Optimal switching control of 1,3-propanediol fed-batch production with a cost on smooth feeding rate variation
In this paper, we propose a nonlinear switched control system for microbial 1,3-propanediol (1,3-PD) fed-batch production, where the smooth feeding rate of glycerol as well as the switching instants between batch process and feeding process are taken as control variables. To maximize 1,3-PD yield an...
Saved in:
Published in | Nonlinear analysis. Hybrid systems Vol. 49; p. 101372 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose a nonlinear switched control system for microbial 1,3-propanediol (1,3-PD) fed-batch production, where the smooth feeding rate of glycerol as well as the switching instants between batch process and feeding process are taken as control variables. To maximize 1,3-PD yield and minimize the fluctuation of feeding rate, we then present an optimal switching control problem with a cost on the smooth feeding rate variation and subject to path constraints reflecting the operational requirements. For solving this problem, we convert it to a series of parameter optimization problems by using a novel control parameterization scheme, a time-scaling transformation and a constraint transcription technique. An analytical expression of the total variation for the smooth feeding rate is also derived. On this basis, we develop a parallel Particle Swarm Optimization (PSO) algorithm together with the gradient-based optimization to solve the resulting problem. Finally, numerical simulations indicate that sacrificing a small amount of 1,3-PD can reduce the feeding rate variation significantly. |
---|---|
ISSN: | 1751-570X |
DOI: | 10.1016/j.nahs.2023.101372 |