
  start-page: 525
  year: 2015
  end-page: 533
  ident: bib16
  article-title: Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS
  publication-title: Appl. Phys. Mater. Sci. Process
– volume: 9
  start-page: 13485
  year: 2019
  ident: bib7
  article-title: Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours
  publication-title: Sci. Rep.
– volume: 28
  start-page: 7020
  year: 2016
  end-page: 7028
  ident: bib14
  article-title: Superior chemical sensing performance of black phosphorus: comparison with MoS
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1800532
  year: 2019
  ident: bib23
  article-title: MZI‐Based all‐optical modulator using MXene Ti
  publication-title: Deposited Microfiber
– volume: 240
  start-page: 519
  year: 2016
  end-page: 527
  ident: bib4
  article-title: A novel enzyme based SPR-biosensor to detect bromocriptine as anergoline derivative drug
  publication-title: Sensor. Actuator. B Chem.
– volume: 94
  start-page: 104103
  year: 2016
  ident: bib22
  article-title: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide
  publication-title: Phys. Rev. B
– volume: 277
  start-page: 210
  year: 2018
  end-page: 215
  ident: bib30
  article-title: Few-layer Ti
  publication-title: Sensor. Actuator. B Chem.
– volume: 218
  start-page: 60
  year: 2015
  end-page: 66
  ident: bib29
  article-title: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti
  publication-title: Sensor. Actuator. B Chem.
– volume: 203
  start-page: 163430
  year: 2020
  ident: 10.1016/j.spmi.2020.106591_bib32
  article-title: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163430
– volume: 10
  start-page: 1451
  issue: 4
  year: 2017
  ident: 10.1016/j.spmi.2020.106591_bib9
  article-title: Effect of metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range
  publication-title: Siliconindia
  doi: 10.1007/s12633-017-9625-y
– volume: 3
  start-page: 12489
  issue: 10
  year: 2018
  ident: 10.1016/j.spmi.2020.106591_bib26
  article-title: Titanium carbide (MXene) as a current collector for lithium-ion batteries
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02032
– start-page: 229
  year: 2006
  ident: 10.1016/j.spmi.2020.106591_bib5
  article-title: SPR biosensors for medical diagnostics
– volume: 12
  start-page: 3535
  year: 2020
  ident: 10.1016/j.spmi.2020.106591_bib15
  article-title: Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications
  publication-title: Nanoscale
  doi: 10.1039/C9NR10178K
– volume: 94
  start-page: 104103
  year: 2016
  ident: 10.1016/j.spmi.2020.106591_bib22
  article-title: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.104103
– volume: 124
  start-page: 394
  year: 2018
  ident: 10.1016/j.spmi.2020.106591_bib33
  article-title: Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1804-1
– volume: 49
  start-page: 1
  issue: 403
  year: 2017
  ident: 10.1016/j.spmi.2020.106591_bib12
  article-title: Influence of black phosphorous on performance of surface plasmon resonance biosensor
  publication-title: Opt. Quant. Electron.
– volume: 10
  start-page: 1465
  year: 2020
  ident: 10.1016/j.spmi.2020.106591_bib1
  article-title: Optimization of surface plasmon resonance-based biosensors for monitoring hemoglobin levels in human blood
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01252-x
– volume: 9
  start-page: 9507
  issue: 10
  year: 2015
  ident: 10.1016/j.spmi.2020.106591_bib21
  article-title: Two-dimensional, ordered, double transition metals carbides (MXenes)
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03591
– volume: 28
  start-page: 7020
  issue: 32
  year: 2016
  ident: 10.1016/j.spmi.2020.106591_bib14
  article-title: Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601167
– volume: 4
  start-page: 1800532
  issue: 4
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib23
  article-title: MZI‐Based all‐optical modulator using MXene Ti3C2Tx (T = F, O, or OH)
  publication-title: Deposited Microfiber
– volume: 117
  start-page: 14253
  issue: 51
  year: 2013
  ident: 10.1016/j.spmi.2020.106591_bib20
  article-title: MXene: a new family of promising hydrogen storage medium
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp409585v
– volume: 13
  start-page: 13928
  issue: 10
  year: 2013
  ident: 10.1016/j.spmi.2020.106591_bib3
  article-title: Recent advances in optical biosensors for environmental monitoring and early warning
  publication-title: Sensors
  doi: 10.3390/s131013928
– volume: 87
  start-page: 235441
  year: 2013
  ident: 10.1016/j.spmi.2020.106591_bib19
  article-title: Hybrid density functional study of structural and ElectronicProperties of functionalized Ti n+1Xn (X=C, N) monolayers
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.87.235441
– volume: 27
  start-page: 10159
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib24
  article-title: MXene-based saturable absorber for femtosecond mode-locked fiber lasers
  publication-title: Optic Express
  doi: 10.1364/OE.27.010159
– volume: 15
  issue: 6
  year: 2018
  ident: 10.1016/j.spmi.2020.106591_bib2
  article-title: Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-202X/aab43f
– volume: 27
  start-page: 57
  year: 2020
  ident: 10.1016/j.spmi.2020.106591_bib6
  article-title: Influence of graphene's chemical potential on SPR biosensor using ZnO for DNA hybridization
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-019-00564-w
– volume: 235
  start-page: 471
  year: 2017
  ident: 10.1016/j.spmi.2020.106591_bib28
  article-title: Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.073
– volume: 14
  start-page: 1079
  issue: 11
  year: 2015
  ident: 10.1016/j.spmi.2020.106591_bib25
  article-title: Chemical vapour deposition: transition metal carbides Go 2D
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4386
– volume: 13
  start-page: 196
  issue: 4
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib17
  article-title: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor
  publication-title: IET Optoelectron.
  doi: 10.1049/iet-opt.2018.5023
– volume: 4
  start-page: 2763
  issue: 10
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib27
  article-title: Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01308
– volume: 277
  start-page: 210
  year: 2018
  ident: 10.1016/j.spmi.2020.106591_bib30
  article-title: Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.08.154
– volume: 47
  start-page: 3599
  issue: 11
  year: 2015
  ident: 10.1016/j.spmi.2020.106591_bib13
  article-title: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-015-0233-z
– volume: 218
  start-page: 60
  year: 2015
  ident: 10.1016/j.spmi.2020.106591_bib29
  article-title: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.04.090
– volume: 240
  start-page: 519
  year: 2016
  ident: 10.1016/j.spmi.2020.106591_bib4
  article-title: A novel enzyme based SPR-biosensor to detect bromocriptine as anergoline derivative drug
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.08.165
– volume: 121
  start-page: 525
  issue: 2
  year: 2015
  ident: 10.1016/j.spmi.2020.106591_bib16
  article-title: Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer
  publication-title: Appl. Phys. Mater. Sci. Process
  doi: 10.1007/s00339-015-9442-3
– volume: 47
  start-page: 1197
  year: 2015
  ident: 10.1016/j.spmi.2020.106591_bib11
  article-title: Performance analysis of graphene-based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-014-9976-1
– volume: 9
  start-page: 13485
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib7
  article-title: Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49998-x
– volume: 6
  start-page: 28190
  year: 2016
  ident: 10.1016/j.spmi.2020.106591_bib18
  article-title: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor
  publication-title: Sci. Rep.
  doi: 10.1038/srep28190
– volume: 129
  start-page: 152
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib10
  article-title: Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: theoretical insight
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2019.03.016
– volume: 9
  start-page: 165
  issue: 2
  year: 2019
  ident: 10.1016/j.spmi.2020.106591_bib31
  article-title: High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study
  publication-title: Nanomaterials
  doi: 10.3390/nano9020165
– volume: 377
  start-page: 528
  issue: 3
  year: 2003
  ident: 10.1016/j.spmi.2020.106591_bib8
  article-title: Present and future of surface plasmon resonance biosensors
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-003-2101-0
SSID ssj0009417
Score 2.2203183
Snippet In this work, we explored the sensitivity of surface plasmon resonance biosensor on using silicon and hybrid nanostructure of black phosphorus and MXene...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106591
SubjectTerms Black phosphorus
MXene Ti3C2Tx
Sensitivity
Silicon
Surface plasmon resonance
Title Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene
URI https://dx.doi.org/10.1016/j.spmi.2020.106591
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm8Q2TTabHEuxVKVFrIXewu4msSk1CU178OJvdyab-ADpQUgO2cxCmBlmZsM33xByzTmOiZPMCFypDNsOHMNVQhjc7ApwGSs0i9mAo7EznNoPMzarkX7VC4OwyjL265heROtypV1qs53FcXsCyQ_KbwjA6Keuhw2_ts3Ry28_vmEenl1M3UVhA6XLxhmN8cqztxjOiF1ccJhn_p2cfiScwSE5KCtF2tMfc0RqYdIge_1qQFuD7BboTZUfk4XmIKZpRPN4CbZNKFw5YtP1cAh8M3l6pjJOcTVdUcS7v9L5OzZs0UQkqSaS3axClJX4W49m8zSHe7XJqUgCOppBXDwh08HdS39olEMUDGV1OmvDdZQVqA6LutwUgWJdyZhElnYoHBAvpSLPQ1Z6U9qCuyrgngI55vAokBbYzjol9SRNwjNChYlESBzOFMID1btuaEkWmVEkkQew4zWJWWnPVyXDOA66WPoVlGzho8Z91LivNd4kN197Ms2vsVWaVUbxf3mJDwlgy77zf-67IPv4pDFll6QOlgivoAhZy1bhZS2y07t_HI4_Acpv2q8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60InoRrYr1uQdvEto02TyOpSit2iK2Qm9hd5PYlJqEpj34753pJj5APAjJZXcGwswwMxu-_Qbg2nVpTJzkRuhJZdh26BieEsJwzbbAkLEicz0bcDB0ei_2_YRPNqBb3YUhWGWZ-3VOX2frcqVZWrOZJ0lzhMUP229MwBSnnu9twhaxU_EabHX6D73hF_euvR68S_IGKZR3ZzTMq8jfEjwmtmnB4b75e336VnPu9mGvbBZZR3_PAWxEaR12utWMtjpsrwGcqjiEmaYhZlnMimSO7k0ZPgXB0_V8CNoZPT0zmWS0mi0YQd5f2fSd7myxVKSZ5pJdLSKSlfRnj-XTrMB3sSqYSEM2mGBqPIKXu9txt2eUcxQMZbVaS8NzlBWqFo_brilCxduSc0lE7dg7EGRKxb5PxPSmtIXrqdD1Fcpxx41DaaH7rGOopVkanQATJnEhuXisED5a3_MiS_LYjGNJVIAtvwFmZb1AlSTjNOtiHlRosllAFg_I4oG2eANuPnVyTbHxpzSvnBL8CJQAa8Afeqf_1LuCnd548Bg89ocPZ7BLOxpidg419Ep0gT3JUl6WMfcBVordYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+silicon+on+sensitivity+of+SPR+biosensor+using+hybrid+nanostructure+of+black+phosphorus+and+MXene&rft.jtitle=Superlattices+and+microstructures&rft.au=Kumar%2C+Rajeev&rft.au=Pal%2C+Sarika&rft.au=Verma%2C+Alka&rft.au=Prajapati%2C+Y.K.&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=145&rft_id=info:doi/10.1016%2Fj.spmi.2020.106591&rft.externalDocID=S0749603620307898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon