Financial time series forecasting with deep learning : A systematic literature review: 2005–2019

Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers have created various models, and a vast numb...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 90; p. 106181
Main Authors Sezer, Omer Berat, Gudelek, Mehmet Ugur, Ozbayoglu, Ahmet Murat
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers have created various models, and a vast number of studies have been published accordingly. As such, a significant number of surveys exist covering ML studies on financial time series forecasting. Lately, Deep Learning (DL) models have appeared within the field, with results that significantly outperform their traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting, there is a lack of review papers that solely focus on DL for finance. Hence, the motivation of this paper is to provide a comprehensive literature review of DL studies on financial time series forecasting implementation. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, and commodity forecasting, but we also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and Long-Short Term Memory (LSTM). We also tried to envision the future of the field by highlighting its possible setbacks and opportunities for the benefit of interested researchers. •We reviewed all searchable articles of deep learning (DL) for financial time series forecasting.•RNN based DL models (LSTM and GRU included) are the most common.•We compared DL models according to their performances in different forecasted asset classes.•To best of our knowledge, this is the first comprehensive DL survey for financial time series forecasting.•We provided current status of DL in financial time series forecasting, also highlighted the future opportunities.
AbstractList Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers have created various models, and a vast number of studies have been published accordingly. As such, a significant number of surveys exist covering ML studies on financial time series forecasting. Lately, Deep Learning (DL) models have appeared within the field, with results that significantly outperform their traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting, there is a lack of review papers that solely focus on DL for finance. Hence, the motivation of this paper is to provide a comprehensive literature review of DL studies on financial time series forecasting implementation. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, and commodity forecasting, but we also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and Long-Short Term Memory (LSTM). We also tried to envision the future of the field by highlighting its possible setbacks and opportunities for the benefit of interested researchers. •We reviewed all searchable articles of deep learning (DL) for financial time series forecasting.•RNN based DL models (LSTM and GRU included) are the most common.•We compared DL models according to their performances in different forecasted asset classes.•To best of our knowledge, this is the first comprehensive DL survey for financial time series forecasting.•We provided current status of DL in financial time series forecasting, also highlighted the future opportunities.
ArticleNumber 106181
Author Gudelek, Mehmet Ugur
Sezer, Omer Berat
Ozbayoglu, Ahmet Murat
Author_xml – sequence: 1
  givenname: Omer Berat
  surname: Sezer
  fullname: Sezer, Omer Berat
  email: oberatsezer@etu.edu.tr
– sequence: 2
  givenname: Mehmet Ugur
  orcidid: 0000-0002-3745-727X
  surname: Gudelek
  fullname: Gudelek, Mehmet Ugur
  email: mgudelek@etu.edu.tr
– sequence: 3
  givenname: Ahmet Murat
  orcidid: 0000-0003-3576-1582
  surname: Ozbayoglu
  fullname: Ozbayoglu, Ahmet Murat
  email: mozbayoglu@etu.edu.tr
BookMark eNp9kM1KAzEURoMo2FZfwFVeYGr-Js0UN6VYFQpudB0ymTuaMs2UJFq68x18Q5_EDHXloqt7-eBc7nfG6Nz3HhC6oWRKCZW3m6mJvZ0ywoZAUkXP0IiqGSsqqeh53kupClEJeYnGMW5IhiqmRqheOW-8dabDyW0BRwgOIm77ANbE5Pwb3rv0jhuAHe7ABD9Ec7zA8RATbE1yFncuQTDpIwAO8OlgP8eMkPLn65sRWl2hi9Z0Ea7_5gS9ru5flo_F-vnhablYF5YTkgolGBNMcNqUbamaqpS1NJViAiwXilreCF6D4Yow09SlYKbluacRtpGlaGd8gtTxrg19jAFabV3K__U-BeM6TYkeXOmNHlzpwZU-usoo-4fugtuacDgN3R0hyKVy66CjdeAtNC7LS7rp3Sn8F238hOI
CitedBy_id crossref_primary_10_18267_j_ocenovani_270
crossref_primary_10_1002_for_3181
crossref_primary_10_3390_pr9101697
crossref_primary_10_1007_s11280_021_01003_0
crossref_primary_10_3390_a16080357
crossref_primary_10_1093_mnras_stac166
crossref_primary_10_1016_j_memsci_2023_121831
crossref_primary_10_1002_gdj3_281
crossref_primary_10_1109_TFUZZ_2024_3359652
crossref_primary_10_1016_j_eswa_2025_126849
crossref_primary_10_1021_acs_analchem_4c05046
crossref_primary_10_1108_K_03_2021_0235
crossref_primary_10_1007_s11063_024_11656_3
crossref_primary_10_1134_S1054661822040058
crossref_primary_10_1007_s11042_023_17062_6
crossref_primary_10_3390_systems10060243
crossref_primary_10_1016_j_eswa_2024_125475
crossref_primary_10_1080_01605682_2024_2438333
crossref_primary_10_1007_s40745_020_00300_1
crossref_primary_10_3390_math13030347
crossref_primary_10_1016_j_asoc_2024_111362
crossref_primary_10_3390_a16090396
crossref_primary_10_1016_j_eswa_2023_120638
crossref_primary_10_3390_jrfm16100423
crossref_primary_10_1016_j_dss_2023_114015
crossref_primary_10_2139_ssrn_3973086
crossref_primary_10_1109_ACCESS_2022_3155819
crossref_primary_10_1016_j_asoc_2022_108754
crossref_primary_10_1145_3582560
crossref_primary_10_1007_s10614_021_10198_3
crossref_primary_10_1002_for_3082
crossref_primary_10_1016_j_eswa_2025_126864
crossref_primary_10_1016_j_mex_2022_101758
crossref_primary_10_1111_exsy_13317
crossref_primary_10_7498_aps_71_20220436
crossref_primary_10_1007_s10489_021_02979_y
crossref_primary_10_3390_app13031764
crossref_primary_10_1016_j_jedc_2024_104821
crossref_primary_10_1016_j_eswa_2022_118485
crossref_primary_10_1108_AGJSR_02_2023_0070
crossref_primary_10_1134_S1062739122020156
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_3390_s24216857
crossref_primary_10_1007_s10614_020_10047_9
crossref_primary_10_1007_s10878_021_00800_7
crossref_primary_10_1109_TCSS_2022_3182375
crossref_primary_10_1016_j_jestch_2024_101897
crossref_primary_10_12720_jait_15_11_1273_1282
crossref_primary_10_1007_s00500_024_09903_9
crossref_primary_10_1016_j_eswa_2021_114828
crossref_primary_10_3390_e24050657
crossref_primary_10_1109_ACCESS_2022_3224938
crossref_primary_10_3390_su16062373
crossref_primary_10_1080_15427560_2021_1995735
crossref_primary_10_3390_math12121920
crossref_primary_10_1142_S1469026824420021
crossref_primary_10_1016_j_eswa_2022_119207
crossref_primary_10_1007_s13132_024_01939_4
crossref_primary_10_1016_j_eswa_2023_121701
crossref_primary_10_1155_2022_5596676
crossref_primary_10_1016_j_measen_2022_100501
crossref_primary_10_1016_j_neucom_2024_129027
crossref_primary_10_1186_s13677_023_00390_1
crossref_primary_10_1109_TEM_2021_3076603
crossref_primary_10_32604_cmc_2022_020823
crossref_primary_10_3390_s22010400
crossref_primary_10_1016_j_ijforecast_2024_10_003
crossref_primary_10_1108_IJAIM_06_2021_0124
crossref_primary_10_3390_s22207982
crossref_primary_10_2139_ssrn_3860098
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1155_2022_1860460
crossref_primary_10_1155_2021_3870657
crossref_primary_10_1109_TIM_2023_3318728
crossref_primary_10_1108_JM2_09_2022_0232
crossref_primary_10_1155_2022_1113023
crossref_primary_10_1109_ACCESS_2020_3047160
crossref_primary_10_1016_j_eswa_2025_126535
crossref_primary_10_3390_app11146594
crossref_primary_10_1371_journal_pone_0310801
crossref_primary_10_1016_j_eswa_2022_119140
crossref_primary_10_1007_s41060_024_00569_y
crossref_primary_10_1016_j_asoc_2024_111557
crossref_primary_10_1016_j_neunet_2021_10_024
crossref_primary_10_3390_app13042553
crossref_primary_10_1007_s10479_021_04420_6
crossref_primary_10_1016_j_eswa_2023_121642
crossref_primary_10_1103_PhysRevResearch_6_043082
crossref_primary_10_1109_TETC_2022_3230920
crossref_primary_10_2139_ssrn_3733398
crossref_primary_10_3390_math11010224
crossref_primary_10_1038_s41598_020_77280_y
crossref_primary_10_1007_s12351_023_00812_7
crossref_primary_10_33543_j_1402_171177
crossref_primary_10_1109_TNNLS_2023_3293131
crossref_primary_10_1007_s12665_023_11216_3
crossref_primary_10_1007_s11704_024_40449_z
crossref_primary_10_1016_j_eswa_2020_113463
crossref_primary_10_1007_s11071_023_09083_5
crossref_primary_10_1109_ACCESS_2024_3354702
crossref_primary_10_1007_s10489_023_04987_6
crossref_primary_10_35784_acs_2023_06
crossref_primary_10_1016_j_asoc_2021_107291
crossref_primary_10_3390_bdcc8090120
crossref_primary_10_3390_economies9040205
crossref_primary_10_1016_j_neucom_2024_129178
crossref_primary_10_1016_j_eswa_2023_120880
crossref_primary_10_1007_s10479_023_05400_8
crossref_primary_10_1016_j_energy_2022_123471
crossref_primary_10_1016_j_eswa_2020_114444
crossref_primary_10_31200_makuubd_1164099
crossref_primary_10_3390_e22101094
crossref_primary_10_1016_j_aei_2022_101771
crossref_primary_10_1109_ACCESS_2022_3146371
crossref_primary_10_4018_IJCBPL_324086
crossref_primary_10_1016_j_asoc_2023_110700
crossref_primary_10_1016_j_asoc_2025_112921
crossref_primary_10_1016_j_jksuci_2024_101959
crossref_primary_10_12720_jait_14_6_1372_1381
crossref_primary_10_1080_1331677X_2022_2106271
crossref_primary_10_1016_j_bar_2025_101563
crossref_primary_10_54187_jnrs_979836
crossref_primary_10_3934_QFE_2024007
crossref_primary_10_1109_TETCI_2023_3259434
crossref_primary_10_35940_ijeat_D2537_0610521
crossref_primary_10_1016_j_asoc_2020_106852
crossref_primary_10_1109_ACCESS_2023_3285082
crossref_primary_10_1111_coin_12617
crossref_primary_10_3390_math9243268
crossref_primary_10_1016_j_cej_2024_150050
crossref_primary_10_3390_su142215328
crossref_primary_10_4018_JOEUC_350224
crossref_primary_10_1007_s11042_024_20531_1
crossref_primary_10_1016_j_eswa_2023_122767
crossref_primary_10_3390_sym15040781
crossref_primary_10_7250_eb_2024_0006
crossref_primary_10_7769_gesec_v15i6_3935
crossref_primary_10_3934_math_20241663
crossref_primary_10_62051_ijcsit_v5n1_10
crossref_primary_10_1016_j_asoc_2022_109317
crossref_primary_10_1016_j_cviu_2024_104159
crossref_primary_10_1007_s10479_021_04187_w
crossref_primary_10_1016_j_eswa_2021_115537
crossref_primary_10_1186_s40854_024_00681_9
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_2139_ssrn_4825654
crossref_primary_10_1007_s00521_022_07393_0
crossref_primary_10_1016_j_apenergy_2023_122151
crossref_primary_10_1016_j_engappai_2021_104358
crossref_primary_10_3390_appliedmath4040076
crossref_primary_10_1007_s10479_024_06088_0
crossref_primary_10_1016_j_adhoc_2021_102541
crossref_primary_10_1007_s10614_025_10852_0
crossref_primary_10_1016_j_ejrh_2025_102250
crossref_primary_10_1186_s40537_022_00676_2
crossref_primary_10_1016_j_asoc_2024_111759
crossref_primary_10_3790_ccm_2024_1454601
crossref_primary_10_1016_j_asoc_2025_112903
crossref_primary_10_1016_j_jksuci_2024_102068
crossref_primary_10_1016_j_irfa_2024_103221
crossref_primary_10_1016_j_dsp_2022_103691
crossref_primary_10_1016_j_jksuci_2024_102180
crossref_primary_10_3390_su132413770
crossref_primary_10_1016_j_apor_2023_103709
crossref_primary_10_1007_s10489_024_05701_w
crossref_primary_10_1007_s11227_025_06984_7
crossref_primary_10_1016_j_joitmc_2024_100398
crossref_primary_10_14295_vetor_v34i1_16774
crossref_primary_10_35193_bseufbd_1087654
crossref_primary_10_1007_s00521_021_06828_4
crossref_primary_10_3934_math_20241315
crossref_primary_10_37394_23203_2023_18_2
crossref_primary_10_48175_IJRSCAMT_6235
crossref_primary_10_1016_j_engappai_2023_107713
crossref_primary_10_1007_s10489_022_04263_z
crossref_primary_10_1016_j_irfa_2022_102384
crossref_primary_10_1007_s43546_022_00328_w
crossref_primary_10_52566_msu_econ_7_2__2020_75_86
crossref_primary_10_3390_e25020219
crossref_primary_10_2139_ssrn_4781629
crossref_primary_10_1016_j_physa_2024_129563
crossref_primary_10_3390_rs15143694
crossref_primary_10_1155_2022_9012709
crossref_primary_10_3390_app13084781
crossref_primary_10_1016_j_jedc_2021_104278
crossref_primary_10_1016_j_eswa_2023_119585
crossref_primary_10_1016_j_ins_2024_121286
crossref_primary_10_1016_j_dmpk_2024_101004
crossref_primary_10_1016_j_ijar_2020_12_002
crossref_primary_10_1007_s43069_024_00395_9
crossref_primary_10_1038_s41598_023_37746_1
crossref_primary_10_1038_s41598_021_87709_7
crossref_primary_10_11648_j_ajcst_20240702_14
crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_3390_math12213320
crossref_primary_10_1080_03081079_2024_2410902
crossref_primary_10_3390_bdcc7030152
crossref_primary_10_1016_j_procs_2024_03_007
crossref_primary_10_1088_2632_2153_acc638
crossref_primary_10_3846_tede_2023_18672
crossref_primary_10_1007_s10614_024_10769_0
crossref_primary_10_3390_math11081785
crossref_primary_10_3390_s24123962
crossref_primary_10_3389_fvets_2021_775114
crossref_primary_10_60084_eje_v1i1_51
crossref_primary_10_1007_s10614_023_10484_2
crossref_primary_10_7717_peerj_cs_1114
crossref_primary_10_1016_j_asoc_2022_109259
crossref_primary_10_1016_j_asoc_2024_111847
crossref_primary_10_1007_s12145_022_00875_8
crossref_primary_10_1155_2021_5172658
crossref_primary_10_1007_s00521_022_07401_3
crossref_primary_10_1007_s10479_022_04857_3
crossref_primary_10_1016_j_bar_2024_101457
crossref_primary_10_48084_etasr_6223
crossref_primary_10_1007_s00521_023_08879_1
crossref_primary_10_1186_s40537_023_00760_1
crossref_primary_10_1016_j_jairtraman_2021_102135
crossref_primary_10_3390_buildings14103172
crossref_primary_10_1057_s41283_024_00152_6
crossref_primary_10_1016_j_eswa_2021_115334
crossref_primary_10_1016_j_procs_2022_09_139
crossref_primary_10_2139_ssrn_3862428
crossref_primary_10_1111_jtsa_12706
crossref_primary_10_1007_s11063_021_10616_5
crossref_primary_10_1049_iet_spr_2020_0154
crossref_primary_10_1016_j_artmed_2022_102430
crossref_primary_10_1016_j_asoc_2023_110409
crossref_primary_10_1109_ACCESS_2023_3268437
crossref_primary_10_1080_03081079_2024_2405688
crossref_primary_10_1007_s10614_021_10136_3
crossref_primary_10_1007_s00521_024_10650_z
crossref_primary_10_3390_ai5040101
crossref_primary_10_1007_s41060_024_00547_4
crossref_primary_10_1007_s44257_023_00007_6
crossref_primary_10_1111_exsy_13477
crossref_primary_10_4018_JOEUC_361650
crossref_primary_10_1002_rfe_1197
crossref_primary_10_1016_j_iot_2024_101322
crossref_primary_10_1016_j_resourpol_2024_104957
crossref_primary_10_29130_dubited_1096767
crossref_primary_10_1002_for_2909
crossref_primary_10_1016_j_ijepes_2023_109269
crossref_primary_10_3390_jrfm16080361
crossref_primary_10_1155_2023_9523230
crossref_primary_10_3390_s23156976
crossref_primary_10_3390_s22030841
crossref_primary_10_1016_j_compag_2023_107932
crossref_primary_10_1016_j_ins_2023_119833
crossref_primary_10_1186_s40537_023_00806_4
crossref_primary_10_1155_2022_4514300
crossref_primary_10_1016_j_physrep_2023_03_005
crossref_primary_10_2139_ssrn_3432760
crossref_primary_10_3390_jrfm17080346
crossref_primary_10_3390_risks10040084
crossref_primary_10_1016_j_petrol_2022_110323
crossref_primary_10_7717_peerj_cs_982
crossref_primary_10_3390_buildings14103156
crossref_primary_10_1016_j_watres_2024_123080
crossref_primary_10_1108_JHTI_12_2023_0960
crossref_primary_10_1109_ACCESS_2025_3549079
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1016_j_egyai_2025_100492
crossref_primary_10_35940_ijisme_B1313_12020224
crossref_primary_10_3390_info14110598
crossref_primary_10_3390_app10103616
crossref_primary_10_1109_ACCESS_2020_3030226
crossref_primary_10_3390_app12052420
crossref_primary_10_1016_j_asoc_2021_107941
crossref_primary_10_3390_en13236435
crossref_primary_10_1002_int_22556
crossref_primary_10_1007_s00500_023_09499_6
crossref_primary_10_1016_j_hcc_2025_100316
crossref_primary_10_1142_S179399332350014X
crossref_primary_10_3390_pr11123324
crossref_primary_10_1016_j_ins_2022_12_042
crossref_primary_10_3390_e23121601
crossref_primary_10_1016_j_jempfin_2024_101524
crossref_primary_10_1142_S0129065721300011
crossref_primary_10_3390_bioengineering11010089
crossref_primary_10_1109_ACCESS_2022_3169776
crossref_primary_10_1109_TKDE_2023_3319672
crossref_primary_10_1016_j_ins_2022_11_136
crossref_primary_10_1093_jigpal_jzae050
crossref_primary_10_1109_ACCESS_2024_3516490
crossref_primary_10_3390_risks12010012
crossref_primary_10_1145_3483596
crossref_primary_10_1016_j_intfin_2024_102064
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_1007_s12559_023_10129_4
crossref_primary_10_3390_atmos13122124
crossref_primary_10_1038_s43247_024_01698_9
crossref_primary_10_1007_s00521_022_07143_2
crossref_primary_10_1109_ACCESS_2023_3347804
crossref_primary_10_25295_fsecon_1269889
crossref_primary_10_26745_ahbvuibfd_1191080
crossref_primary_10_1016_j_knosys_2024_112733
crossref_primary_10_1016_j_asoc_2021_107920
crossref_primary_10_3390_appliedmath5010006
crossref_primary_10_1109_ACCESS_2023_3330156
crossref_primary_10_3390_electronics11193181
crossref_primary_10_1007_s10614_025_10869_5
crossref_primary_10_1016_j_fraope_2024_100180
crossref_primary_10_1007_s00521_024_10867_y
crossref_primary_10_1016_j_resourpol_2020_101806
crossref_primary_10_3390_risks12090139
crossref_primary_10_1109_TCYB_2024_3498100
crossref_primary_10_2139_ssrn_3527511
crossref_primary_10_1016_j_eswa_2022_117951
crossref_primary_10_1016_j_softx_2024_101758
crossref_primary_10_1007_s10614_023_10390_7
crossref_primary_10_1007_s11869_023_01380_7
crossref_primary_10_1016_j_eswa_2023_121012
crossref_primary_10_1111_coin_12556
crossref_primary_10_1016_j_asoc_2020_106685
crossref_primary_10_1155_2021_2446543
crossref_primary_10_3390_forecast3030040
crossref_primary_10_1016_j_najef_2023_102070
crossref_primary_10_1080_14697688_2021_1999487
crossref_primary_10_18510_hssr_2023_11410
crossref_primary_10_3390_stats7020025
crossref_primary_10_3390_buildings15060902
crossref_primary_10_1016_j_eswa_2024_125926
crossref_primary_10_60084_ijma_v2i2_232
crossref_primary_10_3390_math10020248
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_2139_ssrn_4781472
crossref_primary_10_3390_app12031427
crossref_primary_10_1109_JSEN_2023_3300416
crossref_primary_10_1016_j_eswa_2021_115470
crossref_primary_10_1007_s41870_022_00924_x
crossref_primary_10_1016_j_asoc_2022_109181
crossref_primary_10_1016_j_asoc_2023_110467
crossref_primary_10_3233_IDA_216142
crossref_primary_10_35377_saucis___1404116
crossref_primary_10_1109_JIOT_2024_3419768
crossref_primary_10_1142_S0219477523500384
crossref_primary_10_3934_mbe_2022007
crossref_primary_10_1016_j_eswa_2024_125950
crossref_primary_10_1016_j_aichem_2023_100030
crossref_primary_10_1080_02664763_2021_1936468
crossref_primary_10_59324_ejtas_2024_2_1__42
crossref_primary_10_3390_su151310543
crossref_primary_10_3390_su14084408
crossref_primary_10_1140_epjb_s10051_021_00167_y
crossref_primary_10_3390_agriculture13030738
crossref_primary_10_1093_logcom_exae019
crossref_primary_10_12677_sa_2024_135167
crossref_primary_10_1016_j_procs_2024_02_167
crossref_primary_10_1016_j_eneco_2023_107089
crossref_primary_10_54187_jnrs_1185912
crossref_primary_10_2478_jos_2022_0033
crossref_primary_10_3389_fenrg_2022_896217
crossref_primary_10_1016_j_eswa_2020_114091
crossref_primary_10_1111_exsy_13291
crossref_primary_10_1002_isaf_1551
crossref_primary_10_1007_s10489_023_04563_y
crossref_primary_10_1016_j_asoc_2020_106384
crossref_primary_10_1109_ACCESS_2021_3077962
crossref_primary_10_1155_2021_6507688
crossref_primary_10_7717_peerj_cs_2164
crossref_primary_10_1007_s40822_023_00232_0
crossref_primary_10_1016_j_ejor_2023_09_026
crossref_primary_10_1016_j_ememar_2022_100891
crossref_primary_10_1080_00207543_2023_2217286
crossref_primary_10_1109_TAI_2023_3282201
crossref_primary_10_25287_ohuiibf_1577168
crossref_primary_10_1007_s41060_021_00278_w
crossref_primary_10_1109_TSMC_2023_3302838
crossref_primary_10_3390_math9080800
crossref_primary_10_1108_IJCHM_10_2022_1233
crossref_primary_10_3390_en14206763
crossref_primary_10_1007_s40747_024_01400_8
crossref_primary_10_1016_j_eswa_2021_115298
crossref_primary_10_1002_wsbm_1548
crossref_primary_10_1016_j_eswa_2022_116553
crossref_primary_10_1080_1331677X_2022_2089192
crossref_primary_10_1080_13504851_2024_2396550
crossref_primary_10_1155_2022_2850604
crossref_primary_10_1016_j_knosys_2022_108917
crossref_primary_10_1007_s10844_024_00851_2
crossref_primary_10_1007_s11071_023_08429_3
crossref_primary_10_18657_yonveek_1208807
crossref_primary_10_1016_j_ymssp_2022_109082
crossref_primary_10_3390_e26090783
crossref_primary_10_3390_ijgi14020050
crossref_primary_10_1007_s11042_024_20321_9
crossref_primary_10_3390_rs17010092
crossref_primary_10_1007_s12063_022_00336_x
crossref_primary_10_1016_j_asoc_2023_111224
crossref_primary_10_1016_j_frl_2023_104251
crossref_primary_10_1007_s13042_024_02491_y
crossref_primary_10_1016_j_jocs_2023_101956
crossref_primary_10_3390_en15134768
crossref_primary_10_1080_02664763_2024_2395961
crossref_primary_10_1080_10298436_2023_2257852
crossref_primary_10_3389_fphy_2022_1008445
crossref_primary_10_1007_s11831_025_10244_5
crossref_primary_10_1016_j_energy_2021_122768
crossref_primary_10_17714_gumusfenbil_707088
crossref_primary_10_1007_s00521_024_10418_5
crossref_primary_10_1016_j_biortech_2023_129882
crossref_primary_10_1007_s11270_024_07242_x
crossref_primary_10_3390_axioms11080396
crossref_primary_10_1007_s10614_024_10689_z
crossref_primary_10_1007_s11356_024_33058_7
crossref_primary_10_1086_728699
crossref_primary_10_1016_j_cnsns_2024_108555
crossref_primary_10_1007_s41965_022_00103_8
crossref_primary_10_3390_sym13081544
crossref_primary_10_26466_opusjsr_1632110
crossref_primary_10_1109_ACCESS_2025_3541074
crossref_primary_10_1007_s00521_020_05506_1
crossref_primary_10_3233_IDA_216340
crossref_primary_10_3390_electronics12194183
crossref_primary_10_1007_s11227_020_03582_7
crossref_primary_10_2139_ssrn_4796336
crossref_primary_10_1016_j_knosys_2021_107009
crossref_primary_10_3390_math11051251
crossref_primary_10_48175_IJETIR_6225
crossref_primary_10_2478_amns_2025_0569
crossref_primary_10_7731_KIFSE_0722bf36
crossref_primary_10_1016_j_multra_2025_100191
crossref_primary_10_3390_math9040427
crossref_primary_10_1016_j_asoc_2023_111132
crossref_primary_10_1109_ACCESS_2022_3219832
crossref_primary_10_1186_s40854_022_00441_7
crossref_primary_10_1016_j_patcog_2021_108218
crossref_primary_10_3390_su141811598
crossref_primary_10_1016_j_knosys_2024_112567
crossref_primary_10_1109_TKDE_2021_3079496
crossref_primary_10_1016_j_ins_2024_120644
crossref_primary_10_1109_ACCESS_2022_3170905
crossref_primary_10_1155_jama_7706431
crossref_primary_10_1007_s10614_024_10629_x
crossref_primary_10_1016_j_jcmds_2022_100065
crossref_primary_10_1002_widm_1519
crossref_primary_10_2139_ssrn_3890556
crossref_primary_10_1016_j_wroa_2023_100207
crossref_primary_10_3390_math10193632
crossref_primary_10_1016_j_revip_2024_100093
crossref_primary_10_1371_journal_pone_0269195
crossref_primary_10_1016_j_egyai_2022_100172
crossref_primary_10_3390_economies9010006
crossref_primary_10_3390_en18061365
crossref_primary_10_1007_s00521_022_07431_x
crossref_primary_10_1016_j_egyai_2022_100170
crossref_primary_10_1111_ffe_14514
crossref_primary_10_1027_2151_2604_a000555
crossref_primary_10_1088_2632_2153_ad7f26
crossref_primary_10_31795_baunsobed_1545006
crossref_primary_10_1051_e3sconf_202341201069
crossref_primary_10_3934_QFE_2021032
crossref_primary_10_1016_j_mlwa_2021_100060
crossref_primary_10_1177_21582440231152379
crossref_primary_10_3390_su14116785
crossref_primary_10_1007_s10614_024_10785_0
crossref_primary_10_3390_e23060731
crossref_primary_10_2139_ssrn_3809308
crossref_primary_10_3390_smartcities6050114
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1016_j_eswa_2022_118645
crossref_primary_10_1016_j_fss_2021_09_009
crossref_primary_10_3390_jrfm18030120
crossref_primary_10_1007_s10614_024_10617_1
crossref_primary_10_1016_j_apenergy_2024_122649
crossref_primary_10_1111_mafi_12413
crossref_primary_10_1016_j_neucom_2022_06_106
crossref_primary_10_1371_journal_pone_0288836
crossref_primary_10_1016_j_neucom_2024_127470
crossref_primary_10_3233_JIFS_233060
crossref_primary_10_1080_14697688_2022_2130085
crossref_primary_10_1111_exsy_13725
crossref_primary_10_1016_j_asoc_2024_112393
crossref_primary_10_1016_j_ijinfomgt_2020_102225
crossref_primary_10_1007_s11063_024_11578_0
crossref_primary_10_1007_s10614_023_10379_2
crossref_primary_10_1007_s10614_024_10797_w
crossref_primary_10_1016_j_eswa_2021_115078
crossref_primary_10_1016_j_neucom_2022_07_016
crossref_primary_10_1007_s10586_024_04684_0
crossref_primary_10_3390_su151813725
crossref_primary_10_1002_cpe_7637
crossref_primary_10_1142_S1793993323500084
crossref_primary_10_1016_j_chaos_2024_114998
crossref_primary_10_1016_j_inffus_2024_102616
crossref_primary_10_1016_j_resourpol_2022_102884
crossref_primary_10_1016_j_frl_2023_104228
crossref_primary_10_1007_s10845_023_02116_1
crossref_primary_10_1016_j_rcim_2025_103010
crossref_primary_10_1145_3502287
crossref_primary_10_1007_s10489_021_02599_6
crossref_primary_10_1016_j_eswa_2022_117252
crossref_primary_10_1016_j_jfds_2024_100143
crossref_primary_10_1007_s10614_022_10281_3
crossref_primary_10_1007_s13369_022_07197_3
crossref_primary_10_1016_j_eswa_2023_119836
crossref_primary_10_15869_itobiad_1329889
crossref_primary_10_1016_j_frl_2024_105840
crossref_primary_10_1007_s11831_022_09765_0
crossref_primary_10_1007_s10614_023_10400_8
crossref_primary_10_1007_s44196_023_00212_x
crossref_primary_10_1016_j_frl_2020_101755
crossref_primary_10_1016_j_eswa_2024_125789
crossref_primary_10_1016_j_procs_2022_12_275
crossref_primary_10_1108_CFRI_01_2024_0032
crossref_primary_10_1016_j_knosys_2022_108889
crossref_primary_10_3390_forecast5010017
crossref_primary_10_1080_17538947_2024_2372317
crossref_primary_10_1016_j_eswa_2020_113973
crossref_primary_10_1016_j_eswa_2022_117123
crossref_primary_10_1016_j_jsse_2021_09_001
crossref_primary_10_3233_IDA_220414
crossref_primary_10_1007_s10614_024_10683_5
crossref_primary_10_1016_j_asoc_2021_107488
crossref_primary_10_1007_s41060_024_00562_5
crossref_primary_10_1109_ACCESS_2025_3535584
crossref_primary_10_1016_j_cose_2024_104130
crossref_primary_10_1080_15140326_2025_2454081
crossref_primary_10_1002_for_3201
crossref_primary_10_1007_s10614_024_10597_2
crossref_primary_10_1007_s12647_021_00503_8
crossref_primary_10_1016_j_neucom_2024_129218
crossref_primary_10_1049_cit2_12139
crossref_primary_10_1016_j_chaos_2021_111612
crossref_primary_10_1016_j_patcog_2023_109604
crossref_primary_10_1007_s10462_024_10715_4
crossref_primary_10_3390_fractalfract6070394
crossref_primary_10_1016_j_dsp_2024_104415
crossref_primary_10_1080_14697688_2022_2135454
crossref_primary_10_1002_int_22345
crossref_primary_10_1038_s41598_022_12547_0
crossref_primary_10_1016_j_renene_2021_05_023
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_3390_en18030660
crossref_primary_10_1007_s11424_024_2112_9
crossref_primary_10_1016_j_asoc_2025_112771
crossref_primary_10_3390_jrfm14030119
crossref_primary_10_1016_j_mtcomm_2023_107853
crossref_primary_10_1016_j_neucom_2025_129641
crossref_primary_10_1098_rsta_2021_0213
crossref_primary_10_3390_e25010071
crossref_primary_10_1016_j_cie_2023_109023
crossref_primary_10_1007_s00521_024_09931_4
crossref_primary_10_1016_j_frl_2023_104304
crossref_primary_10_1016_j_micpro_2020_103493
Cites_doi 10.1016/j.patrec.2005.03.026
10.1016/j.procs.2017.11.373
10.1016/j.procs.2018.07.260
10.1016/j.dss.2012.05.039
10.1016/j.eswa.2017.04.030
10.1109/72.728395
10.1016/j.eswa.2012.02.022
10.1016/j.asoc.2015.09.040
10.3390/a11090138
10.1016/j.ejor.2016.10.031
10.1007/978-981-10-6463-0_31
10.1007/s10339-011-0404-1
10.1016/j.eswa.2015.06.001
10.1587/transinf.2016IIP0016
10.1016/j.eswa.2018.09.036
10.1198/016214506000001437
10.1016/j.neucom.2015.04.071
10.1109/72.935096
10.1016/j.intfin.2014.01.006
10.1016/j.jfds.2016.10.001
10.3233/IDT-140211
10.1016/j.procs.2018.05.111
10.1214/aoms/1177729586
10.1007/978-3-319-13560-1_60
10.1016/j.eswa.2018.07.019
10.4236/jmf.2018.81005
10.1016/j.eneco.2017.05.023
10.1016/j.procs.2018.04.298
10.1016/j.procs.2017.09.031
10.1016/j.asoc.2018.04.024
10.2139/ssrn.3232721
10.1007/978-3-319-60438-1_69
10.1162/neco.1997.9.8.1735
10.1016/j.eswa.2009.07.077
10.1016/S1352-2310(97)00447-0
10.21314/JCF.2019.358
10.1016/j.asoc.2016.08.029
10.1016/j.knosys.2017.09.023
10.1016/j.neunet.2014.09.003
10.3846/16111699.2012.729532
10.1162/neco.2006.18.7.1527
10.1109/TNNLS.2016.2522401
10.18178/ijmlc.2017.7.5.632
10.1007/s11277-017-5086-2
10.18201/ijisae.2017SpecialIssue31421
10.1016/S1874-8651(10)60090-7
10.1007/978-3-319-44781-0_39
10.1016/j.procs.2015.07.104
10.1109/TEVC.2012.2196800
10.1016/j.irfa.2014.02.006
10.1016/j.asoc.2015.07.008
10.2139/ssrn.2756331
10.1016/j.datak.2018.08.003
10.1016/j.eswa.2016.02.006
10.1016/j.elerap.2018.02.006
10.1016/j.dss.2017.10.001
10.1109/TPAMI.2012.59
10.2139/ssrn.2607666
10.1016/j.eswa.2007.05.012
10.2139/ssrn.3141294
10.1109/ACCESS.2018.2859809
10.1016/j.resourpol.2015.03.004
10.1109/TII.2018.2811377
10.1016/j.knosys.2016.10.003
10.1038/nature14539
10.2139/ssrn.3228485
10.1371/journal.pone.0180944
10.1109/TNNLS.2016.2582924
10.1109/TSMCC.2004.829279
10.1016/j.eswa.2008.07.006
10.1016/j.ress.2013.02.022
10.1016/j.knosys.2017.12.025
10.1007/s10489-007-0051-5
10.1109/CVPR.2015.7298965
10.1016/j.procs.2018.05.050
10.1257/jep.31.2.87
10.1016/j.eswa.2018.07.065
10.1561/2000000039
10.1007/s10462-017-9588-9
10.1016/j.ijforecast.2016.05.004
10.1109/72.279181
10.1007/s00521-010-0362-z
10.1016/j.asoc.2010.09.007
10.1007/s11042-016-4159-7
10.1016/j.neucom.2013.05.014
10.1016/j.neucom.2018.02.095
10.1016/j.cor.2018.05.020
10.1142/S0219622004000969
10.1016/j.eswa.2014.06.009
10.1007/BF02551274
10.2469/faj.v45.n5.38
10.1016/j.rfe.2013.05.005
10.1016/j.eswa.2018.03.002
10.1016/j.ejor.2017.11.054
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106181
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106181
S1568494620301216
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-842242431d5f58d956b6a9824ec3481c3d43bea3802adb542af3181a4cd654f73
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:05 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Fri Feb 23 02:49:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CNN
LSTM
RNN
Finance
Machine learning
Time series forecasting
Computational intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-842242431d5f58d956b6a9824ec3481c3d43bea3802adb542af3181a4cd654f73
ORCID 0000-0003-3576-1582
0000-0002-3745-727X
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106181
crossref_primary_10_1016_j_asoc_2020_106181
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiong, Nichols, Shen (b161) 2015
Lachiheb, Gouider (b143) 2018; 126
Zhao, Li, Yu (b157) 2017; 66
Mittermayer, F. Knolmayer (b18) 2006
Kraus, Feuerriegel (b99) 2017; 104
Widegren (b126) 2017
(b5) 2008
Fan, Xue, Yao (b98) 2014
Kovalerchuk, Vityaev (b4) 2000
Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b216) 2017
and (b110) 2017; 1
Prosky, Song, Tan, Zhao (b207) 2017; abs/1712.05785
Shen, Chao, Zhao (b171) 2015; 167
Yao, Chen (b72) 2016
Bianchi, Büchner, Tamoni (b166) 2018
Van Der Maaten (b71) 2009
Bergstra, Bengio (b56) 2012; 13
Liu, Zhang, Ma (b91) 2017
Goodfellow, Bengio, Courville (b39) 2016
Nguyen-Tuong, Peters (b79) 2011; 12
Zhang, Shen, Zhao (b168) 2014
Kingma, Ba (b51) 2014
Hajizadeh, Ardakani, Shahrabi (b25) 2010
Nair, Mohandas (b26) 2014; 9
Selvin, Vinayakumar, Gopalakrishnan, Menon, Soman (b85) 2017
Gunduz, Yaslan, Cataltepe (b200) 2017; 137
Mitra, Mitra (b19) 2012
Siami-Namini, Namin (b136) 2018
Han, Hao, Huang (b122) 2018; 28
Zhou, min Zhou, Yang, Yang (b190) 2019; 115
Hu, Liu, Zhang, Su, Ngai, Liu (b34) 2015; 36
Batres-Estrada (b93) 2015
Kim, Won (b163) 2018; 103
Bengio, Simard, Frasconi (b52) 1994; 5
Peng, Jiang (b202) 2016
LeCun, Bengio, Hinton (b37) 2015; 521
Zhang (b138) 2015
Chen, Yeo, Lau, Lee (b154) 2018
Schmidhuber (b38) 2015; 61
Feng, He, Polson (b97) 2018
Hansson (b133) 2017
Tkáč, Verner (b16) 2016; 38
Tieleman, Hinton (b50) 2012; 4
Xing, Cambria, Welsch (b23) 2017; 50
Bildirici, Alp, Ersin (b148) 2010; 37
Gneiting, Raftery (b221) 2007; 102
Song, Wu (b197) 2018
Bao, Yue, Rao (b123) 2017; 12
Parida, Bisoi, Dash (b124) 2016; 2
Sermpinis, Laws, Karathanasopoulos, Dunis (b173) 2012; 39
Zhuge, Xu, Zhang (b102) 2017
Huang, Lai, Nakamori, Wang (b35) 2004; 03
Psaradellis, Sermpinis (b149) 2016; 32
Sermpinis, Stasinakis, Dunis (b175) 2014; 30
Sermpinis, Dunis, Laws, Stasinakis (b174) 2012; 54
Dingli, Fournier (b129) 2017; 7
Sutton, Barto (b78) 1998
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
Akita, Yoshihara, Matsubara, Uehara (b103) 2016
Chao, Shen, Zhao (b169) 2011
Shen, Tan, Zhang, Zeng, Xu (b187) 2018; 131
Ozbayoglu (b104) 2007
Deng, Yu (b45) 2014; 7
Shi, Teng, Wang, Zhang, Binder (b210) 2018
Pradeepkumar, Ravi (b36) 2018; 99
Vincent, Larochelle, Bengio, Manzagol (b77) 2008
Chen, He, Tso (b158) 2017; 122
Krauss, Do, Huck (b89) 2017; 259
Li, Yang, Xue, Zhou (b87) 2017
Di Persio, Honchar (b186) 2017; 11
Preethi, Santhi (b30) 2012; 46
Ji, Xu, Yang, Yu (b62) 2012; 35
Minami (b100) 2018; 08
Baek, Kim (b132) 2018; 113
Nikolaev, Tino, Smirnov (b164) 2013; 122
Maas, Hannun, Ng (b43) 2013; vol. 30
(b10) 2002
Yoo, Kim, Jan (b29) 2005
Tino, Schittenkopf, Dorffner (b160) 2001; 12
Zhou, Pan, Hu, Tang, Zhao (b106) 2018; 2018
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
Salakhutdinov, Mnih, Hinton (b67) 2007
Szegedy, Toshev, Erhan (b63) 2013
Hinton, Osindero, Teh (b75) 2006; 18
Sezer, Ozbayoglu (b189) 2019
dos Santos Pinheiro, Dras (b206) 2017
Harvey (b165) 1989; 45
Robbins, Monro (b47) 1951
Warren (b167) 2019
Huynh, Dang, Duong (b203) 2017
Mourelatos, Alexakos, Amorgianiotis, Likothanassis (b151) 2018
Maknickienė, Maknickas (b177) 2013; 14
Bergstra, Bardenet, Bengio, Kégl (b55) 2011
Hochreiter, Schmidhuber (b58) 1997; 9
Ausmees, Milovanovic, Wrede, Zafari (b191) 2017
Rothstein, Sutton, Borenstein (b222) 2005
Li, Ma (b15) 2010
Rada (b14) 2008; 34
Chandra, Chand (b90) 2016; 49
Verma, Dey, Meisheri (b205) 2017
Nelson, Pereira, de Oliveira (b196) 2017
Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine Learning, 2013, pp. 1139–1147.
Mochón, Quintana, Sáez, Viñuela (b8) 2007; 29
Khare, Darekar, Gupta, Attar (b105) 2017
Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b219) 2017
Thomas Günter Fischer, Krauss, Deinert (b220) 2019; 12
McNally, Roche, Caton (b182) 2018
Meng, Catchpoole, Skillicom, Kennedy (b76) 2017
Chatterjee, Ayadi, Boone (b32) 2000; 26
Hrasko, Pacheco, Krohling (b66) 2015; 55
Chen, Zhou, Dai (b81) 2015
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, Deep belief networks for phone recognition, in: Nips Workshop on Deep Learning for Speech Recognition and Related Applications, vol. 1, Vancouver, Canada, 2009, pp. 39.
Feng, Polson, Xu (b113) 2018
Aliev, Fazlollahi, Aliev (b2) 2004
Kalman, Kwasny (b41) 1992
Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b60) 2016; 28
Yuan, Zhang, Shao (b94) 2018
Bekiros (b139) 2013; 22
Takahashi (b147) 2017
Hu, Liu, Bian, Liu, Liu (b212) 2018
Mullainathan, Spiess (b9) 2017; 31
Dymowa (b3) 2011
Doering, Fairbank, Markose (b159) 2017
Elmsili, Outtaj (b17) 2018
Razvan Pascanu, Tomas Mikolov, Yoshua Bengio, On the difficulty of training recurrent neural networks, in: International Conference on Machine Learning, 2013, pp. 1310–1318.
Fischer, Krauss (b125) 2018; 270
Bahrammirzaee (b6) 2010; 19
Zhang, Zhou (b7) 2004; 34
Sezer, Ozbayoglu (b199) 2018; 70
Chong, Han, Park (b80) 2017; 83
Zhang, Zhang, Wang, Yao, Fang, Yu (b211) 2018; 143
Lee, Grosse, Ranganath, Ng (b70) 2009
Zhang, Aggarwal, Qi (b95) 2017
Li, Tam (b135) 2017
Hsieh, Hsiao, Yeh (b137) 2011; 11
Ramachandran, Zoph, Le (b44) 2017
Karaoglu, Arpaci (b108) 2017
Aguilar-Rivera, Valenzuela-Rendon, Rodriguez-Ortiz (b13) 2015; 42
Das, Behera, Kumar, Rath (b118) 2018; 132
Hua Shen, Xun Liang, A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction, in: ICANN, 2016.
Kumar, Ravi (b22) 2016; 114
Yang, Gong, Yang (b142) 2017
Ding, Zhang, Liu, Duan (b114) 2015
Elliot, Hsu (b134) 2017
Jeong, Kim (b131) 2019; 117
Chen, Wu, Bu (b152) 2018
Sezer, Ozbayoglu, Dogdu (b193) 2017; 114
Nassirtoussi, Aghabozorgi, Wah, Ngo (b20) 2014; 41
Liu, Zeng, Yang, Carrio (b208) 2018
Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b59) 2016
Lee, Yoo (b86) 2018
Katarya, Mahajan (b33) 2017
Xueheng Qiu, Le Zhang, Ye Ren, P. Suganthan, Gehan Amaratunga, Ensemble deep learning for regression and time forecasting, in: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, CIEL, 2014, pp. 1–6.
Abe, Nakayama (b96) 2018
Ponsich, Jaimes, Coello (b12) 2013; 17
Liang, Rong, Zhang, Liu, Xiong (b194) 2017
Ozbayoglu, Gudelek, Sezer (b1) 2020
Vanstone, Tan (b24) 2003
Troiano, Villa, Loia (b195) 2018; 14
Samarawickrama, Fernando (b83) 2017
Zhou (b109) 2018
Yan, Ouyang (b146) 2017; 102
Sirignano, Cont (b217) 2018
Gardner, Dorling (b46) 1998; 32
Dezsi, Nistor (b82) 2016; 11
Yong, Rahim, Abdullah (b144) 2017
Duchi, Hazan, Singer (b49) 2011; 12
Deng, Bao, Kong, Ren, Dai (b141) 2017; 28
Wang, Xu, Zheng (b213) 2018; 299
Lee, Soo (b116) 2017
Zhongshengz (b120) 2018
Singh, Srivastava (b107) 2016; 76
Buczkowski (b218) 2017
Yümlü, Gürgen, Okay (b145) 2005; 26
Tamilselvan, Wang (b74) 2013; 115
Kearney, Liu (b21) 2014; 33
Hiransha, Gopalakrishnan, Menon, Soman (b84) 2018; 132
Iwasaki, Chen (b117) 2018
Dang, Sadeghi-Niaraki, Huynh, Min, Moon (b204) 2018
Vinod Nair, Geoffrey E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning, ICML-10, 2010, pp. 807–814.
Saad, Prokhorov, Wunsch (b185) 1998; 9
Cybenko (b40) 1989; 2
Reimers, Gurevych (b61) 2017
Bjoern Krollner, Bruce J. Vanstone, Gavin R. Finnie, Financial time forecasting with machine learning techniques: a survey, in: ESANN, 2010.
Carreira-Perpinan, Hinton (b73) 2005
Korczak, Hernes (b180) 2017
Dixon, Klabjan, Bang (b155) 2016
Gudelek, Boluk, Ozbayoglu (b198) 2017
Yoshua Bengio, Deep learning of representations for unsupervised and transfer learning, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–36.
Tapia, Coello (b11) 2007
Nascimento, Cristo (b121) 2015
Lopes (b181) 2018
Pang, Zhou, Wang, Lin, Chang (b140) 2018
Cavalcante, Brasileiro, Souza, Nobrega, Oliveira (b27) 2016; 55
Matsubara, Akita, Uehara (b214) 2018; E101.D
Lasheras, de Cos Juez, Sánchez, Krzemień, Fernández (b156) 2015; 45
Chen, Qiao, Wang, Wang, Du, Stanley (b88) 2018; 6
Huang, Huang, Wang, Zhang, Guan, Zhou (b201) 2016
Zheng, Fu, Zhang (b170) 2017
Li, Bu, Wu (b119) 2017
Rout, Dash, Dash, Bisoi (b130) 2017; 29
Vargas, de Lima, Evsukoff (b115) 2017
Di Persio, Honchar (b179) 2016
Althelaya, El-Alfy, Mohammed (b128) 2018
Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.
Heaton, Polson, Witte (b92) 2016
Google, System and Method for Computer Managed Funds to Outperform Benchmarks, US Patent, 2016.
Si, Li, Ding, Rao (b153) 2017
Das, Mokashi, Culkin (b183) 2018; 11
Borovykh, Bohte, Oosterlee (b127) 2018
Tran, Magris, Kanniainen, Gabbouj, Iosifidis (b112) 2017
Raza (b192) 2017
Yoshihara, Fujikawa, Seki, Uehara (b209) 2014
Atsalakis, Valavanis (b31) 2009; 36
Li, Cao, Pan (b215) 2018
Maknickiene, Rutkauskas, Maknickas (b178) 2014
Chen, Wu, Tindall (b150) 2016
Zhang, Tan (b101) 2018
Bo, Chi (b176) 2009; 29
Zhou, Han, Xu, Zhang (b162) 2018
Navon, Keller (b184) 2017
Chen, Chen, Huang, Huang, Chen (b188) 2016
Chen (10.1016/j.asoc.2020.106181_b88) 2018; 6
Elmsili (10.1016/j.asoc.2020.106181_b17) 2018
Kingma (10.1016/j.asoc.2020.106181_b51) 2014
Li (10.1016/j.asoc.2020.106181_b119) 2017
Vanstone (10.1016/j.asoc.2020.106181_b24) 2003
Minami (10.1016/j.asoc.2020.106181_b100) 2018; 08
Baek (10.1016/j.asoc.2020.106181_b132) 2018; 113
Deng (10.1016/j.asoc.2020.106181_b141) 2017; 28
Greff (10.1016/j.asoc.2020.106181_b60) 2016; 28
Xing (10.1016/j.asoc.2020.106181_b23) 2017; 50
Zhang (10.1016/j.asoc.2020.106181_b95) 2017
Kraus (10.1016/j.asoc.2020.106181_b99) 2017; 104
Mittermayer (10.1016/j.asoc.2020.106181_b18) 2006
Siami-Namini (10.1016/j.asoc.2020.106181_b136) 2018
Borovykh (10.1016/j.asoc.2020.106181_b127) 2018
Nair (10.1016/j.asoc.2020.106181_b26) 2014; 9
Althelaya (10.1016/j.asoc.2020.106181_b128) 2018
Yümlü (10.1016/j.asoc.2020.106181_b145) 2005; 26
Zhao (10.1016/j.asoc.2020.106181_b157) 2017; 66
Dingli (10.1016/j.asoc.2020.106181_b129) 2017; 7
Tsantekidis (10.1016/j.asoc.2020.106181_b219) 2017
Szegedy (10.1016/j.asoc.2020.106181_b63) 2013
Tieleman (10.1016/j.asoc.2020.106181_b50) 2012; 4
Khare (10.1016/j.asoc.2020.106181_b105) 2017
Hu (10.1016/j.asoc.2020.106181_b34) 2015; 36
Mullainathan (10.1016/j.asoc.2020.106181_b9) 2017; 31
Li (10.1016/j.asoc.2020.106181_b15) 2010
Dymowa (10.1016/j.asoc.2020.106181_b3) 2011
Hu (10.1016/j.asoc.2020.106181_b212) 2018
Rothstein (10.1016/j.asoc.2020.106181_b222) 2005
dos Santos Pinheiro (10.1016/j.asoc.2020.106181_b206) 2017
10.1016/j.asoc.2020.106181_b28
Hiransha (10.1016/j.asoc.2020.106181_b84) 2018; 132
Mitra (10.1016/j.asoc.2020.106181_b19) 2012
Rout (10.1016/j.asoc.2020.106181_b130) 2017; 29
Tino (10.1016/j.asoc.2020.106181_b160) 2001; 12
Widegren (10.1016/j.asoc.2020.106181_b126) 2017
Zhang (10.1016/j.asoc.2020.106181_b7) 2004; 34
Duchi (10.1016/j.asoc.2020.106181_b49) 2011; 12
Zhou (10.1016/j.asoc.2020.106181_b109) 2018
Psaradellis (10.1016/j.asoc.2020.106181_b149) 2016; 32
Meng (10.1016/j.asoc.2020.106181_b76) 2017
Katarya (10.1016/j.asoc.2020.106181_b33) 2017
Mourelatos (10.1016/j.asoc.2020.106181_b151) 2018
Yong (10.1016/j.asoc.2020.106181_b144) 2017
Preethi (10.1016/j.asoc.2020.106181_b30) 2012; 46
Yoshihara (10.1016/j.asoc.2020.106181_b209) 2014
Si (10.1016/j.asoc.2020.106181_b153) 2017
Lee (10.1016/j.asoc.2020.106181_b70) 2009
Song (10.1016/j.asoc.2020.106181_b197) 2018
Nassirtoussi (10.1016/j.asoc.2020.106181_b20) 2014; 41
Gneiting (10.1016/j.asoc.2020.106181_b221) 2007; 102
Sutton (10.1016/j.asoc.2020.106181_b78) 1998
Kovalerchuk (10.1016/j.asoc.2020.106181_b4) 2000
Feng (10.1016/j.asoc.2020.106181_b113) 2018
Chong (10.1016/j.asoc.2020.106181_b80) 2017; 83
Lee (10.1016/j.asoc.2020.106181_b116) 2017
Hinton (10.1016/j.asoc.2020.106181_b75) 2006; 18
Elliot (10.1016/j.asoc.2020.106181_b134) 2017
Kearney (10.1016/j.asoc.2020.106181_b21) 2014; 33
Harvey (10.1016/j.asoc.2020.106181_b165) 1989; 45
Li (10.1016/j.asoc.2020.106181_b135) 2017
Verma (10.1016/j.asoc.2020.106181_b205) 2017
Chen (10.1016/j.asoc.2020.106181_b152) 2018
Lasheras (10.1016/j.asoc.2020.106181_b156) 2015; 45
and (10.1016/j.asoc.2020.106181_b110) 2017; 1
10.1016/j.asoc.2020.106181_b172
Di Persio (10.1016/j.asoc.2020.106181_b179) 2016
Nikolaev (10.1016/j.asoc.2020.106181_b164) 2013; 122
Bahrammirzaee (10.1016/j.asoc.2020.106181_b6) 2010; 19
Singh (10.1016/j.asoc.2020.106181_b107) 2016; 76
Abe (10.1016/j.asoc.2020.106181_b96) 2018
Tsantekidis (10.1016/j.asoc.2020.106181_b216) 2017
Robbins (10.1016/j.asoc.2020.106181_b47) 1951
Yao (10.1016/j.asoc.2020.106181_b72) 2016
Nelson (10.1016/j.asoc.2020.106181_b196) 2017
Huang (10.1016/j.asoc.2020.106181_b201) 2016
Nguyen-Tuong (10.1016/j.asoc.2020.106181_b79) 2011; 12
Bao (10.1016/j.asoc.2020.106181_b123) 2017; 12
Salakhutdinov (10.1016/j.asoc.2020.106181_b67) 2007
Kumar (10.1016/j.asoc.2020.106181_b22) 2016; 114
Doering (10.1016/j.asoc.2020.106181_b159) 2017
Matsubara (10.1016/j.asoc.2020.106181_b214) 2018; E101.D
(10.1016/j.asoc.2020.106181_b10) 2002
Wang (10.1016/j.asoc.2020.106181_b213) 2018; 299
Parida (10.1016/j.asoc.2020.106181_b124) 2016; 2
Chen (10.1016/j.asoc.2020.106181_b158) 2017; 122
Mochón (10.1016/j.asoc.2020.106181_b8) 2007; 29
Chen (10.1016/j.asoc.2020.106181_b154) 2018
Bengio (10.1016/j.asoc.2020.106181_b52) 1994; 5
Ozbayoglu (10.1016/j.asoc.2020.106181_b1) 2020
Ramachandran (10.1016/j.asoc.2020.106181_b44) 2017
Pang (10.1016/j.asoc.2020.106181_b140) 2018
Warren (10.1016/j.asoc.2020.106181_b167) 2019
Ozbayoglu (10.1016/j.asoc.2020.106181_b104) 2007
Pradeepkumar (10.1016/j.asoc.2020.106181_b36) 2018; 99
Van Der Maaten (10.1016/j.asoc.2020.106181_b71) 2009
Das (10.1016/j.asoc.2020.106181_b118) 2018; 132
Wu (10.1016/j.asoc.2020.106181_b59) 2016
Chandra (10.1016/j.asoc.2020.106181_b90) 2016; 49
Vincent (10.1016/j.asoc.2020.106181_b77) 2008
Hansson (10.1016/j.asoc.2020.106181_b133) 2017
Bo (10.1016/j.asoc.2020.106181_b176) 2009; 29
Liu (10.1016/j.asoc.2020.106181_b91) 2017
Batres-Estrada (10.1016/j.asoc.2020.106181_b93) 2015
Shen (10.1016/j.asoc.2020.106181_b187) 2018; 131
Korczak (10.1016/j.asoc.2020.106181_b180) 2017
Goodfellow (10.1016/j.asoc.2020.106181_b39) 2016
(10.1016/j.asoc.2020.106181_b5) 2008
Samarawickrama (10.1016/j.asoc.2020.106181_b83) 2017
Bildirici (10.1016/j.asoc.2020.106181_b148) 2010; 37
Rada (10.1016/j.asoc.2020.106181_b14) 2008; 34
Zhang (10.1016/j.asoc.2020.106181_b101) 2018
Navon (10.1016/j.asoc.2020.106181_b184) 2017
Raza (10.1016/j.asoc.2020.106181_b192) 2017
Huynh (10.1016/j.asoc.2020.106181_b203) 2017
Buczkowski (10.1016/j.asoc.2020.106181_b218) 2017
Zhou (10.1016/j.asoc.2020.106181_b190) 2019; 115
Cavalcante (10.1016/j.asoc.2020.106181_b27) 2016; 55
Hsieh (10.1016/j.asoc.2020.106181_b137) 2011; 11
Bergstra (10.1016/j.asoc.2020.106181_b56) 2012; 13
Lopes (10.1016/j.asoc.2020.106181_b181) 2018
Maas (10.1016/j.asoc.2020.106181_b43) 2013; vol. 30
Zhongshengz (10.1016/j.asoc.2020.106181_b120) 2018
Lee (10.1016/j.asoc.2020.106181_b86) 2018
Ausmees (10.1016/j.asoc.2020.106181_b191) 2017
Aliev (10.1016/j.asoc.2020.106181_b2) 2004
Jeong (10.1016/j.asoc.2020.106181_b131) 2019; 117
Tapia (10.1016/j.asoc.2020.106181_b11) 2007
Prosky (10.1016/j.asoc.2020.106181_b207) 2017; abs/1712.05785
Fischer (10.1016/j.asoc.2020.106181_b125) 2018; 270
Zhang (10.1016/j.asoc.2020.106181_b211) 2018; 143
Ding (10.1016/j.asoc.2020.106181_b114) 2015
Atsalakis (10.1016/j.asoc.2020.106181_b31) 2009; 36
Sermpinis (10.1016/j.asoc.2020.106181_b174) 2012; 54
Aguilar-Rivera (10.1016/j.asoc.2020.106181_b13) 2015; 42
Bekiros (10.1016/j.asoc.2020.106181_b139) 2013; 22
Peng (10.1016/j.asoc.2020.106181_b202) 2016
Yang (10.1016/j.asoc.2020.106181_b142) 2017
Gunduz (10.1016/j.asoc.2020.106181_b200) 2017; 137
Li (10.1016/j.asoc.2020.106181_b215) 2018
Sermpinis (10.1016/j.asoc.2020.106181_b173) 2012; 39
Liu (10.1016/j.asoc.2020.106181_b208) 2018
Tran (10.1016/j.asoc.2020.106181_b112) 2017
McNally (10.1016/j.asoc.2020.106181_b182) 2018
Feng (10.1016/j.asoc.2020.106181_b97) 2018
Han (10.1016/j.asoc.2020.106181_b122) 2018; 28
Huang (10.1016/j.asoc.2020.106181_b35) 2004; 03
Chen (10.1016/j.asoc.2020.106181_b150) 2016
Nascimento (10.1016/j.asoc.2020.106181_b121) 2015
Das (10.1016/j.asoc.2020.106181_b183) 2018; 11
Krauss (10.1016/j.asoc.2020.106181_b89) 2017; 259
Gardner (10.1016/j.asoc.2020.106181_b46) 1998; 32
Vargas (10.1016/j.asoc.2020.106181_b115) 2017
Zhang (10.1016/j.asoc.2020.106181_b168) 2014
Gudelek (10.1016/j.asoc.2020.106181_b198) 2017
Li (10.1016/j.asoc.2020.106181_b87) 2017
Ponsich (10.1016/j.asoc.2020.106181_b12) 2013; 17
Deng (10.1016/j.asoc.2020.106181_b45) 2014; 7
10.1016/j.asoc.2020.106181_b54
Di Persio (10.1016/j.asoc.2020.106181_b186) 2017; 11
10.1016/j.asoc.2020.106181_b53
Zhang (10.1016/j.asoc.2020.106181_b138) 2015
Kim (10.1016/j.asoc.2020.106181_b163) 2018; 103
Hrasko (10.1016/j.asoc.2020.106181_b66) 2015; 55
Dixon (10.1016/j.asoc.2020.106181_b155) 2016
Shen (10.1016/j.asoc.2020.106181_b171) 2015; 167
Tkáč (10.1016/j.asoc.2020.106181_b16) 2016; 38
Selvin (10.1016/j.asoc.2020.106181_b85) 2017
Karaoglu (10.1016/j.asoc.2020.106181_b108) 2017
Kalman (10.1016/j.asoc.2020.106181_b41) 1992
10.1016/j.asoc.2020.106181_b48
Chen (10.1016/j.asoc.2020.106181_b81) 2015
Troiano (10.1016/j.asoc.2020.106181_b195) 2018; 14
10.1016/j.asoc.2020.106181_b42
Zhou (10.1016/j.asoc.2020.106181_b106) 2018; 2018
Maknickiene (10.1016/j.asoc.2020.106181_b178) 2014
Carreira-Perpinan (10.1016/j.asoc.2020.106181_b73) 2005
Akita (10.1016/j.asoc.2020.106181_b103) 2016
Hochreiter (10.1016/j.asoc.2020.106181_b58) 1997; 9
Shi (10.1016/j.asoc.2020.106181_b210) 2018
Chatterjee (10.1016/j.asoc.2020.106181_b32) 2000; 26
Tamilselvan (10.1016/j.asoc.2020.106181_b74) 2013; 115
Dang (10.1016/j.asoc.2020.106181_b204) 2018
Sirignano (10.1016/j.asoc.2020.106181_b217) 2018
Bianchi (10.1016/j.asoc.2020.106181_b166) 2018
LeCun (10.1016/j.asoc.2020.106181_b37) 2015; 521
Ji (10.1016/j.asoc.2020.106181_b62) 2012; 35
Yoo (10.1016/j.asoc.2020.106181_b29) 2005
Dezsi (10.1016/j.asoc.2020.106181_b82) 2016; 11
Sezer (10.1016/j.asoc.2020.106181_b193) 2017; 114
Chen (10.1016/j.asoc.2020.106181_b188) 2016
Iwasaki (10.1016/j.asoc.2020.106181_b117) 2018
Sermpinis (10.1016/j.asoc.2020.106181_b175) 2014; 30
10.1016/j.asoc.2020.106181_b69
10.1016/j.asoc.2020.106181_b68
Hajizadeh (10.1016/j.asoc.2020.106181_b25) 2010
Sezer (10.1016/j.asoc.2020.106181_b189) 2019
Takahashi (10.1016/j.asoc.2020.106181_b147) 2017
Schmidhuber (10.1016/j.asoc.2020.106181_b38) 2015; 61
Reimers (10.1016/j.asoc.2020.106181_b61) 2017
Heaton (10.1016/j.asoc.2020.106181_b92) 2016
Lachiheb (10.1016/j.asoc.2020.106181_b143) 2018; 126
Saad (10.1016/j.asoc.2020.106181_b185) 1998; 9
Cybenko (10.1016/j.asoc.2020.106181_b40) 1989; 2
Thomas Günter Fischer (10.1016/j.asoc.2020.106181_b220) 2019; 12
Zhou (10.1016/j.asoc.2020.106181_b162) 2018
10.1016/j.asoc.2020.106181_b65
10.1016/j.asoc.2020.106181_b64
Maknickienė (10.1016/j.asoc.2020.106181_b177) 2013; 14
Yuan (10.1016/j.asoc.2020.106181_b94) 2018
Yan (10.1016/j.asoc.2020.106181_b146) 2017; 102
10.1016/j.asoc.2020.106181_b111
Chao (10.1016/j.asoc.2020.106181_b169) 2011
Zhuge (10.1016/j.asoc.2020.106181_b102) 2017
Zheng (10.1016/j.asoc.2020.106181_b170) 2017
Sezer (10.1016/j.asoc.2020.106181_b199) 2018; 70
Liang (10.1016/
References_xml – reference: Razvan Pascanu, Tomas Mikolov, Yoshua Bengio, On the difficulty of training recurrent neural networks, in: International Conference on Machine Learning, 2013, pp. 1310–1318.
– volume: 12
  year: 2019
  ident: b220
  article-title: Statistical arbitrage in cryptocurrency markets
  publication-title: J. Risk Financial Manag.
– start-page: 273
  year: 2018
  end-page: 284
  ident: b96
  article-title: Deep learning for forecasting stock returns in the cross-section
  publication-title: Advances in Knowledge Discovery and Data Mining
– year: 2016
  ident: b103
  article-title: Deep learning for stock prediction using numerical and textual information
  publication-title: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS
– volume: 102
  start-page: 683
  year: 2017
  end-page: 700
  ident: b146
  article-title: Financial time series prediction based on deep learning
  publication-title: Wirel. Pers. Commun.
– reference: Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, Deep belief networks for phone recognition, in: Nips Workshop on Deep Learning for Speech Recognition and Related Applications, vol. 1, Vancouver, Canada, 2009, pp. 39.
– year: 2014
  ident: b178
  article-title: Investigation of Financial Market Prediction by Recurrent Neural Network
– volume: 35
  start-page: 221
  year: 2012
  end-page: 231
  ident: b62
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  ident: b219
  article-title: Forecasting stock prices from the limit order book using convolutional neural networks
  publication-title: 2017 IEEE 19th Conference on Business Informatics, CBI
– volume: 50
  start-page: 49
  year: 2017
  end-page: 73
  ident: b23
  article-title: Natural language based financial forecasting: a survey
  publication-title: Artif. Intell. Rev.
– volume: 167
  start-page: 243
  year: 2015
  end-page: 253
  ident: b171
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
– volume: 17
  start-page: 321
  year: 2013
  end-page: 344
  ident: b12
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 76
  start-page: 18569
  year: 2016
  end-page: 18584
  ident: b107
  article-title: Stock prediction using deep learning
  publication-title: Multimedia Tools Appl.
– reference: Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
– volume: 32
  start-page: 2627
  year: 1998
  end-page: 2636
  ident: b46
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b38
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 34
  start-page: 513
  year: 2004
  end-page: 522
  ident: b7
  article-title: Discovering golden nuggets: Data mining in financial application
  publication-title: IEEE Trans. Syst. Man Cybern. C
– reference: Xueheng Qiu, Le Zhang, Ye Ren, P. Suganthan, Gehan Amaratunga, Ensemble deep learning for regression and time forecasting, in: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, CIEL, 2014, pp. 1–6.
– volume: 46
  start-page: 24
  year: 2012
  end-page: 30
  ident: b30
  article-title: Stock market forecasting techniques: A survey
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 39
  start-page: 8865
  year: 2012
  end-page: 8877
  ident: b173
  article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and PSI sigma neural networks
  publication-title: Expert Syst. Appl.
– year: 2016
  ident: b59
  article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation
– start-page: 384
  year: 2009
  end-page: 391
  ident: b71
  article-title: Learning a parametric embedding by preserving local structure
  publication-title: Artificial Intelligence and Statistics
– year: 2018
  ident: b128
  article-title: Evaluation of bidirectional LSTM for short-and long-term stock market prediction
  publication-title: 2018 9th International Conference on Information and Communication Systems, ICICS
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: b40
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Systems
– year: 2018
  ident: b181
  article-title: Deep Learning for Market Forecasts
– year: 2002
  ident: b10
  article-title: Genetic Algorithms and Genetic Programming in Computational Finance
– year: 2007
  ident: b11
  article-title: Applications of multi-objective evolutionary algorithms in economics and finance: A survey
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– start-page: 102
  year: 2018
  end-page: 113
  ident: b208
  article-title: Stock price movement prediction from financial news with deep learning and knowledge graph embedding
  publication-title: Knowledge Management and Acquisition for Intelligent Systems
– year: 2019
  ident: b189
  article-title: Financial trading model with stock bar chart image time series with deep convolutional neural networks
– year: 2017
  ident: b205
  article-title: Detecting, quantifying and accessing impact of news events on Indian stock indices
  publication-title: Proceedings of the International Conference on Web Intelligence - WI17
– year: 2017
  ident: b196
  article-title: Stock markets price movement prediction with LSTM neural networks
  publication-title: 2017 International Joint Conference on Neural Networks, IJCNN
– volume: 270
  start-page: 654
  year: 2018
  end-page: 669
  ident: b125
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European J. Oper. Res.
– year: 2018
  ident: b127
  article-title: Dilated convolutional neural networks for time series forecasting
  publication-title: J. Comput. Finance
– volume: 299
  start-page: 51
  year: 2018
  end-page: 61
  ident: b213
  article-title: Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles
  publication-title: Neurocomputing
– year: 2018
  ident: b154
  article-title: Leveraging social media news to predict stock index movement using RNN-boost
  publication-title: Data Knowl. Eng.
– volume: 42
  start-page: 7684
  year: 2015
  end-page: 7697
  ident: b13
  article-title: Genetic algorithms and Darwinian approaches in financial applications: a survey
  publication-title: Expert Syst. Appl.
– year: 2006
  ident: b18
  article-title: Text Mining Systems for Market Response to News: A Survey
– volume: 117
  start-page: 125
  year: 2019
  end-page: 138
  ident: b131
  article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning
  publication-title: Expert Syst. Appl.
– start-page: 873
  year: 2017
  end-page: 877
  ident: b33
  article-title: A survey of neural network techniques in market trend analysis
  publication-title: 2017 International Conference on Intelligent Sustainable Systems, ICISS
– start-page: 614
  year: 2018
  end-page: 623
  ident: b101
  article-title: Deep stock ranker: A LSTM neural network model for stock selection
  publication-title: Data Mining and Big Data
– start-page: 609
  year: 2009
  end-page: 616
  ident: b70
  article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– year: 2017
  ident: b170
  article-title: Research on exchange rate forecasting based on deep belief network
  publication-title: Neural Comput. Appl.
– year: 2017
  ident: b95
  article-title: Stock price prediction via discovering multi-frequency trading patterns
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD17
– year: 2017
  ident: b198
  article-title: A deep learning based stock trading model with 2-D CNN trend detection
  publication-title: 2017 IEEE Symposium Series on Computational Intelligence, SSCI
– year: 2014
  ident: b98
  article-title: Sufficient forecasting using factor models
  publication-title: SSRN Electron. J.
– year: 2017
  ident: b134
  article-title: Time series prediction: Predicting stock price
– year: 2018
  ident: b109
  article-title: Deep learning and the cross-section of stock returns: Neural networks combining price and fundamental information
  publication-title: SSRN Electron. J.
– year: 2017
  ident: b142
  article-title: Stock market index prediction using deep neural network ensemble
  publication-title: 2017 36th Chinese Control Conference, CCC
– volume: 2
  start-page: 202
  year: 2016
  end-page: 223
  ident: b124
  article-title: Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system for prediction of financial and energy market data
  publication-title: J. Finance Data Sci.
– year: 1998
  ident: b78
  article-title: Introduction to Reinforcement Learning, volume 135
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b75
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 103
  start-page: 25
  year: 2018
  end-page: 37
  ident: b163
  article-title: Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models
  publication-title: Expert Syst. Appl.
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: b221
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Amer. Statist. Assoc.
– start-page: 1
  year: 2018
  ident: b210
  article-title: DeepClue: Visual interpretation of text-based deep stock prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2000
  ident: b4
  article-title: Data Mining in Finance: Advances in Relational and Hybrid Methods
– year: 2017
  ident: b184
  article-title: Financial time series prediction using deep learning
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b49
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 111
  year: 2007
  end-page: 115
  ident: b8
  article-title: Soft computing techniques applied to finance
  publication-title: Appl. Intell.
– year: 2017
  ident: b83
  article-title: A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market
  publication-title: 2017 IEEE International Conference on Industrial and Information Systems, ICIIS
– year: 2018
  ident: b215
  article-title: Market impact analysis via deep learned architectures
  publication-title: Neural Comput. Appl.
– volume: 28
  start-page: 2222
  year: 2016
  end-page: 2232
  ident: b60
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2018
  ident: b120
  article-title: Measuring Financial Crisis Index for Risk Warning through Analysis of Social Network
– volume: 122
  start-page: 300
  year: 2017
  end-page: 307
  ident: b158
  article-title: Forecasting crude oil prices: a deep learning based model
  publication-title: Procedia Comput. Sci.
– volume: 41
  start-page: 7653
  year: 2014
  end-page: 7670
  ident: b20
  article-title: Text mining for market prediction: A systematic review
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 5932
  year: 2009
  end-page: 5941
  ident: b31
  article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods
  publication-title: Expert Syst. Appl.
– reference: Hua Shen, Xun Liang, A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction, in: ICANN, 2016.
– volume: 34
  start-page: 2232
  year: 2008
  end-page: 2240
  ident: b14
  article-title: Expert systems and evolutionary computing for financial investing: A review
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: b135
  article-title: Combining the real-time wavelet denoising and long-short-term-memory neural network for predicting stock indexes
  publication-title: 2017 IEEE Symposium Series on Computational Intelligence, SSCI
– volume: 32
  start-page: 1268
  year: 2016
  end-page: 1283
  ident: b149
  article-title: Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices
  publication-title: Int. J. Forecast.
– start-page: 158
  year: 2016
  end-page: 162
  ident: b179
  article-title: Artificial neural networks approach to the forecast of stock market price movements
  publication-title: Int. J. Econ. Manag. Syst.
– start-page: 6
  year: 2017
  end-page: 15
  ident: b206
  article-title: Stock market prediction with deep learning: A character-based neural language model for event-based trading
  publication-title: Proceedings of the Australasian Language Technology Association Workshop 2017
– year: 2017
  ident: b133
  article-title: On stock return prediction with LSTM networks
– volume: 66
  start-page: 9
  year: 2017
  end-page: 16
  ident: b157
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
– volume: 49
  start-page: 462
  year: 2016
  end-page: 473
  ident: b90
  article-title: Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance
  publication-title: Appl. Soft Comput.
– year: 2015
  ident: b138
  article-title: Genetic deep neural networks using different activation functions for financial data mining
  publication-title: 2015 IEEE International Conference on Big Data, Big Data
– year: 2020
  ident: b1
  article-title: Deep learning for financial applications : a survey
– year: 2018
  ident: b152
  article-title: Stock market embedding and prediction: A deep learning method
  publication-title: 2018 15th International Conference on Service Systems and Service Management, ICSSSM
– volume: 132
  start-page: 956
  year: 2018
  end-page: 964
  ident: b118
  article-title: Real-time sentiment analysis of Twitter streaming data for stock prediction
  publication-title: Procedia Comput. Sci.
– year: 2015
  ident: b161
  article-title: Deep learning stock volatility with Google domestic trends
– reference: Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine Learning, 2013, pp. 1139–1147.
– volume: 9
  start-page: 1456
  year: 1998
  end-page: 1470
  ident: b185
  article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
  publication-title: IEEE Trans. Neural Netw.
– year: 2004
  ident: b2
  article-title: Soft computing and its applications in business and economics
  publication-title: Studies in Fuzziness and Soft Computing
– year: 2014
  ident: b51
  article-title: Adam: A method for stochastic optimization
– year: 2017
  ident: b147
  article-title: Long memory and predictability in financial markets
  publication-title: Annual Conference of the Japanese Society for Artificial Intelligence
– year: 2017
  ident: b87
  article-title: Time series prediction of stock price using deep belief networks with intrinsic plasticity
  publication-title: 2017 29th Chinese Control and Decision Conference, CCDC
– start-page: 356
  year: 2017
  end-page: 364
  ident: b144
  article-title: A stock market trading system using deep neural network
  publication-title: Communications in Computer and Information Science
– year: 2016
  ident: b155
  article-title: Classification-based financial markets prediction using deep neural networks
  publication-title: SSRN Electron. J.
– volume: 29
  start-page: 536
  year: 2017
  end-page: 552
  ident: b130
  article-title: Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 55
  start-page: 194
  year: 2016
  end-page: 211
  ident: b27
  article-title: Computational intelligence and financial markets: A survey and future directions
  publication-title: Expert Syst. Appl.
– start-page: 243
  year: 2016
  end-page: 248
  ident: b72
  article-title: Hyperparameters adaptation for restricted Boltzmann machines based on free energy
  publication-title: 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC, vol. 2
– year: 2017
  ident: b159
  article-title: Convolutional neural networks applied to high-frequency market microstructure forecasting
  publication-title: 2017 9th Computer Science and Electronic Engineering, CEEC
– start-page: 1
  year: 2012
  end-page: 39
  ident: b19
  article-title: Applications of news analytics in finance: A review
  publication-title: The Handbook of News Analytics in Finance
– year: 2014
  ident: b168
  article-title: A model with fuzzy granulation and deep belief networks for exchange rate forecasting
  publication-title: 2014 International Joint Conference on Neural Networks, IJCNN
– year: 2010
  ident: b15
  article-title: Applications of artificial neural networks in financial economics: A survey
  publication-title: 2010 International Symposium on Computational Intelligence and Design
– start-page: 835
  year: 2005
  end-page: 841
  ident: b29
  article-title: Machine learning techniques and use of event information for stock market prediction: A survey and evaluation
  publication-title: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC’06, vol. 2
– year: 2017
  ident: b61
  article-title: Optimal hyperparameters for deep lstm-networks for sequence labeling tasks
– volume: 114
  start-page: 128
  year: 2016
  end-page: 147
  ident: b22
  article-title: A survey of the applications of text mining in financial domain
  publication-title: Knowl.-Based Syst.
– volume: 19
  start-page: 1165
  year: 2010
  end-page: 1195
  ident: b6
  article-title: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems
  publication-title: Neural Comput. Appl.
– volume: 6
  start-page: 48625
  year: 2018
  end-page: 48633
  ident: b88
  article-title: Which artificial intelligence algorithm better predicts the Chinese stock market?
  publication-title: IEEE Access
– volume: 115
  start-page: 136
  year: 2019
  end-page: 151
  ident: b190
  article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 2093
  year: 2005
  end-page: 2103
  ident: b145
  article-title: A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction
  publication-title: Pattern Recognit. Lett.
– year: 2018
  ident: b86
  article-title: Threshold-based portfolio: the role of the threshold and its applications
  publication-title: J. Supercomput.
– start-page: 2553
  year: 2013
  end-page: 2561
  ident: b63
  article-title: Deep neural networks for object detection
  publication-title: Advances in Neural Information Processing Systems
– volume: E101.D
  start-page: 901
  year: 2018
  end-page: 908
  ident: b214
  article-title: Stock price prediction by deep neural generative model of news articles
  publication-title: IEICE Trans. Inf. Syst.
– volume: 33
  start-page: 171
  year: 2014
  end-page: 185
  ident: b21
  article-title: Textual sentiment in finance: A survey of methods and models
  publication-title: Int. Rev. Financ. Anal.
– year: 2010
  ident: b25
  article-title: Application of Data Mining Techniques in Stock Markets: A Survey
– year: 2018
  ident: b151
  article-title: Financial indices modelling and trading utilizing deep learning techniques: The ATHENS SE FTSE/ASE large cap use case
  publication-title: 2018 Innovations in Intelligent Systems and Applications, INISTA
– year: 2018
  ident: b182
  article-title: Predicting the price of bitcoin using machine learning
  publication-title: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP
– volume: 08
  start-page: 58
  year: 2018
  end-page: 63
  ident: b100
  article-title: Predicting equity price with corporate action events using LSTM-RNN
  publication-title: J. Math. Finance
– year: 2017
  ident: b191
  article-title: Taming Deep Belief Networks
– volume: 259
  start-page: 689
  year: 2017
  end-page: 702
  ident: b89
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: European J. Oper. Res.
– year: 2018
  ident: b162
  article-title: Long short-term memory networks for CSI300 volatility prediction with baidu search volume
– volume: 11
  start-page: 138
  year: 2018
  ident: b183
  article-title: Are markets truly efficient? Experiments using deep learning algorithms for market movement prediction
  publication-title: Algorithms
– year: 2017
  ident: b194
  article-title: Restricted Boltzmann machine based stock market trend prediction
  publication-title: 2017 International Joint Conference on Neural Networks, IJCNN
– volume: 7
  start-page: 197
  year: 2014
  end-page: 387
  ident: b45
  article-title: Deep learning: methods and applications
  publication-title: Found. Trends Signal Process.
– volume: 36
  start-page: 534
  year: 2015
  end-page: 551
  ident: b34
  article-title: Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review
  publication-title: Appl. Soft Comput.
– volume: 54
  start-page: 316
  year: 2012
  end-page: 329
  ident: b174
  article-title: Forecasting and trading the EUR/USD exchange rate with stochastic neural network combination and time-varying leverage
  publication-title: Decis. Support Syst.
– start-page: 211
  year: 2003
  end-page: 216
  ident: b24
  article-title: A survey of the application of soft computing to investment and financial trading
  publication-title: Proceedings of the Eighth Australian and New Zealand Intelligent Information Systems Conference, ANZIIS 2003
– start-page: 2327
  year: 2015
  end-page: 2333
  ident: b114
  article-title: Deep learning for event-driven stock prediction
  publication-title: Proceedings of the 24th International Conference on Artificial Intelligence
– volume: 131
  start-page: 895
  year: 2018
  end-page: 903
  ident: b187
  article-title: Deep learning with gated recurrent unit networks for financial sequence predictions
  publication-title: Procedia Comput. Sci.
– year: 2018
  ident: b166
  article-title: Bond risk premia with machine learning
  publication-title: SSRN Electron. J.
– year: 2017
  ident: b180
  article-title: Deep learning for financial time series forecasting in a-trader system
  publication-title: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems
– reference: Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b77
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– start-page: 261
  year: 2007
  end-page: 266
  ident: b104
  article-title: Neural based technical analysis in stock market forecasting
  publication-title: Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
– volume: 70
  start-page: 525
  year: 2018
  end-page: 538
  ident: b199
  article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach
  publication-title: Appl. Soft Comput.
– volume: 99
  start-page: 262
  year: 2018
  end-page: 284
  ident: b36
  article-title: Soft computing hybrids for forex rate prediction: A comprehensive review
  publication-title: Comput. Oper. Res.
– volume: 55
  start-page: 990
  year: 2015
  end-page: 999
  ident: b66
  article-title: Time series prediction using restricted Boltzmann machines and backpropagation
  publication-title: Procedia Comput. Sci.
– volume: 14
  start-page: 3226
  year: 2018
  end-page: 3234
  ident: b195
  article-title: Replicating a trading strategy by means of LSTM for financial industry applications
  publication-title: IEEE Trans. Ind. Inf.
– volume: 03
  start-page: 145
  year: 2004
  end-page: 165
  ident: b35
  article-title: Forecasting foreign exchange rates with artificial neural networks: A review
  publication-title: Int. J. Inf. Technol. Decis. Mak.
– volume: 104
  start-page: 38
  year: 2017
  end-page: 48
  ident: b99
  article-title: Decision support from financial disclosures with deep neural networks and transfer learning
  publication-title: Decis. Support Syst.
– volume: 122
  start-page: 501
  year: 2013
  end-page: 512
  ident: b164
  article-title: Time-dependent series variance learning with recurrent mixture density networks
  publication-title: Neurocomputing
– year: 2018
  ident: b94
  article-title: Deep and wide neural networks on multiple sets of temporal data with correlation
  publication-title: Proceedings of the 2018 International Conference on Computing and Data Engineering - ICCDE 2018
– year: 2018
  ident: b113
  article-title: Deep factor alpha
– year: 2016
  ident: b39
  article-title: Deep Learning
– year: 2017
  ident: b112
  article-title: Tensor representation in high-frequency financial data for price change prediction
  publication-title: 2017 IEEE Symposium Series on Computational Intelligence, SSCI
– year: 2019
  ident: b167
  article-title: Forex market size: A traders advantage
– year: 2017
  ident: b85
  article-title: Stock price prediction using LSTM, rnn and CNN-sliding window model
  publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI
– year: 2017
  ident: b115
  article-title: Deep learning for stock market prediction from financial news articles
  publication-title: 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA
– reference: Vinod Nair, Geoffrey E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning, ICML-10, 2010, pp. 807–814.
– volume: 12
  start-page: 319
  year: 2011
  end-page: 340
  ident: b79
  article-title: Model learning for robot control: a survey
  publication-title: Cogn. Process.
– year: 2017
  ident: b192
  article-title: Prediction of stock market performance by using machine learning techniques
  publication-title: 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies, ICIEECT
– volume: 7
  start-page: 118
  year: 2017
  end-page: 122
  ident: b129
  article-title: Financial time series forecasting–A deep learning approach
  publication-title: Int. J. Mach. Learn. Comput.
– volume: 126
  start-page: 264
  year: 2018
  end-page: 272
  ident: b143
  article-title: A hierarchical deep neural network design for stock returns prediction
  publication-title: Procedia Comput. Sci.
– start-page: 364
  year: 2017
  end-page: 371
  ident: b76
  article-title: Relational autoencoder for feature extraction
  publication-title: 2017 International Joint Conference on Neural Networks, IJCNN
– volume: 4
  start-page: 26
  year: 2012
  end-page: 31
  ident: b50
  article-title: Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Netw. Mach. Learn.
– year: 2016
  ident: b188
  article-title: Financial time-series data analysis using deep convolutional neural networks
  publication-title: 2016 7th International Conference on Cloud Computing and Big Data, CCBD
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b58
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: vol. 30
  start-page: 3
  year: 2013
  ident: b43
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. ICML
– reference: . Google, System and Method for Computer Managed Funds to Outperform Benchmarks, US Patent, 2016.
– volume: 12
  start-page: 865
  year: 2001
  end-page: 874
  ident: b160
  article-title: Financial volatility trading using recurrent neural networks
  publication-title: IEEE Trans. Neural Netw.
– reference: Yoshua Bengio, Deep learning of representations for unsupervised and transfer learning, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–36.
– start-page: 759
  year: 2014
  end-page: 769
  ident: b209
  article-title: Predicting stock market trends by recurrent deep neural networks
  publication-title: Lecture Notes in Computer Science
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 11
  ident: b106
  article-title: Stock market prediction on high-frequency data using generative adversarial nets
  publication-title: Math. Probl. Eng.
– volume: 30
  start-page: 21
  year: 2014
  end-page: 54
  ident: b175
  article-title: Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects
  publication-title: J. Int. Financ. Mark. Inst. Money
– volume: 11
  start-page: 713
  year: 2017
  ident: b186
  article-title: Recurrent neural networks approach to the financial forecast of Google assets
  publication-title: Int. J. Math. Comput. Simul.
– start-page: 708
  year: 2017
  end-page: 717
  ident: b218
  article-title: Predicting stock trends based on expert recommendations using gru/LSTM neural networks
  publication-title: Lecture Notes in Computer Science
– year: 2017
  ident: b44
  article-title: Searching for activation functions
– year: 2011
  ident: b169
  article-title: Forecasting exchange rate with deep belief networks
  publication-title: The 2011 International Joint Conference on Neural Networks
– year: 2017
  ident: b119
  article-title: Sentiment-aware stock market prediction: A deep learning method
  publication-title: 2017 International Conference on Service Systems and Service Management
– volume: 143
  start-page: 236
  year: 2018
  end-page: 247
  ident: b211
  article-title: Improving stock market prediction via heterogeneous information fusion
  publication-title: Knowl.-Based Syst.
– year: 2017
  ident: b105
  article-title: Short term stock price prediction using deep learning
  publication-title: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, RTEICT
– volume: 1
  year: 2017
  ident: b110
  article-title: Neural networks for financial market risk classification
  publication-title: Front. Signal Process.
– year: 2017
  ident: b216
  article-title: Using deep learning to detect price change indications in financial markets
  publication-title: 2017 25th European Signal Processing Conference, EUSIPCO
– start-page: 1
  year: 2018
  ident: b204
  article-title: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network
  publication-title: IEEE Access
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: b55
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b37
  article-title: Deep learning
  publication-title: Nature
– year: 2015
  ident: b81
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
  publication-title: 2015 IEEE International Conference on Big Data, Big Data
– year: 2015
  ident: b121
  article-title: The impact of structured event embeddings on scalable stock forecasting models
  publication-title: Proceedings of the 21st Brazilian Symposium on Multimedia and the Web - WebMedia15
– volume: 26
  start-page: 32
  year: 2000
  end-page: 45
  ident: b32
  article-title: Artificial neural network and the financial markets: A survey
  publication-title: Manag. Finance
– start-page: 791
  year: 2007
  end-page: 798
  ident: b67
  article-title: Restricted Boltzmann machines for collaborative filtering
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– volume: 137
  start-page: 138
  year: 2017
  end-page: 148
  ident: b200
  article-title: Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations
  publication-title: Knowl.-Based Syst.
– year: 2008
  ident: b5
  article-title: Natural Computing in Computational Finance
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b52
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– year: 2018
  ident: b136
  article-title: Forecasting economics and financial time series: ARIMA vs. LSTM
– volume: abs/1712.05785
  year: 2017
  ident: b207
  article-title: Sentiment predictability for stocks
  publication-title: CoRR
– volume: 45
  start-page: 37
  year: 2015
  end-page: 43
  ident: b156
  article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models
  publication-title: Resour. Policy
– start-page: 578
  year: 1992
  end-page: 581
  ident: b41
  article-title: Why tanh: choosing a sigmoidal function
  publication-title: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, vol. 4
– volume: 11
  start-page: 54
  year: 2016
  end-page: 73
  ident: b82
  article-title: Can deep machine learning outsmart the market? A comparison between econometric modelling and long- short term memory
  publication-title: Rom. Econ. Bus. Rev.
– volume: 37
  start-page: 2
  year: 2010
  end-page: 11
  ident: b148
  article-title: TAR-cointegration neural network model: An empirical analysis of exchange rates and stock returns
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: b56
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 2510
  year: 2011
  end-page: 2525
  ident: b137
  article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– year: 2017
  ident: b153
  article-title: A multi-objective deep reinforcement learning approach for stock index future’s intraday trading
  publication-title: 2017 10th International Symposium on Computational Intelligence and Design, ISCID
– year: 2018
  ident: b117
  article-title: Topic sentiment asset pricing with DNN supervised learning
  publication-title: SSRN Electron. J.
– volume: 83
  start-page: 187
  year: 2017
  end-page: 205
  ident: b80
  article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: b97
  article-title: Deep learning for predicting asset returns
– start-page: 400
  year: 1951
  end-page: 407
  ident: b47
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
– start-page: 198
  year: 2017
  end-page: 206
  ident: b91
  article-title: CNN-LSTM Neural network model for quantitative strategy analysis in stock markets
  publication-title: Neural Information Processing
– year: 2018
  ident: b197
  article-title: Stock Trend Prediction: Based on Machine Learning Methods
– volume: 9
  start-page: 99
  year: 2014
  end-page: 140
  ident: b26
  article-title: Artificial intelligence applications in financial forecasting – a survey and some empirical results
  publication-title: Intell. Decis. Technol.
– start-page: 449
  year: 2016
  end-page: 460
  ident: b201
  article-title: Exploiting Twitter moods to boost financial trend prediction based on deep network models
  publication-title: Intelligent Computing Methodologies
– start-page: 1
  year: 2018
  end-page: 6
  ident: b17
  article-title: Artificial neural networks applications in economics and management research: An exploratory literature review
  publication-title: 2018 4th International Conference on Optimization and Applications, ICOA
– volume: 22
  start-page: 213
  year: 2013
  end-page: 219
  ident: b139
  article-title: Irrational fads, short-term memory emulation, and asset predictability
  publication-title: Rev. Financial Econ.
– year: 2017
  ident: b203
  article-title: A new model for stock price movements prediction using deep neural network
  publication-title: Proceedings of the Eighth International Symposium on Information and Communication Technology - SoICT 2017
– year: 2017
  ident: b102
  article-title: LSTM Neural Network with Emotional Analysis for Prediction of Stock Price
– volume: 115
  start-page: 124
  year: 2013
  end-page: 135
  ident: b74
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2018
  ident: b140
  article-title: An innovative neural network approach for stock market prediction
  publication-title: J. Supercomput.
– volume: 28
  start-page: 244
  year: 2018
  end-page: 260
  ident: b122
  article-title: An event-extraction approach for business analysis from online Chinese news
  publication-title: Electron. Commer. Res. Appl.
– start-page: 261
  year: 2018
  end-page: 269
  ident: b212
  article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction
  publication-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining
– year: 2017
  ident: b116
  article-title: Predict stock price with financial news based on recurrent convolutional neural networks
  publication-title: 2017 Conference on Technologies and Applications of Artificial Intelligence, TAAI
– volume: 45
  start-page: 38
  year: 1989
  end-page: 45
  ident: b165
  article-title: Forecasts of economic growth from the bond and stock markets
  publication-title: Financ. Anal. J.
– volume: 12
  year: 2017
  ident: b123
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
– year: 2016
  ident: b202
  article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks
  publication-title: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
– year: 2011
  ident: b3
  article-title: Soft Computing in Economics and Finance
– year: 2016
  ident: b92
  article-title: Deep learning in finance
– volume: 38
  start-page: 788
  year: 2016
  end-page: 804
  ident: b16
  article-title: Artificial neural networks in business: Two decades of research
  publication-title: Appl. Soft Comput.
– volume: 132
  start-page: 1351
  year: 2018
  end-page: 1362
  ident: b84
  article-title: Nse stock market prediction using deep-learning models
  publication-title: Procedia Comput. Sci.
– year: 2018
  ident: b217
  article-title: Universal features of price formation in financial markets: perspectives from deep learning
  publication-title: SSRN Electron. J.
– year: 2016
  ident: b150
  article-title: Hedge Fund Return Prediction and Fund Selection: A Machine-Learning Approach
– volume: 14
  start-page: 403
  year: 2013
  end-page: 413
  ident: b177
  article-title: Financial market prediction system with evolino neural network and deplhi method
  publication-title: J. Bus. Econ. Manag.
– volume: 29
  start-page: 53
  year: 2009
  end-page: 64
  ident: b176
  article-title: RMB exchange rate forecasting in the context of the financial crisis
  publication-title: Syst. Eng. Theory Pract.
– reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
– volume: 114
  start-page: 473
  year: 2017
  end-page: 480
  ident: b193
  article-title: A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters
  publication-title: Procedia Comput. Sci.
– volume: 31
  start-page: 87
  year: 2017
  end-page: 106
  ident: b9
  article-title: Machine learning: An applied econometric approach
  publication-title: J. Econ. Perspect.
– year: 2015
  ident: b93
  article-title: Deep Learning for Multivariate Financial Time Series
– volume: 113
  start-page: 457
  year: 2018
  end-page: 480
  ident: b132
  article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst. Appl.
– reference: Bjoern Krollner, Bruce J. Vanstone, Gavin R. Finnie, Financial time forecasting with machine learning techniques: a survey, in: ESANN, 2010.
– start-page: 31
  year: 2017
  end-page: 36
  ident: b108
  article-title: A deep learning approach for optimization of systematic signal detection in financial trading systems with big data
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 28
  start-page: 653
  year: 2017
  end-page: 664
  ident: b141
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 33
  year: 2005
  end-page: 40
  ident: b73
  article-title: On contrastive divergence learning.
  publication-title: Aistats, vol. 10
– year: 2017
  ident: b126
  article-title: Deep learning-based forecasting of financial assets
– year: 2005
  ident: b222
  article-title: Publication Bias in Meta-Analysis – Prevention, Assessment and Adjustment
– ident: 10.1016/j.asoc.2020.106181_b111
– volume: 29
  start-page: 536
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b130
  article-title: Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 26
  start-page: 2093
  issue: 13
  year: 2005
  ident: 10.1016/j.asoc.2020.106181_b145
  article-title: A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.03.026
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b120
– start-page: 102
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b208
  article-title: Stock price movement prediction from financial news with deep learning and knowledge graph embedding
– year: 2015
  ident: 10.1016/j.asoc.2020.106181_b93
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b153
  article-title: A multi-objective deep reinforcement learning approach for stock index future’s intraday trading
– volume: 122
  start-page: 300
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b158
  article-title: Forecasting crude oil prices: a deep learning based model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.373
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b105
  article-title: Short term stock price prediction using deep learning
– volume: 126
  start-page: 264
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b143
  article-title: A hierarchical deep neural network design for stock returns prediction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.260
– volume: 54
  start-page: 316
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b174
  article-title: Forecasting and trading the EUR/USD exchange rate with stochastic neural network combination and time-varying leverage
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2012.05.039
– volume: 11
  start-page: 713
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b186
  article-title: Recurrent neural networks approach to the financial forecast of Google assets
  publication-title: Int. J. Math. Comput. Simul.
– start-page: 873
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b33
  article-title: A survey of neural network techniques in market trend analysis
– volume: 83
  start-page: 187
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b80
  article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.030
– volume: 9
  start-page: 1456
  issue: 6
  year: 1998
  ident: 10.1016/j.asoc.2020.106181_b185
  article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.728395
– ident: 10.1016/j.asoc.2020.106181_b69
– year: 2005
  ident: 10.1016/j.asoc.2020.106181_b222
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b203
  article-title: A new model for stock price movements prediction using deep neural network
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b94
  article-title: Deep and wide neural networks on multiple sets of temporal data with correlation
– volume: 39
  start-page: 8865
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b173
  article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and PSI sigma neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.022
– year: 2015
  ident: 10.1016/j.asoc.2020.106181_b121
  article-title: The impact of structured event embeddings on scalable stock forecasting models
– volume: 38
  start-page: 788
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b16
  article-title: Artificial neural networks in business: Two decades of research
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.09.040
– volume: 46
  start-page: 24
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b30
  article-title: Stock market forecasting techniques: A survey
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 11
  start-page: 138
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b183
  article-title: Are markets truly efficient? Experiments using deep learning algorithms for market movement prediction
  publication-title: Algorithms
  doi: 10.3390/a11090138
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b112
  article-title: Tensor representation in high-frequency financial data for price change prediction
– start-page: 384
  year: 2009
  ident: 10.1016/j.asoc.2020.106181_b71
  article-title: Learning a parametric embedding by preserving local structure
– start-page: 2553
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b63
  article-title: Deep neural networks for object detection
– year: 2007
  ident: 10.1016/j.asoc.2020.106181_b11
  article-title: Applications of multi-objective evolutionary algorithms in economics and finance: A survey
– start-page: 211
  year: 2003
  ident: 10.1016/j.asoc.2020.106181_b24
  article-title: A survey of the application of soft computing to investment and financial trading
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b61
– year: 2019
  ident: 10.1016/j.asoc.2020.106181_b167
– volume: 259
  start-page: 689
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b89
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2016.10.031
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b210
  article-title: DeepClue: Visual interpretation of text-based deep stock prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2002
  ident: 10.1016/j.asoc.2020.106181_b10
– ident: 10.1016/j.asoc.2020.106181_b28
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b95
  article-title: Stock price prediction via discovering multi-frequency trading patterns
– start-page: 356
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b144
  article-title: A stock market trading system using deep neural network
  doi: 10.1007/978-981-10-6463-0_31
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b198
  article-title: A deep learning based stock trading model with 2-D CNN trend detection
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b219
  article-title: Forecasting stock prices from the limit order book using convolutional neural networks
– ident: 10.1016/j.asoc.2020.106181_b57
– volume: 12
  start-page: 319
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106181_b79
  article-title: Model learning for robot control: a survey
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-011-0404-1
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b97
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b147
  article-title: Long memory and predictability in financial markets
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b133
– volume: 42
  start-page: 7684
  issue: 21
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b13
  article-title: Genetic algorithms and Darwinian approaches in financial applications: a survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.06.001
– start-page: 273
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b96
  article-title: Deep learning for forecasting stock returns in the cross-section
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b85
  article-title: Stock price prediction using LSTM, rnn and CNN-sliding window model
– volume: E101.D
  start-page: 901
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b214
  article-title: Stock price prediction by deep neural generative model of news articles
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2016IIP0016
– year: 2020
  ident: 10.1016/j.asoc.2020.106181_b1
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b83
  article-title: A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market
– start-page: 198
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b91
  article-title: CNN-LSTM Neural network model for quantitative strategy analysis in stock markets
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b151
  article-title: Financial indices modelling and trading utilizing deep learning techniques: The ATHENS SE FTSE/ASE large cap use case
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b184
– year: 2015
  ident: 10.1016/j.asoc.2020.106181_b81
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
– year: 2014
  ident: 10.1016/j.asoc.2020.106181_b51
– volume: 117
  start-page: 125
  year: 2019
  ident: 10.1016/j.asoc.2020.106181_b131
  article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.036
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  ident: 10.1016/j.asoc.2020.106181_b221
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214506000001437
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b109
  article-title: Deep learning and the cross-section of stock returns: Neural networks combining price and fundamental information
  publication-title: SSRN Electron. J.
– volume: 167
  start-page: 243
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b171
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.071
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b126
  article-title: Deep learning-based forecasting of financial assets
– ident: 10.1016/j.asoc.2020.106181_b68
– volume: 12
  start-page: 865
  issue: 4
  year: 2001
  ident: 10.1016/j.asoc.2020.106181_b160
  article-title: Financial volatility trading using recurrent neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.935096
– volume: 30
  start-page: 21
  year: 2014
  ident: 10.1016/j.asoc.2020.106181_b175
  article-title: Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects
  publication-title: J. Int. Financ. Mark. Inst. Money
  doi: 10.1016/j.intfin.2014.01.006
– volume: 2
  start-page: 202
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b124
  article-title: Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system for prediction of financial and energy market data
  publication-title: J. Finance Data Sci.
  doi: 10.1016/j.jfds.2016.10.001
– volume: 9
  start-page: 99
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2020.106181_b26
  article-title: Artificial intelligence applications in financial forecasting – a survey and some empirical results
  publication-title: Intell. Decis. Technol.
  doi: 10.3233/IDT-140211
– volume: 132
  start-page: 956
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b118
  article-title: Real-time sentiment analysis of Twitter streaming data for stock prediction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.111
– start-page: 400
  year: 1951
  ident: 10.1016/j.asoc.2020.106181_b47
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b191
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b182
  article-title: Predicting the price of bitcoin using machine learning
– start-page: 759
  year: 2014
  ident: 10.1016/j.asoc.2020.106181_b209
  article-title: Predicting stock market trends by recurrent deep neural networks
  doi: 10.1007/978-3-319-13560-1_60
– volume: 113
  start-page: 457
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b132
  article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.019
– year: 2015
  ident: 10.1016/j.asoc.2020.106181_b138
  article-title: Genetic deep neural networks using different activation functions for financial data mining
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b140
  article-title: An innovative neural network approach for stock market prediction
  publication-title: J. Supercomput.
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b202
  article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b142
  article-title: Stock market index prediction using deep neural network ensemble
– year: 2015
  ident: 10.1016/j.asoc.2020.106181_b161
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b215
  article-title: Market impact analysis via deep learned architectures
  publication-title: Neural Comput. Appl.
– volume: 08
  start-page: 58
  issue: 01
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b100
  article-title: Predicting equity price with corporate action events using LSTM-RNN
  publication-title: J. Math. Finance
  doi: 10.4236/jmf.2018.81005
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b194
  article-title: Restricted Boltzmann machine based stock market trend prediction
– year: 2008
  ident: 10.1016/j.asoc.2020.106181_b5
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b188
  article-title: Financial time-series data analysis using deep convolutional neural networks
– volume: 66
  start-page: 9
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b157
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.05.023
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b150
– volume: 131
  start-page: 895
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b187
  article-title: Deep learning with gated recurrent unit networks for financial sequence predictions
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.298
– volume: 12
  year: 2019
  ident: 10.1016/j.asoc.2020.106181_b220
  article-title: Statistical arbitrage in cryptocurrency markets
  publication-title: J. Risk Financial Manag.
– volume: 114
  start-page: 473
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b193
  article-title: A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.09.031
– volume: 70
  start-page: 525
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b199
  article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.024
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b166
  article-title: Bond risk premia with machine learning
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.3232721
– start-page: 708
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b218
  article-title: Predicting stock trends based on expert recommendations using gru/LSTM neural networks
  doi: 10.1007/978-3-319-60438-1_69
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2020.106181_b58
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 2327
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b114
  article-title: Deep learning for event-driven stock prediction
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b159
  article-title: Convolutional neural networks applied to high-frequency market microstructure forecasting
– volume: 37
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106181_b148
  article-title: TAR-cointegration neural network model: An empirical analysis of exchange rates and stock returns
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.07.077
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 10.1016/j.asoc.2020.106181_b46
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00447-0
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b86
  article-title: Threshold-based portfolio: the role of the threshold and its applications
  publication-title: J. Supercomput.
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b127
  article-title: Dilated convolutional neural networks for time series forecasting
  publication-title: J. Comput. Finance
  doi: 10.21314/JCF.2019.358
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b152
  article-title: Stock market embedding and prediction: A deep learning method
– volume: 49
  start-page: 462
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b90
  article-title: Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.029
– volume: 137
  start-page: 138
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b200
  article-title: Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.09.023
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b92
– start-page: 791
  year: 2007
  ident: 10.1016/j.asoc.2020.106181_b67
  article-title: Restricted Boltzmann machines for collaborative filtering
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b103
  article-title: Deep learning for stock prediction using numerical and textual information
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b38
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b115
  article-title: Deep learning for stock market prediction from financial news articles
– volume: 14
  start-page: 403
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b177
  article-title: Financial market prediction system with evolino neural network and deplhi method
  publication-title: J. Bus. Econ. Manag.
  doi: 10.3846/16111699.2012.729532
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b170
  article-title: Research on exchange rate forecasting based on deep belief network
  publication-title: Neural Comput. Appl.
– year: 2011
  ident: 10.1016/j.asoc.2020.106181_b3
– year: 2019
  ident: 10.1016/j.asoc.2020.106181_b189
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2020.106181_b75
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 28
  start-page: 653
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b141
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2522401
– year: 2014
  ident: 10.1016/j.asoc.2020.106181_b178
– volume: 7
  start-page: 118
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b129
  article-title: Financial time series forecasting–A deep learning approach
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2017.7.5.632
– volume: 102
  start-page: 683
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b146
  article-title: Financial time series prediction based on deep learning
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-017-5086-2
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b181
– start-page: 31
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b108
  article-title: A deep learning approach for optimization of systematic signal detection in financial trading systems with big data
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.2017SpecialIssue31421
– volume: 29
  start-page: 53
  issue: 12
  year: 2009
  ident: 10.1016/j.asoc.2020.106181_b176
  article-title: RMB exchange rate forecasting in the context of the financial crisis
  publication-title: Syst. Eng. Theory Pract.
  doi: 10.1016/S1874-8651(10)60090-7
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b205
  article-title: Detecting, quantifying and accessing impact of news events on Indian stock indices
– start-page: 835
  year: 2005
  ident: 10.1016/j.asoc.2020.106181_b29
  article-title: Machine learning techniques and use of event information for stock market prediction: A survey and evaluation
– start-page: 2546
  year: 2011
  ident: 10.1016/j.asoc.2020.106181_b55
  article-title: Algorithms for hyper-parameter optimization
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b135
  article-title: Combining the real-time wavelet denoising and long-short-term-memory neural network for predicting stock indexes
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b87
  article-title: Time series prediction of stock price using deep belief networks with intrinsic plasticity
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b128
  article-title: Evaluation of bidirectional LSTM for short-and long-term stock market prediction
– start-page: 33
  year: 2005
  ident: 10.1016/j.asoc.2020.106181_b73
  article-title: On contrastive divergence learning.
– ident: 10.1016/j.asoc.2020.106181_b172
  doi: 10.1007/978-3-319-44781-0_39
– volume: 55
  start-page: 990
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b66
  article-title: Time series prediction using restricted Boltzmann machines and backpropagation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.104
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b196
  article-title: Stock markets price movement prediction with LSTM neural networks
– volume: 17
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b12
  article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2196800
– start-page: 578
  year: 1992
  ident: 10.1016/j.asoc.2020.106181_b41
  article-title: Why tanh: choosing a sigmoidal function
– year: 2010
  ident: 10.1016/j.asoc.2020.106181_b25
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b119
  article-title: Sentiment-aware stock market prediction: A deep learning method
– start-page: 261
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b212
  article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction
– volume: 33
  start-page: 171
  year: 2014
  ident: 10.1016/j.asoc.2020.106181_b21
  article-title: Textual sentiment in finance: A survey of methods and models
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2014.02.006
– volume: 36
  start-page: 534
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b34
  article-title: Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.008
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b155
  article-title: Classification-based financial markets prediction using deep neural networks
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.2756331
– volume: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b110
  article-title: Neural networks for financial market risk classification
  publication-title: Front. Signal Process.
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b154
  article-title: Leveraging social media news to predict stock index movement using RNN-boost
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2018.08.003
– volume: 55
  start-page: 194
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b27
  article-title: Computational intelligence and financial markets: A survey and future directions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.006
– start-page: 243
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b72
  article-title: Hyperparameters adaptation for restricted Boltzmann machines based on free energy
– volume: 28
  start-page: 244
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b122
  article-title: An event-extraction approach for business analysis from online Chinese news
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2018.02.006
– volume: 104
  start-page: 38
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b99
  article-title: Decision support from financial disclosures with deep neural networks and transfer learning
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.10.001
– volume: 35
  start-page: 221
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b62
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– volume: 13
  start-page: 281
  issue: Feb
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b56
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b17
  article-title: Artificial neural networks applications in economics and management research: An exploratory literature review
– year: 2014
  ident: 10.1016/j.asoc.2020.106181_b98
  article-title: Sufficient forecasting using factor models
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.2607666
– volume: 34
  start-page: 2232
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2020.106181_b14
  article-title: Expert systems and evolutionary computing for financial investing: A review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.012
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b217
  article-title: Universal features of price formation in financial markets: perspectives from deep learning
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.3141294
– volume: 6
  start-page: 48625
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b88
  article-title: Which artificial intelligence algorithm better predicts the Chinese stock market?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2859809
– volume: 45
  start-page: 37
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b156
  article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2015.03.004
– volume: 14
  start-page: 3226
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b195
  article-title: Replicating a trading strategy by means of LSTM for financial industry applications
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2811377
– start-page: 6
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b206
  article-title: Stock market prediction with deep learning: A character-based neural language model for event-based trading
– volume: 114
  start-page: 128
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b22
  article-title: A survey of the applications of text mining in financial domain
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.10.003
– year: 2004
  ident: 10.1016/j.asoc.2020.106181_b2
  article-title: Soft computing and its applications in business and economics
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b204
  article-title: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network
  publication-title: IEEE Access
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.asoc.2020.106181_b37
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 11
  start-page: 54
  issue: 4.1
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b82
  article-title: Can deep machine learning outsmart the market? A comparison between econometric modelling and long- short term memory
  publication-title: Rom. Econ. Bus. Rev.
– start-page: 614
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b101
  article-title: Deep stock ranker: A LSTM neural network model for stock selection
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b216
  article-title: Using deep learning to detect price change indications in financial markets
– ident: 10.1016/j.asoc.2020.106181_b48
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b117
  article-title: Topic sentiment asset pricing with DNN supervised learning
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.3228485
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b123
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180944
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b60
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– start-page: 158
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b179
  article-title: Artificial neural networks approach to the forecast of stock market price movements
  publication-title: Int. J. Econ. Manag. Syst.
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b162
– year: 2000
  ident: 10.1016/j.asoc.2020.106181_b4
– year: 1998
  ident: 10.1016/j.asoc.2020.106181_b78
– ident: 10.1016/j.asoc.2020.106181_b54
– volume: 34
  start-page: 513
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2020.106181_b7
  article-title: Discovering golden nuggets: Data mining in financial application
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2004.829279
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b116
  article-title: Predict stock price with financial news based on recurrent convolutional neural networks
– volume: 36
  start-page: 5932
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2020.106181_b31
  article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.006
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b192
  article-title: Prediction of stock market performance by using machine learning techniques
– volume: 115
  start-page: 124
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b74
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.02.022
– volume: 143
  start-page: 236
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b211
  article-title: Improving stock market prediction via heterogeneous information fusion
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.12.025
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b44
– volume: 29
  start-page: 111
  year: 2007
  ident: 10.1016/j.asoc.2020.106181_b8
  article-title: Soft computing techniques applied to finance
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0051-5
– start-page: 1096
  year: 2008
  ident: 10.1016/j.asoc.2020.106181_b77
  article-title: Extracting and composing robust features with denoising autoencoders
– ident: 10.1016/j.asoc.2020.106181_b64
  doi: 10.1109/CVPR.2015.7298965
– volume: 132
  start-page: 1351
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b84
  article-title: Nse stock market prediction using deep-learning models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.050
– volume: 31
  start-page: 87
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b9
  article-title: Machine learning: An applied econometric approach
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.31.2.87
– volume: 115
  start-page: 136
  year: 2019
  ident: 10.1016/j.asoc.2020.106181_b190
  article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.065
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b136
– volume: 7
  start-page: 197
  issue: 3–4
  year: 2014
  ident: 10.1016/j.asoc.2020.106181_b45
  article-title: Deep learning: methods and applications
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000039
– volume: 50
  start-page: 49
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b23
  article-title: Natural language based financial forecasting: a survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9588-9
– volume: 32
  start-page: 1268
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b149
  article-title: Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.05.004
– volume: 4
  start-page: 26
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b50
  article-title: Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Netw. Mach. Learn.
– ident: 10.1016/j.asoc.2020.106181_b42
– ident: 10.1016/j.asoc.2020.106181_b65
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b180
  article-title: Deep learning for financial time series forecasting in a-trader system
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.asoc.2020.106181_b52
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– start-page: 261
  year: 2007
  ident: 10.1016/j.asoc.2020.106181_b104
  article-title: Neural based technical analysis in stock market forecasting
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b59
– volume: 19
  start-page: 1165
  issue: 8
  year: 2010
  ident: 10.1016/j.asoc.2020.106181_b6
  article-title: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0362-z
– start-page: 609
  year: 2009
  ident: 10.1016/j.asoc.2020.106181_b70
  article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b197
– volume: 11
  start-page: 2510
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2020.106181_b137
  article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.09.007
– year: 2014
  ident: 10.1016/j.asoc.2020.106181_b168
  article-title: A model with fuzzy granulation and deep belief networks for exchange rate forecasting
– year: 2011
  ident: 10.1016/j.asoc.2020.106181_b169
  article-title: Forecasting exchange rate with deep belief networks
– volume: 76
  start-page: 18569
  issue: 18
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b107
  article-title: Stock prediction using deep learning
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4159-7
– volume: 122
  start-page: 501
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b164
  article-title: Time-dependent series variance learning with recurrent mixture density networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.014
– volume: 299
  start-page: 51
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b213
  article-title: Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.095
– year: 2006
  ident: 10.1016/j.asoc.2020.106181_b18
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b102
– year: 2010
  ident: 10.1016/j.asoc.2020.106181_b15
  article-title: Applications of artificial neural networks in financial economics: A survey
– volume: 99
  start-page: 262
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b36
  article-title: Soft computing hybrids for forex rate prediction: A comprehensive review
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2018.05.020
– volume: vol. 30
  start-page: 3
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b43
  article-title: Rectifier nonlinearities improve neural network acoustic models
– volume: 03
  start-page: 145
  issue: 01
  year: 2004
  ident: 10.1016/j.asoc.2020.106181_b35
  article-title: Forecasting foreign exchange rates with artificial neural networks: A review
  publication-title: Int. J. Inf. Technol. Decis. Mak.
  doi: 10.1142/S0219622004000969
– ident: 10.1016/j.asoc.2020.106181_b53
– volume: 41
  start-page: 7653
  issue: 16
  year: 2014
  ident: 10.1016/j.asoc.2020.106181_b20
  article-title: Text mining for market prediction: A systematic review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.06.009
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2020.106181_b40
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Systems
  doi: 10.1007/BF02551274
– volume: 45
  start-page: 38
  issue: 5
  year: 1989
  ident: 10.1016/j.asoc.2020.106181_b165
  article-title: Forecasts of economic growth from the bond and stock markets
  publication-title: Financ. Anal. J.
  doi: 10.2469/faj.v45.n5.38
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b106
  article-title: Stock market prediction on high-frequency data using generative adversarial nets
  publication-title: Math. Probl. Eng.
– volume: abs/1712.05785
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b207
  article-title: Sentiment predictability for stocks
  publication-title: CoRR
– start-page: 364
  year: 2017
  ident: 10.1016/j.asoc.2020.106181_b76
  article-title: Relational autoencoder for feature extraction
– volume: 26
  start-page: 32
  issue: 12
  year: 2000
  ident: 10.1016/j.asoc.2020.106181_b32
  article-title: Artificial neural network and the financial markets: A survey
  publication-title: Manag. Finance
– start-page: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106181_b19
  article-title: Applications of news analytics in finance: A review
– start-page: 449
  year: 2016
  ident: 10.1016/j.asoc.2020.106181_b201
  article-title: Exploiting Twitter moods to boost financial trend prediction based on deep network models
– volume: 22
  start-page: 213
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2020.106181_b139
  article-title: Irrational fads, short-term memory emulation, and asset predictability
  publication-title: Rev. Financial Econ.
  doi: 10.1016/j.rfe.2013.05.005
– volume: 103
  start-page: 25
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b163
  article-title: Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.002
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.asoc.2020.106181_b49
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.asoc.2020.106181_b134
– year: 2018
  ident: 10.1016/j.asoc.2020.106181_b113
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106181_b125
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
– year: 2016
  ident: 10.1016/j.asoc.2020.106181_b39
SSID ssj0016928
Score 2.6945627
Snippet Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106181
SubjectTerms CNN
Computational intelligence
Deep learning
Finance
LSTM
Machine learning
RNN
Time series forecasting
Title Financial time series forecasting with deep learning : A systematic literature review: 2005–2019
URI https://dx.doi.org/10.1016/j.asoc.2020.106181
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAmazfZJLvbWymW-iqiFnoLySYrlVKLrVfxP_gP_SVmdrNVQXrwtGyYLMuXyWQyzMyH0IkxMeVWqCBXQgSMEhMoDZSAOcm1c5BZVgTcbvqiN2CXQz6soU5VCwNpld72lza9sNZ-pOnRbE5Ho-a9u3kkLGWCgldPCbTdZiwGLT97W6R5EJEW_KogHIC0L5wpc7yUQ8DdESkMCJKQvw-nHwdOdxOte08Rt8uf2UI1O9lGGxULA_abcgfpbtU0AwNRPAadsjPsnFGbqRlkNWMItmJj7RR7kohH3MJt_N3FGY8X3ZVxWczSwhAI-nz_cEd3uosG3fOHTi_wzAlBFoXhPEgYhbKPiBie88S4O5AWKk0osxkU3maRYZG2KkpCqozmjKrc7W2iWGYEZ3kc7aGVyfPE7iOsY2uJsMZhHTMehopY9wEbq8g5Gk62jkgFmcx8W3FgtxjLKn_sSQLMEmCWJcx1dLqYMy2baiyV5tVKyF-qIZ3VXzLv4J_zDtEavJVZjUdoZf7yao-d5zHXjUK1Gmi13bm7voXnxVWv_wUqddg7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTsMwDLYGHODCP-KfHOCEypo0TTskDhMwjd8LIHEraZOiITQmNoS4IN6BR-GNeBLsNR0gIQ5IXNMkSj9bjh3Z_gDWjYlEaJX2cq2UJwU3nk6JEjDneYoOssz6D24np6p5IQ8vw8sKvJW1MJRW6Wx_YdP71tqNVB2a1U6rVT3DyCOWNakEefWCK5dZeWSfHjFu6-4c7KGQN4Ro7J_vNj1HLeBlge_3vFgKqosIuAnzMDYYJKRK12IhbUaVqVlgZJBaHcS-0CYNpdA5Kj_XMjMqlHkU4L5DMCLRXBBtwtbzIK-Eq1qf0JVO59HxXKVOkVSmEXIMSgUNKB7zn2_DLzdcYxLGnWvK6sXfT0HFtqdhoqR9YM4KzEDaKLt0MGKmZ6TEtsvQ-7WZ7lIaNaPXXWas7TDHSnHNtlmdfbaNZreDds6sqJ7ZZvTy9P7yir5CbRYu_gXPORhu37XtPLA0spYra1C4kQx9X3OLG9hIB-jZ4NwF4CVkSeb6mBOdxm1SJqzdJARzQjAnBcwLsDlY0ym6ePw6OywlkXzTxQSvmV_WLf5x3RqMNs9PjpPjg9OjJRijL0VK5TIM9-4f7Aq6Pb10ta9mDK7-W68_ADdHENs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+time+series+forecasting+with+deep+learning+%3A+A+systematic+literature+review%3A+2005%E2%80%932019&rft.jtitle=Applied+soft+computing&rft.au=Sezer%2C+Omer+Berat&rft.au=Gudelek%2C+Mehmet+Ugur&rft.au=Ozbayoglu%2C+Ahmet+Murat&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=90&rft_id=info:doi/10.1016%2Fj.asoc.2020.106181&rft.externalDocID=S1568494620301216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon