DRS-Net: A spatial–temporal affective computing model based on multichannel EEG data
•Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a dynamic reservoir state encoder.•Integrating Reservoir Computing with the neural network to deal with EEG data processing. Affective computing b...
Saved in:
Published in | Biomedical signal processing and control Vol. 76; p. 103660 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a dynamic reservoir state encoder.•Integrating Reservoir Computing with the neural network to deal with EEG data processing.
Affective computing based on electroencephalography (EEG) is a promising field that highly integrates research and technology. A critical challenge is effectively extracting and integrating the temporal and spatial information to form a better representation for multichannel EEG data. Most existing studies use hand-selected features from each channel, which neglect high-dimensional dynamic temporal features and interplay of data from different electrodes. This study proposed a Dynamic Reservoir State Network (DRS-Net) to recognize the subject’s emotional states. The novel end-to-end model constructs a dynamic reservoir state encoder to extract multi-channel EEG data’s dynamic high dimension non-linear spatial–temporal information with high speed and low complexity. Then, a Long-Short Term Memory-dense decoder model is devised to detect emotional states. The effectiveness of the proposed DRS-Net model was evaluated on SEED, SEED-IV, and DEAP datasets. To validate the performance of the proposed method, we first combined the hand-selected features (differential entropy, power spectra density, fractal dimension, and statistics features) and classic machine learning classifiers methods (support vector machine, random forest, and k-nearest neighbor). Then, we compare them with the proposed method and other state-of-the-art deep learning methods. The experimental results generated by our method outperform all other methods in terms of accuracy and F1 score. |
---|---|
AbstractList | •Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a dynamic reservoir state encoder.•Integrating Reservoir Computing with the neural network to deal with EEG data processing.
Affective computing based on electroencephalography (EEG) is a promising field that highly integrates research and technology. A critical challenge is effectively extracting and integrating the temporal and spatial information to form a better representation for multichannel EEG data. Most existing studies use hand-selected features from each channel, which neglect high-dimensional dynamic temporal features and interplay of data from different electrodes. This study proposed a Dynamic Reservoir State Network (DRS-Net) to recognize the subject’s emotional states. The novel end-to-end model constructs a dynamic reservoir state encoder to extract multi-channel EEG data’s dynamic high dimension non-linear spatial–temporal information with high speed and low complexity. Then, a Long-Short Term Memory-dense decoder model is devised to detect emotional states. The effectiveness of the proposed DRS-Net model was evaluated on SEED, SEED-IV, and DEAP datasets. To validate the performance of the proposed method, we first combined the hand-selected features (differential entropy, power spectra density, fractal dimension, and statistics features) and classic machine learning classifiers methods (support vector machine, random forest, and k-nearest neighbor). Then, we compare them with the proposed method and other state-of-the-art deep learning methods. The experimental results generated by our method outperform all other methods in terms of accuracy and F1 score. |
ArticleNumber | 103660 |
Author | Wu, Xiaojun Yang, Honghong Li, Jingjing Zhang, Yumei Wu, Xia |
Author_xml | – sequence: 1 givenname: Jingjing surname: Li fullname: Li, Jingjing organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China – sequence: 2 givenname: Xia surname: Wu fullname: Wu, Xia organization: School of Computer Science, Shaanxi Normal University, Xi’an, China – sequence: 3 givenname: Yumei surname: Zhang fullname: Zhang, Yumei organization: School of Computer Science, Shaanxi Normal University, Xi’an, China – sequence: 4 givenname: Honghong surname: Yang fullname: Yang, Honghong organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China – sequence: 5 givenname: Xiaojun surname: Wu fullname: Wu, Xiaojun email: xjwu@snnu.edu.cn organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China |
BookMark | eNp9kMtKAzEUhoNUsK2-gKu8wNRc5lZxU2qtQlHwtg2Z5IymzCRDkhbc-Q6-oU_ilOrGRVfnnB--A_83QgPrLCB0TsmEEppfrCdV6NSEEcb6gOc5OUJDWqR5UlJSDv52Mk1P0CiENSFpWdB0iF6vH5-Se4iXeIZDJ6ORzffnV4S2c142WNY1qGi2gJVru0009g23TkODKxlAY2dxu2miUe_S2j5dLJZYyyhP0XEtmwBnv3OMXm4Wz_PbZPWwvJvPVonihMSkzHKS6oJRrUml2VTnRa1TXuiSyVqykmdQSKpSynimMlbwjJKKcoApZ6zq7zFi-7_KuxA81KLzppX-Q1AidmbEWuzMiJ0ZsTfTQ-U_SJnYV3c2emmaw-jVHoW-1NaAF0EZsAq08b0ooZ05hP8AzrGA5Q |
CitedBy_id | crossref_primary_10_3390_s22145252 crossref_primary_10_1016_j_bspc_2024_106249 crossref_primary_10_1016_j_bspc_2023_105863 crossref_primary_10_1016_j_bspc_2023_105875 crossref_primary_10_1016_j_bspc_2024_107432 crossref_primary_10_3390_s23177330 crossref_primary_10_1016_j_compbiomed_2024_108808 crossref_primary_10_1016_j_neucom_2025_129856 crossref_primary_10_1007_s10489_022_04228_2 crossref_primary_10_1109_ACCESS_2024_3460393 crossref_primary_10_1109_TIM_2024_3418093 crossref_primary_10_1016_j_eswa_2023_120883 crossref_primary_10_1007_s13755_023_00224_z crossref_primary_10_1016_j_procs_2023_08_189 crossref_primary_10_3390_s22239102 |
Cites_doi | 10.1109/TCDS.2018.2868121 10.1109/T-AFFC.2011.15 10.1016/j.cosrev.2009.03.005 10.1007/s11063-018-9829-1 10.1016/j.bspc.2021.102743 10.1109/TAFFC.2014.2339834 10.1109/ACCESS.2019.2956018 10.3389/fncom.2019.00053 10.1109/TCDS.2020.2999337 10.1109/TBME.2017.2650259 10.1016/j.bspc.2021.102525 10.1109/TCYB.2018.2797176 10.1155/2017/8317357 10.1109/TBME.2010.2048568 10.1109/TCDS.2016.2587290 10.1016/j.conb.2004.03.010 10.1109/TAMD.2015.2431497 10.1109/TCYB.2017.2788081 10.1109/TCDS.2020.2976112 10.1109/TCST.2010.2052257 10.1109/TAFFC.2018.2817622 10.1109/TAFFC.2017.2712143 10.3389/fnbot.2019.00037 10.1016/j.neunet.2019.05.008 10.1109/TCBB.2020.3018137 10.1016/j.eswa.2005.04.011 10.1016/j.tins.2017.02.004 10.1109/TNNLS.2020.3001377 10.1016/j.ins.2018.09.057 10.1016/j.compbiomed.2019.05.024 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103660 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103660 S1746809422001823 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-85604d721dd0bd29d67fd437d82afa2835e7a1c41235c5273510b13ee9322b273 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:13 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Fri Feb 23 02:40:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Affective computing DRS-Net Multichannel EEG Long-short term memory Reservoir computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-85604d721dd0bd29d67fd437d82afa2835e7a1c41235c5273510b13ee9322b273 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_103660 crossref_citationtrail_10_1016_j_bspc_2022_103660 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Naser, Saha (b0205) 2013 Fourati, Ammar, Sanchez-Medina, Alimi (b0120) 2020 Jenke, Peer, Buss (b0015) 2014; 5 Zhong, Wang, Miao (b0185) 2020 Ma, Zhuang, Shen, Cottrell (b0130) 2019; 117 Yang, Wu, Fu, Chen (b0240) 2018 Xu, Plataniotis (b0235) 2016 Zhang, Zheng, Cui, Zong, Li (b0080) 2019; 49 Alhagry, Fahmy, El-Khoribi (b0075) 2017; 8 Song, Zheng, Song, Cui (b0160) 2020; 11 Liu, Wang, Zhao, Zhao, Xin, Wang (b0060) 2021; 18 Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b0035) 2010; 57 Li, Wei, Billings (b0040) 2011; 19 Zheng, Lu (b0070) 2015; 7 Zheng, Zhu, Lu (b0170) 2019; 10 Yang, Wu, Qiu, Wang, Chen (b0245) 2018 Li, Zheng, Zong, Cui, Zhang, Zhou (b0085) 2018 Zheng, Liu, Lu, Lu, Cichocki (b0090) 2018; 49 Liu, Sourina (b0025) 2013 Picard (b0005) 2000 Sadiq, Yu, Yuan, Zeming, Rehman, Ullah, Li, Xiao (b0200) 2019; 7 An, Xu, Qu (b0230) 2021; 69 Zheng (b0150) 2017; 9 Liu, Xie, Wu, Cao, Li, Li (b0045) 2019; 11 Guler, Ubeyli, Guler (b0065) 2005; 29 Fourati, Ammar, Jin, Alimi (b0115) 2020; 2020 Li, Qiu, Shen, Liu, He (b0195) 2019; 50 Bianchi, Scardapane, Lokse, Jenssen (b0135) 2021; 32 Kim, Jeong (b0105) 2019; 110 Li, Zheng, Cui, Zong, Ge (b0155) 2019; 49 D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b0175) 2021; 13 Li, Song, Zhang, Yu, Hou, Hu (b0215) 2016 Xing, Li, Xu, Shu, Hu, Xu (b0095) 2019; 13 Duan, Zhu, Lu (b0030) 2013 Hamann, Canli (b0190) 2004; 14 Lukoševičius, Jaeger (b0100) 2009; 3 Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b0220) 2017 Yang, Zhao, Jiang, Gao, Liu (b0020) 2019; 13 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0140) 2014; 15 Li, Zheng, Wang, Zong, Cui (b0180) 2019 Das, Pachori (b0055) 2021; 67 Cohen (b0010) 2017; 40 Tang, Liu, Zheng, Lu (b0225) 2017 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0125) 2011; 3 Gao, Wang, Yang, Li, Ma, Chen (b0165) 2021; 13 Sun, Jin, Yang, Tong, Liu, Xiong (b0110) 2019; 475 Bhattacharyya, Pachori (b0050) 2017; 64 Zhuang, Zeng, Tong, Zhang, Zhang, Yan (b0210) 2017; 2017 Liu (10.1016/j.bspc.2022.103660_b0060) 2021; 18 Zheng (10.1016/j.bspc.2022.103660_b0170) 2019; 10 Xing (10.1016/j.bspc.2022.103660_b0095) 2019; 13 Das (10.1016/j.bspc.2022.103660_b0055) 2021; 67 Zhuang (10.1016/j.bspc.2022.103660_b0210) 2017; 2017 Zheng (10.1016/j.bspc.2022.103660_b0070) 2015; 7 Xu (10.1016/j.bspc.2022.103660_b0235) 2016 Li (10.1016/j.bspc.2022.103660_b0195) 2019; 50 Li (10.1016/j.bspc.2022.103660_b0175) 2021; 13 Yang (10.1016/j.bspc.2022.103660_b0020) 2019; 13 Liu (10.1016/j.bspc.2022.103660_b0045) 2019; 11 Srivastava (10.1016/j.bspc.2022.103660_b0140) 2014; 15 10.1016/j.bspc.2022.103660_b0145 Zhang (10.1016/j.bspc.2022.103660_b0080) 2019; 49 Sun (10.1016/j.bspc.2022.103660_b0110) 2019; 475 Bianchi (10.1016/j.bspc.2022.103660_b0135) 2021; 32 Yang (10.1016/j.bspc.2022.103660_b0240) 2018 Liu (10.1016/j.bspc.2022.103660_b0025) 2013 Hamann (10.1016/j.bspc.2022.103660_b0190) 2004; 14 Zhong (10.1016/j.bspc.2022.103660_b0185) 2020 Li (10.1016/j.bspc.2022.103660_b0085) 2018 Lin (10.1016/j.bspc.2022.103660_b0035) 2010; 57 Lukoševičius (10.1016/j.bspc.2022.103660_b0100) 2009; 3 Li (10.1016/j.bspc.2022.103660_b0040) 2011; 19 Li (10.1016/j.bspc.2022.103660_b0180) 2019 An (10.1016/j.bspc.2022.103660_b0230) 2021; 69 Ma (10.1016/j.bspc.2022.103660_b0130) 2019; 117 Li (10.1016/j.bspc.2022.103660_b0215) 2016 Kim (10.1016/j.bspc.2022.103660_b0105) 2019; 110 Song (10.1016/j.bspc.2022.103660_b0160) 2020; 11 Picard (10.1016/j.bspc.2022.103660_b0005) 2000 Zheng (10.1016/j.bspc.2022.103660_b0090) 2018; 49 Fourati (10.1016/j.bspc.2022.103660_b0120) 2020 Zheng (10.1016/j.bspc.2022.103660_b0150) 2017; 9 Sadiq (10.1016/j.bspc.2022.103660_b0200) 2019; 7 Jenke (10.1016/j.bspc.2022.103660_b0015) 2014; 5 Fourati (10.1016/j.bspc.2022.103660_b0115) 2020; 2020 Duan (10.1016/j.bspc.2022.103660_b0030) 2013 Tang (10.1016/j.bspc.2022.103660_b0225) 2017 Naser (10.1016/j.bspc.2022.103660_b0205) 2013 Koelstra (10.1016/j.bspc.2022.103660_b0125) 2011; 3 Gao (10.1016/j.bspc.2022.103660_b0165) 2021; 13 Alhagry (10.1016/j.bspc.2022.103660_b0075) 2017; 8 Guler (10.1016/j.bspc.2022.103660_b0065) 2005; 29 Cohen (10.1016/j.bspc.2022.103660_b0010) 2017; 40 Tripathi (10.1016/j.bspc.2022.103660_b0220) 2017 Bhattacharyya (10.1016/j.bspc.2022.103660_b0050) 2017; 64 Li (10.1016/j.bspc.2022.103660_b0155) 2019; 49 Yang (10.1016/j.bspc.2022.103660_b0245) 2018 |
References_xml | – start-page: 1 year: 2016 end-page: 6 ident: b0235 article-title: Affective states classification using EEG and semi-supervised deep learning approaches publication-title: 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP) – volume: 7 start-page: 171431 year: 2019 end-page: 171451 ident: b0200 article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain-computer interfaces publication-title: IEEE Access – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: b0090 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 69 year: 2021 ident: b0230 article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition publication-title: Biomed. Signal Process. Control – volume: 14 start-page: 233 year: 2004 end-page: 238 ident: b0190 article-title: Individual differences in emotion processing publication-title: Curr. Opin. Neurobiol. – start-page: 81 year: 2013 end-page: 84 ident: b0030 article-title: Differential entropy feature for EEG-based emotion classification publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) – year: 2020 ident: b0120 article-title: Unsupervised learning in reservoir computing for eeg-based emotion recognition publication-title: IEEE Trans. Affective Comput. – volume: 32 start-page: 2169 year: 2021 end-page: 2179 ident: b0135 article-title: Reservoir computing approaches for representation and classification of multivariate time series publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 11 start-page: 532 year: 2020 end-page: 541 ident: b0160 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affective Comput. – volume: 110 start-page: 254 year: 2019 end-page: 264 ident: b0105 article-title: Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts publication-title: Comput. Biol. Med. – start-page: 53 year: 2013 end-page: 57 ident: b0205 article-title: Recognition of emotions induced by music videos using DT-CWPT publication-title: Indian Conference on Medical Informatics and Telemedicine (ICMIT), 2013 – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: b0210 article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain publication-title: Biomed Res. Int. – reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). – volume: 11 start-page: 517 year: 2019 end-page: 526 ident: b0045 article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection publication-title: IEEE Tran. Cogn. Dev. Syst. – start-page: 101 year: 2013 end-page: 120 ident: b0025 article-title: Real-time fractal-based valence level recognition from EEG publication-title: Transactions on Computational Science XVIII – volume: 13 start-page: 945 year: 2021 end-page: 954 ident: b0165 article-title: A channel-fused dense convolutional network for EEG-based emotion recognition publication-title: IEEE Tran. Cogn. Dev. Syst. – volume: 64 start-page: 2003 year: 2017 end-page: 2015 ident: b0050 article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans. Biomed. Eng. – volume: 49 start-page: 555 year: 2019 end-page: 571 ident: b0155 article-title: EEG emotion recognition based on graph regularized sparse linear regression publication-title: Neural Process. Lett. – volume: 9 start-page: 281 year: 2017 end-page: 290 ident: b0150 article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis publication-title: IEEE Trans. Cog. Dev. Syst. – start-page: 1 year: 2018 end-page: 7 ident: b0245 article-title: Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network publication-title: International Joint Conference on Neural Networks (IJCNN), 2018 – volume: 29 start-page: 506 year: 2005 end-page: 514 ident: b0065 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. – volume: 18 start-page: 1710 year: 2021 end-page: 1721 ident: b0060 article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – year: 2018 ident: b0085 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affective Comput. – volume: 13 start-page: 53 year: 2019 ident: b0020 article-title: Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features publication-title: Front. Comput. Neurosci. – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: b0125 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. – volume: 49 start-page: 839 year: 2019 end-page: 847 ident: b0080 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. – volume: 5 start-page: 327 year: 2014 end-page: 339 ident: b0015 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. – volume: 40 start-page: 208 year: 2017 end-page: 218 ident: b0010 article-title: Where does EEG come from and what does it mean? publication-title: Trends Neurosci. – volume: 50 start-page: 3281 year: 2019 end-page: 3293 ident: b0195 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b0070 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 19 start-page: 656 year: 2011 end-page: 663 ident: b0040 article-title: Identification of time-varying systems using multi-wavelet basis functions publication-title: IEEE Trans. Control Syst. Technol. – volume: 10 start-page: 417 year: 2019 end-page: 429 ident: b0170 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affective Comput. – volume: 2020 start-page: 1 year: 2020 end-page: 8 ident: b0115 article-title: EEG feature learning with Intrinsic Plasticity based Deep Echo State Network, in publication-title: Internat. Joint Conf. Neural Networks (IJCNN) – volume: 3 start-page: 127 year: 2009 end-page: 149 ident: b0100 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. – volume: 57 start-page: 1798 year: 2010 end-page: 1806 ident: b0035 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. – year: 2020 ident: b0185 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – start-page: 811 year: 2017 end-page: 819 ident: b0225 article-title: Multimodal emotion recognition using deep neural networks publication-title: International Conference on Neural Information Processing – volume: 117 start-page: 225 year: 2019 end-page: 239 ident: b0130 article-title: Time series classification with echo memory networks publication-title: Neural networks – volume: 67 year: 2021 ident: b0055 article-title: Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals publication-title: Biomed. Signal Process. Control – volume: 13 start-page: 37 year: 2019 ident: b0095 article-title: SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorob. – year: 2019 ident: b0180 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affective Comput. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0140 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – start-page: 433 year: 2018 end-page: 443 ident: b0240 article-title: Continuous convolutional neural network with 3d input for eeg-based emotion recognition publication-title: International Conference on Neural Information Processing – volume: 8 start-page: 355 year: 2017 end-page: 358 ident: b0075 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Emotion – volume: 475 start-page: 1 year: 2019 end-page: 17 ident: b0110 article-title: Unsupervised EEG feature extraction based on echo state network publication-title: Inf. Sci. – volume: 13 start-page: 354 year: 2021 end-page: 367 ident: b0175 article-title: A novel bi-hemispheric discrepancy model for eeg emotion recognition publication-title: IEEE Tran. Cogn. Dev. Syst. – start-page: 352 year: 2016 end-page: 359 ident: b0215 article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network publication-title: IEEE International Conference On Bioinformatics And Biomedicine (BIBM), 2016 – year: 2000 ident: b0005 article-title: Affective Computing – year: 2017 ident: b0220 article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset publication-title: Twenty-ninth IAAI Conference – volume: 11 start-page: 517 issue: 4 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0045 article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection publication-title: IEEE Tran. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2868121 – volume: 8 start-page: 355 year: 2017 ident: 10.1016/j.bspc.2022.103660_b0075 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Emotion – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.bspc.2022.103660_b0115 article-title: EEG feature learning with Intrinsic Plasticity based Deep Echo State Network, in publication-title: Internat. Joint Conf. Neural Networks (IJCNN) – volume: 3 start-page: 18 year: 2011 ident: 10.1016/j.bspc.2022.103660_b0125 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. doi: 10.1109/T-AFFC.2011.15 – start-page: 53 year: 2013 ident: 10.1016/j.bspc.2022.103660_b0205 article-title: Recognition of emotions induced by music videos using DT-CWPT – volume: 3 start-page: 127 issue: 3 year: 2009 ident: 10.1016/j.bspc.2022.103660_b0100 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – volume: 49 start-page: 555 issue: 2 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0155 article-title: EEG emotion recognition based on graph regularized sparse linear regression publication-title: Neural Process. Lett. doi: 10.1007/s11063-018-9829-1 – volume: 50 start-page: 3281 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0195 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – year: 2019 ident: 10.1016/j.bspc.2022.103660_b0180 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affective Comput. – ident: 10.1016/j.bspc.2022.103660_b0145 – volume: 69 year: 2021 ident: 10.1016/j.bspc.2022.103660_b0230 article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102743 – volume: 5 start-page: 327 issue: 3 year: 2014 ident: 10.1016/j.bspc.2022.103660_b0015 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2339834 – volume: 7 start-page: 171431 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0200 article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain-computer interfaces publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956018 – volume: 13 start-page: 53 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0020 article-title: Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00053 – volume: 13 start-page: 354 issue: 2 year: 2021 ident: 10.1016/j.bspc.2022.103660_b0175 article-title: A novel bi-hemispheric discrepancy model for eeg emotion recognition publication-title: IEEE Tran. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2999337 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.bspc.2022.103660_b0140 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Machine Learn. Res. – volume: 64 start-page: 2003 issue: 9 year: 2017 ident: 10.1016/j.bspc.2022.103660_b0050 article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2650259 – volume: 67 year: 2021 ident: 10.1016/j.bspc.2022.103660_b0055 article-title: Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102525 – volume: 49 start-page: 1110 year: 2018 ident: 10.1016/j.bspc.2022.103660_b0090 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.bspc.2022.103660_b0210 article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain publication-title: Biomed Res. Int. doi: 10.1155/2017/8317357 – start-page: 101 year: 2013 ident: 10.1016/j.bspc.2022.103660_b0025 article-title: Real-time fractal-based valence level recognition from EEG – volume: 57 start-page: 1798 year: 2010 ident: 10.1016/j.bspc.2022.103660_b0035 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – year: 2000 ident: 10.1016/j.bspc.2022.103660_b0005 – year: 2020 ident: 10.1016/j.bspc.2022.103660_b0185 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 9 start-page: 281 issue: 3 year: 2017 ident: 10.1016/j.bspc.2022.103660_b0150 article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis publication-title: IEEE Trans. Cog. Dev. Syst. doi: 10.1109/TCDS.2016.2587290 – year: 2018 ident: 10.1016/j.bspc.2022.103660_b0085 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affective Comput. – year: 2020 ident: 10.1016/j.bspc.2022.103660_b0120 article-title: Unsupervised learning in reservoir computing for eeg-based emotion recognition publication-title: IEEE Trans. Affective Comput. – volume: 14 start-page: 233 issue: 2 year: 2004 ident: 10.1016/j.bspc.2022.103660_b0190 article-title: Individual differences in emotion processing publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2004.03.010 – start-page: 352 year: 2016 ident: 10.1016/j.bspc.2022.103660_b0215 article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network – volume: 7 start-page: 162 year: 2015 ident: 10.1016/j.bspc.2022.103660_b0070 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 49 start-page: 839 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0080 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2788081 – start-page: 1 year: 2016 ident: 10.1016/j.bspc.2022.103660_b0235 article-title: Affective states classification using EEG and semi-supervised deep learning approaches – volume: 13 start-page: 945 issue: 4 year: 2021 ident: 10.1016/j.bspc.2022.103660_b0165 article-title: A channel-fused dense convolutional network for EEG-based emotion recognition publication-title: IEEE Tran. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2976112 – volume: 19 start-page: 656 issue: 3 year: 2011 ident: 10.1016/j.bspc.2022.103660_b0040 article-title: Identification of time-varying systems using multi-wavelet basis functions publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2052257 – volume: 11 start-page: 532 issue: 3 year: 2020 ident: 10.1016/j.bspc.2022.103660_b0160 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2018.2817622 – volume: 10 start-page: 417 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0170 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2017.2712143 – year: 2017 ident: 10.1016/j.bspc.2022.103660_b0220 article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2022.103660_b0245 article-title: Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network – volume: 13 start-page: 37 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0095 article-title: SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorob. doi: 10.3389/fnbot.2019.00037 – start-page: 811 year: 2017 ident: 10.1016/j.bspc.2022.103660_b0225 article-title: Multimodal emotion recognition using deep neural networks – volume: 117 start-page: 225 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0130 article-title: Time series classification with echo memory networks publication-title: Neural networks doi: 10.1016/j.neunet.2019.05.008 – volume: 18 start-page: 1710 issue: 5 year: 2021 ident: 10.1016/j.bspc.2022.103660_b0060 article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2020.3018137 – volume: 29 start-page: 506 issue: 3 year: 2005 ident: 10.1016/j.bspc.2022.103660_b0065 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.011 – volume: 40 start-page: 208 issue: 4 year: 2017 ident: 10.1016/j.bspc.2022.103660_b0010 article-title: Where does EEG come from and what does it mean? publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.02.004 – volume: 32 start-page: 2169 issue: 5 year: 2021 ident: 10.1016/j.bspc.2022.103660_b0135 article-title: Reservoir computing approaches for representation and classification of multivariate time series publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2020.3001377 – volume: 475 start-page: 1 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0110 article-title: Unsupervised EEG feature extraction based on echo state network publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.09.057 – start-page: 81 year: 2013 ident: 10.1016/j.bspc.2022.103660_b0030 article-title: Differential entropy feature for EEG-based emotion classification – start-page: 433 year: 2018 ident: 10.1016/j.bspc.2022.103660_b0240 article-title: Continuous convolutional neural network with 3d input for eeg-based emotion recognition – volume: 110 start-page: 254 year: 2019 ident: 10.1016/j.bspc.2022.103660_b0105 article-title: Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.024 |
SSID | ssj0048714 |
Score | 2.3773875 |
Snippet | •Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103660 |
SubjectTerms | Affective computing DRS-Net Long-short term memory Multichannel EEG Reservoir computing |
Title | DRS-Net: A spatial–temporal affective computing model based on multichannel EEG data |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103660 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZcvAma3ez2Ze3UlurYg_WSm9LNslCpWyLXa_if_Af-kucyaalgvTgMUMGliE7D_i-bwi54DnY3UA4iY5zGFDC0Ik9HTjCD5QIpE4Shnznx37YG_L7UTCqkfaCC4OwSpv7q5xusrW1NG00m7PxuDmAXjqMYTphCAuKGSp-ch7hK7_6WMI8oB83-t542cHbljhTYbyy-QxlDBlD7nklU_lHcVopON0dsm07RdqqPmaX1HSxR7ZW9AP3ycvN08Dp6_KatugcodFi8v35ZdWmJlQYrAakMyrN7gbwoWbzDcXapei0oAZPiOTfAqydzi1FxOgBGXY7z-2eYxclONJ33dKJoW3hCmY5pdxMsUSFUa64H6mYiVygopqOhCc58mIlKq7Bj5h5vtbQvLEMzoekXkwLfUQoT1zfkFe1CjjTWoB7rLNEJV4euVIeE28RoVRaFXFcZjFJF3Cx1xSjmmJU0yqqx-Ry6TOrNDTW3g4WgU9_vYQUkvwav5N_-p2STTxVENwzUi_f3vU5NBpl1jAvqUE2WncPvf4P-lLRYA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNQEB2qLtSF-MT6vAtdSWxy82giuBCttvaxsFXcxZvcG6iUtNiKuBH_wU_xj_wSZ_IoFaQLwWUmmXAzGeYBZ84AHFgRynVbaJ5yI2xQHEdzDWVrwrSlsEPleZzmnZstp3prXd_b9wX4zGdhCFaZxf40pifROpOUMmuWBt1uqY21tONid8IJFuTyfIN1Xb2-YN82PK1d4E8-5Pyy0jmvatlqAS00dX2kuZjoLYndj5R6ILknnXIkLbMsXS4iQRxkqiyM0KJJ0pA4ytB1A8NUCssdHuA1vncG5iwMF7Q24fhtjCvBBiAhFKfTaXS8bFInBZUFwwHxJnJOw-4pL-Yv2XAiw10uw1JWmrKz9OtXoKDiVVicICxcg7uLm7bWUqMTdsaGhMUWva_3j4zeqsdEAg7B-MnCZFkE6rBk1Q6jZClZP2YJgJGmjWOUVipXjCCq63D7L-bbgNm4H6tNYJanm8m0rJK2xZUSqO6qwJOeEZX1MCyCkVvIDzPactqe0fNzfNqjT1b1yap-atUiHI11Bilpx9Sn7dzw_g_X8zGrTNHb-qPePsxXO82G36i16tuwQHdS_O8OzI6entUuVjmjYC_xKgYP_-3G3yGqCyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRS-Net%3A+A+spatial%E2%80%93temporal+affective+computing+model+based+on+multichannel+EEG+data&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Li%2C+Jingjing&rft.au=Wu%2C+Xia&rft.au=Zhang%2C+Yumei&rft.au=Yang%2C+Honghong&rft.date=2022-07-01&rft.issn=1746-8094&rft.volume=76&rft.spage=103660&rft_id=info:doi/10.1016%2Fj.bspc.2022.103660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |