Financial time series forecasting with deep learning : A systematic literature review: 2005–2019
Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers have created various models, and a vast numb...
Saved in:
Published in | Applied soft computing Vol. 90; p. 106181 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers have created various models, and a vast number of studies have been published accordingly. As such, a significant number of surveys exist covering ML studies on financial time series forecasting. Lately, Deep Learning (DL) models have appeared within the field, with results that significantly outperform their traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting, there is a lack of review papers that solely focus on DL for finance. Hence, the motivation of this paper is to provide a comprehensive literature review of DL studies on financial time series forecasting implementation. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, and commodity forecasting, but we also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and Long-Short Term Memory (LSTM). We also tried to envision the future of the field by highlighting its possible setbacks and opportunities for the benefit of interested researchers.
•We reviewed all searchable articles of deep learning (DL) for financial time series forecasting.•RNN based DL models (LSTM and GRU included) are the most common.•We compared DL models according to their performances in different forecasted asset classes.•To best of our knowledge, this is the first comprehensive DL survey for financial time series forecasting.•We provided current status of DL in financial time series forecasting, also highlighted the future opportunities. |
---|---|
AbstractList | Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry due to its broad implementation areas and substantial impact. Machine Learning (ML) researchers have created various models, and a vast number of studies have been published accordingly. As such, a significant number of surveys exist covering ML studies on financial time series forecasting. Lately, Deep Learning (DL) models have appeared within the field, with results that significantly outperform their traditional ML counterparts. Even though there is a growing interest in developing models for financial time series forecasting, there is a lack of review papers that solely focus on DL for finance. Hence, the motivation of this paper is to provide a comprehensive literature review of DL studies on financial time series forecasting implementation. We not only categorized the studies according to their intended forecasting implementation areas, such as index, forex, and commodity forecasting, but we also grouped them based on their DL model choices, such as Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and Long-Short Term Memory (LSTM). We also tried to envision the future of the field by highlighting its possible setbacks and opportunities for the benefit of interested researchers.
•We reviewed all searchable articles of deep learning (DL) for financial time series forecasting.•RNN based DL models (LSTM and GRU included) are the most common.•We compared DL models according to their performances in different forecasted asset classes.•To best of our knowledge, this is the first comprehensive DL survey for financial time series forecasting.•We provided current status of DL in financial time series forecasting, also highlighted the future opportunities. |
ArticleNumber | 106181 |
Author | Gudelek, Mehmet Ugur Sezer, Omer Berat Ozbayoglu, Ahmet Murat |
Author_xml | – sequence: 1 givenname: Omer Berat surname: Sezer fullname: Sezer, Omer Berat email: oberatsezer@etu.edu.tr – sequence: 2 givenname: Mehmet Ugur orcidid: 0000-0002-3745-727X surname: Gudelek fullname: Gudelek, Mehmet Ugur email: mgudelek@etu.edu.tr – sequence: 3 givenname: Ahmet Murat orcidid: 0000-0003-3576-1582 surname: Ozbayoglu fullname: Ozbayoglu, Ahmet Murat email: mozbayoglu@etu.edu.tr |
BookMark | eNp9kM1KAzEURoMo2FZfwFVeYGr-Js0UN6VYFQpudB0ymTuaMs2UJFq68x18Q5_EDHXloqt7-eBc7nfG6Nz3HhC6oWRKCZW3m6mJvZ0ywoZAUkXP0IiqGSsqqeh53kupClEJeYnGMW5IhiqmRqheOW-8dabDyW0BRwgOIm77ANbE5Pwb3rv0jhuAHe7ABD9Ec7zA8RATbE1yFncuQTDpIwAO8OlgP8eMkPLn65sRWl2hi9Z0Ea7_5gS9ru5flo_F-vnhablYF5YTkgolGBNMcNqUbamaqpS1NJViAiwXilreCF6D4Yow09SlYKbluacRtpGlaGd8gtTxrg19jAFabV3K__U-BeM6TYkeXOmNHlzpwZU-usoo-4fugtuacDgN3R0hyKVy66CjdeAtNC7LS7rp3Sn8F238hOI |
CitedBy_id | crossref_primary_10_18267_j_ocenovani_270 crossref_primary_10_1002_for_3181 crossref_primary_10_3390_pr9101697 crossref_primary_10_1007_s11280_021_01003_0 crossref_primary_10_3390_a16080357 crossref_primary_10_1093_mnras_stac166 crossref_primary_10_1016_j_memsci_2023_121831 crossref_primary_10_1002_gdj3_281 crossref_primary_10_1109_TFUZZ_2024_3359652 crossref_primary_10_1016_j_eswa_2025_126849 crossref_primary_10_1021_acs_analchem_4c05046 crossref_primary_10_1108_K_03_2021_0235 crossref_primary_10_1007_s11063_024_11656_3 crossref_primary_10_1134_S1054661822040058 crossref_primary_10_1007_s11042_023_17062_6 crossref_primary_10_3390_systems10060243 crossref_primary_10_1016_j_eswa_2024_125475 crossref_primary_10_1080_01605682_2024_2438333 crossref_primary_10_1007_s40745_020_00300_1 crossref_primary_10_3390_math13030347 crossref_primary_10_1016_j_asoc_2024_111362 crossref_primary_10_3390_a16090396 crossref_primary_10_1016_j_eswa_2023_120638 crossref_primary_10_3390_jrfm16100423 crossref_primary_10_1016_j_dss_2023_114015 crossref_primary_10_2139_ssrn_3973086 crossref_primary_10_1109_ACCESS_2022_3155819 crossref_primary_10_1016_j_asoc_2022_108754 crossref_primary_10_1145_3582560 crossref_primary_10_1007_s10614_021_10198_3 crossref_primary_10_1002_for_3082 crossref_primary_10_1016_j_eswa_2025_126864 crossref_primary_10_1016_j_mex_2022_101758 crossref_primary_10_1111_exsy_13317 crossref_primary_10_7498_aps_71_20220436 crossref_primary_10_1007_s10489_021_02979_y crossref_primary_10_3390_app13031764 crossref_primary_10_1016_j_jedc_2024_104821 crossref_primary_10_1016_j_eswa_2022_118485 crossref_primary_10_1108_AGJSR_02_2023_0070 crossref_primary_10_1134_S1062739122020156 crossref_primary_10_1109_TPAMI_2024_3387317 crossref_primary_10_3390_s24216857 crossref_primary_10_1007_s10614_020_10047_9 crossref_primary_10_1007_s10878_021_00800_7 crossref_primary_10_1109_TCSS_2022_3182375 crossref_primary_10_1016_j_jestch_2024_101897 crossref_primary_10_12720_jait_15_11_1273_1282 crossref_primary_10_1007_s00500_024_09903_9 crossref_primary_10_1016_j_eswa_2021_114828 crossref_primary_10_3390_e24050657 crossref_primary_10_1109_ACCESS_2022_3224938 crossref_primary_10_3390_su16062373 crossref_primary_10_1080_15427560_2021_1995735 crossref_primary_10_3390_math12121920 crossref_primary_10_1142_S1469026824420021 crossref_primary_10_1016_j_eswa_2022_119207 crossref_primary_10_1007_s13132_024_01939_4 crossref_primary_10_1016_j_eswa_2023_121701 crossref_primary_10_1155_2022_5596676 crossref_primary_10_1016_j_measen_2022_100501 crossref_primary_10_1016_j_neucom_2024_129027 crossref_primary_10_1186_s13677_023_00390_1 crossref_primary_10_1109_TEM_2021_3076603 crossref_primary_10_32604_cmc_2022_020823 crossref_primary_10_3390_s22010400 crossref_primary_10_1016_j_ijforecast_2024_10_003 crossref_primary_10_1108_IJAIM_06_2021_0124 crossref_primary_10_3390_s22207982 crossref_primary_10_2139_ssrn_3860098 crossref_primary_10_1007_s11356_021_17442_1 crossref_primary_10_1155_2022_1860460 crossref_primary_10_1155_2021_3870657 crossref_primary_10_1109_TIM_2023_3318728 crossref_primary_10_1108_JM2_09_2022_0232 crossref_primary_10_1155_2022_1113023 crossref_primary_10_1109_ACCESS_2020_3047160 crossref_primary_10_1016_j_eswa_2025_126535 crossref_primary_10_3390_app11146594 crossref_primary_10_1371_journal_pone_0310801 crossref_primary_10_1016_j_eswa_2022_119140 crossref_primary_10_1007_s41060_024_00569_y crossref_primary_10_1016_j_asoc_2024_111557 crossref_primary_10_1016_j_neunet_2021_10_024 crossref_primary_10_3390_app13042553 crossref_primary_10_1007_s10479_021_04420_6 crossref_primary_10_1016_j_eswa_2023_121642 crossref_primary_10_1103_PhysRevResearch_6_043082 crossref_primary_10_1109_TETC_2022_3230920 crossref_primary_10_2139_ssrn_3733398 crossref_primary_10_3390_math11010224 crossref_primary_10_1038_s41598_020_77280_y crossref_primary_10_1007_s12351_023_00812_7 crossref_primary_10_33543_j_1402_171177 crossref_primary_10_1109_TNNLS_2023_3293131 crossref_primary_10_1007_s12665_023_11216_3 crossref_primary_10_1007_s11704_024_40449_z crossref_primary_10_1016_j_eswa_2020_113463 crossref_primary_10_1007_s11071_023_09083_5 crossref_primary_10_1109_ACCESS_2024_3354702 crossref_primary_10_1007_s10489_023_04987_6 crossref_primary_10_35784_acs_2023_06 crossref_primary_10_1016_j_asoc_2021_107291 crossref_primary_10_3390_bdcc8090120 crossref_primary_10_3390_economies9040205 crossref_primary_10_1016_j_neucom_2024_129178 crossref_primary_10_1016_j_eswa_2023_120880 crossref_primary_10_1007_s10479_023_05400_8 crossref_primary_10_1016_j_energy_2022_123471 crossref_primary_10_1016_j_eswa_2020_114444 crossref_primary_10_31200_makuubd_1164099 crossref_primary_10_3390_e22101094 crossref_primary_10_1016_j_aei_2022_101771 crossref_primary_10_1109_ACCESS_2022_3146371 crossref_primary_10_4018_IJCBPL_324086 crossref_primary_10_1016_j_asoc_2023_110700 crossref_primary_10_1016_j_asoc_2025_112921 crossref_primary_10_1016_j_jksuci_2024_101959 crossref_primary_10_12720_jait_14_6_1372_1381 crossref_primary_10_1080_1331677X_2022_2106271 crossref_primary_10_1016_j_bar_2025_101563 crossref_primary_10_54187_jnrs_979836 crossref_primary_10_3934_QFE_2024007 crossref_primary_10_1109_TETCI_2023_3259434 crossref_primary_10_35940_ijeat_D2537_0610521 crossref_primary_10_1016_j_asoc_2020_106852 crossref_primary_10_1109_ACCESS_2023_3285082 crossref_primary_10_1111_coin_12617 crossref_primary_10_3390_math9243268 crossref_primary_10_1016_j_cej_2024_150050 crossref_primary_10_3390_su142215328 crossref_primary_10_4018_JOEUC_350224 crossref_primary_10_1007_s11042_024_20531_1 crossref_primary_10_1016_j_eswa_2023_122767 crossref_primary_10_3390_sym15040781 crossref_primary_10_7250_eb_2024_0006 crossref_primary_10_7769_gesec_v15i6_3935 crossref_primary_10_3934_math_20241663 crossref_primary_10_62051_ijcsit_v5n1_10 crossref_primary_10_1016_j_asoc_2022_109317 crossref_primary_10_1016_j_cviu_2024_104159 crossref_primary_10_1007_s10479_021_04187_w crossref_primary_10_1016_j_eswa_2021_115537 crossref_primary_10_1186_s40854_024_00681_9 crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_2139_ssrn_4825654 crossref_primary_10_1007_s00521_022_07393_0 crossref_primary_10_1016_j_apenergy_2023_122151 crossref_primary_10_1016_j_engappai_2021_104358 crossref_primary_10_3390_appliedmath4040076 crossref_primary_10_1007_s10479_024_06088_0 crossref_primary_10_1016_j_adhoc_2021_102541 crossref_primary_10_1007_s10614_025_10852_0 crossref_primary_10_1016_j_ejrh_2025_102250 crossref_primary_10_1186_s40537_022_00676_2 crossref_primary_10_1016_j_asoc_2024_111759 crossref_primary_10_3790_ccm_2024_1454601 crossref_primary_10_1016_j_asoc_2025_112903 crossref_primary_10_1016_j_jksuci_2024_102068 crossref_primary_10_1016_j_irfa_2024_103221 crossref_primary_10_1016_j_dsp_2022_103691 crossref_primary_10_1016_j_jksuci_2024_102180 crossref_primary_10_3390_su132413770 crossref_primary_10_1016_j_apor_2023_103709 crossref_primary_10_1007_s10489_024_05701_w crossref_primary_10_1007_s11227_025_06984_7 crossref_primary_10_1016_j_joitmc_2024_100398 crossref_primary_10_14295_vetor_v34i1_16774 crossref_primary_10_35193_bseufbd_1087654 crossref_primary_10_1007_s00521_021_06828_4 crossref_primary_10_3934_math_20241315 crossref_primary_10_37394_23203_2023_18_2 crossref_primary_10_48175_IJRSCAMT_6235 crossref_primary_10_1016_j_engappai_2023_107713 crossref_primary_10_1007_s10489_022_04263_z crossref_primary_10_1016_j_irfa_2022_102384 crossref_primary_10_1007_s43546_022_00328_w crossref_primary_10_52566_msu_econ_7_2__2020_75_86 crossref_primary_10_3390_e25020219 crossref_primary_10_2139_ssrn_4781629 crossref_primary_10_1016_j_physa_2024_129563 crossref_primary_10_3390_rs15143694 crossref_primary_10_1155_2022_9012709 crossref_primary_10_3390_app13084781 crossref_primary_10_1016_j_jedc_2021_104278 crossref_primary_10_1016_j_eswa_2023_119585 crossref_primary_10_1016_j_ins_2024_121286 crossref_primary_10_1016_j_dmpk_2024_101004 crossref_primary_10_1016_j_ijar_2020_12_002 crossref_primary_10_1007_s43069_024_00395_9 crossref_primary_10_1038_s41598_023_37746_1 crossref_primary_10_1038_s41598_021_87709_7 crossref_primary_10_11648_j_ajcst_20240702_14 crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_3390_math12213320 crossref_primary_10_1080_03081079_2024_2410902 crossref_primary_10_3390_bdcc7030152 crossref_primary_10_1016_j_procs_2024_03_007 crossref_primary_10_1088_2632_2153_acc638 crossref_primary_10_3846_tede_2023_18672 crossref_primary_10_1007_s10614_024_10769_0 crossref_primary_10_3390_math11081785 crossref_primary_10_3390_s24123962 crossref_primary_10_3389_fvets_2021_775114 crossref_primary_10_60084_eje_v1i1_51 crossref_primary_10_1007_s10614_023_10484_2 crossref_primary_10_7717_peerj_cs_1114 crossref_primary_10_1016_j_asoc_2022_109259 crossref_primary_10_1016_j_asoc_2024_111847 crossref_primary_10_1007_s12145_022_00875_8 crossref_primary_10_1155_2021_5172658 crossref_primary_10_1007_s00521_022_07401_3 crossref_primary_10_1007_s10479_022_04857_3 crossref_primary_10_1016_j_bar_2024_101457 crossref_primary_10_48084_etasr_6223 crossref_primary_10_1007_s00521_023_08879_1 crossref_primary_10_1186_s40537_023_00760_1 crossref_primary_10_1016_j_jairtraman_2021_102135 crossref_primary_10_3390_buildings14103172 crossref_primary_10_1057_s41283_024_00152_6 crossref_primary_10_1016_j_eswa_2021_115334 crossref_primary_10_1016_j_procs_2022_09_139 crossref_primary_10_2139_ssrn_3862428 crossref_primary_10_1111_jtsa_12706 crossref_primary_10_1007_s11063_021_10616_5 crossref_primary_10_1049_iet_spr_2020_0154 crossref_primary_10_1016_j_artmed_2022_102430 crossref_primary_10_1016_j_asoc_2023_110409 crossref_primary_10_1109_ACCESS_2023_3268437 crossref_primary_10_1080_03081079_2024_2405688 crossref_primary_10_1007_s10614_021_10136_3 crossref_primary_10_1007_s00521_024_10650_z crossref_primary_10_3390_ai5040101 crossref_primary_10_1007_s41060_024_00547_4 crossref_primary_10_1007_s44257_023_00007_6 crossref_primary_10_1111_exsy_13477 crossref_primary_10_4018_JOEUC_361650 crossref_primary_10_1002_rfe_1197 crossref_primary_10_1016_j_iot_2024_101322 crossref_primary_10_1016_j_resourpol_2024_104957 crossref_primary_10_29130_dubited_1096767 crossref_primary_10_1002_for_2909 crossref_primary_10_1016_j_ijepes_2023_109269 crossref_primary_10_3390_jrfm16080361 crossref_primary_10_1155_2023_9523230 crossref_primary_10_3390_s23156976 crossref_primary_10_3390_s22030841 crossref_primary_10_1016_j_compag_2023_107932 crossref_primary_10_1016_j_ins_2023_119833 crossref_primary_10_1186_s40537_023_00806_4 crossref_primary_10_1155_2022_4514300 crossref_primary_10_1016_j_physrep_2023_03_005 crossref_primary_10_2139_ssrn_3432760 crossref_primary_10_3390_jrfm17080346 crossref_primary_10_3390_risks10040084 crossref_primary_10_1016_j_petrol_2022_110323 crossref_primary_10_7717_peerj_cs_982 crossref_primary_10_3390_buildings14103156 crossref_primary_10_1016_j_watres_2024_123080 crossref_primary_10_1108_JHTI_12_2023_0960 crossref_primary_10_1109_ACCESS_2025_3549079 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1016_j_egyai_2025_100492 crossref_primary_10_35940_ijisme_B1313_12020224 crossref_primary_10_3390_info14110598 crossref_primary_10_3390_app10103616 crossref_primary_10_1109_ACCESS_2020_3030226 crossref_primary_10_3390_app12052420 crossref_primary_10_1016_j_asoc_2021_107941 crossref_primary_10_3390_en13236435 crossref_primary_10_1002_int_22556 crossref_primary_10_1007_s00500_023_09499_6 crossref_primary_10_1016_j_hcc_2025_100316 crossref_primary_10_1142_S179399332350014X crossref_primary_10_3390_pr11123324 crossref_primary_10_1016_j_ins_2022_12_042 crossref_primary_10_3390_e23121601 crossref_primary_10_1016_j_jempfin_2024_101524 crossref_primary_10_1142_S0129065721300011 crossref_primary_10_3390_bioengineering11010089 crossref_primary_10_1109_ACCESS_2022_3169776 crossref_primary_10_1109_TKDE_2023_3319672 crossref_primary_10_1016_j_ins_2022_11_136 crossref_primary_10_1093_jigpal_jzae050 crossref_primary_10_1109_ACCESS_2024_3516490 crossref_primary_10_3390_risks12010012 crossref_primary_10_1145_3483596 crossref_primary_10_1016_j_intfin_2024_102064 crossref_primary_10_1089_big_2020_0159 crossref_primary_10_1007_s12559_023_10129_4 crossref_primary_10_3390_atmos13122124 crossref_primary_10_1038_s43247_024_01698_9 crossref_primary_10_1007_s00521_022_07143_2 crossref_primary_10_1109_ACCESS_2023_3347804 crossref_primary_10_25295_fsecon_1269889 crossref_primary_10_26745_ahbvuibfd_1191080 crossref_primary_10_1016_j_knosys_2024_112733 crossref_primary_10_1016_j_asoc_2021_107920 crossref_primary_10_3390_appliedmath5010006 crossref_primary_10_1109_ACCESS_2023_3330156 crossref_primary_10_3390_electronics11193181 crossref_primary_10_1007_s10614_025_10869_5 crossref_primary_10_1016_j_fraope_2024_100180 crossref_primary_10_1007_s00521_024_10867_y crossref_primary_10_1016_j_resourpol_2020_101806 crossref_primary_10_3390_risks12090139 crossref_primary_10_1109_TCYB_2024_3498100 crossref_primary_10_2139_ssrn_3527511 crossref_primary_10_1016_j_eswa_2022_117951 crossref_primary_10_1016_j_softx_2024_101758 crossref_primary_10_1007_s10614_023_10390_7 crossref_primary_10_1007_s11869_023_01380_7 crossref_primary_10_1016_j_eswa_2023_121012 crossref_primary_10_1111_coin_12556 crossref_primary_10_1016_j_asoc_2020_106685 crossref_primary_10_1155_2021_2446543 crossref_primary_10_3390_forecast3030040 crossref_primary_10_1016_j_najef_2023_102070 crossref_primary_10_1080_14697688_2021_1999487 crossref_primary_10_18510_hssr_2023_11410 crossref_primary_10_3390_stats7020025 crossref_primary_10_3390_buildings15060902 crossref_primary_10_1016_j_eswa_2024_125926 crossref_primary_10_60084_ijma_v2i2_232 crossref_primary_10_3390_math10020248 crossref_primary_10_1016_j_eswa_2022_116970 crossref_primary_10_2139_ssrn_4781472 crossref_primary_10_3390_app12031427 crossref_primary_10_1109_JSEN_2023_3300416 crossref_primary_10_1016_j_eswa_2021_115470 crossref_primary_10_1007_s41870_022_00924_x crossref_primary_10_1016_j_asoc_2022_109181 crossref_primary_10_1016_j_asoc_2023_110467 crossref_primary_10_3233_IDA_216142 crossref_primary_10_35377_saucis___1404116 crossref_primary_10_1109_JIOT_2024_3419768 crossref_primary_10_1142_S0219477523500384 crossref_primary_10_3934_mbe_2022007 crossref_primary_10_1016_j_eswa_2024_125950 crossref_primary_10_1016_j_aichem_2023_100030 crossref_primary_10_1080_02664763_2021_1936468 crossref_primary_10_59324_ejtas_2024_2_1__42 crossref_primary_10_3390_su151310543 crossref_primary_10_3390_su14084408 crossref_primary_10_1140_epjb_s10051_021_00167_y crossref_primary_10_3390_agriculture13030738 crossref_primary_10_1093_logcom_exae019 crossref_primary_10_12677_sa_2024_135167 crossref_primary_10_1016_j_procs_2024_02_167 crossref_primary_10_1016_j_eneco_2023_107089 crossref_primary_10_54187_jnrs_1185912 crossref_primary_10_2478_jos_2022_0033 crossref_primary_10_3389_fenrg_2022_896217 crossref_primary_10_1016_j_eswa_2020_114091 crossref_primary_10_1111_exsy_13291 crossref_primary_10_1002_isaf_1551 crossref_primary_10_1007_s10489_023_04563_y crossref_primary_10_1016_j_asoc_2020_106384 crossref_primary_10_1109_ACCESS_2021_3077962 crossref_primary_10_1155_2021_6507688 crossref_primary_10_7717_peerj_cs_2164 crossref_primary_10_1007_s40822_023_00232_0 crossref_primary_10_1016_j_ejor_2023_09_026 crossref_primary_10_1016_j_ememar_2022_100891 crossref_primary_10_1080_00207543_2023_2217286 crossref_primary_10_1109_TAI_2023_3282201 crossref_primary_10_25287_ohuiibf_1577168 crossref_primary_10_1007_s41060_021_00278_w crossref_primary_10_1109_TSMC_2023_3302838 crossref_primary_10_3390_math9080800 crossref_primary_10_1108_IJCHM_10_2022_1233 crossref_primary_10_3390_en14206763 crossref_primary_10_1007_s40747_024_01400_8 crossref_primary_10_1016_j_eswa_2021_115298 crossref_primary_10_1002_wsbm_1548 crossref_primary_10_1016_j_eswa_2022_116553 crossref_primary_10_1080_1331677X_2022_2089192 crossref_primary_10_1080_13504851_2024_2396550 crossref_primary_10_1155_2022_2850604 crossref_primary_10_1016_j_knosys_2022_108917 crossref_primary_10_1007_s10844_024_00851_2 crossref_primary_10_1007_s11071_023_08429_3 crossref_primary_10_18657_yonveek_1208807 crossref_primary_10_1016_j_ymssp_2022_109082 crossref_primary_10_3390_e26090783 crossref_primary_10_3390_ijgi14020050 crossref_primary_10_1007_s11042_024_20321_9 crossref_primary_10_3390_rs17010092 crossref_primary_10_1007_s12063_022_00336_x crossref_primary_10_1016_j_asoc_2023_111224 crossref_primary_10_1016_j_frl_2023_104251 crossref_primary_10_1007_s13042_024_02491_y crossref_primary_10_1016_j_jocs_2023_101956 crossref_primary_10_3390_en15134768 crossref_primary_10_1080_02664763_2024_2395961 crossref_primary_10_1080_10298436_2023_2257852 crossref_primary_10_3389_fphy_2022_1008445 crossref_primary_10_1007_s11831_025_10244_5 crossref_primary_10_1016_j_energy_2021_122768 crossref_primary_10_17714_gumusfenbil_707088 crossref_primary_10_1007_s00521_024_10418_5 crossref_primary_10_1016_j_biortech_2023_129882 crossref_primary_10_1007_s11270_024_07242_x crossref_primary_10_3390_axioms11080396 crossref_primary_10_1007_s10614_024_10689_z crossref_primary_10_1007_s11356_024_33058_7 crossref_primary_10_1086_728699 crossref_primary_10_1016_j_cnsns_2024_108555 crossref_primary_10_1007_s41965_022_00103_8 crossref_primary_10_3390_sym13081544 crossref_primary_10_26466_opusjsr_1632110 crossref_primary_10_1109_ACCESS_2025_3541074 crossref_primary_10_1007_s00521_020_05506_1 crossref_primary_10_3233_IDA_216340 crossref_primary_10_3390_electronics12194183 crossref_primary_10_1007_s11227_020_03582_7 crossref_primary_10_2139_ssrn_4796336 crossref_primary_10_1016_j_knosys_2021_107009 crossref_primary_10_3390_math11051251 crossref_primary_10_48175_IJETIR_6225 crossref_primary_10_2478_amns_2025_0569 crossref_primary_10_7731_KIFSE_0722bf36 crossref_primary_10_1016_j_multra_2025_100191 crossref_primary_10_3390_math9040427 crossref_primary_10_1016_j_asoc_2023_111132 crossref_primary_10_1109_ACCESS_2022_3219832 crossref_primary_10_1186_s40854_022_00441_7 crossref_primary_10_1016_j_patcog_2021_108218 crossref_primary_10_3390_su141811598 crossref_primary_10_1016_j_knosys_2024_112567 crossref_primary_10_1109_TKDE_2021_3079496 crossref_primary_10_1016_j_ins_2024_120644 crossref_primary_10_1109_ACCESS_2022_3170905 crossref_primary_10_1155_jama_7706431 crossref_primary_10_1007_s10614_024_10629_x crossref_primary_10_1016_j_jcmds_2022_100065 crossref_primary_10_1002_widm_1519 crossref_primary_10_2139_ssrn_3890556 crossref_primary_10_1016_j_wroa_2023_100207 crossref_primary_10_3390_math10193632 crossref_primary_10_1016_j_revip_2024_100093 crossref_primary_10_1371_journal_pone_0269195 crossref_primary_10_1016_j_egyai_2022_100172 crossref_primary_10_3390_economies9010006 crossref_primary_10_3390_en18061365 crossref_primary_10_1007_s00521_022_07431_x crossref_primary_10_1016_j_egyai_2022_100170 crossref_primary_10_1111_ffe_14514 crossref_primary_10_1027_2151_2604_a000555 crossref_primary_10_1088_2632_2153_ad7f26 crossref_primary_10_31795_baunsobed_1545006 crossref_primary_10_1051_e3sconf_202341201069 crossref_primary_10_3934_QFE_2021032 crossref_primary_10_1016_j_mlwa_2021_100060 crossref_primary_10_1177_21582440231152379 crossref_primary_10_3390_su14116785 crossref_primary_10_1007_s10614_024_10785_0 crossref_primary_10_3390_e23060731 crossref_primary_10_2139_ssrn_3809308 crossref_primary_10_3390_smartcities6050114 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_1016_j_eswa_2022_118645 crossref_primary_10_1016_j_fss_2021_09_009 crossref_primary_10_3390_jrfm18030120 crossref_primary_10_1007_s10614_024_10617_1 crossref_primary_10_1016_j_apenergy_2024_122649 crossref_primary_10_1111_mafi_12413 crossref_primary_10_1016_j_neucom_2022_06_106 crossref_primary_10_1371_journal_pone_0288836 crossref_primary_10_1016_j_neucom_2024_127470 crossref_primary_10_3233_JIFS_233060 crossref_primary_10_1080_14697688_2022_2130085 crossref_primary_10_1111_exsy_13725 crossref_primary_10_1016_j_asoc_2024_112393 crossref_primary_10_1016_j_ijinfomgt_2020_102225 crossref_primary_10_1007_s11063_024_11578_0 crossref_primary_10_1007_s10614_023_10379_2 crossref_primary_10_1007_s10614_024_10797_w crossref_primary_10_1016_j_eswa_2021_115078 crossref_primary_10_1016_j_neucom_2022_07_016 crossref_primary_10_1007_s10586_024_04684_0 crossref_primary_10_3390_su151813725 crossref_primary_10_1002_cpe_7637 crossref_primary_10_1142_S1793993323500084 crossref_primary_10_1016_j_chaos_2024_114998 crossref_primary_10_1016_j_inffus_2024_102616 crossref_primary_10_1016_j_resourpol_2022_102884 crossref_primary_10_1016_j_frl_2023_104228 crossref_primary_10_1007_s10845_023_02116_1 crossref_primary_10_1016_j_rcim_2025_103010 crossref_primary_10_1145_3502287 crossref_primary_10_1007_s10489_021_02599_6 crossref_primary_10_1016_j_eswa_2022_117252 crossref_primary_10_1016_j_jfds_2024_100143 crossref_primary_10_1007_s10614_022_10281_3 crossref_primary_10_1007_s13369_022_07197_3 crossref_primary_10_1016_j_eswa_2023_119836 crossref_primary_10_15869_itobiad_1329889 crossref_primary_10_1016_j_frl_2024_105840 crossref_primary_10_1007_s11831_022_09765_0 crossref_primary_10_1007_s10614_023_10400_8 crossref_primary_10_1007_s44196_023_00212_x crossref_primary_10_1016_j_frl_2020_101755 crossref_primary_10_1016_j_eswa_2024_125789 crossref_primary_10_1016_j_procs_2022_12_275 crossref_primary_10_1108_CFRI_01_2024_0032 crossref_primary_10_1016_j_knosys_2022_108889 crossref_primary_10_3390_forecast5010017 crossref_primary_10_1080_17538947_2024_2372317 crossref_primary_10_1016_j_eswa_2020_113973 crossref_primary_10_1016_j_eswa_2022_117123 crossref_primary_10_1016_j_jsse_2021_09_001 crossref_primary_10_3233_IDA_220414 crossref_primary_10_1007_s10614_024_10683_5 crossref_primary_10_1016_j_asoc_2021_107488 crossref_primary_10_1007_s41060_024_00562_5 crossref_primary_10_1109_ACCESS_2025_3535584 crossref_primary_10_1016_j_cose_2024_104130 crossref_primary_10_1080_15140326_2025_2454081 crossref_primary_10_1002_for_3201 crossref_primary_10_1007_s10614_024_10597_2 crossref_primary_10_1007_s12647_021_00503_8 crossref_primary_10_1016_j_neucom_2024_129218 crossref_primary_10_1049_cit2_12139 crossref_primary_10_1016_j_chaos_2021_111612 crossref_primary_10_1016_j_patcog_2023_109604 crossref_primary_10_1007_s10462_024_10715_4 crossref_primary_10_3390_fractalfract6070394 crossref_primary_10_1016_j_dsp_2024_104415 crossref_primary_10_1080_14697688_2022_2135454 crossref_primary_10_1002_int_22345 crossref_primary_10_1038_s41598_022_12547_0 crossref_primary_10_1016_j_renene_2021_05_023 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_3390_en18030660 crossref_primary_10_1007_s11424_024_2112_9 crossref_primary_10_1016_j_asoc_2025_112771 crossref_primary_10_3390_jrfm14030119 crossref_primary_10_1016_j_mtcomm_2023_107853 crossref_primary_10_1016_j_neucom_2025_129641 crossref_primary_10_1098_rsta_2021_0213 crossref_primary_10_3390_e25010071 crossref_primary_10_1016_j_cie_2023_109023 crossref_primary_10_1007_s00521_024_09931_4 crossref_primary_10_1016_j_frl_2023_104304 crossref_primary_10_1016_j_micpro_2020_103493 |
Cites_doi | 10.1016/j.patrec.2005.03.026 10.1016/j.procs.2017.11.373 10.1016/j.procs.2018.07.260 10.1016/j.dss.2012.05.039 10.1016/j.eswa.2017.04.030 10.1109/72.728395 10.1016/j.eswa.2012.02.022 10.1016/j.asoc.2015.09.040 10.3390/a11090138 10.1016/j.ejor.2016.10.031 10.1007/978-981-10-6463-0_31 10.1007/s10339-011-0404-1 10.1016/j.eswa.2015.06.001 10.1587/transinf.2016IIP0016 10.1016/j.eswa.2018.09.036 10.1198/016214506000001437 10.1016/j.neucom.2015.04.071 10.1109/72.935096 10.1016/j.intfin.2014.01.006 10.1016/j.jfds.2016.10.001 10.3233/IDT-140211 10.1016/j.procs.2018.05.111 10.1214/aoms/1177729586 10.1007/978-3-319-13560-1_60 10.1016/j.eswa.2018.07.019 10.4236/jmf.2018.81005 10.1016/j.eneco.2017.05.023 10.1016/j.procs.2018.04.298 10.1016/j.procs.2017.09.031 10.1016/j.asoc.2018.04.024 10.2139/ssrn.3232721 10.1007/978-3-319-60438-1_69 10.1162/neco.1997.9.8.1735 10.1016/j.eswa.2009.07.077 10.1016/S1352-2310(97)00447-0 10.21314/JCF.2019.358 10.1016/j.asoc.2016.08.029 10.1016/j.knosys.2017.09.023 10.1016/j.neunet.2014.09.003 10.3846/16111699.2012.729532 10.1162/neco.2006.18.7.1527 10.1109/TNNLS.2016.2522401 10.18178/ijmlc.2017.7.5.632 10.1007/s11277-017-5086-2 10.18201/ijisae.2017SpecialIssue31421 10.1016/S1874-8651(10)60090-7 10.1007/978-3-319-44781-0_39 10.1016/j.procs.2015.07.104 10.1109/TEVC.2012.2196800 10.1016/j.irfa.2014.02.006 10.1016/j.asoc.2015.07.008 10.2139/ssrn.2756331 10.1016/j.datak.2018.08.003 10.1016/j.eswa.2016.02.006 10.1016/j.elerap.2018.02.006 10.1016/j.dss.2017.10.001 10.1109/TPAMI.2012.59 10.2139/ssrn.2607666 10.1016/j.eswa.2007.05.012 10.2139/ssrn.3141294 10.1109/ACCESS.2018.2859809 10.1016/j.resourpol.2015.03.004 10.1109/TII.2018.2811377 10.1016/j.knosys.2016.10.003 10.1038/nature14539 10.2139/ssrn.3228485 10.1371/journal.pone.0180944 10.1109/TNNLS.2016.2582924 10.1109/TSMCC.2004.829279 10.1016/j.eswa.2008.07.006 10.1016/j.ress.2013.02.022 10.1016/j.knosys.2017.12.025 10.1007/s10489-007-0051-5 10.1109/CVPR.2015.7298965 10.1016/j.procs.2018.05.050 10.1257/jep.31.2.87 10.1016/j.eswa.2018.07.065 10.1561/2000000039 10.1007/s10462-017-9588-9 10.1016/j.ijforecast.2016.05.004 10.1109/72.279181 10.1007/s00521-010-0362-z 10.1016/j.asoc.2010.09.007 10.1007/s11042-016-4159-7 10.1016/j.neucom.2013.05.014 10.1016/j.neucom.2018.02.095 10.1016/j.cor.2018.05.020 10.1142/S0219622004000969 10.1016/j.eswa.2014.06.009 10.1007/BF02551274 10.2469/faj.v45.n5.38 10.1016/j.rfe.2013.05.005 10.1016/j.eswa.2018.03.002 10.1016/j.ejor.2017.11.054 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106181 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106181 S1568494620301216 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-842242431d5f58d956b6a9824ec3481c3d43bea3802adb542af3181a4cd654f73 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:05 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Fri Feb 23 02:49:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning CNN LSTM RNN Finance Machine learning Time series forecasting Computational intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-842242431d5f58d956b6a9824ec3481c3d43bea3802adb542af3181a4cd654f73 |
ORCID | 0000-0003-3576-1582 0000-0002-3745-727X |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106181 crossref_primary_10_1016_j_asoc_2020_106181 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xiong, Nichols, Shen (b161) 2015 Lachiheb, Gouider (b143) 2018; 126 Zhao, Li, Yu (b157) 2017; 66 Mittermayer, F. Knolmayer (b18) 2006 Kraus, Feuerriegel (b99) 2017; 104 Widegren (b126) 2017 (b5) 2008 Fan, Xue, Yao (b98) 2014 Kovalerchuk, Vityaev (b4) 2000 Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b216) 2017 and (b110) 2017; 1 Prosky, Song, Tan, Zhao (b207) 2017; abs/1712.05785 Shen, Chao, Zhao (b171) 2015; 167 Yao, Chen (b72) 2016 Bianchi, Büchner, Tamoni (b166) 2018 Van Der Maaten (b71) 2009 Bergstra, Bengio (b56) 2012; 13 Liu, Zhang, Ma (b91) 2017 Goodfellow, Bengio, Courville (b39) 2016 Nguyen-Tuong, Peters (b79) 2011; 12 Zhang, Shen, Zhao (b168) 2014 Kingma, Ba (b51) 2014 Hajizadeh, Ardakani, Shahrabi (b25) 2010 Nair, Mohandas (b26) 2014; 9 Selvin, Vinayakumar, Gopalakrishnan, Menon, Soman (b85) 2017 Gunduz, Yaslan, Cataltepe (b200) 2017; 137 Mitra, Mitra (b19) 2012 Siami-Namini, Namin (b136) 2018 Han, Hao, Huang (b122) 2018; 28 Zhou, min Zhou, Yang, Yang (b190) 2019; 115 Hu, Liu, Zhang, Su, Ngai, Liu (b34) 2015; 36 Batres-Estrada (b93) 2015 Kim, Won (b163) 2018; 103 Bengio, Simard, Frasconi (b52) 1994; 5 Peng, Jiang (b202) 2016 LeCun, Bengio, Hinton (b37) 2015; 521 Zhang (b138) 2015 Chen, Yeo, Lau, Lee (b154) 2018 Schmidhuber (b38) 2015; 61 Feng, He, Polson (b97) 2018 Hansson (b133) 2017 Tkáč, Verner (b16) 2016; 38 Tieleman, Hinton (b50) 2012; 4 Xing, Cambria, Welsch (b23) 2017; 50 Bildirici, Alp, Ersin (b148) 2010; 37 Gneiting, Raftery (b221) 2007; 102 Song, Wu (b197) 2018 Bao, Yue, Rao (b123) 2017; 12 Parida, Bisoi, Dash (b124) 2016; 2 Sermpinis, Laws, Karathanasopoulos, Dunis (b173) 2012; 39 Zhuge, Xu, Zhang (b102) 2017 Huang, Lai, Nakamori, Wang (b35) 2004; 03 Psaradellis, Sermpinis (b149) 2016; 32 Sermpinis, Stasinakis, Dunis (b175) 2014; 30 Sermpinis, Dunis, Laws, Stasinakis (b174) 2012; 54 Dingli, Fournier (b129) 2017; 7 Sutton, Barto (b78) 1998 Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440. Akita, Yoshihara, Matsubara, Uehara (b103) 2016 Chao, Shen, Zhao (b169) 2011 Shen, Tan, Zhang, Zeng, Xu (b187) 2018; 131 Ozbayoglu (b104) 2007 Deng, Yu (b45) 2014; 7 Shi, Teng, Wang, Zhang, Binder (b210) 2018 Pradeepkumar, Ravi (b36) 2018; 99 Vincent, Larochelle, Bengio, Manzagol (b77) 2008 Chen, He, Tso (b158) 2017; 122 Krauss, Do, Huck (b89) 2017; 259 Li, Yang, Xue, Zhou (b87) 2017 Di Persio, Honchar (b186) 2017; 11 Preethi, Santhi (b30) 2012; 46 Ji, Xu, Yang, Yu (b62) 2012; 35 Minami (b100) 2018; 08 Baek, Kim (b132) 2018; 113 Nikolaev, Tino, Smirnov (b164) 2013; 122 Maas, Hannun, Ng (b43) 2013; vol. 30 (b10) 2002 Yoo, Kim, Jan (b29) 2005 Tino, Schittenkopf, Dorffner (b160) 2001; 12 Zhou, Pan, Hu, Tang, Zhao (b106) 2018; 2018 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. Salakhutdinov, Mnih, Hinton (b67) 2007 Szegedy, Toshev, Erhan (b63) 2013 Hinton, Osindero, Teh (b75) 2006; 18 Sezer, Ozbayoglu (b189) 2019 dos Santos Pinheiro, Dras (b206) 2017 Harvey (b165) 1989; 45 Robbins, Monro (b47) 1951 Warren (b167) 2019 Huynh, Dang, Duong (b203) 2017 Mourelatos, Alexakos, Amorgianiotis, Likothanassis (b151) 2018 Maknickienė, Maknickas (b177) 2013; 14 Bergstra, Bardenet, Bengio, Kégl (b55) 2011 Hochreiter, Schmidhuber (b58) 1997; 9 Ausmees, Milovanovic, Wrede, Zafari (b191) 2017 Rothstein, Sutton, Borenstein (b222) 2005 Li, Ma (b15) 2010 Rada (b14) 2008; 34 Chandra, Chand (b90) 2016; 49 Verma, Dey, Meisheri (b205) 2017 Nelson, Pereira, de Oliveira (b196) 2017 Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine Learning, 2013, pp. 1139–1147. Mochón, Quintana, Sáez, Viñuela (b8) 2007; 29 Khare, Darekar, Gupta, Attar (b105) 2017 Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b219) 2017 Thomas Günter Fischer, Krauss, Deinert (b220) 2019; 12 McNally, Roche, Caton (b182) 2018 Meng, Catchpoole, Skillicom, Kennedy (b76) 2017 Chatterjee, Ayadi, Boone (b32) 2000; 26 Hrasko, Pacheco, Krohling (b66) 2015; 55 Chen, Zhou, Dai (b81) 2015 Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, Deep belief networks for phone recognition, in: Nips Workshop on Deep Learning for Speech Recognition and Related Applications, vol. 1, Vancouver, Canada, 2009, pp. 39. Feng, Polson, Xu (b113) 2018 Aliev, Fazlollahi, Aliev (b2) 2004 Kalman, Kwasny (b41) 1992 Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b60) 2016; 28 Yuan, Zhang, Shao (b94) 2018 Bekiros (b139) 2013; 22 Takahashi (b147) 2017 Hu, Liu, Bian, Liu, Liu (b212) 2018 Mullainathan, Spiess (b9) 2017; 31 Dymowa (b3) 2011 Doering, Fairbank, Markose (b159) 2017 Elmsili, Outtaj (b17) 2018 Razvan Pascanu, Tomas Mikolov, Yoshua Bengio, On the difficulty of training recurrent neural networks, in: International Conference on Machine Learning, 2013, pp. 1310–1318. Fischer, Krauss (b125) 2018; 270 Bahrammirzaee (b6) 2010; 19 Zhang, Zhou (b7) 2004; 34 Sezer, Ozbayoglu (b199) 2018; 70 Chong, Han, Park (b80) 2017; 83 Zhang, Zhang, Wang, Yao, Fang, Yu (b211) 2018; 143 Lee, Grosse, Ranganath, Ng (b70) 2009 Zhang, Aggarwal, Qi (b95) 2017 Li, Tam (b135) 2017 Hsieh, Hsiao, Yeh (b137) 2011; 11 Ramachandran, Zoph, Le (b44) 2017 Karaoglu, Arpaci (b108) 2017 Aguilar-Rivera, Valenzuela-Rendon, Rodriguez-Ortiz (b13) 2015; 42 Das, Behera, Kumar, Rath (b118) 2018; 132 Hua Shen, Xun Liang, A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction, in: ICANN, 2016. Kumar, Ravi (b22) 2016; 114 Yang, Gong, Yang (b142) 2017 Ding, Zhang, Liu, Duan (b114) 2015 Elliot, Hsu (b134) 2017 Jeong, Kim (b131) 2019; 117 Chen, Wu, Bu (b152) 2018 Sezer, Ozbayoglu, Dogdu (b193) 2017; 114 Nassirtoussi, Aghabozorgi, Wah, Ngo (b20) 2014; 41 Liu, Zeng, Yang, Carrio (b208) 2018 Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b59) 2016 Lee, Yoo (b86) 2018 Katarya, Mahajan (b33) 2017 Xueheng Qiu, Le Zhang, Ye Ren, P. Suganthan, Gehan Amaratunga, Ensemble deep learning for regression and time forecasting, in: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, CIEL, 2014, pp. 1–6. Abe, Nakayama (b96) 2018 Ponsich, Jaimes, Coello (b12) 2013; 17 Liang, Rong, Zhang, Liu, Xiong (b194) 2017 Ozbayoglu, Gudelek, Sezer (b1) 2020 Vanstone, Tan (b24) 2003 Troiano, Villa, Loia (b195) 2018; 14 Samarawickrama, Fernando (b83) 2017 Zhou (b109) 2018 Yan, Ouyang (b146) 2017; 102 Sirignano, Cont (b217) 2018 Gardner, Dorling (b46) 1998; 32 Dezsi, Nistor (b82) 2016; 11 Yong, Rahim, Abdullah (b144) 2017 Duchi, Hazan, Singer (b49) 2011; 12 Deng, Bao, Kong, Ren, Dai (b141) 2017; 28 Wang, Xu, Zheng (b213) 2018; 299 Lee, Soo (b116) 2017 Zhongshengz (b120) 2018 Singh, Srivastava (b107) 2016; 76 Buczkowski (b218) 2017 Yümlü, Gürgen, Okay (b145) 2005; 26 Tamilselvan, Wang (b74) 2013; 115 Kearney, Liu (b21) 2014; 33 Hiransha, Gopalakrishnan, Menon, Soman (b84) 2018; 132 Iwasaki, Chen (b117) 2018 Dang, Sadeghi-Niaraki, Huynh, Min, Moon (b204) 2018 Vinod Nair, Geoffrey E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning, ICML-10, 2010, pp. 807–814. Saad, Prokhorov, Wunsch (b185) 1998; 9 Cybenko (b40) 1989; 2 Reimers, Gurevych (b61) 2017 Bjoern Krollner, Bruce J. Vanstone, Gavin R. Finnie, Financial time forecasting with machine learning techniques: a survey, in: ESANN, 2010. Carreira-Perpinan, Hinton (b73) 2005 Korczak, Hernes (b180) 2017 Dixon, Klabjan, Bang (b155) 2016 Gudelek, Boluk, Ozbayoglu (b198) 2017 Yoshua Bengio, Deep learning of representations for unsupervised and transfer learning, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–36. Tapia, Coello (b11) 2007 Nascimento, Cristo (b121) 2015 Lopes (b181) 2018 Pang, Zhou, Wang, Lin, Chang (b140) 2018 Cavalcante, Brasileiro, Souza, Nobrega, Oliveira (b27) 2016; 55 Matsubara, Akita, Uehara (b214) 2018; E101.D Lasheras, de Cos Juez, Sánchez, Krzemień, Fernández (b156) 2015; 45 Chen, Qiao, Wang, Wang, Du, Stanley (b88) 2018; 6 Huang, Huang, Wang, Zhang, Guan, Zhou (b201) 2016 Zheng, Fu, Zhang (b170) 2017 Li, Bu, Wu (b119) 2017 Rout, Dash, Dash, Bisoi (b130) 2017; 29 Vargas, de Lima, Evsukoff (b115) 2017 Di Persio, Honchar (b179) 2016 Althelaya, El-Alfy, Mohammed (b128) 2018 Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256. Heaton, Polson, Witte (b92) 2016 Google, System and Method for Computer Managed Funds to Outperform Benchmarks, US Patent, 2016. Si, Li, Ding, Rao (b153) 2017 Das, Mokashi, Culkin (b183) 2018; 11 Borovykh, Bohte, Oosterlee (b127) 2018 Tran, Magris, Kanniainen, Gabbouj, Iosifidis (b112) 2017 Raza (b192) 2017 Yoshihara, Fujikawa, Seki, Uehara (b209) 2014 Atsalakis, Valavanis (b31) 2009; 36 Li, Cao, Pan (b215) 2018 Maknickiene, Rutkauskas, Maknickas (b178) 2014 Chen, Wu, Tindall (b150) 2016 Zhang, Tan (b101) 2018 Bo, Chi (b176) 2009; 29 Zhou, Han, Xu, Zhang (b162) 2018 Navon, Keller (b184) 2017 Chen, Chen, Huang, Huang, Chen (b188) 2016 Chen (10.1016/j.asoc.2020.106181_b88) 2018; 6 Elmsili (10.1016/j.asoc.2020.106181_b17) 2018 Kingma (10.1016/j.asoc.2020.106181_b51) 2014 Li (10.1016/j.asoc.2020.106181_b119) 2017 Vanstone (10.1016/j.asoc.2020.106181_b24) 2003 Minami (10.1016/j.asoc.2020.106181_b100) 2018; 08 Baek (10.1016/j.asoc.2020.106181_b132) 2018; 113 Deng (10.1016/j.asoc.2020.106181_b141) 2017; 28 Greff (10.1016/j.asoc.2020.106181_b60) 2016; 28 Xing (10.1016/j.asoc.2020.106181_b23) 2017; 50 Zhang (10.1016/j.asoc.2020.106181_b95) 2017 Kraus (10.1016/j.asoc.2020.106181_b99) 2017; 104 Mittermayer (10.1016/j.asoc.2020.106181_b18) 2006 Siami-Namini (10.1016/j.asoc.2020.106181_b136) 2018 Borovykh (10.1016/j.asoc.2020.106181_b127) 2018 Nair (10.1016/j.asoc.2020.106181_b26) 2014; 9 Althelaya (10.1016/j.asoc.2020.106181_b128) 2018 Yümlü (10.1016/j.asoc.2020.106181_b145) 2005; 26 Zhao (10.1016/j.asoc.2020.106181_b157) 2017; 66 Dingli (10.1016/j.asoc.2020.106181_b129) 2017; 7 Tsantekidis (10.1016/j.asoc.2020.106181_b219) 2017 Szegedy (10.1016/j.asoc.2020.106181_b63) 2013 Tieleman (10.1016/j.asoc.2020.106181_b50) 2012; 4 Khare (10.1016/j.asoc.2020.106181_b105) 2017 Hu (10.1016/j.asoc.2020.106181_b34) 2015; 36 Mullainathan (10.1016/j.asoc.2020.106181_b9) 2017; 31 Li (10.1016/j.asoc.2020.106181_b15) 2010 Dymowa (10.1016/j.asoc.2020.106181_b3) 2011 Hu (10.1016/j.asoc.2020.106181_b212) 2018 Rothstein (10.1016/j.asoc.2020.106181_b222) 2005 dos Santos Pinheiro (10.1016/j.asoc.2020.106181_b206) 2017 10.1016/j.asoc.2020.106181_b28 Hiransha (10.1016/j.asoc.2020.106181_b84) 2018; 132 Mitra (10.1016/j.asoc.2020.106181_b19) 2012 Rout (10.1016/j.asoc.2020.106181_b130) 2017; 29 Tino (10.1016/j.asoc.2020.106181_b160) 2001; 12 Widegren (10.1016/j.asoc.2020.106181_b126) 2017 Zhang (10.1016/j.asoc.2020.106181_b7) 2004; 34 Duchi (10.1016/j.asoc.2020.106181_b49) 2011; 12 Zhou (10.1016/j.asoc.2020.106181_b109) 2018 Psaradellis (10.1016/j.asoc.2020.106181_b149) 2016; 32 Meng (10.1016/j.asoc.2020.106181_b76) 2017 Katarya (10.1016/j.asoc.2020.106181_b33) 2017 Mourelatos (10.1016/j.asoc.2020.106181_b151) 2018 Yong (10.1016/j.asoc.2020.106181_b144) 2017 Preethi (10.1016/j.asoc.2020.106181_b30) 2012; 46 Yoshihara (10.1016/j.asoc.2020.106181_b209) 2014 Si (10.1016/j.asoc.2020.106181_b153) 2017 Lee (10.1016/j.asoc.2020.106181_b70) 2009 Song (10.1016/j.asoc.2020.106181_b197) 2018 Nassirtoussi (10.1016/j.asoc.2020.106181_b20) 2014; 41 Gneiting (10.1016/j.asoc.2020.106181_b221) 2007; 102 Sutton (10.1016/j.asoc.2020.106181_b78) 1998 Kovalerchuk (10.1016/j.asoc.2020.106181_b4) 2000 Feng (10.1016/j.asoc.2020.106181_b113) 2018 Chong (10.1016/j.asoc.2020.106181_b80) 2017; 83 Lee (10.1016/j.asoc.2020.106181_b116) 2017 Hinton (10.1016/j.asoc.2020.106181_b75) 2006; 18 Elliot (10.1016/j.asoc.2020.106181_b134) 2017 Kearney (10.1016/j.asoc.2020.106181_b21) 2014; 33 Harvey (10.1016/j.asoc.2020.106181_b165) 1989; 45 Li (10.1016/j.asoc.2020.106181_b135) 2017 Verma (10.1016/j.asoc.2020.106181_b205) 2017 Chen (10.1016/j.asoc.2020.106181_b152) 2018 Lasheras (10.1016/j.asoc.2020.106181_b156) 2015; 45 and (10.1016/j.asoc.2020.106181_b110) 2017; 1 10.1016/j.asoc.2020.106181_b172 Di Persio (10.1016/j.asoc.2020.106181_b179) 2016 Nikolaev (10.1016/j.asoc.2020.106181_b164) 2013; 122 Bahrammirzaee (10.1016/j.asoc.2020.106181_b6) 2010; 19 Singh (10.1016/j.asoc.2020.106181_b107) 2016; 76 Abe (10.1016/j.asoc.2020.106181_b96) 2018 Tsantekidis (10.1016/j.asoc.2020.106181_b216) 2017 Robbins (10.1016/j.asoc.2020.106181_b47) 1951 Yao (10.1016/j.asoc.2020.106181_b72) 2016 Nelson (10.1016/j.asoc.2020.106181_b196) 2017 Huang (10.1016/j.asoc.2020.106181_b201) 2016 Nguyen-Tuong (10.1016/j.asoc.2020.106181_b79) 2011; 12 Bao (10.1016/j.asoc.2020.106181_b123) 2017; 12 Salakhutdinov (10.1016/j.asoc.2020.106181_b67) 2007 Kumar (10.1016/j.asoc.2020.106181_b22) 2016; 114 Doering (10.1016/j.asoc.2020.106181_b159) 2017 Matsubara (10.1016/j.asoc.2020.106181_b214) 2018; E101.D (10.1016/j.asoc.2020.106181_b10) 2002 Wang (10.1016/j.asoc.2020.106181_b213) 2018; 299 Parida (10.1016/j.asoc.2020.106181_b124) 2016; 2 Chen (10.1016/j.asoc.2020.106181_b158) 2017; 122 Mochón (10.1016/j.asoc.2020.106181_b8) 2007; 29 Chen (10.1016/j.asoc.2020.106181_b154) 2018 Bengio (10.1016/j.asoc.2020.106181_b52) 1994; 5 Ozbayoglu (10.1016/j.asoc.2020.106181_b1) 2020 Ramachandran (10.1016/j.asoc.2020.106181_b44) 2017 Pang (10.1016/j.asoc.2020.106181_b140) 2018 Warren (10.1016/j.asoc.2020.106181_b167) 2019 Ozbayoglu (10.1016/j.asoc.2020.106181_b104) 2007 Pradeepkumar (10.1016/j.asoc.2020.106181_b36) 2018; 99 Van Der Maaten (10.1016/j.asoc.2020.106181_b71) 2009 Das (10.1016/j.asoc.2020.106181_b118) 2018; 132 Wu (10.1016/j.asoc.2020.106181_b59) 2016 Chandra (10.1016/j.asoc.2020.106181_b90) 2016; 49 Vincent (10.1016/j.asoc.2020.106181_b77) 2008 Hansson (10.1016/j.asoc.2020.106181_b133) 2017 Bo (10.1016/j.asoc.2020.106181_b176) 2009; 29 Liu (10.1016/j.asoc.2020.106181_b91) 2017 Batres-Estrada (10.1016/j.asoc.2020.106181_b93) 2015 Shen (10.1016/j.asoc.2020.106181_b187) 2018; 131 Korczak (10.1016/j.asoc.2020.106181_b180) 2017 Goodfellow (10.1016/j.asoc.2020.106181_b39) 2016 (10.1016/j.asoc.2020.106181_b5) 2008 Samarawickrama (10.1016/j.asoc.2020.106181_b83) 2017 Bildirici (10.1016/j.asoc.2020.106181_b148) 2010; 37 Rada (10.1016/j.asoc.2020.106181_b14) 2008; 34 Zhang (10.1016/j.asoc.2020.106181_b101) 2018 Navon (10.1016/j.asoc.2020.106181_b184) 2017 Raza (10.1016/j.asoc.2020.106181_b192) 2017 Huynh (10.1016/j.asoc.2020.106181_b203) 2017 Buczkowski (10.1016/j.asoc.2020.106181_b218) 2017 Zhou (10.1016/j.asoc.2020.106181_b190) 2019; 115 Cavalcante (10.1016/j.asoc.2020.106181_b27) 2016; 55 Hsieh (10.1016/j.asoc.2020.106181_b137) 2011; 11 Bergstra (10.1016/j.asoc.2020.106181_b56) 2012; 13 Lopes (10.1016/j.asoc.2020.106181_b181) 2018 Maas (10.1016/j.asoc.2020.106181_b43) 2013; vol. 30 Zhongshengz (10.1016/j.asoc.2020.106181_b120) 2018 Lee (10.1016/j.asoc.2020.106181_b86) 2018 Ausmees (10.1016/j.asoc.2020.106181_b191) 2017 Aliev (10.1016/j.asoc.2020.106181_b2) 2004 Jeong (10.1016/j.asoc.2020.106181_b131) 2019; 117 Tapia (10.1016/j.asoc.2020.106181_b11) 2007 Prosky (10.1016/j.asoc.2020.106181_b207) 2017; abs/1712.05785 Fischer (10.1016/j.asoc.2020.106181_b125) 2018; 270 Zhang (10.1016/j.asoc.2020.106181_b211) 2018; 143 Ding (10.1016/j.asoc.2020.106181_b114) 2015 Atsalakis (10.1016/j.asoc.2020.106181_b31) 2009; 36 Sermpinis (10.1016/j.asoc.2020.106181_b174) 2012; 54 Aguilar-Rivera (10.1016/j.asoc.2020.106181_b13) 2015; 42 Bekiros (10.1016/j.asoc.2020.106181_b139) 2013; 22 Peng (10.1016/j.asoc.2020.106181_b202) 2016 Yang (10.1016/j.asoc.2020.106181_b142) 2017 Gunduz (10.1016/j.asoc.2020.106181_b200) 2017; 137 Li (10.1016/j.asoc.2020.106181_b215) 2018 Sermpinis (10.1016/j.asoc.2020.106181_b173) 2012; 39 Liu (10.1016/j.asoc.2020.106181_b208) 2018 Tran (10.1016/j.asoc.2020.106181_b112) 2017 McNally (10.1016/j.asoc.2020.106181_b182) 2018 Feng (10.1016/j.asoc.2020.106181_b97) 2018 Han (10.1016/j.asoc.2020.106181_b122) 2018; 28 Huang (10.1016/j.asoc.2020.106181_b35) 2004; 03 Chen (10.1016/j.asoc.2020.106181_b150) 2016 Nascimento (10.1016/j.asoc.2020.106181_b121) 2015 Das (10.1016/j.asoc.2020.106181_b183) 2018; 11 Krauss (10.1016/j.asoc.2020.106181_b89) 2017; 259 Gardner (10.1016/j.asoc.2020.106181_b46) 1998; 32 Vargas (10.1016/j.asoc.2020.106181_b115) 2017 Zhang (10.1016/j.asoc.2020.106181_b168) 2014 Gudelek (10.1016/j.asoc.2020.106181_b198) 2017 Li (10.1016/j.asoc.2020.106181_b87) 2017 Ponsich (10.1016/j.asoc.2020.106181_b12) 2013; 17 Deng (10.1016/j.asoc.2020.106181_b45) 2014; 7 10.1016/j.asoc.2020.106181_b54 Di Persio (10.1016/j.asoc.2020.106181_b186) 2017; 11 10.1016/j.asoc.2020.106181_b53 Zhang (10.1016/j.asoc.2020.106181_b138) 2015 Kim (10.1016/j.asoc.2020.106181_b163) 2018; 103 Hrasko (10.1016/j.asoc.2020.106181_b66) 2015; 55 Dixon (10.1016/j.asoc.2020.106181_b155) 2016 Shen (10.1016/j.asoc.2020.106181_b171) 2015; 167 Tkáč (10.1016/j.asoc.2020.106181_b16) 2016; 38 Selvin (10.1016/j.asoc.2020.106181_b85) 2017 Karaoglu (10.1016/j.asoc.2020.106181_b108) 2017 Kalman (10.1016/j.asoc.2020.106181_b41) 1992 10.1016/j.asoc.2020.106181_b48 Chen (10.1016/j.asoc.2020.106181_b81) 2015 Troiano (10.1016/j.asoc.2020.106181_b195) 2018; 14 10.1016/j.asoc.2020.106181_b42 Zhou (10.1016/j.asoc.2020.106181_b106) 2018; 2018 Maknickiene (10.1016/j.asoc.2020.106181_b178) 2014 Carreira-Perpinan (10.1016/j.asoc.2020.106181_b73) 2005 Akita (10.1016/j.asoc.2020.106181_b103) 2016 Hochreiter (10.1016/j.asoc.2020.106181_b58) 1997; 9 Shi (10.1016/j.asoc.2020.106181_b210) 2018 Chatterjee (10.1016/j.asoc.2020.106181_b32) 2000; 26 Tamilselvan (10.1016/j.asoc.2020.106181_b74) 2013; 115 Dang (10.1016/j.asoc.2020.106181_b204) 2018 Sirignano (10.1016/j.asoc.2020.106181_b217) 2018 Bianchi (10.1016/j.asoc.2020.106181_b166) 2018 LeCun (10.1016/j.asoc.2020.106181_b37) 2015; 521 Ji (10.1016/j.asoc.2020.106181_b62) 2012; 35 Yoo (10.1016/j.asoc.2020.106181_b29) 2005 Dezsi (10.1016/j.asoc.2020.106181_b82) 2016; 11 Sezer (10.1016/j.asoc.2020.106181_b193) 2017; 114 Chen (10.1016/j.asoc.2020.106181_b188) 2016 Iwasaki (10.1016/j.asoc.2020.106181_b117) 2018 Sermpinis (10.1016/j.asoc.2020.106181_b175) 2014; 30 10.1016/j.asoc.2020.106181_b69 10.1016/j.asoc.2020.106181_b68 Hajizadeh (10.1016/j.asoc.2020.106181_b25) 2010 Sezer (10.1016/j.asoc.2020.106181_b189) 2019 Takahashi (10.1016/j.asoc.2020.106181_b147) 2017 Schmidhuber (10.1016/j.asoc.2020.106181_b38) 2015; 61 Reimers (10.1016/j.asoc.2020.106181_b61) 2017 Heaton (10.1016/j.asoc.2020.106181_b92) 2016 Lachiheb (10.1016/j.asoc.2020.106181_b143) 2018; 126 Saad (10.1016/j.asoc.2020.106181_b185) 1998; 9 Cybenko (10.1016/j.asoc.2020.106181_b40) 1989; 2 Thomas Günter Fischer (10.1016/j.asoc.2020.106181_b220) 2019; 12 Zhou (10.1016/j.asoc.2020.106181_b162) 2018 10.1016/j.asoc.2020.106181_b65 10.1016/j.asoc.2020.106181_b64 Maknickienė (10.1016/j.asoc.2020.106181_b177) 2013; 14 Yuan (10.1016/j.asoc.2020.106181_b94) 2018 Yan (10.1016/j.asoc.2020.106181_b146) 2017; 102 10.1016/j.asoc.2020.106181_b111 Chao (10.1016/j.asoc.2020.106181_b169) 2011 Zhuge (10.1016/j.asoc.2020.106181_b102) 2017 Zheng (10.1016/j.asoc.2020.106181_b170) 2017 Sezer (10.1016/j.asoc.2020.106181_b199) 2018; 70 Liang (10.1016/ |
References_xml | – reference: Razvan Pascanu, Tomas Mikolov, Yoshua Bengio, On the difficulty of training recurrent neural networks, in: International Conference on Machine Learning, 2013, pp. 1310–1318. – volume: 12 year: 2019 ident: b220 article-title: Statistical arbitrage in cryptocurrency markets publication-title: J. Risk Financial Manag. – start-page: 273 year: 2018 end-page: 284 ident: b96 article-title: Deep learning for forecasting stock returns in the cross-section publication-title: Advances in Knowledge Discovery and Data Mining – year: 2016 ident: b103 article-title: Deep learning for stock prediction using numerical and textual information publication-title: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS – volume: 102 start-page: 683 year: 2017 end-page: 700 ident: b146 article-title: Financial time series prediction based on deep learning publication-title: Wirel. Pers. Commun. – reference: Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, Deep belief networks for phone recognition, in: Nips Workshop on Deep Learning for Speech Recognition and Related Applications, vol. 1, Vancouver, Canada, 2009, pp. 39. – year: 2014 ident: b178 article-title: Investigation of Financial Market Prediction by Recurrent Neural Network – volume: 35 start-page: 221 year: 2012 end-page: 231 ident: b62 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2017 ident: b219 article-title: Forecasting stock prices from the limit order book using convolutional neural networks publication-title: 2017 IEEE 19th Conference on Business Informatics, CBI – volume: 50 start-page: 49 year: 2017 end-page: 73 ident: b23 article-title: Natural language based financial forecasting: a survey publication-title: Artif. Intell. Rev. – volume: 167 start-page: 243 year: 2015 end-page: 253 ident: b171 article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method publication-title: Neurocomputing – volume: 17 start-page: 321 year: 2013 end-page: 344 ident: b12 article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications publication-title: IEEE Trans. Evol. Comput. – volume: 76 start-page: 18569 year: 2016 end-page: 18584 ident: b107 article-title: Stock prediction using deep learning publication-title: Multimedia Tools Appl. – reference: Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440. – volume: 32 start-page: 2627 year: 1998 end-page: 2636 ident: b46 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmos. Environ. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b38 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – volume: 34 start-page: 513 year: 2004 end-page: 522 ident: b7 article-title: Discovering golden nuggets: Data mining in financial application publication-title: IEEE Trans. Syst. Man Cybern. C – reference: Xueheng Qiu, Le Zhang, Ye Ren, P. Suganthan, Gehan Amaratunga, Ensemble deep learning for regression and time forecasting, in: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, CIEL, 2014, pp. 1–6. – volume: 46 start-page: 24 year: 2012 end-page: 30 ident: b30 article-title: Stock market forecasting techniques: A survey publication-title: J. Theor. Appl. Inf. Technol. – volume: 39 start-page: 8865 year: 2012 end-page: 8877 ident: b173 article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and PSI sigma neural networks publication-title: Expert Syst. Appl. – year: 2016 ident: b59 article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation – start-page: 384 year: 2009 end-page: 391 ident: b71 article-title: Learning a parametric embedding by preserving local structure publication-title: Artificial Intelligence and Statistics – year: 2018 ident: b128 article-title: Evaluation of bidirectional LSTM for short-and long-term stock market prediction publication-title: 2018 9th International Conference on Information and Communication Systems, ICICS – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b40 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Systems – year: 2018 ident: b181 article-title: Deep Learning for Market Forecasts – year: 2002 ident: b10 article-title: Genetic Algorithms and Genetic Programming in Computational Finance – year: 2007 ident: b11 article-title: Applications of multi-objective evolutionary algorithms in economics and finance: A survey publication-title: 2007 IEEE Congress on Evolutionary Computation – start-page: 102 year: 2018 end-page: 113 ident: b208 article-title: Stock price movement prediction from financial news with deep learning and knowledge graph embedding publication-title: Knowledge Management and Acquisition for Intelligent Systems – year: 2019 ident: b189 article-title: Financial trading model with stock bar chart image time series with deep convolutional neural networks – year: 2017 ident: b205 article-title: Detecting, quantifying and accessing impact of news events on Indian stock indices publication-title: Proceedings of the International Conference on Web Intelligence - WI17 – year: 2017 ident: b196 article-title: Stock markets price movement prediction with LSTM neural networks publication-title: 2017 International Joint Conference on Neural Networks, IJCNN – volume: 270 start-page: 654 year: 2018 end-page: 669 ident: b125 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European J. Oper. Res. – year: 2018 ident: b127 article-title: Dilated convolutional neural networks for time series forecasting publication-title: J. Comput. Finance – volume: 299 start-page: 51 year: 2018 end-page: 61 ident: b213 article-title: Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles publication-title: Neurocomputing – year: 2018 ident: b154 article-title: Leveraging social media news to predict stock index movement using RNN-boost publication-title: Data Knowl. Eng. – volume: 42 start-page: 7684 year: 2015 end-page: 7697 ident: b13 article-title: Genetic algorithms and Darwinian approaches in financial applications: a survey publication-title: Expert Syst. Appl. – year: 2006 ident: b18 article-title: Text Mining Systems for Market Response to News: A Survey – volume: 117 start-page: 125 year: 2019 end-page: 138 ident: b131 article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning publication-title: Expert Syst. Appl. – start-page: 873 year: 2017 end-page: 877 ident: b33 article-title: A survey of neural network techniques in market trend analysis publication-title: 2017 International Conference on Intelligent Sustainable Systems, ICISS – start-page: 614 year: 2018 end-page: 623 ident: b101 article-title: Deep stock ranker: A LSTM neural network model for stock selection publication-title: Data Mining and Big Data – start-page: 609 year: 2009 end-page: 616 ident: b70 article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations publication-title: Proceedings of the 26th Annual International Conference on Machine Learning – year: 2017 ident: b170 article-title: Research on exchange rate forecasting based on deep belief network publication-title: Neural Comput. Appl. – year: 2017 ident: b95 article-title: Stock price prediction via discovering multi-frequency trading patterns publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD17 – year: 2017 ident: b198 article-title: A deep learning based stock trading model with 2-D CNN trend detection publication-title: 2017 IEEE Symposium Series on Computational Intelligence, SSCI – year: 2014 ident: b98 article-title: Sufficient forecasting using factor models publication-title: SSRN Electron. J. – year: 2017 ident: b134 article-title: Time series prediction: Predicting stock price – year: 2018 ident: b109 article-title: Deep learning and the cross-section of stock returns: Neural networks combining price and fundamental information publication-title: SSRN Electron. J. – year: 2017 ident: b142 article-title: Stock market index prediction using deep neural network ensemble publication-title: 2017 36th Chinese Control Conference, CCC – volume: 2 start-page: 202 year: 2016 end-page: 223 ident: b124 article-title: Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system for prediction of financial and energy market data publication-title: J. Finance Data Sci. – year: 1998 ident: b78 article-title: Introduction to Reinforcement Learning, volume 135 – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b75 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 103 start-page: 25 year: 2018 end-page: 37 ident: b163 article-title: Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models publication-title: Expert Syst. Appl. – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: b221 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Amer. Statist. Assoc. – start-page: 1 year: 2018 ident: b210 article-title: DeepClue: Visual interpretation of text-based deep stock prediction publication-title: IEEE Trans. Knowl. Data Eng. – year: 2000 ident: b4 article-title: Data Mining in Finance: Advances in Relational and Hybrid Methods – year: 2017 ident: b184 article-title: Financial time series prediction using deep learning – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b49 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 111 year: 2007 end-page: 115 ident: b8 article-title: Soft computing techniques applied to finance publication-title: Appl. Intell. – year: 2017 ident: b83 article-title: A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market publication-title: 2017 IEEE International Conference on Industrial and Information Systems, ICIIS – year: 2018 ident: b215 article-title: Market impact analysis via deep learned architectures publication-title: Neural Comput. Appl. – volume: 28 start-page: 2222 year: 2016 end-page: 2232 ident: b60 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2018 ident: b120 article-title: Measuring Financial Crisis Index for Risk Warning through Analysis of Social Network – volume: 122 start-page: 300 year: 2017 end-page: 307 ident: b158 article-title: Forecasting crude oil prices: a deep learning based model publication-title: Procedia Comput. Sci. – volume: 41 start-page: 7653 year: 2014 end-page: 7670 ident: b20 article-title: Text mining for market prediction: A systematic review publication-title: Expert Syst. Appl. – volume: 36 start-page: 5932 year: 2009 end-page: 5941 ident: b31 article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods publication-title: Expert Syst. Appl. – reference: Hua Shen, Xun Liang, A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction, in: ICANN, 2016. – volume: 34 start-page: 2232 year: 2008 end-page: 2240 ident: b14 article-title: Expert systems and evolutionary computing for financial investing: A review publication-title: Expert Syst. Appl. – year: 2017 ident: b135 article-title: Combining the real-time wavelet denoising and long-short-term-memory neural network for predicting stock indexes publication-title: 2017 IEEE Symposium Series on Computational Intelligence, SSCI – volume: 32 start-page: 1268 year: 2016 end-page: 1283 ident: b149 article-title: Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices publication-title: Int. J. Forecast. – start-page: 158 year: 2016 end-page: 162 ident: b179 article-title: Artificial neural networks approach to the forecast of stock market price movements publication-title: Int. J. Econ. Manag. Syst. – start-page: 6 year: 2017 end-page: 15 ident: b206 article-title: Stock market prediction with deep learning: A character-based neural language model for event-based trading publication-title: Proceedings of the Australasian Language Technology Association Workshop 2017 – year: 2017 ident: b133 article-title: On stock return prediction with LSTM networks – volume: 66 start-page: 9 year: 2017 end-page: 16 ident: b157 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. – volume: 49 start-page: 462 year: 2016 end-page: 473 ident: b90 article-title: Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance publication-title: Appl. Soft Comput. – year: 2015 ident: b138 article-title: Genetic deep neural networks using different activation functions for financial data mining publication-title: 2015 IEEE International Conference on Big Data, Big Data – year: 2020 ident: b1 article-title: Deep learning for financial applications : a survey – year: 2018 ident: b152 article-title: Stock market embedding and prediction: A deep learning method publication-title: 2018 15th International Conference on Service Systems and Service Management, ICSSSM – volume: 132 start-page: 956 year: 2018 end-page: 964 ident: b118 article-title: Real-time sentiment analysis of Twitter streaming data for stock prediction publication-title: Procedia Comput. Sci. – year: 2015 ident: b161 article-title: Deep learning stock volatility with Google domestic trends – reference: Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine Learning, 2013, pp. 1139–1147. – volume: 9 start-page: 1456 year: 1998 end-page: 1470 ident: b185 article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks publication-title: IEEE Trans. Neural Netw. – year: 2004 ident: b2 article-title: Soft computing and its applications in business and economics publication-title: Studies in Fuzziness and Soft Computing – year: 2014 ident: b51 article-title: Adam: A method for stochastic optimization – year: 2017 ident: b147 article-title: Long memory and predictability in financial markets publication-title: Annual Conference of the Japanese Society for Artificial Intelligence – year: 2017 ident: b87 article-title: Time series prediction of stock price using deep belief networks with intrinsic plasticity publication-title: 2017 29th Chinese Control and Decision Conference, CCDC – start-page: 356 year: 2017 end-page: 364 ident: b144 article-title: A stock market trading system using deep neural network publication-title: Communications in Computer and Information Science – year: 2016 ident: b155 article-title: Classification-based financial markets prediction using deep neural networks publication-title: SSRN Electron. J. – volume: 29 start-page: 536 year: 2017 end-page: 552 ident: b130 article-title: Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 55 start-page: 194 year: 2016 end-page: 211 ident: b27 article-title: Computational intelligence and financial markets: A survey and future directions publication-title: Expert Syst. Appl. – start-page: 243 year: 2016 end-page: 248 ident: b72 article-title: Hyperparameters adaptation for restricted Boltzmann machines based on free energy publication-title: 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC, vol. 2 – year: 2017 ident: b159 article-title: Convolutional neural networks applied to high-frequency market microstructure forecasting publication-title: 2017 9th Computer Science and Electronic Engineering, CEEC – start-page: 1 year: 2012 end-page: 39 ident: b19 article-title: Applications of news analytics in finance: A review publication-title: The Handbook of News Analytics in Finance – year: 2014 ident: b168 article-title: A model with fuzzy granulation and deep belief networks for exchange rate forecasting publication-title: 2014 International Joint Conference on Neural Networks, IJCNN – year: 2010 ident: b15 article-title: Applications of artificial neural networks in financial economics: A survey publication-title: 2010 International Symposium on Computational Intelligence and Design – start-page: 835 year: 2005 end-page: 841 ident: b29 article-title: Machine learning techniques and use of event information for stock market prediction: A survey and evaluation publication-title: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC’06, vol. 2 – year: 2017 ident: b61 article-title: Optimal hyperparameters for deep lstm-networks for sequence labeling tasks – volume: 114 start-page: 128 year: 2016 end-page: 147 ident: b22 article-title: A survey of the applications of text mining in financial domain publication-title: Knowl.-Based Syst. – volume: 19 start-page: 1165 year: 2010 end-page: 1195 ident: b6 article-title: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems publication-title: Neural Comput. Appl. – volume: 6 start-page: 48625 year: 2018 end-page: 48633 ident: b88 article-title: Which artificial intelligence algorithm better predicts the Chinese stock market? publication-title: IEEE Access – volume: 115 start-page: 136 year: 2019 end-page: 151 ident: b190 article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction publication-title: Expert Syst. Appl. – volume: 26 start-page: 2093 year: 2005 end-page: 2103 ident: b145 article-title: A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction publication-title: Pattern Recognit. Lett. – year: 2018 ident: b86 article-title: Threshold-based portfolio: the role of the threshold and its applications publication-title: J. Supercomput. – start-page: 2553 year: 2013 end-page: 2561 ident: b63 article-title: Deep neural networks for object detection publication-title: Advances in Neural Information Processing Systems – volume: E101.D start-page: 901 year: 2018 end-page: 908 ident: b214 article-title: Stock price prediction by deep neural generative model of news articles publication-title: IEICE Trans. Inf. Syst. – volume: 33 start-page: 171 year: 2014 end-page: 185 ident: b21 article-title: Textual sentiment in finance: A survey of methods and models publication-title: Int. Rev. Financ. Anal. – year: 2010 ident: b25 article-title: Application of Data Mining Techniques in Stock Markets: A Survey – year: 2018 ident: b151 article-title: Financial indices modelling and trading utilizing deep learning techniques: The ATHENS SE FTSE/ASE large cap use case publication-title: 2018 Innovations in Intelligent Systems and Applications, INISTA – year: 2018 ident: b182 article-title: Predicting the price of bitcoin using machine learning publication-title: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP – volume: 08 start-page: 58 year: 2018 end-page: 63 ident: b100 article-title: Predicting equity price with corporate action events using LSTM-RNN publication-title: J. Math. Finance – year: 2017 ident: b191 article-title: Taming Deep Belief Networks – volume: 259 start-page: 689 year: 2017 end-page: 702 ident: b89 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: European J. Oper. Res. – year: 2018 ident: b162 article-title: Long short-term memory networks for CSI300 volatility prediction with baidu search volume – volume: 11 start-page: 138 year: 2018 ident: b183 article-title: Are markets truly efficient? Experiments using deep learning algorithms for market movement prediction publication-title: Algorithms – year: 2017 ident: b194 article-title: Restricted Boltzmann machine based stock market trend prediction publication-title: 2017 International Joint Conference on Neural Networks, IJCNN – volume: 7 start-page: 197 year: 2014 end-page: 387 ident: b45 article-title: Deep learning: methods and applications publication-title: Found. Trends Signal Process. – volume: 36 start-page: 534 year: 2015 end-page: 551 ident: b34 article-title: Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review publication-title: Appl. Soft Comput. – volume: 54 start-page: 316 year: 2012 end-page: 329 ident: b174 article-title: Forecasting and trading the EUR/USD exchange rate with stochastic neural network combination and time-varying leverage publication-title: Decis. Support Syst. – start-page: 211 year: 2003 end-page: 216 ident: b24 article-title: A survey of the application of soft computing to investment and financial trading publication-title: Proceedings of the Eighth Australian and New Zealand Intelligent Information Systems Conference, ANZIIS 2003 – start-page: 2327 year: 2015 end-page: 2333 ident: b114 article-title: Deep learning for event-driven stock prediction publication-title: Proceedings of the 24th International Conference on Artificial Intelligence – volume: 131 start-page: 895 year: 2018 end-page: 903 ident: b187 article-title: Deep learning with gated recurrent unit networks for financial sequence predictions publication-title: Procedia Comput. Sci. – year: 2018 ident: b166 article-title: Bond risk premia with machine learning publication-title: SSRN Electron. J. – year: 2017 ident: b180 article-title: Deep learning for financial time series forecasting in a-trader system publication-title: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems – reference: Xavier Glorot, Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256. – start-page: 1096 year: 2008 end-page: 1103 ident: b77 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – start-page: 261 year: 2007 end-page: 266 ident: b104 article-title: Neural based technical analysis in stock market forecasting publication-title: Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17 – volume: 70 start-page: 525 year: 2018 end-page: 538 ident: b199 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl. Soft Comput. – volume: 99 start-page: 262 year: 2018 end-page: 284 ident: b36 article-title: Soft computing hybrids for forex rate prediction: A comprehensive review publication-title: Comput. Oper. Res. – volume: 55 start-page: 990 year: 2015 end-page: 999 ident: b66 article-title: Time series prediction using restricted Boltzmann machines and backpropagation publication-title: Procedia Comput. Sci. – volume: 14 start-page: 3226 year: 2018 end-page: 3234 ident: b195 article-title: Replicating a trading strategy by means of LSTM for financial industry applications publication-title: IEEE Trans. Ind. Inf. – volume: 03 start-page: 145 year: 2004 end-page: 165 ident: b35 article-title: Forecasting foreign exchange rates with artificial neural networks: A review publication-title: Int. J. Inf. Technol. Decis. Mak. – volume: 104 start-page: 38 year: 2017 end-page: 48 ident: b99 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decis. Support Syst. – volume: 122 start-page: 501 year: 2013 end-page: 512 ident: b164 article-title: Time-dependent series variance learning with recurrent mixture density networks publication-title: Neurocomputing – year: 2018 ident: b94 article-title: Deep and wide neural networks on multiple sets of temporal data with correlation publication-title: Proceedings of the 2018 International Conference on Computing and Data Engineering - ICCDE 2018 – year: 2018 ident: b113 article-title: Deep factor alpha – year: 2016 ident: b39 article-title: Deep Learning – year: 2017 ident: b112 article-title: Tensor representation in high-frequency financial data for price change prediction publication-title: 2017 IEEE Symposium Series on Computational Intelligence, SSCI – year: 2019 ident: b167 article-title: Forex market size: A traders advantage – year: 2017 ident: b85 article-title: Stock price prediction using LSTM, rnn and CNN-sliding window model publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI – year: 2017 ident: b115 article-title: Deep learning for stock market prediction from financial news articles publication-title: 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA – reference: Vinod Nair, Geoffrey E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning, ICML-10, 2010, pp. 807–814. – volume: 12 start-page: 319 year: 2011 end-page: 340 ident: b79 article-title: Model learning for robot control: a survey publication-title: Cogn. Process. – year: 2017 ident: b192 article-title: Prediction of stock market performance by using machine learning techniques publication-title: 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies, ICIEECT – volume: 7 start-page: 118 year: 2017 end-page: 122 ident: b129 article-title: Financial time series forecasting–A deep learning approach publication-title: Int. J. Mach. Learn. Comput. – volume: 126 start-page: 264 year: 2018 end-page: 272 ident: b143 article-title: A hierarchical deep neural network design for stock returns prediction publication-title: Procedia Comput. Sci. – start-page: 364 year: 2017 end-page: 371 ident: b76 article-title: Relational autoencoder for feature extraction publication-title: 2017 International Joint Conference on Neural Networks, IJCNN – volume: 4 start-page: 26 year: 2012 end-page: 31 ident: b50 article-title: Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Netw. Mach. Learn. – year: 2016 ident: b188 article-title: Financial time-series data analysis using deep convolutional neural networks publication-title: 2016 7th International Conference on Cloud Computing and Big Data, CCBD – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b58 article-title: Long short-term memory publication-title: Neural Comput. – volume: vol. 30 start-page: 3 year: 2013 ident: b43 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc. ICML – reference: . Google, System and Method for Computer Managed Funds to Outperform Benchmarks, US Patent, 2016. – volume: 12 start-page: 865 year: 2001 end-page: 874 ident: b160 article-title: Financial volatility trading using recurrent neural networks publication-title: IEEE Trans. Neural Netw. – reference: Yoshua Bengio, Deep learning of representations for unsupervised and transfer learning, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–36. – start-page: 759 year: 2014 end-page: 769 ident: b209 article-title: Predicting stock market trends by recurrent deep neural networks publication-title: Lecture Notes in Computer Science – volume: 2018 start-page: 1 year: 2018 end-page: 11 ident: b106 article-title: Stock market prediction on high-frequency data using generative adversarial nets publication-title: Math. Probl. Eng. – volume: 30 start-page: 21 year: 2014 end-page: 54 ident: b175 article-title: Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects publication-title: J. Int. Financ. Mark. Inst. Money – volume: 11 start-page: 713 year: 2017 ident: b186 article-title: Recurrent neural networks approach to the financial forecast of Google assets publication-title: Int. J. Math. Comput. Simul. – start-page: 708 year: 2017 end-page: 717 ident: b218 article-title: Predicting stock trends based on expert recommendations using gru/LSTM neural networks publication-title: Lecture Notes in Computer Science – year: 2017 ident: b44 article-title: Searching for activation functions – year: 2011 ident: b169 article-title: Forecasting exchange rate with deep belief networks publication-title: The 2011 International Joint Conference on Neural Networks – year: 2017 ident: b119 article-title: Sentiment-aware stock market prediction: A deep learning method publication-title: 2017 International Conference on Service Systems and Service Management – volume: 143 start-page: 236 year: 2018 end-page: 247 ident: b211 article-title: Improving stock market prediction via heterogeneous information fusion publication-title: Knowl.-Based Syst. – year: 2017 ident: b105 article-title: Short term stock price prediction using deep learning publication-title: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, RTEICT – volume: 1 year: 2017 ident: b110 article-title: Neural networks for financial market risk classification publication-title: Front. Signal Process. – year: 2017 ident: b216 article-title: Using deep learning to detect price change indications in financial markets publication-title: 2017 25th European Signal Processing Conference, EUSIPCO – start-page: 1 year: 2018 ident: b204 article-title: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network publication-title: IEEE Access – start-page: 2546 year: 2011 end-page: 2554 ident: b55 article-title: Algorithms for hyper-parameter optimization publication-title: Advances in Neural Information Processing Systems – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b37 article-title: Deep learning publication-title: Nature – year: 2015 ident: b81 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market publication-title: 2015 IEEE International Conference on Big Data, Big Data – year: 2015 ident: b121 article-title: The impact of structured event embeddings on scalable stock forecasting models publication-title: Proceedings of the 21st Brazilian Symposium on Multimedia and the Web - WebMedia15 – volume: 26 start-page: 32 year: 2000 end-page: 45 ident: b32 article-title: Artificial neural network and the financial markets: A survey publication-title: Manag. Finance – start-page: 791 year: 2007 end-page: 798 ident: b67 article-title: Restricted Boltzmann machines for collaborative filtering publication-title: Proceedings of the 24th International Conference on Machine Learning – volume: 137 start-page: 138 year: 2017 end-page: 148 ident: b200 article-title: Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations publication-title: Knowl.-Based Syst. – year: 2008 ident: b5 article-title: Natural Computing in Computational Finance – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: b52 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. – year: 2018 ident: b136 article-title: Forecasting economics and financial time series: ARIMA vs. LSTM – volume: abs/1712.05785 year: 2017 ident: b207 article-title: Sentiment predictability for stocks publication-title: CoRR – volume: 45 start-page: 37 year: 2015 end-page: 43 ident: b156 article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models publication-title: Resour. Policy – start-page: 578 year: 1992 end-page: 581 ident: b41 article-title: Why tanh: choosing a sigmoidal function publication-title: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, vol. 4 – volume: 11 start-page: 54 year: 2016 end-page: 73 ident: b82 article-title: Can deep machine learning outsmart the market? A comparison between econometric modelling and long- short term memory publication-title: Rom. Econ. Bus. Rev. – volume: 37 start-page: 2 year: 2010 end-page: 11 ident: b148 article-title: TAR-cointegration neural network model: An empirical analysis of exchange rates and stock returns publication-title: Expert Syst. Appl. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: b56 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 2510 year: 2011 end-page: 2525 ident: b137 article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm publication-title: Appl. Soft Comput. – year: 2017 ident: b153 article-title: A multi-objective deep reinforcement learning approach for stock index future’s intraday trading publication-title: 2017 10th International Symposium on Computational Intelligence and Design, ISCID – year: 2018 ident: b117 article-title: Topic sentiment asset pricing with DNN supervised learning publication-title: SSRN Electron. J. – volume: 83 start-page: 187 year: 2017 end-page: 205 ident: b80 article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies publication-title: Expert Syst. Appl. – year: 2018 ident: b97 article-title: Deep learning for predicting asset returns – start-page: 400 year: 1951 end-page: 407 ident: b47 article-title: A stochastic approximation method publication-title: Ann. Math. Stat. – start-page: 198 year: 2017 end-page: 206 ident: b91 article-title: CNN-LSTM Neural network model for quantitative strategy analysis in stock markets publication-title: Neural Information Processing – year: 2018 ident: b197 article-title: Stock Trend Prediction: Based on Machine Learning Methods – volume: 9 start-page: 99 year: 2014 end-page: 140 ident: b26 article-title: Artificial intelligence applications in financial forecasting – a survey and some empirical results publication-title: Intell. Decis. Technol. – start-page: 449 year: 2016 end-page: 460 ident: b201 article-title: Exploiting Twitter moods to boost financial trend prediction based on deep network models publication-title: Intelligent Computing Methodologies – start-page: 1 year: 2018 end-page: 6 ident: b17 article-title: Artificial neural networks applications in economics and management research: An exploratory literature review publication-title: 2018 4th International Conference on Optimization and Applications, ICOA – volume: 22 start-page: 213 year: 2013 end-page: 219 ident: b139 article-title: Irrational fads, short-term memory emulation, and asset predictability publication-title: Rev. Financial Econ. – year: 2017 ident: b203 article-title: A new model for stock price movements prediction using deep neural network publication-title: Proceedings of the Eighth International Symposium on Information and Communication Technology - SoICT 2017 – year: 2017 ident: b102 article-title: LSTM Neural Network with Emotional Analysis for Prediction of Stock Price – volume: 115 start-page: 124 year: 2013 end-page: 135 ident: b74 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Saf. – year: 2018 ident: b140 article-title: An innovative neural network approach for stock market prediction publication-title: J. Supercomput. – volume: 28 start-page: 244 year: 2018 end-page: 260 ident: b122 article-title: An event-extraction approach for business analysis from online Chinese news publication-title: Electron. Commer. Res. Appl. – start-page: 261 year: 2018 end-page: 269 ident: b212 article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction publication-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining – year: 2017 ident: b116 article-title: Predict stock price with financial news based on recurrent convolutional neural networks publication-title: 2017 Conference on Technologies and Applications of Artificial Intelligence, TAAI – volume: 45 start-page: 38 year: 1989 end-page: 45 ident: b165 article-title: Forecasts of economic growth from the bond and stock markets publication-title: Financ. Anal. J. – volume: 12 year: 2017 ident: b123 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PLoS One – year: 2016 ident: b202 article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks publication-title: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – year: 2011 ident: b3 article-title: Soft Computing in Economics and Finance – year: 2016 ident: b92 article-title: Deep learning in finance – volume: 38 start-page: 788 year: 2016 end-page: 804 ident: b16 article-title: Artificial neural networks in business: Two decades of research publication-title: Appl. Soft Comput. – volume: 132 start-page: 1351 year: 2018 end-page: 1362 ident: b84 article-title: Nse stock market prediction using deep-learning models publication-title: Procedia Comput. Sci. – year: 2018 ident: b217 article-title: Universal features of price formation in financial markets: perspectives from deep learning publication-title: SSRN Electron. J. – year: 2016 ident: b150 article-title: Hedge Fund Return Prediction and Fund Selection: A Machine-Learning Approach – volume: 14 start-page: 403 year: 2013 end-page: 413 ident: b177 article-title: Financial market prediction system with evolino neural network and deplhi method publication-title: J. Bus. Econ. Manag. – volume: 29 start-page: 53 year: 2009 end-page: 64 ident: b176 article-title: RMB exchange rate forecasting in the context of the financial crisis publication-title: Syst. Eng. Theory Pract. – reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. – volume: 114 start-page: 473 year: 2017 end-page: 480 ident: b193 article-title: A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters publication-title: Procedia Comput. Sci. – volume: 31 start-page: 87 year: 2017 end-page: 106 ident: b9 article-title: Machine learning: An applied econometric approach publication-title: J. Econ. Perspect. – year: 2015 ident: b93 article-title: Deep Learning for Multivariate Financial Time Series – volume: 113 start-page: 457 year: 2018 end-page: 480 ident: b132 article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module publication-title: Expert Syst. Appl. – reference: Bjoern Krollner, Bruce J. Vanstone, Gavin R. Finnie, Financial time forecasting with machine learning techniques: a survey, in: ESANN, 2010. – start-page: 31 year: 2017 end-page: 36 ident: b108 article-title: A deep learning approach for optimization of systematic signal detection in financial trading systems with big data publication-title: Int. J. Intell. Syst. Appl. Eng. – volume: 28 start-page: 653 year: 2017 end-page: 664 ident: b141 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 33 year: 2005 end-page: 40 ident: b73 article-title: On contrastive divergence learning. publication-title: Aistats, vol. 10 – year: 2017 ident: b126 article-title: Deep learning-based forecasting of financial assets – year: 2005 ident: b222 article-title: Publication Bias in Meta-Analysis – Prevention, Assessment and Adjustment – ident: 10.1016/j.asoc.2020.106181_b111 – volume: 29 start-page: 536 issue: 4 year: 2017 ident: 10.1016/j.asoc.2020.106181_b130 article-title: Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 26 start-page: 2093 issue: 13 year: 2005 ident: 10.1016/j.asoc.2020.106181_b145 article-title: A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.03.026 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b120 – start-page: 102 year: 2018 ident: 10.1016/j.asoc.2020.106181_b208 article-title: Stock price movement prediction from financial news with deep learning and knowledge graph embedding – year: 2015 ident: 10.1016/j.asoc.2020.106181_b93 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b153 article-title: A multi-objective deep reinforcement learning approach for stock index future’s intraday trading – volume: 122 start-page: 300 year: 2017 ident: 10.1016/j.asoc.2020.106181_b158 article-title: Forecasting crude oil prices: a deep learning based model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.373 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b105 article-title: Short term stock price prediction using deep learning – volume: 126 start-page: 264 year: 2018 ident: 10.1016/j.asoc.2020.106181_b143 article-title: A hierarchical deep neural network design for stock returns prediction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.260 – volume: 54 start-page: 316 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106181_b174 article-title: Forecasting and trading the EUR/USD exchange rate with stochastic neural network combination and time-varying leverage publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2012.05.039 – volume: 11 start-page: 713 year: 2017 ident: 10.1016/j.asoc.2020.106181_b186 article-title: Recurrent neural networks approach to the financial forecast of Google assets publication-title: Int. J. Math. Comput. Simul. – start-page: 873 year: 2017 ident: 10.1016/j.asoc.2020.106181_b33 article-title: A survey of neural network techniques in market trend analysis – volume: 83 start-page: 187 year: 2017 ident: 10.1016/j.asoc.2020.106181_b80 article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.030 – volume: 9 start-page: 1456 issue: 6 year: 1998 ident: 10.1016/j.asoc.2020.106181_b185 article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.728395 – ident: 10.1016/j.asoc.2020.106181_b69 – year: 2005 ident: 10.1016/j.asoc.2020.106181_b222 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b203 article-title: A new model for stock price movements prediction using deep neural network – year: 2018 ident: 10.1016/j.asoc.2020.106181_b94 article-title: Deep and wide neural networks on multiple sets of temporal data with correlation – volume: 39 start-page: 8865 issue: 10 year: 2012 ident: 10.1016/j.asoc.2020.106181_b173 article-title: Forecasting and trading the EUR/USD exchange rate with gene expression and PSI sigma neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.022 – year: 2015 ident: 10.1016/j.asoc.2020.106181_b121 article-title: The impact of structured event embeddings on scalable stock forecasting models – volume: 38 start-page: 788 year: 2016 ident: 10.1016/j.asoc.2020.106181_b16 article-title: Artificial neural networks in business: Two decades of research publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.09.040 – volume: 46 start-page: 24 year: 2012 ident: 10.1016/j.asoc.2020.106181_b30 article-title: Stock market forecasting techniques: A survey publication-title: J. Theor. Appl. Inf. Technol. – volume: 11 start-page: 138 issue: 9 year: 2018 ident: 10.1016/j.asoc.2020.106181_b183 article-title: Are markets truly efficient? Experiments using deep learning algorithms for market movement prediction publication-title: Algorithms doi: 10.3390/a11090138 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b112 article-title: Tensor representation in high-frequency financial data for price change prediction – start-page: 384 year: 2009 ident: 10.1016/j.asoc.2020.106181_b71 article-title: Learning a parametric embedding by preserving local structure – start-page: 2553 year: 2013 ident: 10.1016/j.asoc.2020.106181_b63 article-title: Deep neural networks for object detection – year: 2007 ident: 10.1016/j.asoc.2020.106181_b11 article-title: Applications of multi-objective evolutionary algorithms in economics and finance: A survey – start-page: 211 year: 2003 ident: 10.1016/j.asoc.2020.106181_b24 article-title: A survey of the application of soft computing to investment and financial trading – year: 2017 ident: 10.1016/j.asoc.2020.106181_b61 – year: 2019 ident: 10.1016/j.asoc.2020.106181_b167 – volume: 259 start-page: 689 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106181_b89 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2016.10.031 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106181_b210 article-title: DeepClue: Visual interpretation of text-based deep stock prediction publication-title: IEEE Trans. Knowl. Data Eng. – year: 2002 ident: 10.1016/j.asoc.2020.106181_b10 – ident: 10.1016/j.asoc.2020.106181_b28 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b95 article-title: Stock price prediction via discovering multi-frequency trading patterns – start-page: 356 year: 2017 ident: 10.1016/j.asoc.2020.106181_b144 article-title: A stock market trading system using deep neural network doi: 10.1007/978-981-10-6463-0_31 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b198 article-title: A deep learning based stock trading model with 2-D CNN trend detection – year: 2017 ident: 10.1016/j.asoc.2020.106181_b219 article-title: Forecasting stock prices from the limit order book using convolutional neural networks – ident: 10.1016/j.asoc.2020.106181_b57 – volume: 12 start-page: 319 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106181_b79 article-title: Model learning for robot control: a survey publication-title: Cogn. Process. doi: 10.1007/s10339-011-0404-1 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b97 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b147 article-title: Long memory and predictability in financial markets – year: 2017 ident: 10.1016/j.asoc.2020.106181_b133 – volume: 42 start-page: 7684 issue: 21 year: 2015 ident: 10.1016/j.asoc.2020.106181_b13 article-title: Genetic algorithms and Darwinian approaches in financial applications: a survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.06.001 – start-page: 273 year: 2018 ident: 10.1016/j.asoc.2020.106181_b96 article-title: Deep learning for forecasting stock returns in the cross-section – year: 2017 ident: 10.1016/j.asoc.2020.106181_b85 article-title: Stock price prediction using LSTM, rnn and CNN-sliding window model – volume: E101.D start-page: 901 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106181_b214 article-title: Stock price prediction by deep neural generative model of news articles publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2016IIP0016 – year: 2020 ident: 10.1016/j.asoc.2020.106181_b1 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b83 article-title: A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market – start-page: 198 year: 2017 ident: 10.1016/j.asoc.2020.106181_b91 article-title: CNN-LSTM Neural network model for quantitative strategy analysis in stock markets – year: 2018 ident: 10.1016/j.asoc.2020.106181_b151 article-title: Financial indices modelling and trading utilizing deep learning techniques: The ATHENS SE FTSE/ASE large cap use case – year: 2017 ident: 10.1016/j.asoc.2020.106181_b184 – year: 2015 ident: 10.1016/j.asoc.2020.106181_b81 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market – year: 2014 ident: 10.1016/j.asoc.2020.106181_b51 – volume: 117 start-page: 125 year: 2019 ident: 10.1016/j.asoc.2020.106181_b131 article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.036 – volume: 102 start-page: 359 issue: 477 year: 2007 ident: 10.1016/j.asoc.2020.106181_b221 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214506000001437 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b109 article-title: Deep learning and the cross-section of stock returns: Neural networks combining price and fundamental information publication-title: SSRN Electron. J. – volume: 167 start-page: 243 year: 2015 ident: 10.1016/j.asoc.2020.106181_b171 article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.071 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b126 article-title: Deep learning-based forecasting of financial assets – ident: 10.1016/j.asoc.2020.106181_b68 – volume: 12 start-page: 865 issue: 4 year: 2001 ident: 10.1016/j.asoc.2020.106181_b160 article-title: Financial volatility trading using recurrent neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.935096 – volume: 30 start-page: 21 year: 2014 ident: 10.1016/j.asoc.2020.106181_b175 article-title: Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects publication-title: J. Int. Financ. Mark. Inst. Money doi: 10.1016/j.intfin.2014.01.006 – volume: 2 start-page: 202 issue: 3 year: 2016 ident: 10.1016/j.asoc.2020.106181_b124 article-title: Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system for prediction of financial and energy market data publication-title: J. Finance Data Sci. doi: 10.1016/j.jfds.2016.10.001 – volume: 9 start-page: 99 issue: 2 year: 2014 ident: 10.1016/j.asoc.2020.106181_b26 article-title: Artificial intelligence applications in financial forecasting – a survey and some empirical results publication-title: Intell. Decis. Technol. doi: 10.3233/IDT-140211 – volume: 132 start-page: 956 year: 2018 ident: 10.1016/j.asoc.2020.106181_b118 article-title: Real-time sentiment analysis of Twitter streaming data for stock prediction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.111 – start-page: 400 year: 1951 ident: 10.1016/j.asoc.2020.106181_b47 article-title: A stochastic approximation method publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b191 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b182 article-title: Predicting the price of bitcoin using machine learning – start-page: 759 year: 2014 ident: 10.1016/j.asoc.2020.106181_b209 article-title: Predicting stock market trends by recurrent deep neural networks doi: 10.1007/978-3-319-13560-1_60 – volume: 113 start-page: 457 year: 2018 ident: 10.1016/j.asoc.2020.106181_b132 article-title: Modaugnet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.019 – year: 2015 ident: 10.1016/j.asoc.2020.106181_b138 article-title: Genetic deep neural networks using different activation functions for financial data mining – year: 2018 ident: 10.1016/j.asoc.2020.106181_b140 article-title: An innovative neural network approach for stock market prediction publication-title: J. Supercomput. – year: 2016 ident: 10.1016/j.asoc.2020.106181_b202 article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks – year: 2017 ident: 10.1016/j.asoc.2020.106181_b142 article-title: Stock market index prediction using deep neural network ensemble – year: 2015 ident: 10.1016/j.asoc.2020.106181_b161 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b215 article-title: Market impact analysis via deep learned architectures publication-title: Neural Comput. Appl. – volume: 08 start-page: 58 issue: 01 year: 2018 ident: 10.1016/j.asoc.2020.106181_b100 article-title: Predicting equity price with corporate action events using LSTM-RNN publication-title: J. Math. Finance doi: 10.4236/jmf.2018.81005 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b194 article-title: Restricted Boltzmann machine based stock market trend prediction – year: 2008 ident: 10.1016/j.asoc.2020.106181_b5 – year: 2016 ident: 10.1016/j.asoc.2020.106181_b188 article-title: Financial time-series data analysis using deep convolutional neural networks – volume: 66 start-page: 9 year: 2017 ident: 10.1016/j.asoc.2020.106181_b157 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.05.023 – year: 2016 ident: 10.1016/j.asoc.2020.106181_b150 – volume: 131 start-page: 895 year: 2018 ident: 10.1016/j.asoc.2020.106181_b187 article-title: Deep learning with gated recurrent unit networks for financial sequence predictions publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.04.298 – volume: 12 year: 2019 ident: 10.1016/j.asoc.2020.106181_b220 article-title: Statistical arbitrage in cryptocurrency markets publication-title: J. Risk Financial Manag. – volume: 114 start-page: 473 year: 2017 ident: 10.1016/j.asoc.2020.106181_b193 article-title: A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.09.031 – volume: 70 start-page: 525 year: 2018 ident: 10.1016/j.asoc.2020.106181_b199 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.024 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b166 article-title: Bond risk premia with machine learning publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3232721 – start-page: 708 year: 2017 ident: 10.1016/j.asoc.2020.106181_b218 article-title: Predicting stock trends based on expert recommendations using gru/LSTM neural networks doi: 10.1007/978-3-319-60438-1_69 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2020.106181_b58 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 2327 year: 2015 ident: 10.1016/j.asoc.2020.106181_b114 article-title: Deep learning for event-driven stock prediction – year: 2017 ident: 10.1016/j.asoc.2020.106181_b159 article-title: Convolutional neural networks applied to high-frequency market microstructure forecasting – volume: 37 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.106181_b148 article-title: TAR-cointegration neural network model: An empirical analysis of exchange rates and stock returns publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.07.077 – volume: 32 start-page: 2627 issue: 14–15 year: 1998 ident: 10.1016/j.asoc.2020.106181_b46 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(97)00447-0 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b86 article-title: Threshold-based portfolio: the role of the threshold and its applications publication-title: J. Supercomput. – year: 2018 ident: 10.1016/j.asoc.2020.106181_b127 article-title: Dilated convolutional neural networks for time series forecasting publication-title: J. Comput. Finance doi: 10.21314/JCF.2019.358 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b152 article-title: Stock market embedding and prediction: A deep learning method – volume: 49 start-page: 462 year: 2016 ident: 10.1016/j.asoc.2020.106181_b90 article-title: Evaluation of co-evolutionary neural network architectures for time series prediction with mobile application in finance publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.029 – volume: 137 start-page: 138 year: 2017 ident: 10.1016/j.asoc.2020.106181_b200 article-title: Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.09.023 – year: 2016 ident: 10.1016/j.asoc.2020.106181_b92 – start-page: 791 year: 2007 ident: 10.1016/j.asoc.2020.106181_b67 article-title: Restricted Boltzmann machines for collaborative filtering – year: 2016 ident: 10.1016/j.asoc.2020.106181_b103 article-title: Deep learning for stock prediction using numerical and textual information – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.asoc.2020.106181_b38 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b115 article-title: Deep learning for stock market prediction from financial news articles – volume: 14 start-page: 403 issue: 2 year: 2013 ident: 10.1016/j.asoc.2020.106181_b177 article-title: Financial market prediction system with evolino neural network and deplhi method publication-title: J. Bus. Econ. Manag. doi: 10.3846/16111699.2012.729532 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b170 article-title: Research on exchange rate forecasting based on deep belief network publication-title: Neural Comput. Appl. – year: 2011 ident: 10.1016/j.asoc.2020.106181_b3 – year: 2019 ident: 10.1016/j.asoc.2020.106181_b189 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.asoc.2020.106181_b75 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 28 start-page: 653 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106181_b141 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2522401 – year: 2014 ident: 10.1016/j.asoc.2020.106181_b178 – volume: 7 start-page: 118 issue: 5 year: 2017 ident: 10.1016/j.asoc.2020.106181_b129 article-title: Financial time series forecasting–A deep learning approach publication-title: Int. J. Mach. Learn. Comput. doi: 10.18178/ijmlc.2017.7.5.632 – volume: 102 start-page: 683 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106181_b146 article-title: Financial time series prediction based on deep learning publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-017-5086-2 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b181 – start-page: 31 year: 2017 ident: 10.1016/j.asoc.2020.106181_b108 article-title: A deep learning approach for optimization of systematic signal detection in financial trading systems with big data publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2017SpecialIssue31421 – volume: 29 start-page: 53 issue: 12 year: 2009 ident: 10.1016/j.asoc.2020.106181_b176 article-title: RMB exchange rate forecasting in the context of the financial crisis publication-title: Syst. Eng. Theory Pract. doi: 10.1016/S1874-8651(10)60090-7 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b205 article-title: Detecting, quantifying and accessing impact of news events on Indian stock indices – start-page: 835 year: 2005 ident: 10.1016/j.asoc.2020.106181_b29 article-title: Machine learning techniques and use of event information for stock market prediction: A survey and evaluation – start-page: 2546 year: 2011 ident: 10.1016/j.asoc.2020.106181_b55 article-title: Algorithms for hyper-parameter optimization – year: 2017 ident: 10.1016/j.asoc.2020.106181_b135 article-title: Combining the real-time wavelet denoising and long-short-term-memory neural network for predicting stock indexes – year: 2017 ident: 10.1016/j.asoc.2020.106181_b87 article-title: Time series prediction of stock price using deep belief networks with intrinsic plasticity – year: 2018 ident: 10.1016/j.asoc.2020.106181_b128 article-title: Evaluation of bidirectional LSTM for short-and long-term stock market prediction – start-page: 33 year: 2005 ident: 10.1016/j.asoc.2020.106181_b73 article-title: On contrastive divergence learning. – ident: 10.1016/j.asoc.2020.106181_b172 doi: 10.1007/978-3-319-44781-0_39 – volume: 55 start-page: 990 year: 2015 ident: 10.1016/j.asoc.2020.106181_b66 article-title: Time series prediction using restricted Boltzmann machines and backpropagation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.104 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b196 article-title: Stock markets price movement prediction with LSTM neural networks – volume: 17 start-page: 321 issue: 3 year: 2013 ident: 10.1016/j.asoc.2020.106181_b12 article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2196800 – start-page: 578 year: 1992 ident: 10.1016/j.asoc.2020.106181_b41 article-title: Why tanh: choosing a sigmoidal function – year: 2010 ident: 10.1016/j.asoc.2020.106181_b25 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b119 article-title: Sentiment-aware stock market prediction: A deep learning method – start-page: 261 year: 2018 ident: 10.1016/j.asoc.2020.106181_b212 article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction – volume: 33 start-page: 171 year: 2014 ident: 10.1016/j.asoc.2020.106181_b21 article-title: Textual sentiment in finance: A survey of methods and models publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2014.02.006 – volume: 36 start-page: 534 year: 2015 ident: 10.1016/j.asoc.2020.106181_b34 article-title: Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.008 – year: 2016 ident: 10.1016/j.asoc.2020.106181_b155 article-title: Classification-based financial markets prediction using deep neural networks publication-title: SSRN Electron. J. doi: 10.2139/ssrn.2756331 – volume: 1 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106181_b110 article-title: Neural networks for financial market risk classification publication-title: Front. Signal Process. – year: 2018 ident: 10.1016/j.asoc.2020.106181_b154 article-title: Leveraging social media news to predict stock index movement using RNN-boost publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2018.08.003 – volume: 55 start-page: 194 year: 2016 ident: 10.1016/j.asoc.2020.106181_b27 article-title: Computational intelligence and financial markets: A survey and future directions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.006 – start-page: 243 year: 2016 ident: 10.1016/j.asoc.2020.106181_b72 article-title: Hyperparameters adaptation for restricted Boltzmann machines based on free energy – volume: 28 start-page: 244 year: 2018 ident: 10.1016/j.asoc.2020.106181_b122 article-title: An event-extraction approach for business analysis from online Chinese news publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2018.02.006 – volume: 104 start-page: 38 year: 2017 ident: 10.1016/j.asoc.2020.106181_b99 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.10.001 – volume: 35 start-page: 221 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106181_b62 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – volume: 13 start-page: 281 issue: Feb year: 2012 ident: 10.1016/j.asoc.2020.106181_b56 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106181_b17 article-title: Artificial neural networks applications in economics and management research: An exploratory literature review – year: 2014 ident: 10.1016/j.asoc.2020.106181_b98 article-title: Sufficient forecasting using factor models publication-title: SSRN Electron. J. doi: 10.2139/ssrn.2607666 – volume: 34 start-page: 2232 issue: 4 year: 2008 ident: 10.1016/j.asoc.2020.106181_b14 article-title: Expert systems and evolutionary computing for financial investing: A review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.012 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b217 article-title: Universal features of price formation in financial markets: perspectives from deep learning publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3141294 – volume: 6 start-page: 48625 year: 2018 ident: 10.1016/j.asoc.2020.106181_b88 article-title: Which artificial intelligence algorithm better predicts the Chinese stock market? publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2859809 – volume: 45 start-page: 37 year: 2015 ident: 10.1016/j.asoc.2020.106181_b156 article-title: Forecasting the COMEX copper spot price by means of neural networks and ARIMA models publication-title: Resour. Policy doi: 10.1016/j.resourpol.2015.03.004 – volume: 14 start-page: 3226 issue: 7 year: 2018 ident: 10.1016/j.asoc.2020.106181_b195 article-title: Replicating a trading strategy by means of LSTM for financial industry applications publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2811377 – start-page: 6 year: 2017 ident: 10.1016/j.asoc.2020.106181_b206 article-title: Stock market prediction with deep learning: A character-based neural language model for event-based trading – volume: 114 start-page: 128 year: 2016 ident: 10.1016/j.asoc.2020.106181_b22 article-title: A survey of the applications of text mining in financial domain publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.10.003 – year: 2004 ident: 10.1016/j.asoc.2020.106181_b2 article-title: Soft computing and its applications in business and economics – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106181_b204 article-title: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network publication-title: IEEE Access – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.asoc.2020.106181_b37 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 11 start-page: 54 issue: 4.1 year: 2016 ident: 10.1016/j.asoc.2020.106181_b82 article-title: Can deep machine learning outsmart the market? A comparison between econometric modelling and long- short term memory publication-title: Rom. Econ. Bus. Rev. – start-page: 614 year: 2018 ident: 10.1016/j.asoc.2020.106181_b101 article-title: Deep stock ranker: A LSTM neural network model for stock selection – year: 2017 ident: 10.1016/j.asoc.2020.106181_b216 article-title: Using deep learning to detect price change indications in financial markets – ident: 10.1016/j.asoc.2020.106181_b48 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b117 article-title: Topic sentiment asset pricing with DNN supervised learning publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3228485 – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.asoc.2020.106181_b123 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PLoS One doi: 10.1371/journal.pone.0180944 – volume: 28 start-page: 2222 issue: 10 year: 2016 ident: 10.1016/j.asoc.2020.106181_b60 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – start-page: 158 issue: 1 year: 2016 ident: 10.1016/j.asoc.2020.106181_b179 article-title: Artificial neural networks approach to the forecast of stock market price movements publication-title: Int. J. Econ. Manag. Syst. – year: 2018 ident: 10.1016/j.asoc.2020.106181_b162 – year: 2000 ident: 10.1016/j.asoc.2020.106181_b4 – year: 1998 ident: 10.1016/j.asoc.2020.106181_b78 – ident: 10.1016/j.asoc.2020.106181_b54 – volume: 34 start-page: 513 issue: 4 year: 2004 ident: 10.1016/j.asoc.2020.106181_b7 article-title: Discovering golden nuggets: Data mining in financial application publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2004.829279 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b116 article-title: Predict stock price with financial news based on recurrent convolutional neural networks – volume: 36 start-page: 5932 issue: 3 year: 2009 ident: 10.1016/j.asoc.2020.106181_b31 article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.006 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b192 article-title: Prediction of stock market performance by using machine learning techniques – volume: 115 start-page: 124 year: 2013 ident: 10.1016/j.asoc.2020.106181_b74 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.02.022 – volume: 143 start-page: 236 year: 2018 ident: 10.1016/j.asoc.2020.106181_b211 article-title: Improving stock market prediction via heterogeneous information fusion publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.12.025 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b44 – volume: 29 start-page: 111 year: 2007 ident: 10.1016/j.asoc.2020.106181_b8 article-title: Soft computing techniques applied to finance publication-title: Appl. Intell. doi: 10.1007/s10489-007-0051-5 – start-page: 1096 year: 2008 ident: 10.1016/j.asoc.2020.106181_b77 article-title: Extracting and composing robust features with denoising autoencoders – ident: 10.1016/j.asoc.2020.106181_b64 doi: 10.1109/CVPR.2015.7298965 – volume: 132 start-page: 1351 year: 2018 ident: 10.1016/j.asoc.2020.106181_b84 article-title: Nse stock market prediction using deep-learning models publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.050 – volume: 31 start-page: 87 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106181_b9 article-title: Machine learning: An applied econometric approach publication-title: J. Econ. Perspect. doi: 10.1257/jep.31.2.87 – volume: 115 start-page: 136 year: 2019 ident: 10.1016/j.asoc.2020.106181_b190 article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.065 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b136 – volume: 7 start-page: 197 issue: 3–4 year: 2014 ident: 10.1016/j.asoc.2020.106181_b45 article-title: Deep learning: methods and applications publication-title: Found. Trends Signal Process. doi: 10.1561/2000000039 – volume: 50 start-page: 49 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106181_b23 article-title: Natural language based financial forecasting: a survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9588-9 – volume: 32 start-page: 1268 issue: 4 year: 2016 ident: 10.1016/j.asoc.2020.106181_b149 article-title: Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2016.05.004 – volume: 4 start-page: 26 issue: 2 year: 2012 ident: 10.1016/j.asoc.2020.106181_b50 article-title: Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Netw. Mach. Learn. – ident: 10.1016/j.asoc.2020.106181_b42 – ident: 10.1016/j.asoc.2020.106181_b65 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b180 article-title: Deep learning for financial time series forecasting in a-trader system – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10.1016/j.asoc.2020.106181_b52 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – start-page: 261 year: 2007 ident: 10.1016/j.asoc.2020.106181_b104 article-title: Neural based technical analysis in stock market forecasting – year: 2016 ident: 10.1016/j.asoc.2020.106181_b59 – volume: 19 start-page: 1165 issue: 8 year: 2010 ident: 10.1016/j.asoc.2020.106181_b6 article-title: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0362-z – start-page: 609 year: 2009 ident: 10.1016/j.asoc.2020.106181_b70 article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations – year: 2018 ident: 10.1016/j.asoc.2020.106181_b197 – volume: 11 start-page: 2510 issue: 2 year: 2011 ident: 10.1016/j.asoc.2020.106181_b137 article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.09.007 – year: 2014 ident: 10.1016/j.asoc.2020.106181_b168 article-title: A model with fuzzy granulation and deep belief networks for exchange rate forecasting – year: 2011 ident: 10.1016/j.asoc.2020.106181_b169 article-title: Forecasting exchange rate with deep belief networks – volume: 76 start-page: 18569 issue: 18 year: 2016 ident: 10.1016/j.asoc.2020.106181_b107 article-title: Stock prediction using deep learning publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-4159-7 – volume: 122 start-page: 501 year: 2013 ident: 10.1016/j.asoc.2020.106181_b164 article-title: Time-dependent series variance learning with recurrent mixture density networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.014 – volume: 299 start-page: 51 year: 2018 ident: 10.1016/j.asoc.2020.106181_b213 article-title: Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.095 – year: 2006 ident: 10.1016/j.asoc.2020.106181_b18 – year: 2017 ident: 10.1016/j.asoc.2020.106181_b102 – year: 2010 ident: 10.1016/j.asoc.2020.106181_b15 article-title: Applications of artificial neural networks in financial economics: A survey – volume: 99 start-page: 262 year: 2018 ident: 10.1016/j.asoc.2020.106181_b36 article-title: Soft computing hybrids for forex rate prediction: A comprehensive review publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2018.05.020 – volume: vol. 30 start-page: 3 year: 2013 ident: 10.1016/j.asoc.2020.106181_b43 article-title: Rectifier nonlinearities improve neural network acoustic models – volume: 03 start-page: 145 issue: 01 year: 2004 ident: 10.1016/j.asoc.2020.106181_b35 article-title: Forecasting foreign exchange rates with artificial neural networks: A review publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622004000969 – ident: 10.1016/j.asoc.2020.106181_b53 – volume: 41 start-page: 7653 issue: 16 year: 2014 ident: 10.1016/j.asoc.2020.106181_b20 article-title: Text mining for market prediction: A systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.06.009 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.asoc.2020.106181_b40 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Systems doi: 10.1007/BF02551274 – volume: 45 start-page: 38 issue: 5 year: 1989 ident: 10.1016/j.asoc.2020.106181_b165 article-title: Forecasts of economic growth from the bond and stock markets publication-title: Financ. Anal. J. doi: 10.2469/faj.v45.n5.38 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106181_b106 article-title: Stock market prediction on high-frequency data using generative adversarial nets publication-title: Math. Probl. Eng. – volume: abs/1712.05785 year: 2017 ident: 10.1016/j.asoc.2020.106181_b207 article-title: Sentiment predictability for stocks publication-title: CoRR – start-page: 364 year: 2017 ident: 10.1016/j.asoc.2020.106181_b76 article-title: Relational autoencoder for feature extraction – volume: 26 start-page: 32 issue: 12 year: 2000 ident: 10.1016/j.asoc.2020.106181_b32 article-title: Artificial neural network and the financial markets: A survey publication-title: Manag. Finance – start-page: 1 year: 2012 ident: 10.1016/j.asoc.2020.106181_b19 article-title: Applications of news analytics in finance: A review – start-page: 449 year: 2016 ident: 10.1016/j.asoc.2020.106181_b201 article-title: Exploiting Twitter moods to boost financial trend prediction based on deep network models – volume: 22 start-page: 213 issue: 4 year: 2013 ident: 10.1016/j.asoc.2020.106181_b139 article-title: Irrational fads, short-term memory emulation, and asset predictability publication-title: Rev. Financial Econ. doi: 10.1016/j.rfe.2013.05.005 – volume: 103 start-page: 25 year: 2018 ident: 10.1016/j.asoc.2020.106181_b163 article-title: Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.002 – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 10.1016/j.asoc.2020.106181_b49 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – year: 2017 ident: 10.1016/j.asoc.2020.106181_b134 – year: 2018 ident: 10.1016/j.asoc.2020.106181_b113 – volume: 270 start-page: 654 issue: 2 year: 2018 ident: 10.1016/j.asoc.2020.106181_b125 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 – year: 2016 ident: 10.1016/j.asoc.2020.106181_b39 |
SSID | ssj0016928 |
Score | 2.6945627 |
Snippet | Financial time series forecasting is undoubtedly the top choice of computational intelligence for finance researchers in both academia and the finance industry... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106181 |
SubjectTerms | CNN Computational intelligence Deep learning Finance LSTM Machine learning RNN Time series forecasting |
Title | Financial time series forecasting with deep learning : A systematic literature review: 2005–2019 |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106181 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAmazfZJLvbWymW-iqiFnoLySYrlVKLrVfxP_gP_SVmdrNVQXrwtGyYLMuXyWQyzMyH0IkxMeVWqCBXQgSMEhMoDZSAOcm1c5BZVgTcbvqiN2CXQz6soU5VCwNpld72lza9sNZ-pOnRbE5Ho-a9u3kkLGWCgldPCbTdZiwGLT97W6R5EJEW_KogHIC0L5wpc7yUQ8DdESkMCJKQvw-nHwdOdxOte08Rt8uf2UI1O9lGGxULA_abcgfpbtU0AwNRPAadsjPsnFGbqRlkNWMItmJj7RR7kohH3MJt_N3FGY8X3ZVxWczSwhAI-nz_cEd3uosG3fOHTi_wzAlBFoXhPEgYhbKPiBie88S4O5AWKk0osxkU3maRYZG2KkpCqozmjKrc7W2iWGYEZ3kc7aGVyfPE7iOsY2uJsMZhHTMehopY9wEbq8g5Gk62jkgFmcx8W3FgtxjLKn_sSQLMEmCWJcx1dLqYMy2baiyV5tVKyF-qIZ3VXzLv4J_zDtEavJVZjUdoZf7yao-d5zHXjUK1Gmi13bm7voXnxVWv_wUqddg7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTsMwDLYGHODCP-KfHOCEypo0TTskDhMwjd8LIHEraZOiITQmNoS4IN6BR-GNeBLsNR0gIQ5IXNMkSj9bjh3Z_gDWjYlEaJX2cq2UJwU3nk6JEjDneYoOssz6D24np6p5IQ8vw8sKvJW1MJRW6Wx_YdP71tqNVB2a1U6rVT3DyCOWNakEefWCK5dZeWSfHjFu6-4c7KGQN4Ro7J_vNj1HLeBlge_3vFgKqosIuAnzMDYYJKRK12IhbUaVqVlgZJBaHcS-0CYNpdA5Kj_XMjMqlHkU4L5DMCLRXBBtwtbzIK-Eq1qf0JVO59HxXKVOkVSmEXIMSgUNKB7zn2_DLzdcYxLGnWvK6sXfT0HFtqdhoqR9YM4KzEDaKLt0MGKmZ6TEtsvQ-7WZ7lIaNaPXXWas7TDHSnHNtlmdfbaNZreDds6sqJ7ZZvTy9P7yir5CbRYu_gXPORhu37XtPLA0spYra1C4kQx9X3OLG9hIB-jZ4NwF4CVkSeb6mBOdxm1SJqzdJARzQjAnBcwLsDlY0ym6ePw6OywlkXzTxQSvmV_WLf5x3RqMNs9PjpPjg9OjJRijL0VK5TIM9-4f7Aq6Pb10ta9mDK7-W68_ADdHENs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+time+series+forecasting+with+deep+learning+%3A+A+systematic+literature+review%3A+2005%E2%80%932019&rft.jtitle=Applied+soft+computing&rft.au=Sezer%2C+Omer+Berat&rft.au=Gudelek%2C+Mehmet+Ugur&rft.au=Ozbayoglu%2C+Ahmet+Murat&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=90&rft_id=info:doi/10.1016%2Fj.asoc.2020.106181&rft.externalDocID=S1568494620301216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |