DRS-Net: A spatial–temporal affective computing model based on multichannel EEG data

•Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a dynamic reservoir state encoder.•Integrating Reservoir Computing with the neural network to deal with EEG data processing. Affective computing b...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 76; p. 103660
Main Authors Li, Jingjing, Wu, Xia, Zhang, Yumei, Yang, Honghong, Wu, Xiaojun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a dynamic reservoir state encoder.•Integrating Reservoir Computing with the neural network to deal with EEG data processing. Affective computing based on electroencephalography (EEG) is a promising field that highly integrates research and technology. A critical challenge is effectively extracting and integrating the temporal and spatial information to form a better representation for multichannel EEG data. Most existing studies use hand-selected features from each channel, which neglect high-dimensional dynamic temporal features and interplay of data from different electrodes. This study proposed a Dynamic Reservoir State Network (DRS-Net) to recognize the subject’s emotional states. The novel end-to-end model constructs a dynamic reservoir state encoder to extract multi-channel EEG data’s dynamic high dimension non-linear spatial–temporal information with high speed and low complexity. Then, a Long-Short Term Memory-dense decoder model is devised to detect emotional states. The effectiveness of the proposed DRS-Net model was evaluated on SEED, SEED-IV, and DEAP datasets. To validate the performance of the proposed method, we first combined the hand-selected features (differential entropy, power spectra density, fractal dimension, and statistics features) and classic machine learning classifiers methods (support vector machine, random forest, and k-nearest neighbor). Then, we compare them with the proposed method and other state-of-the-art deep learning methods. The experimental results generated by our method outperform all other methods in terms of accuracy and F1 score.
AbstractList •Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a dynamic reservoir state encoder.•Integrating Reservoir Computing with the neural network to deal with EEG data processing. Affective computing based on electroencephalography (EEG) is a promising field that highly integrates research and technology. A critical challenge is effectively extracting and integrating the temporal and spatial information to form a better representation for multichannel EEG data. Most existing studies use hand-selected features from each channel, which neglect high-dimensional dynamic temporal features and interplay of data from different electrodes. This study proposed a Dynamic Reservoir State Network (DRS-Net) to recognize the subject’s emotional states. The novel end-to-end model constructs a dynamic reservoir state encoder to extract multi-channel EEG data’s dynamic high dimension non-linear spatial–temporal information with high speed and low complexity. Then, a Long-Short Term Memory-dense decoder model is devised to detect emotional states. The effectiveness of the proposed DRS-Net model was evaluated on SEED, SEED-IV, and DEAP datasets. To validate the performance of the proposed method, we first combined the hand-selected features (differential entropy, power spectra density, fractal dimension, and statistics features) and classic machine learning classifiers methods (support vector machine, random forest, and k-nearest neighbor). Then, we compare them with the proposed method and other state-of-the-art deep learning methods. The experimental results generated by our method outperform all other methods in terms of accuracy and F1 score.
ArticleNumber 103660
Author Wu, Xiaojun
Yang, Honghong
Li, Jingjing
Zhang, Yumei
Wu, Xia
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Li
  fullname: Li, Jingjing
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China
– sequence: 2
  givenname: Xia
  surname: Wu
  fullname: Wu, Xia
  organization: School of Computer Science, Shaanxi Normal University, Xi’an, China
– sequence: 3
  givenname: Yumei
  surname: Zhang
  fullname: Zhang, Yumei
  organization: School of Computer Science, Shaanxi Normal University, Xi’an, China
– sequence: 4
  givenname: Honghong
  surname: Yang
  fullname: Yang, Honghong
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China
– sequence: 5
  givenname: Xiaojun
  surname: Wu
  fullname: Wu, Xiaojun
  email: xjwu@snnu.edu.cn
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China
BookMark eNp9kMtKAzEUhoNUsK2-gKu8wNRc5lZxU2qtQlHwtg2Z5IymzCRDkhbc-Q6-oU_ilOrGRVfnnB--A_83QgPrLCB0TsmEEppfrCdV6NSEEcb6gOc5OUJDWqR5UlJSDv52Mk1P0CiENSFpWdB0iF6vH5-Se4iXeIZDJ6ORzffnV4S2c142WNY1qGi2gJVru0009g23TkODKxlAY2dxu2miUe_S2j5dLJZYyyhP0XEtmwBnv3OMXm4Wz_PbZPWwvJvPVonihMSkzHKS6oJRrUml2VTnRa1TXuiSyVqykmdQSKpSynimMlbwjJKKcoApZ6zq7zFi-7_KuxA81KLzppX-Q1AidmbEWuzMiJ0ZsTfTQ-U_SJnYV3c2emmaw-jVHoW-1NaAF0EZsAq08b0ooZ05hP8AzrGA5Q
CitedBy_id crossref_primary_10_3390_s22145252
crossref_primary_10_1016_j_bspc_2024_106249
crossref_primary_10_1016_j_bspc_2023_105863
crossref_primary_10_1016_j_bspc_2023_105875
crossref_primary_10_1016_j_bspc_2024_107432
crossref_primary_10_3390_s23177330
crossref_primary_10_1016_j_compbiomed_2024_108808
crossref_primary_10_1016_j_neucom_2025_129856
crossref_primary_10_1007_s10489_022_04228_2
crossref_primary_10_1109_ACCESS_2024_3460393
crossref_primary_10_1109_TIM_2024_3418093
crossref_primary_10_1016_j_eswa_2023_120883
crossref_primary_10_1007_s13755_023_00224_z
crossref_primary_10_1016_j_procs_2023_08_189
crossref_primary_10_3390_s22239102
Cites_doi 10.1109/TCDS.2018.2868121
10.1109/T-AFFC.2011.15
10.1016/j.cosrev.2009.03.005
10.1007/s11063-018-9829-1
10.1016/j.bspc.2021.102743
10.1109/TAFFC.2014.2339834
10.1109/ACCESS.2019.2956018
10.3389/fncom.2019.00053
10.1109/TCDS.2020.2999337
10.1109/TBME.2017.2650259
10.1016/j.bspc.2021.102525
10.1109/TCYB.2018.2797176
10.1155/2017/8317357
10.1109/TBME.2010.2048568
10.1109/TCDS.2016.2587290
10.1016/j.conb.2004.03.010
10.1109/TAMD.2015.2431497
10.1109/TCYB.2017.2788081
10.1109/TCDS.2020.2976112
10.1109/TCST.2010.2052257
10.1109/TAFFC.2018.2817622
10.1109/TAFFC.2017.2712143
10.3389/fnbot.2019.00037
10.1016/j.neunet.2019.05.008
10.1109/TCBB.2020.3018137
10.1016/j.eswa.2005.04.011
10.1016/j.tins.2017.02.004
10.1109/TNNLS.2020.3001377
10.1016/j.ins.2018.09.057
10.1016/j.compbiomed.2019.05.024
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103660
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103660
S1746809422001823
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-85604d721dd0bd29d67fd437d82afa2835e7a1c41235c5273510b13ee9322b273
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:13 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Fri Feb 23 02:40:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Affective computing
DRS-Net
Multichannel EEG
Long-short term memory
Reservoir computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-85604d721dd0bd29d67fd437d82afa2835e7a1c41235c5273510b13ee9322b273
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103660
crossref_citationtrail_10_1016_j_bspc_2022_103660
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Naser, Saha (b0205) 2013
Fourati, Ammar, Sanchez-Medina, Alimi (b0120) 2020
Jenke, Peer, Buss (b0015) 2014; 5
Zhong, Wang, Miao (b0185) 2020
Ma, Zhuang, Shen, Cottrell (b0130) 2019; 117
Yang, Wu, Fu, Chen (b0240) 2018
Xu, Plataniotis (b0235) 2016
Zhang, Zheng, Cui, Zong, Li (b0080) 2019; 49
Alhagry, Fahmy, El-Khoribi (b0075) 2017; 8
Song, Zheng, Song, Cui (b0160) 2020; 11
Liu, Wang, Zhao, Zhao, Xin, Wang (b0060) 2021; 18
Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b0035) 2010; 57
Li, Wei, Billings (b0040) 2011; 19
Zheng, Lu (b0070) 2015; 7
Zheng, Zhu, Lu (b0170) 2019; 10
Yang, Wu, Qiu, Wang, Chen (b0245) 2018
Li, Zheng, Zong, Cui, Zhang, Zhou (b0085) 2018
Zheng, Liu, Lu, Lu, Cichocki (b0090) 2018; 49
Liu, Sourina (b0025) 2013
Picard (b0005) 2000
Sadiq, Yu, Yuan, Zeming, Rehman, Ullah, Li, Xiao (b0200) 2019; 7
An, Xu, Qu (b0230) 2021; 69
Zheng (b0150) 2017; 9
Liu, Xie, Wu, Cao, Li, Li (b0045) 2019; 11
Guler, Ubeyli, Guler (b0065) 2005; 29
Fourati, Ammar, Jin, Alimi (b0115) 2020; 2020
Li, Qiu, Shen, Liu, He (b0195) 2019; 50
Bianchi, Scardapane, Lokse, Jenssen (b0135) 2021; 32
Kim, Jeong (b0105) 2019; 110
Li, Zheng, Cui, Zong, Ge (b0155) 2019; 49
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b0175) 2021; 13
Li, Song, Zhang, Yu, Hou, Hu (b0215) 2016
Xing, Li, Xu, Shu, Hu, Xu (b0095) 2019; 13
Duan, Zhu, Lu (b0030) 2013
Hamann, Canli (b0190) 2004; 14
Lukoševičius, Jaeger (b0100) 2009; 3
Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b0220) 2017
Yang, Zhao, Jiang, Gao, Liu (b0020) 2019; 13
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0140) 2014; 15
Li, Zheng, Wang, Zong, Cui (b0180) 2019
Das, Pachori (b0055) 2021; 67
Cohen (b0010) 2017; 40
Tang, Liu, Zheng, Lu (b0225) 2017
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0125) 2011; 3
Gao, Wang, Yang, Li, Ma, Chen (b0165) 2021; 13
Sun, Jin, Yang, Tong, Liu, Xiong (b0110) 2019; 475
Bhattacharyya, Pachori (b0050) 2017; 64
Zhuang, Zeng, Tong, Zhang, Zhang, Yan (b0210) 2017; 2017
Liu (10.1016/j.bspc.2022.103660_b0060) 2021; 18
Zheng (10.1016/j.bspc.2022.103660_b0170) 2019; 10
Xing (10.1016/j.bspc.2022.103660_b0095) 2019; 13
Das (10.1016/j.bspc.2022.103660_b0055) 2021; 67
Zhuang (10.1016/j.bspc.2022.103660_b0210) 2017; 2017
Zheng (10.1016/j.bspc.2022.103660_b0070) 2015; 7
Xu (10.1016/j.bspc.2022.103660_b0235) 2016
Li (10.1016/j.bspc.2022.103660_b0195) 2019; 50
Li (10.1016/j.bspc.2022.103660_b0175) 2021; 13
Yang (10.1016/j.bspc.2022.103660_b0020) 2019; 13
Liu (10.1016/j.bspc.2022.103660_b0045) 2019; 11
Srivastava (10.1016/j.bspc.2022.103660_b0140) 2014; 15
10.1016/j.bspc.2022.103660_b0145
Zhang (10.1016/j.bspc.2022.103660_b0080) 2019; 49
Sun (10.1016/j.bspc.2022.103660_b0110) 2019; 475
Bianchi (10.1016/j.bspc.2022.103660_b0135) 2021; 32
Yang (10.1016/j.bspc.2022.103660_b0240) 2018
Liu (10.1016/j.bspc.2022.103660_b0025) 2013
Hamann (10.1016/j.bspc.2022.103660_b0190) 2004; 14
Zhong (10.1016/j.bspc.2022.103660_b0185) 2020
Li (10.1016/j.bspc.2022.103660_b0085) 2018
Lin (10.1016/j.bspc.2022.103660_b0035) 2010; 57
Lukoševičius (10.1016/j.bspc.2022.103660_b0100) 2009; 3
Li (10.1016/j.bspc.2022.103660_b0040) 2011; 19
Li (10.1016/j.bspc.2022.103660_b0180) 2019
An (10.1016/j.bspc.2022.103660_b0230) 2021; 69
Ma (10.1016/j.bspc.2022.103660_b0130) 2019; 117
Li (10.1016/j.bspc.2022.103660_b0215) 2016
Kim (10.1016/j.bspc.2022.103660_b0105) 2019; 110
Song (10.1016/j.bspc.2022.103660_b0160) 2020; 11
Picard (10.1016/j.bspc.2022.103660_b0005) 2000
Zheng (10.1016/j.bspc.2022.103660_b0090) 2018; 49
Fourati (10.1016/j.bspc.2022.103660_b0120) 2020
Zheng (10.1016/j.bspc.2022.103660_b0150) 2017; 9
Sadiq (10.1016/j.bspc.2022.103660_b0200) 2019; 7
Jenke (10.1016/j.bspc.2022.103660_b0015) 2014; 5
Fourati (10.1016/j.bspc.2022.103660_b0115) 2020; 2020
Duan (10.1016/j.bspc.2022.103660_b0030) 2013
Tang (10.1016/j.bspc.2022.103660_b0225) 2017
Naser (10.1016/j.bspc.2022.103660_b0205) 2013
Koelstra (10.1016/j.bspc.2022.103660_b0125) 2011; 3
Gao (10.1016/j.bspc.2022.103660_b0165) 2021; 13
Alhagry (10.1016/j.bspc.2022.103660_b0075) 2017; 8
Guler (10.1016/j.bspc.2022.103660_b0065) 2005; 29
Cohen (10.1016/j.bspc.2022.103660_b0010) 2017; 40
Tripathi (10.1016/j.bspc.2022.103660_b0220) 2017
Bhattacharyya (10.1016/j.bspc.2022.103660_b0050) 2017; 64
Li (10.1016/j.bspc.2022.103660_b0155) 2019; 49
Yang (10.1016/j.bspc.2022.103660_b0245) 2018
References_xml – start-page: 1
  year: 2016
  end-page: 6
  ident: b0235
  article-title: Affective states classification using EEG and semi-supervised deep learning approaches
  publication-title: 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)
– volume: 7
  start-page: 171431
  year: 2019
  end-page: 171451
  ident: b0200
  article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain-computer interfaces
  publication-title: IEEE Access
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: b0090
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 69
  year: 2021
  ident: b0230
  article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 233
  year: 2004
  end-page: 238
  ident: b0190
  article-title: Individual differences in emotion processing
  publication-title: Curr. Opin. Neurobiol.
– start-page: 81
  year: 2013
  end-page: 84
  ident: b0030
  article-title: Differential entropy feature for EEG-based emotion classification
  publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
– year: 2020
  ident: b0120
  article-title: Unsupervised learning in reservoir computing for eeg-based emotion recognition
  publication-title: IEEE Trans. Affective Comput.
– volume: 32
  start-page: 2169
  year: 2021
  end-page: 2179
  ident: b0135
  article-title: Reservoir computing approaches for representation and classification of multivariate time series
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 11
  start-page: 532
  year: 2020
  end-page: 541
  ident: b0160
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affective Comput.
– volume: 110
  start-page: 254
  year: 2019
  end-page: 264
  ident: b0105
  article-title: Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts
  publication-title: Comput. Biol. Med.
– start-page: 53
  year: 2013
  end-page: 57
  ident: b0205
  article-title: Recognition of emotions induced by music videos using DT-CWPT
  publication-title: Indian Conference on Medical Informatics and Telemedicine (ICMIT), 2013
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0210
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: Biomed Res. Int.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
– volume: 11
  start-page: 517
  year: 2019
  end-page: 526
  ident: b0045
  article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection
  publication-title: IEEE Tran. Cogn. Dev. Syst.
– start-page: 101
  year: 2013
  end-page: 120
  ident: b0025
  article-title: Real-time fractal-based valence level recognition from EEG
  publication-title: Transactions on Computational Science XVIII
– volume: 13
  start-page: 945
  year: 2021
  end-page: 954
  ident: b0165
  article-title: A channel-fused dense convolutional network for EEG-based emotion recognition
  publication-title: IEEE Tran. Cogn. Dev. Syst.
– volume: 64
  start-page: 2003
  year: 2017
  end-page: 2015
  ident: b0050
  article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 49
  start-page: 555
  year: 2019
  end-page: 571
  ident: b0155
  article-title: EEG emotion recognition based on graph regularized sparse linear regression
  publication-title: Neural Process. Lett.
– volume: 9
  start-page: 281
  year: 2017
  end-page: 290
  ident: b0150
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Trans. Cog. Dev. Syst.
– start-page: 1
  year: 2018
  end-page: 7
  ident: b0245
  article-title: Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network
  publication-title: International Joint Conference on Neural Networks (IJCNN), 2018
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  ident: b0065
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 1710
  year: 2021
  end-page: 1721
  ident: b0060
  article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– year: 2018
  ident: b0085
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affective Comput.
– volume: 13
  start-page: 53
  year: 2019
  ident: b0020
  article-title: Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features
  publication-title: Front. Comput. Neurosci.
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b0125
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 49
  start-page: 839
  year: 2019
  end-page: 847
  ident: b0080
  article-title: Spatial-temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 5
  start-page: 327
  year: 2014
  end-page: 339
  ident: b0015
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
– volume: 40
  start-page: 208
  year: 2017
  end-page: 218
  ident: b0010
  article-title: Where does EEG come from and what does it mean?
  publication-title: Trends Neurosci.
– volume: 50
  start-page: 3281
  year: 2019
  end-page: 3293
  ident: b0195
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b0070
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 19
  start-page: 656
  year: 2011
  end-page: 663
  ident: b0040
  article-title: Identification of time-varying systems using multi-wavelet basis functions
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 10
  start-page: 417
  year: 2019
  end-page: 429
  ident: b0170
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0115
  article-title: EEG feature learning with Intrinsic Plasticity based Deep Echo State Network, in
  publication-title: Internat. Joint Conf. Neural Networks (IJCNN)
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: b0100
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
– volume: 57
  start-page: 1798
  year: 2010
  end-page: 1806
  ident: b0035
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2020
  ident: b0185
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 811
  year: 2017
  end-page: 819
  ident: b0225
  article-title: Multimodal emotion recognition using deep neural networks
  publication-title: International Conference on Neural Information Processing
– volume: 117
  start-page: 225
  year: 2019
  end-page: 239
  ident: b0130
  article-title: Time series classification with echo memory networks
  publication-title: Neural networks
– volume: 67
  year: 2021
  ident: b0055
  article-title: Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals
  publication-title: Biomed. Signal Process. Control
– volume: 13
  start-page: 37
  year: 2019
  ident: b0095
  article-title: SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorob.
– year: 2019
  ident: b0180
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affective Comput.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0140
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.
– start-page: 433
  year: 2018
  end-page: 443
  ident: b0240
  article-title: Continuous convolutional neural network with 3d input for eeg-based emotion recognition
  publication-title: International Conference on Neural Information Processing
– volume: 8
  start-page: 355
  year: 2017
  end-page: 358
  ident: b0075
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Emotion
– volume: 475
  start-page: 1
  year: 2019
  end-page: 17
  ident: b0110
  article-title: Unsupervised EEG feature extraction based on echo state network
  publication-title: Inf. Sci.
– volume: 13
  start-page: 354
  year: 2021
  end-page: 367
  ident: b0175
  article-title: A novel bi-hemispheric discrepancy model for eeg emotion recognition
  publication-title: IEEE Tran. Cogn. Dev. Syst.
– start-page: 352
  year: 2016
  end-page: 359
  ident: b0215
  article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network
  publication-title: IEEE International Conference On Bioinformatics And Biomedicine (BIBM), 2016
– year: 2000
  ident: b0005
  article-title: Affective Computing
– year: 2017
  ident: b0220
  article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset
  publication-title: Twenty-ninth IAAI Conference
– volume: 11
  start-page: 517
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0045
  article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection
  publication-title: IEEE Tran. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2868121
– volume: 8
  start-page: 355
  year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0075
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Emotion
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.103660_b0115
  article-title: EEG feature learning with Intrinsic Plasticity based Deep Echo State Network, in
  publication-title: Internat. Joint Conf. Neural Networks (IJCNN)
– volume: 3
  start-page: 18
  year: 2011
  ident: 10.1016/j.bspc.2022.103660_b0125
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/T-AFFC.2011.15
– start-page: 53
  year: 2013
  ident: 10.1016/j.bspc.2022.103660_b0205
  article-title: Recognition of emotions induced by music videos using DT-CWPT
– volume: 3
  start-page: 127
  issue: 3
  year: 2009
  ident: 10.1016/j.bspc.2022.103660_b0100
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 49
  start-page: 555
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0155
  article-title: EEG emotion recognition based on graph regularized sparse linear regression
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-018-9829-1
– volume: 50
  start-page: 3281
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0195
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0180
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affective Comput.
– ident: 10.1016/j.bspc.2022.103660_b0145
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2022.103660_b0230
  article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102743
– volume: 5
  start-page: 327
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2022.103660_b0015
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 7
  start-page: 171431
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0200
  article-title: Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain-computer interfaces
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956018
– volume: 13
  start-page: 53
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0020
  article-title: Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00053
– volume: 13
  start-page: 354
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2022.103660_b0175
  article-title: A novel bi-hemispheric discrepancy model for eeg emotion recognition
  publication-title: IEEE Tran. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2999337
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.bspc.2022.103660_b0140
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Machine Learn. Res.
– volume: 64
  start-page: 2003
  issue: 9
  year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0050
  article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2650259
– volume: 67
  year: 2021
  ident: 10.1016/j.bspc.2022.103660_b0055
  article-title: Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102525
– volume: 49
  start-page: 1110
  year: 2018
  ident: 10.1016/j.bspc.2022.103660_b0090
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0210
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: Biomed Res. Int.
  doi: 10.1155/2017/8317357
– start-page: 101
  year: 2013
  ident: 10.1016/j.bspc.2022.103660_b0025
  article-title: Real-time fractal-based valence level recognition from EEG
– volume: 57
  start-page: 1798
  year: 2010
  ident: 10.1016/j.bspc.2022.103660_b0035
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– year: 2000
  ident: 10.1016/j.bspc.2022.103660_b0005
– year: 2020
  ident: 10.1016/j.bspc.2022.103660_b0185
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 9
  start-page: 281
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0150
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Trans. Cog. Dev. Syst.
  doi: 10.1109/TCDS.2016.2587290
– year: 2018
  ident: 10.1016/j.bspc.2022.103660_b0085
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affective Comput.
– year: 2020
  ident: 10.1016/j.bspc.2022.103660_b0120
  article-title: Unsupervised learning in reservoir computing for eeg-based emotion recognition
  publication-title: IEEE Trans. Affective Comput.
– volume: 14
  start-page: 233
  issue: 2
  year: 2004
  ident: 10.1016/j.bspc.2022.103660_b0190
  article-title: Individual differences in emotion processing
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.03.010
– start-page: 352
  year: 2016
  ident: 10.1016/j.bspc.2022.103660_b0215
  article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network
– volume: 7
  start-page: 162
  year: 2015
  ident: 10.1016/j.bspc.2022.103660_b0070
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 49
  start-page: 839
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0080
  article-title: Spatial-temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2788081
– start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2022.103660_b0235
  article-title: Affective states classification using EEG and semi-supervised deep learning approaches
– volume: 13
  start-page: 945
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2022.103660_b0165
  article-title: A channel-fused dense convolutional network for EEG-based emotion recognition
  publication-title: IEEE Tran. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2976112
– volume: 19
  start-page: 656
  issue: 3
  year: 2011
  ident: 10.1016/j.bspc.2022.103660_b0040
  article-title: Identification of time-varying systems using multi-wavelet basis functions
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2052257
– volume: 11
  start-page: 532
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2022.103660_b0160
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 10
  start-page: 417
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0170
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2017.2712143
– year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0220
  article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103660_b0245
  article-title: Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network
– volume: 13
  start-page: 37
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0095
  article-title: SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorob.
  doi: 10.3389/fnbot.2019.00037
– start-page: 811
  year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0225
  article-title: Multimodal emotion recognition using deep neural networks
– volume: 117
  start-page: 225
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0130
  article-title: Time series classification with echo memory networks
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2019.05.008
– volume: 18
  start-page: 1710
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2022.103660_b0060
  article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2020.3018137
– volume: 29
  start-page: 506
  issue: 3
  year: 2005
  ident: 10.1016/j.bspc.2022.103660_b0065
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.011
– volume: 40
  start-page: 208
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2022.103660_b0010
  article-title: Where does EEG come from and what does it mean?
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.02.004
– volume: 32
  start-page: 2169
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2022.103660_b0135
  article-title: Reservoir computing approaches for representation and classification of multivariate time series
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3001377
– volume: 475
  start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0110
  article-title: Unsupervised EEG feature extraction based on echo state network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.09.057
– start-page: 81
  year: 2013
  ident: 10.1016/j.bspc.2022.103660_b0030
  article-title: Differential entropy feature for EEG-based emotion classification
– start-page: 433
  year: 2018
  ident: 10.1016/j.bspc.2022.103660_b0240
  article-title: Continuous convolutional neural network with 3d input for eeg-based emotion recognition
– volume: 110
  start-page: 254
  year: 2019
  ident: 10.1016/j.bspc.2022.103660_b0105
  article-title: Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.05.024
SSID ssj0048714
Score 2.3773875
Snippet •Provide DRS-Net, an end-to-end affective computing model using multichannel EEG data.•Automatically extract the EEG data’ spatial–temporal features with a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103660
SubjectTerms Affective computing
DRS-Net
Long-short term memory
Multichannel EEG
Reservoir computing
Title DRS-Net: A spatial–temporal affective computing model based on multichannel EEG data
URI https://dx.doi.org/10.1016/j.bspc.2022.103660
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZcvAma3ez2Ze3UlurYg_WSm9LNslCpWyLXa_if_Af-kucyaalgvTgMUMGliE7D_i-bwi54DnY3UA4iY5zGFDC0Ik9HTjCD5QIpE4Shnznx37YG_L7UTCqkfaCC4OwSpv7q5xusrW1NG00m7PxuDmAXjqMYTphCAuKGSp-ch7hK7_6WMI8oB83-t542cHbljhTYbyy-QxlDBlD7nklU_lHcVopON0dsm07RdqqPmaX1HSxR7ZW9AP3ycvN08Dp6_KatugcodFi8v35ZdWmJlQYrAakMyrN7gbwoWbzDcXapei0oAZPiOTfAqydzi1FxOgBGXY7z-2eYxclONJ33dKJoW3hCmY5pdxMsUSFUa64H6mYiVygopqOhCc58mIlKq7Bj5h5vtbQvLEMzoekXkwLfUQoT1zfkFe1CjjTWoB7rLNEJV4euVIeE28RoVRaFXFcZjFJF3Cx1xSjmmJU0yqqx-Ry6TOrNDTW3g4WgU9_vYQUkvwav5N_-p2STTxVENwzUi_f3vU5NBpl1jAvqUE2WncPvf4P-lLRYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNQEB2qLtSF-MT6vAtdSWxy82giuBCttvaxsFXcxZvcG6iUtNiKuBH_wU_xj_wSZ_IoFaQLwWUmmXAzGeYBZ84AHFgRynVbaJ5yI2xQHEdzDWVrwrSlsEPleZzmnZstp3prXd_b9wX4zGdhCFaZxf40pifROpOUMmuWBt1uqY21tONid8IJFuTyfIN1Xb2-YN82PK1d4E8-5Pyy0jmvatlqAS00dX2kuZjoLYndj5R6ILknnXIkLbMsXS4iQRxkqiyM0KJJ0pA4ytB1A8NUCssdHuA1vncG5iwMF7Q24fhtjCvBBiAhFKfTaXS8bFInBZUFwwHxJnJOw-4pL-Yv2XAiw10uw1JWmrKz9OtXoKDiVVicICxcg7uLm7bWUqMTdsaGhMUWva_3j4zeqsdEAg7B-MnCZFkE6rBk1Q6jZClZP2YJgJGmjWOUVipXjCCq63D7L-bbgNm4H6tNYJanm8m0rJK2xZUSqO6qwJOeEZX1MCyCkVvIDzPactqe0fNzfNqjT1b1yap-atUiHI11Bilpx9Sn7dzw_g_X8zGrTNHb-qPePsxXO82G36i16tuwQHdS_O8OzI6entUuVjmjYC_xKgYP_-3G3yGqCyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRS-Net%3A+A+spatial%E2%80%93temporal+affective+computing+model+based+on+multichannel+EEG+data&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Li%2C+Jingjing&rft.au=Wu%2C+Xia&rft.au=Zhang%2C+Yumei&rft.au=Yang%2C+Honghong&rft.date=2022-07-01&rft.issn=1746-8094&rft.volume=76&rft.spage=103660&rft_id=info:doi/10.1016%2Fj.bspc.2022.103660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon