Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method
Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than the coupled nonlinear Schrödinger equations in eliciting optical solitons for increasing the bit rates. The bilinear form has been constructe...
Saved in:
Published in | Superlattices and microstructures Vol. 105; pp. 172 - 182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than the coupled nonlinear Schrödinger equations in eliciting optical solitons for increasing the bit rates. The bilinear form has been constructed, via which multi-solitons and breathers are derived. In particular, the three-bright soliton solution and breathers are derived and simulated via some pictures. The propagation characters are analyzed with the changes of the key parameters.
•The breathers, multi-solitons for the generalized coupled nonlinear Hirota equations via the Hirota method.•Three-bright soliton solutions and the propagation process of the three-soliton turning to the breather have been derived.•Dynamic features of those solitons have been analyzed. |
---|---|
AbstractList | Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than the coupled nonlinear Schrödinger equations in eliciting optical solitons for increasing the bit rates. The bilinear form has been constructed, via which multi-solitons and breathers are derived. In particular, the three-bright soliton solution and breathers are derived and simulated via some pictures. The propagation characters are analyzed with the changes of the key parameters.
•The breathers, multi-solitons for the generalized coupled nonlinear Hirota equations via the Hirota method.•Three-bright soliton solutions and the propagation process of the three-soliton turning to the breather have been derived.•Dynamic features of those solitons have been analyzed. |
Author | Hao, Hui-Qin Chai, Yu-Zhen Jia, Ting-Ting |
Author_xml | – sequence: 1 givenname: Ting-Ting surname: Jia fullname: Jia, Ting-Ting – sequence: 2 givenname: Yu-Zhen surname: Chai fullname: Chai, Yu-Zhen – sequence: 3 givenname: Hui-Qin surname: Hao fullname: Hao, Hui-Qin email: math0351@sina.com |
BookMark | eNp9kM9OAjEQxhuDiYC-gKe-wK7tdtk_iRclKiYYL3puSjuVkqXFtkuiT28XOHkgc_gmM_lNvvkmaGSdBYRuKckpodXdJg-7rcmL1KdBTlp6gcaUtFXGqroeoTGpyzarCKuu0CSEDSGkLWk9Rv6t76LJgutMdBYn7aNxNmBhFX70IOIafMDaeZw6_AUWvOjMLygsXb_rkiYrnbEgPF4Y76LA8N2L45G9EQfstNhCXDt1jS616ALcnHSKPp-fPuaLbPn-8jp_WGaSERKzhjaCKKYZJWLFqhWTDS1bgFkpS0nVShVKSFFJOit1SYDouhEKdJOKFbqu2RQ1x7vSuxA8aC5NPBiLXpiOU8KH7PiGD9nxIbthlrJLaPEP3XmzFf7nPHR_hCA9tTfgeZAGrARlPMjIlTPn8D-jMo6P |
CitedBy_id | crossref_primary_10_1016_j_camwa_2019_08_015 crossref_primary_10_1063_1_5003839 crossref_primary_10_1142_S0217984919502968 crossref_primary_10_1002_andp_201900011 crossref_primary_10_1080_17455030_2017_1367866 crossref_primary_10_1016_j_aml_2019_106145 crossref_primary_10_1016_j_chaos_2018_02_017 crossref_primary_10_1007_s12043_024_02784_5 crossref_primary_10_1016_j_cjph_2021_07_001 crossref_primary_10_1088_1402_4896_ac0d33 crossref_primary_10_3390_fractalfract8030178 crossref_primary_10_1007_s12043_018_1522_4 crossref_primary_10_1140_epjp_i2019_12515_4 crossref_primary_10_1016_j_camwa_2018_08_059 crossref_primary_10_1016_j_ijleo_2024_171656 crossref_primary_10_1016_j_ijleo_2021_167123 crossref_primary_10_1142_S0218348X23501190 crossref_primary_10_1016_j_physa_2020_125114 crossref_primary_10_1117_1_OE_56_12_126106 crossref_primary_10_1007_s11082_017_1251_9 crossref_primary_10_1016_j_cjph_2018_06_021 crossref_primary_10_1080_17455030_2018_1483092 crossref_primary_10_1016_j_physb_2018_03_042 crossref_primary_10_1016_j_joes_2022_01_011 crossref_primary_10_1002_mma_9860 crossref_primary_10_1115_1_4044499 crossref_primary_10_1088_0253_6102_68_6_693 crossref_primary_10_1016_j_physleta_2018_04_034 crossref_primary_10_1016_j_rinp_2022_105918 crossref_primary_10_1016_j_rinp_2022_106049 crossref_primary_10_1016_j_camwa_2017_12_021 crossref_primary_10_1140_epjp_i2018_11875_5 crossref_primary_10_1016_j_aop_2020_168304 crossref_primary_10_1088_0253_6102_69_6_676 crossref_primary_10_1088_1402_4896_ab5c89 crossref_primary_10_1002_andp_201900198 crossref_primary_10_1007_s12043_018_1609_y crossref_primary_10_1142_S0217984922501378 crossref_primary_10_1007_s40819_022_01276_7 crossref_primary_10_1088_1402_4896_aacfc6 crossref_primary_10_1088_0253_6102_69_5_551 crossref_primary_10_1007_s11082_021_03276_1 crossref_primary_10_1007_s11082_018_1428_x crossref_primary_10_1140_epjp_s13360_020_00218_w crossref_primary_10_1016_j_ijleo_2017_05_008 crossref_primary_10_1016_j_camwa_2018_06_025 crossref_primary_10_1016_j_cjph_2018_07_013 crossref_primary_10_1080_17455030_2018_1516053 crossref_primary_10_1080_17455030_2019_1630785 crossref_primary_10_1007_s12043_021_02174_1 crossref_primary_10_52280_pujm_2022_540302 crossref_primary_10_1007_s00033_017_0853_1 crossref_primary_10_1080_17455030_2017_1366084 crossref_primary_10_1117_1_OE_56_8_086108 crossref_primary_10_1117_1_OE_56_10_106114 crossref_primary_10_1016_j_cjph_2017_11_025 crossref_primary_10_1098_rspa_2019_0122 crossref_primary_10_1016_j_aml_2018_07_007 crossref_primary_10_1016_j_camwa_2018_05_024 crossref_primary_10_1016_j_aml_2017_12_005 crossref_primary_10_1016_j_aop_2022_168820 crossref_primary_10_1016_j_cjph_2019_06_004 crossref_primary_10_1080_17455030_2019_1566681 crossref_primary_10_1142_S021798491950355X crossref_primary_10_3390_math9161986 crossref_primary_10_1140_epjp_i2017_11780_5 crossref_primary_10_1209_0295_5075_120_30001 crossref_primary_10_1515_zna_2017_0196 crossref_primary_10_1007_s11071_018_4542_1 crossref_primary_10_1016_j_camwa_2019_07_006 crossref_primary_10_1209_0295_5075_127_40003 crossref_primary_10_1016_j_cnsns_2018_10_003 crossref_primary_10_1016_j_camwa_2019_02_026 crossref_primary_10_1016_j_cjph_2017_07_010 crossref_primary_10_1080_09205071_2017_1362361 crossref_primary_10_1016_j_chaos_2018_11_010 crossref_primary_10_1007_s12043_019_1790_7 crossref_primary_10_1080_17455030_2017_1347305 crossref_primary_10_1016_j_wavemoti_2018_09_003 crossref_primary_10_1016_j_rinp_2023_106802 crossref_primary_10_1080_09205071_2017_1348994 crossref_primary_10_1140_epjp_i2018_12239_y crossref_primary_10_3934_mbe_2023856 crossref_primary_10_3390_axioms12121106 crossref_primary_10_1016_j_physa_2017_09_024 |
Cites_doi | 10.1016/j.oceaneng.2014.12.017 10.1016/j.cnsns.2013.01.019 10.1016/j.ijleo.2015.10.235 10.1016/j.jmaa.2007.03.064 10.1088/0031-8949/90/4/045201 10.1016/j.cnsns.2011.11.029 10.1088/0963-9659/6/1/002 10.1063/1.3553182 10.1016/j.aop.2013.04.004 10.1063/1.1654836 10.1016/j.cnsns.2012.08.034 10.1103/PhysRevLett.110.264101 10.1103/PhysRevA.38.2011 10.1109/3.40656 10.1063/1.525721 10.1016/j.aml.2014.03.017 10.1515/zna-2014-0272 10.1016/j.cnsns.2013.09.003 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2016.10.091 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 182 |
ExternalDocumentID | 10_1016_j_spmi_2016_10_091 S0749603616311235 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-818a0d3f310ab36b3c8149ee54c4c1dbd2daca6c154f40e0f78adef8f8f32f773 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:05 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | The generalized coupled nonlinear Hirota equations Symbolic computation Multi-soliton solution and breather The Hirota method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-818a0d3f310ab36b3c8149ee54c4c1dbd2daca6c154f40e0f78adef8f8f32f773 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2016_10_091 crossref_primary_10_1016_j_spmi_2016_10_091 elsevier_sciencedirect_doi_10_1016_j_spmi_2016_10_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2017 2017-05-00 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Xu, Meng, Zhang, Zhang, Tian (bib19) 2007; 336 Guo, Tian (bib15) 2012; 17 Wang, Tian, Li, Wang, Jiang (bib28) 2014; 35 Demiray, Pandir, Bulut (bib25) 2016; 127 Chai, Tian, Zhen, Sun (bib14) 2015; 362 Achilleos, Frantzeskakis, Kevrekidis, Pelinovsky (bib5) 2013; 110 Guo, Hao (bib17) 2013; 18 Manakov (bib2) 1974; 38 Rajendran, Lakshmanan, Muruganandam (bib21) 2011; 52 Feng, Gao, Sun, Zuo, Shen, Sun, Xue, Yu (bib11) 2015; 90 Gao (bib23) 2015; 96 Weiss, Tabor, Carnevale (bib12) 1983; 24 Tratnik, Sipe (bib3) 1988; 38 Ablowitz, Prinari, Trubatch (bib10) 2003 Wazwaz (bib27) 2008; 201 Huang, Xu, Xiong (bib8) 2004 Menyuk (bib4) 1988; 25 Hirota (bib26) 2004 Hasegawa, Kodama (bib7) 1995 Wang, Zhu, Qi, Li, Guo (bib13) 2015; 25 Wang, Tian, Li, Wang, Wang (bib20) 2014; 19 Zhang, Hao, Zhang (bib18) 2013 Porsezian, Nakkeeran (bib6) 1997; 6 Hasegawa, Tappert (bib1) 1973; 23 Gao (bib24) 2015; 70 Yang, Ruan (bib29) 2013; 219 Li, Wu, Wang, He (bib22) 2013; 334 Bhrawy, Abdelkawy, Biswas (bib16) 2013; 18 Ablowitz (bib9) 2004 Wang (10.1016/j.spmi.2016.10.091_bib28) 2014; 35 Guo (10.1016/j.spmi.2016.10.091_bib17) 2013; 18 Demiray (10.1016/j.spmi.2016.10.091_bib25) 2016; 127 Gao (10.1016/j.spmi.2016.10.091_bib23) 2015; 96 Tratnik (10.1016/j.spmi.2016.10.091_bib3) 1988; 38 Bhrawy (10.1016/j.spmi.2016.10.091_bib16) 2013; 18 Manakov (10.1016/j.spmi.2016.10.091_bib2) 1974; 38 Feng (10.1016/j.spmi.2016.10.091_bib11) 2015; 90 Hasegawa (10.1016/j.spmi.2016.10.091_bib1) 1973; 23 Hasegawa (10.1016/j.spmi.2016.10.091_bib7) 1995 Yang (10.1016/j.spmi.2016.10.091_bib29) 2013; 219 Chai (10.1016/j.spmi.2016.10.091_bib14) 2015; 362 Guo (10.1016/j.spmi.2016.10.091_bib15) 2012; 17 Weiss (10.1016/j.spmi.2016.10.091_bib12) 1983; 24 Gao (10.1016/j.spmi.2016.10.091_bib24) 2015; 70 Wang (10.1016/j.spmi.2016.10.091_bib13) 2015; 25 Li (10.1016/j.spmi.2016.10.091_bib19) 2007; 336 Ablowitz (10.1016/j.spmi.2016.10.091_bib10) 2003 Hirota (10.1016/j.spmi.2016.10.091_bib26) 2004 Wang (10.1016/j.spmi.2016.10.091_bib20) 2014; 19 Wazwaz (10.1016/j.spmi.2016.10.091_bib27) 2008; 201 Porsezian (10.1016/j.spmi.2016.10.091_bib6) 1997; 6 Menyuk (10.1016/j.spmi.2016.10.091_bib4) 1988; 25 Ablowitz (10.1016/j.spmi.2016.10.091_bib9) 2004 Achilleos (10.1016/j.spmi.2016.10.091_bib5) 2013; 110 Rajendran (10.1016/j.spmi.2016.10.091_bib21) 2011; 52 Li (10.1016/j.spmi.2016.10.091_bib22) 2013; 334 Zhang (10.1016/j.spmi.2016.10.091_bib18) 2013 Huang (10.1016/j.spmi.2016.10.091_bib8) 2004 |
References_xml | – volume: 38 start-page: 248 year: 1974 end-page: 253 ident: bib2 article-title: On the theory of two-dimensional stationary self-focusing of electromagnetic waves publication-title: Sov. Phys. JETP – start-page: 2013 year: 2013 ident: bib18 article-title: Breathers and soliton solutions for a generalization of the nonlinear Schrodinger equation publication-title: Math. Probl. Eng. – volume: 6 start-page: L7 year: 1997 end-page: L11 ident: bib6 article-title: Optical solitons in birefringent fibre-Bäcklund transformation approach publication-title: Pure Appl. Opt. – volume: 18 start-page: 2426 year: 2013 end-page: 2435 ident: bib17 article-title: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation publication-title: Commun. Nonl. Sci. Num. Simul. – volume: 18 start-page: 915 year: 2013 end-page: 925 ident: bib16 article-title: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method publication-title: Commun. Nonl. Sci. Num. Simul. – year: 1995 ident: bib7 article-title: Solitons in Optical Communication – year: 2004 ident: bib9 article-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering – year: 2004 ident: bib8 article-title: Solitons Concepts, Principles and Applications – volume: 362 start-page: 671 year: 2015 end-page: 683 ident: bib14 article-title: Lax pair, conservation laws and solitons for a (2+1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 23 start-page: 142 year: 1973 ident: bib1 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion publication-title: Appl. Phys. Lett. – volume: 38 start-page: 248 year: 1988 end-page: 253 ident: bib3 article-title: Bound solitary waves in a birefringent optical fiber publication-title: Phys. Rev. A – volume: 201 start-page: 489 year: 2008 end-page: 503 ident: bib27 article-title: The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves publication-title: Appl. Math. Comput. – volume: 25 start-page: 2674 year: 1988 end-page: 2682 ident: bib4 article-title: Pulse propagation in an elliptically birefringent Kerr medium publication-title: IEEE J. Quantum Electron. – volume: 96 start-page: 245 year: 2015 end-page: 247 ident: bib23 article-title: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics publication-title: Ocean. Eng. – volume: 17 start-page: 3189 year: 2012 end-page: 3203 ident: bib15 article-title: Integrability aspects and soliton solutions for an inhomogeneous nonlinear system with symbolic computation publication-title: Commun. Nonl. Sci. Num. Simul. – volume: 70 start-page: 59 year: 2015 end-page: 61 ident: bib24 article-title: Incompressible-fluid symbolic computation and Bäcklund transformation: (3+1)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli model publication-title: Z. Naturforsch. A – volume: 25 start-page: 3111 year: 2015 ident: bib13 article-title: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers publication-title: Chaos Interdiscip. J. Nonl. Sci. – year: 2004 ident: bib26 article-title: The Direct Method in Soliton Theory – volume: 24 start-page: 522 year: 1983 ident: bib12 article-title: The Painlevé property for partial differential equations publication-title: J. Math. Phys. – volume: 110 start-page: 264101 year: 2013 ident: bib5 article-title: Matter-wave bright solitons in spinCorbit coupled BoseCEinstein condensates publication-title: Phys. Rev. Lett. – volume: 336 start-page: 1443 year: 2007 end-page: 1455 ident: bib19 article-title: Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation publication-title: J. Math. Anal. Appl. – volume: 219 start-page: 8018 year: 2013 end-page: 8025 ident: bib29 article-title: HBFGen: a maple package to construct the Hirota bilinear form for nonlinear equations publication-title: Appl. Math. Comput. – volume: 334 start-page: 198 year: 2013 end-page: 211 ident: bib22 article-title: High-order rogue waves for the Hirota equation publication-title: Ann. Phys. – year: 2003 ident: bib10 article-title: Discrete and Continuous Nonlinear Schrödinger Systems – volume: 35 start-page: 46 year: 2014 end-page: 51 ident: bib28 article-title: Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems publication-title: Appl. Math. Lett. – volume: 19 start-page: 1783 year: 2014 end-page: 1791 ident: bib20 article-title: Integrability and soliton-like solutions for the coupled higher-order nonlinear Schrödinger equations with variable coefficients in inhomogeneous optical fibers publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 127 start-page: 1848 year: 2016 end-page: 1859 ident: bib25 article-title: All exact travelling wave solutions of Hirota equation and Hirota-Maccari system publication-title: Optik – volume: 90 start-page: 045201 year: 2015 ident: bib11 article-title: Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in an inhomogeneous optical fiber publication-title: Phys. Scr. – volume: 52 start-page: 023515 year: 2011 ident: bib21 article-title: Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions publication-title: J. Math. Phys. – volume: 96 start-page: 245 year: 2015 ident: 10.1016/j.spmi.2016.10.091_bib23 article-title: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2014.12.017 – year: 2004 ident: 10.1016/j.spmi.2016.10.091_bib8 – volume: 18 start-page: 2426 issue: 9 year: 2013 ident: 10.1016/j.spmi.2016.10.091_bib17 article-title: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation publication-title: Commun. Nonl. Sci. Num. Simul. doi: 10.1016/j.cnsns.2013.01.019 – start-page: 2013 year: 2013 ident: 10.1016/j.spmi.2016.10.091_bib18 article-title: Breathers and soliton solutions for a generalization of the nonlinear Schrodinger equation publication-title: Math. Probl. Eng. – volume: 127 start-page: 1848 year: 2016 ident: 10.1016/j.spmi.2016.10.091_bib25 article-title: All exact travelling wave solutions of Hirota equation and Hirota-Maccari system publication-title: Optik doi: 10.1016/j.ijleo.2015.10.235 – volume: 336 start-page: 1443 year: 2007 ident: 10.1016/j.spmi.2016.10.091_bib19 article-title: Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.03.064 – volume: 90 start-page: 045201 year: 2015 ident: 10.1016/j.spmi.2016.10.091_bib11 article-title: Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in an inhomogeneous optical fiber publication-title: Phys. Scr. doi: 10.1088/0031-8949/90/4/045201 – year: 2004 ident: 10.1016/j.spmi.2016.10.091_bib26 – volume: 17 start-page: 3189 issue: 8 year: 2012 ident: 10.1016/j.spmi.2016.10.091_bib15 article-title: Integrability aspects and soliton solutions for an inhomogeneous nonlinear system with symbolic computation publication-title: Commun. Nonl. Sci. Num. Simul. doi: 10.1016/j.cnsns.2011.11.029 – volume: 6 start-page: L7 year: 1997 ident: 10.1016/j.spmi.2016.10.091_bib6 article-title: Optical solitons in birefringent fibre-Bäcklund transformation approach publication-title: Pure Appl. Opt. doi: 10.1088/0963-9659/6/1/002 – volume: 25 start-page: 3111 issue: 6 year: 2015 ident: 10.1016/j.spmi.2016.10.091_bib13 article-title: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers publication-title: Chaos Interdiscip. J. Nonl. Sci. – volume: 52 start-page: 023515 year: 2011 ident: 10.1016/j.spmi.2016.10.091_bib21 article-title: Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions publication-title: J. Math. Phys. doi: 10.1063/1.3553182 – volume: 334 start-page: 198 year: 2013 ident: 10.1016/j.spmi.2016.10.091_bib22 article-title: High-order rogue waves for the Hirota equation publication-title: Ann. Phys. doi: 10.1016/j.aop.2013.04.004 – volume: 219 start-page: 8018 year: 2013 ident: 10.1016/j.spmi.2016.10.091_bib29 article-title: HBFGen: a maple package to construct the Hirota bilinear form for nonlinear equations publication-title: Appl. Math. Comput. – volume: 23 start-page: 142 issue: 3 year: 1973 ident: 10.1016/j.spmi.2016.10.091_bib1 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion publication-title: Appl. Phys. Lett. doi: 10.1063/1.1654836 – year: 2004 ident: 10.1016/j.spmi.2016.10.091_bib9 – year: 1995 ident: 10.1016/j.spmi.2016.10.091_bib7 – volume: 18 start-page: 915 issue: 4 year: 2013 ident: 10.1016/j.spmi.2016.10.091_bib16 article-title: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method publication-title: Commun. Nonl. Sci. Num. Simul. doi: 10.1016/j.cnsns.2012.08.034 – volume: 110 start-page: 264101 year: 2013 ident: 10.1016/j.spmi.2016.10.091_bib5 article-title: Matter-wave bright solitons in spinCorbit coupled BoseCEinstein condensates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.264101 – volume: 38 start-page: 248 issue: 4 year: 1988 ident: 10.1016/j.spmi.2016.10.091_bib3 article-title: Bound solitary waves in a birefringent optical fiber publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.2011 – volume: 25 start-page: 2674 issue: 12 year: 1988 ident: 10.1016/j.spmi.2016.10.091_bib4 article-title: Pulse propagation in an elliptically birefringent Kerr medium publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.40656 – volume: 24 start-page: 522 year: 1983 ident: 10.1016/j.spmi.2016.10.091_bib12 article-title: The Painlevé property for partial differential equations publication-title: J. Math. Phys. doi: 10.1063/1.525721 – volume: 38 start-page: 248 year: 1974 ident: 10.1016/j.spmi.2016.10.091_bib2 article-title: On the theory of two-dimensional stationary self-focusing of electromagnetic waves publication-title: Sov. Phys. JETP – year: 2003 ident: 10.1016/j.spmi.2016.10.091_bib10 – volume: 201 start-page: 489 year: 2008 ident: 10.1016/j.spmi.2016.10.091_bib27 article-title: The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves publication-title: Appl. Math. Comput. – volume: 35 start-page: 46 year: 2014 ident: 10.1016/j.spmi.2016.10.091_bib28 article-title: Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.03.017 – volume: 70 start-page: 59 year: 2015 ident: 10.1016/j.spmi.2016.10.091_bib24 article-title: Incompressible-fluid symbolic computation and Bäcklund transformation: (3+1)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli model publication-title: Z. Naturforsch. A doi: 10.1515/zna-2014-0272 – volume: 362 start-page: 671 year: 2015 ident: 10.1016/j.spmi.2016.10.091_bib14 article-title: Lax pair, conservation laws and solitons for a (2+1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 19 start-page: 1783 year: 2014 ident: 10.1016/j.spmi.2016.10.091_bib20 article-title: Integrability and soliton-like solutions for the coupled higher-order nonlinear Schrödinger equations with variable coefficients in inhomogeneous optical fibers publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2013.09.003 |
SSID | ssj0009417 |
Score | 2.0986452 |
Snippet | Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 172 |
SubjectTerms | Multi-soliton solution and breather Symbolic computation The generalized coupled nonlinear Hirota equations The Hirota method |
Title | Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method |
URI | https://dx.doi.org/10.1016/j.spmi.2016.10.091 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXriz14k9gku9mkRy2WqtiLCr2FzT4kUtuaVg8e_O3OJJuqIB4kh4TNTFhmJzvfwjczhJxEHPxES-2FykYeD2LmJZmFBclYxqyUVhjMd74disEDvx5Fowbp1bkwSKt0e3-1p5e7tRvpOGt2ZnneuYPgB_CbCUAUAWZ8YgY7j9HLzz6-aB5dXnbdRWEPpV3iTMXxms-ec6R3iTNkeHWD34PTt4DT3yQbDinS82oyW6RhJi2y1qsbtLXIasneVPNtUpRptN4cuWzTCV26E5UTTS8Kh_Io4FMKT_SxKjWdvxtN1fR1Nob7pCqZIQs6yIvpQlLzUhUBn9O3XJZq7kXVc3qHPPQv73sDzzVT8BTz_YUHgVn6mlmAczJjImMqgcORMRFXXAU606GWSgoFkMpy3_g2TqQ2NoGLhTaO2S5pwlTMHqGhFDIxCATx_9esK7j04VMiDFTYzWSbBLUVU-UqjWPDi3FaU8qeUrR8ipbHMbB8m5wudWZVnY0_paN6cdIf3pJCIPhDb_-fegdkPcRwXhIdD0lzUbyaIwAji-y49LZjsnJ-dTMYfgJh7uFB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2lRVV6QaWlaoHCHtpT5cTeXW-cAwcorVLa5tJEys2s96MyCklqpyA48Kf4g8za6xYk1ANS5IOttWe1nh3NvJXezAAcxhztREsdUGXjgEc9FiSZxQ3JWMaslFYYl-98NRSDMf84iSct-NXkwjhapff9tU-vvLUf6Xptdhd53r3G4IfwmwlEFJHL-PTMygvz_Rue28q35x9wk48oPTsdnQwC31ogUCwMlwGGKRlqZhHcyIyJjKkEjwrGxFxxFelMUy2VFAoBhuWhCW0vkdrYBC9Gba_HcN41eMLRXbi2CZ2fD7ySPq_a_LrVBW55PlOnJpWViy-545OJjqOU9aN_R8M_ItzZFjz10JS8q__-GbTMbBvaJ01HuG3YqOiiqtyBosrbDUpHnpvPyL39EjnT5H3hYSVBQEzwidzUta3zH0YTNb9bTPE-q2t0yIIM8mK-lMTc1lXHS_I1l5WYf1E3uX4O45WoeBfWcSlmDwiVQibGIU_ncDTrCy5DnErQSNF-JvcharSYKl_a3HXYmKYNh-1z6jSfOs27MdT8Phzfyyzqwh6Pfh03m5P-ZZ4pRp5H5F78p9wbaA9GV5fp5fnw4iVsUoclKpblK1hfFnfmAJHQMntdWR6BT6s29d-7CR5y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-soliton+solutions+and+Breathers+for+the+generalized+coupled+nonlinear+Hirota+equations+via+the+Hirota+method&rft.jtitle=Superlattices+and+microstructures&rft.au=Jia%2C+Ting-Ting&rft.au=Chai%2C+Yu-Zhen&rft.au=Hao%2C+Hui-Qin&rft.date=2017-05-01&rft.issn=0749-6036&rft.volume=105&rft.spage=172&rft.epage=182&rft_id=info:doi/10.1016%2Fj.spmi.2016.10.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2016_10_091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |