Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method

Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than the coupled nonlinear Schrödinger equations in eliciting optical solitons for increasing the bit rates. The bilinear form has been constructe...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 105; pp. 172 - 182
Main Authors Jia, Ting-Ting, Chai, Yu-Zhen, Hao, Hui-Qin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than the coupled nonlinear Schrödinger equations in eliciting optical solitons for increasing the bit rates. The bilinear form has been constructed, via which multi-solitons and breathers are derived. In particular, the three-bright soliton solution and breathers are derived and simulated via some pictures. The propagation characters are analyzed with the changes of the key parameters. •The breathers, multi-solitons for the generalized coupled nonlinear Hirota equations via the Hirota method.•Three-bright soliton solutions and the propagation process of the three-soliton turning to the breather have been derived.•Dynamic features of those solitons have been analyzed.
AbstractList Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than the coupled nonlinear Schrödinger equations in eliciting optical solitons for increasing the bit rates. The bilinear form has been constructed, via which multi-solitons and breathers are derived. In particular, the three-bright soliton solution and breathers are derived and simulated via some pictures. The propagation characters are analyzed with the changes of the key parameters. •The breathers, multi-solitons for the generalized coupled nonlinear Hirota equations via the Hirota method.•Three-bright soliton solutions and the propagation process of the three-soliton turning to the breather have been derived.•Dynamic features of those solitons have been analyzed.
Author Hao, Hui-Qin
Chai, Yu-Zhen
Jia, Ting-Ting
Author_xml – sequence: 1
  givenname: Ting-Ting
  surname: Jia
  fullname: Jia, Ting-Ting
– sequence: 2
  givenname: Yu-Zhen
  surname: Chai
  fullname: Chai, Yu-Zhen
– sequence: 3
  givenname: Hui-Qin
  surname: Hao
  fullname: Hao, Hui-Qin
  email: math0351@sina.com
BookMark eNp9kM9OAjEQxhuDiYC-gKe-wK7tdtk_iRclKiYYL3puSjuVkqXFtkuiT28XOHkgc_gmM_lNvvkmaGSdBYRuKckpodXdJg-7rcmL1KdBTlp6gcaUtFXGqroeoTGpyzarCKuu0CSEDSGkLWk9Rv6t76LJgutMdBYn7aNxNmBhFX70IOIafMDaeZw6_AUWvOjMLygsXb_rkiYrnbEgPF4Y76LA8N2L45G9EQfstNhCXDt1jS616ALcnHSKPp-fPuaLbPn-8jp_WGaSERKzhjaCKKYZJWLFqhWTDS1bgFkpS0nVShVKSFFJOit1SYDouhEKdJOKFbqu2RQ1x7vSuxA8aC5NPBiLXpiOU8KH7PiGD9nxIbthlrJLaPEP3XmzFf7nPHR_hCA9tTfgeZAGrARlPMjIlTPn8D-jMo6P
CitedBy_id crossref_primary_10_1016_j_camwa_2019_08_015
crossref_primary_10_1063_1_5003839
crossref_primary_10_1142_S0217984919502968
crossref_primary_10_1002_andp_201900011
crossref_primary_10_1080_17455030_2017_1367866
crossref_primary_10_1016_j_aml_2019_106145
crossref_primary_10_1016_j_chaos_2018_02_017
crossref_primary_10_1007_s12043_024_02784_5
crossref_primary_10_1016_j_cjph_2021_07_001
crossref_primary_10_1088_1402_4896_ac0d33
crossref_primary_10_3390_fractalfract8030178
crossref_primary_10_1007_s12043_018_1522_4
crossref_primary_10_1140_epjp_i2019_12515_4
crossref_primary_10_1016_j_camwa_2018_08_059
crossref_primary_10_1016_j_ijleo_2024_171656
crossref_primary_10_1016_j_ijleo_2021_167123
crossref_primary_10_1142_S0218348X23501190
crossref_primary_10_1016_j_physa_2020_125114
crossref_primary_10_1117_1_OE_56_12_126106
crossref_primary_10_1007_s11082_017_1251_9
crossref_primary_10_1016_j_cjph_2018_06_021
crossref_primary_10_1080_17455030_2018_1483092
crossref_primary_10_1016_j_physb_2018_03_042
crossref_primary_10_1016_j_joes_2022_01_011
crossref_primary_10_1002_mma_9860
crossref_primary_10_1115_1_4044499
crossref_primary_10_1088_0253_6102_68_6_693
crossref_primary_10_1016_j_physleta_2018_04_034
crossref_primary_10_1016_j_rinp_2022_105918
crossref_primary_10_1016_j_rinp_2022_106049
crossref_primary_10_1016_j_camwa_2017_12_021
crossref_primary_10_1140_epjp_i2018_11875_5
crossref_primary_10_1016_j_aop_2020_168304
crossref_primary_10_1088_0253_6102_69_6_676
crossref_primary_10_1088_1402_4896_ab5c89
crossref_primary_10_1002_andp_201900198
crossref_primary_10_1007_s12043_018_1609_y
crossref_primary_10_1142_S0217984922501378
crossref_primary_10_1007_s40819_022_01276_7
crossref_primary_10_1088_1402_4896_aacfc6
crossref_primary_10_1088_0253_6102_69_5_551
crossref_primary_10_1007_s11082_021_03276_1
crossref_primary_10_1007_s11082_018_1428_x
crossref_primary_10_1140_epjp_s13360_020_00218_w
crossref_primary_10_1016_j_ijleo_2017_05_008
crossref_primary_10_1016_j_camwa_2018_06_025
crossref_primary_10_1016_j_cjph_2018_07_013
crossref_primary_10_1080_17455030_2018_1516053
crossref_primary_10_1080_17455030_2019_1630785
crossref_primary_10_1007_s12043_021_02174_1
crossref_primary_10_52280_pujm_2022_540302
crossref_primary_10_1007_s00033_017_0853_1
crossref_primary_10_1080_17455030_2017_1366084
crossref_primary_10_1117_1_OE_56_8_086108
crossref_primary_10_1117_1_OE_56_10_106114
crossref_primary_10_1016_j_cjph_2017_11_025
crossref_primary_10_1098_rspa_2019_0122
crossref_primary_10_1016_j_aml_2018_07_007
crossref_primary_10_1016_j_camwa_2018_05_024
crossref_primary_10_1016_j_aml_2017_12_005
crossref_primary_10_1016_j_aop_2022_168820
crossref_primary_10_1016_j_cjph_2019_06_004
crossref_primary_10_1080_17455030_2019_1566681
crossref_primary_10_1142_S021798491950355X
crossref_primary_10_3390_math9161986
crossref_primary_10_1140_epjp_i2017_11780_5
crossref_primary_10_1209_0295_5075_120_30001
crossref_primary_10_1515_zna_2017_0196
crossref_primary_10_1007_s11071_018_4542_1
crossref_primary_10_1016_j_camwa_2019_07_006
crossref_primary_10_1209_0295_5075_127_40003
crossref_primary_10_1016_j_cnsns_2018_10_003
crossref_primary_10_1016_j_camwa_2019_02_026
crossref_primary_10_1016_j_cjph_2017_07_010
crossref_primary_10_1080_09205071_2017_1362361
crossref_primary_10_1016_j_chaos_2018_11_010
crossref_primary_10_1007_s12043_019_1790_7
crossref_primary_10_1080_17455030_2017_1347305
crossref_primary_10_1016_j_wavemoti_2018_09_003
crossref_primary_10_1016_j_rinp_2023_106802
crossref_primary_10_1080_09205071_2017_1348994
crossref_primary_10_1140_epjp_i2018_12239_y
crossref_primary_10_3934_mbe_2023856
crossref_primary_10_3390_axioms12121106
crossref_primary_10_1016_j_physa_2017_09_024
Cites_doi 10.1016/j.oceaneng.2014.12.017
10.1016/j.cnsns.2013.01.019
10.1016/j.ijleo.2015.10.235
10.1016/j.jmaa.2007.03.064
10.1088/0031-8949/90/4/045201
10.1016/j.cnsns.2011.11.029
10.1088/0963-9659/6/1/002
10.1063/1.3553182
10.1016/j.aop.2013.04.004
10.1063/1.1654836
10.1016/j.cnsns.2012.08.034
10.1103/PhysRevLett.110.264101
10.1103/PhysRevA.38.2011
10.1109/3.40656
10.1063/1.525721
10.1016/j.aml.2014.03.017
10.1515/zna-2014-0272
10.1016/j.cnsns.2013.09.003
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2016.10.091
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
EndPage 182
ExternalDocumentID 10_1016_j_spmi_2016_10_091
S0749603616311235
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-818a0d3f310ab36b3c8149ee54c4c1dbd2daca6c154f40e0f78adef8f8f32f773
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:05 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords The generalized coupled nonlinear Hirota equations
Symbolic computation
Multi-soliton solution and breather
The Hirota method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-818a0d3f310ab36b3c8149ee54c4c1dbd2daca6c154f40e0f78adef8f8f32f773
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2016_10_091
crossref_primary_10_1016_j_spmi_2016_10_091
elsevier_sciencedirect_doi_10_1016_j_spmi_2016_10_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Xu, Meng, Zhang, Zhang, Tian (bib19) 2007; 336
Guo, Tian (bib15) 2012; 17
Wang, Tian, Li, Wang, Jiang (bib28) 2014; 35
Demiray, Pandir, Bulut (bib25) 2016; 127
Chai, Tian, Zhen, Sun (bib14) 2015; 362
Achilleos, Frantzeskakis, Kevrekidis, Pelinovsky (bib5) 2013; 110
Guo, Hao (bib17) 2013; 18
Manakov (bib2) 1974; 38
Rajendran, Lakshmanan, Muruganandam (bib21) 2011; 52
Feng, Gao, Sun, Zuo, Shen, Sun, Xue, Yu (bib11) 2015; 90
Gao (bib23) 2015; 96
Weiss, Tabor, Carnevale (bib12) 1983; 24
Tratnik, Sipe (bib3) 1988; 38
Ablowitz, Prinari, Trubatch (bib10) 2003
Wazwaz (bib27) 2008; 201
Huang, Xu, Xiong (bib8) 2004
Menyuk (bib4) 1988; 25
Hirota (bib26) 2004
Hasegawa, Kodama (bib7) 1995
Wang, Zhu, Qi, Li, Guo (bib13) 2015; 25
Wang, Tian, Li, Wang, Wang (bib20) 2014; 19
Zhang, Hao, Zhang (bib18) 2013
Porsezian, Nakkeeran (bib6) 1997; 6
Hasegawa, Tappert (bib1) 1973; 23
Gao (bib24) 2015; 70
Yang, Ruan (bib29) 2013; 219
Li, Wu, Wang, He (bib22) 2013; 334
Bhrawy, Abdelkawy, Biswas (bib16) 2013; 18
Ablowitz (bib9) 2004
Wang (10.1016/j.spmi.2016.10.091_bib28) 2014; 35
Guo (10.1016/j.spmi.2016.10.091_bib17) 2013; 18
Demiray (10.1016/j.spmi.2016.10.091_bib25) 2016; 127
Gao (10.1016/j.spmi.2016.10.091_bib23) 2015; 96
Tratnik (10.1016/j.spmi.2016.10.091_bib3) 1988; 38
Bhrawy (10.1016/j.spmi.2016.10.091_bib16) 2013; 18
Manakov (10.1016/j.spmi.2016.10.091_bib2) 1974; 38
Feng (10.1016/j.spmi.2016.10.091_bib11) 2015; 90
Hasegawa (10.1016/j.spmi.2016.10.091_bib1) 1973; 23
Hasegawa (10.1016/j.spmi.2016.10.091_bib7) 1995
Yang (10.1016/j.spmi.2016.10.091_bib29) 2013; 219
Chai (10.1016/j.spmi.2016.10.091_bib14) 2015; 362
Guo (10.1016/j.spmi.2016.10.091_bib15) 2012; 17
Weiss (10.1016/j.spmi.2016.10.091_bib12) 1983; 24
Gao (10.1016/j.spmi.2016.10.091_bib24) 2015; 70
Wang (10.1016/j.spmi.2016.10.091_bib13) 2015; 25
Li (10.1016/j.spmi.2016.10.091_bib19) 2007; 336
Ablowitz (10.1016/j.spmi.2016.10.091_bib10) 2003
Hirota (10.1016/j.spmi.2016.10.091_bib26) 2004
Wang (10.1016/j.spmi.2016.10.091_bib20) 2014; 19
Wazwaz (10.1016/j.spmi.2016.10.091_bib27) 2008; 201
Porsezian (10.1016/j.spmi.2016.10.091_bib6) 1997; 6
Menyuk (10.1016/j.spmi.2016.10.091_bib4) 1988; 25
Ablowitz (10.1016/j.spmi.2016.10.091_bib9) 2004
Achilleos (10.1016/j.spmi.2016.10.091_bib5) 2013; 110
Rajendran (10.1016/j.spmi.2016.10.091_bib21) 2011; 52
Li (10.1016/j.spmi.2016.10.091_bib22) 2013; 334
Zhang (10.1016/j.spmi.2016.10.091_bib18) 2013
Huang (10.1016/j.spmi.2016.10.091_bib8) 2004
References_xml – volume: 38
  start-page: 248
  year: 1974
  end-page: 253
  ident: bib2
  article-title: On the theory of two-dimensional stationary self-focusing of electromagnetic waves
  publication-title: Sov. Phys. JETP
– start-page: 2013
  year: 2013
  ident: bib18
  article-title: Breathers and soliton solutions for a generalization of the nonlinear Schrodinger equation
  publication-title: Math. Probl. Eng.
– volume: 6
  start-page: L7
  year: 1997
  end-page: L11
  ident: bib6
  article-title: Optical solitons in birefringent fibre-Bäcklund transformation approach
  publication-title: Pure Appl. Opt.
– volume: 18
  start-page: 2426
  year: 2013
  end-page: 2435
  ident: bib17
  article-title: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation
  publication-title: Commun. Nonl. Sci. Num. Simul.
– volume: 18
  start-page: 915
  year: 2013
  end-page: 925
  ident: bib16
  article-title: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method
  publication-title: Commun. Nonl. Sci. Num. Simul.
– year: 1995
  ident: bib7
  article-title: Solitons in Optical Communication
– year: 2004
  ident: bib9
  article-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering
– year: 2004
  ident: bib8
  article-title: Solitons Concepts, Principles and Applications
– volume: 362
  start-page: 671
  year: 2015
  end-page: 683
  ident: bib14
  article-title: Lax pair, conservation laws and solitons for a (2+1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 23
  start-page: 142
  year: 1973
  ident: bib1
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 248
  year: 1988
  end-page: 253
  ident: bib3
  article-title: Bound solitary waves in a birefringent optical fiber
  publication-title: Phys. Rev. A
– volume: 201
  start-page: 489
  year: 2008
  end-page: 503
  ident: bib27
  article-title: The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 2674
  year: 1988
  end-page: 2682
  ident: bib4
  article-title: Pulse propagation in an elliptically birefringent Kerr medium
  publication-title: IEEE J. Quantum Electron.
– volume: 96
  start-page: 245
  year: 2015
  end-page: 247
  ident: bib23
  article-title: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics
  publication-title: Ocean. Eng.
– volume: 17
  start-page: 3189
  year: 2012
  end-page: 3203
  ident: bib15
  article-title: Integrability aspects and soliton solutions for an inhomogeneous nonlinear system with symbolic computation
  publication-title: Commun. Nonl. Sci. Num. Simul.
– volume: 70
  start-page: 59
  year: 2015
  end-page: 61
  ident: bib24
  article-title: Incompressible-fluid symbolic computation and Bäcklund transformation: (3+1)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli model
  publication-title: Z. Naturforsch. A
– volume: 25
  start-page: 3111
  year: 2015
  ident: bib13
  article-title: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers
  publication-title: Chaos Interdiscip. J. Nonl. Sci.
– year: 2004
  ident: bib26
  article-title: The Direct Method in Soliton Theory
– volume: 24
  start-page: 522
  year: 1983
  ident: bib12
  article-title: The Painlevé property for partial differential equations
  publication-title: J. Math. Phys.
– volume: 110
  start-page: 264101
  year: 2013
  ident: bib5
  article-title: Matter-wave bright solitons in spinCorbit coupled BoseCEinstein condensates
  publication-title: Phys. Rev. Lett.
– volume: 336
  start-page: 1443
  year: 2007
  end-page: 1455
  ident: bib19
  article-title: Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation
  publication-title: J. Math. Anal. Appl.
– volume: 219
  start-page: 8018
  year: 2013
  end-page: 8025
  ident: bib29
  article-title: HBFGen: a maple package to construct the Hirota bilinear form for nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 334
  start-page: 198
  year: 2013
  end-page: 211
  ident: bib22
  article-title: High-order rogue waves for the Hirota equation
  publication-title: Ann. Phys.
– year: 2003
  ident: bib10
  article-title: Discrete and Continuous Nonlinear Schrödinger Systems
– volume: 35
  start-page: 46
  year: 2014
  end-page: 51
  ident: bib28
  article-title: Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems
  publication-title: Appl. Math. Lett.
– volume: 19
  start-page: 1783
  year: 2014
  end-page: 1791
  ident: bib20
  article-title: Integrability and soliton-like solutions for the coupled higher-order nonlinear Schrödinger equations with variable coefficients in inhomogeneous optical fibers
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 127
  start-page: 1848
  year: 2016
  end-page: 1859
  ident: bib25
  article-title: All exact travelling wave solutions of Hirota equation and Hirota-Maccari system
  publication-title: Optik
– volume: 90
  start-page: 045201
  year: 2015
  ident: bib11
  article-title: Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in an inhomogeneous optical fiber
  publication-title: Phys. Scr.
– volume: 52
  start-page: 023515
  year: 2011
  ident: bib21
  article-title: Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions
  publication-title: J. Math. Phys.
– volume: 96
  start-page: 245
  year: 2015
  ident: 10.1016/j.spmi.2016.10.091_bib23
  article-title: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid mechanics
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2014.12.017
– year: 2004
  ident: 10.1016/j.spmi.2016.10.091_bib8
– volume: 18
  start-page: 2426
  issue: 9
  year: 2013
  ident: 10.1016/j.spmi.2016.10.091_bib17
  article-title: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation
  publication-title: Commun. Nonl. Sci. Num. Simul.
  doi: 10.1016/j.cnsns.2013.01.019
– start-page: 2013
  year: 2013
  ident: 10.1016/j.spmi.2016.10.091_bib18
  article-title: Breathers and soliton solutions for a generalization of the nonlinear Schrodinger equation
  publication-title: Math. Probl. Eng.
– volume: 127
  start-page: 1848
  year: 2016
  ident: 10.1016/j.spmi.2016.10.091_bib25
  article-title: All exact travelling wave solutions of Hirota equation and Hirota-Maccari system
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.10.235
– volume: 336
  start-page: 1443
  year: 2007
  ident: 10.1016/j.spmi.2016.10.091_bib19
  article-title: Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.03.064
– volume: 90
  start-page: 045201
  year: 2015
  ident: 10.1016/j.spmi.2016.10.091_bib11
  article-title: Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in an inhomogeneous optical fiber
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/90/4/045201
– year: 2004
  ident: 10.1016/j.spmi.2016.10.091_bib26
– volume: 17
  start-page: 3189
  issue: 8
  year: 2012
  ident: 10.1016/j.spmi.2016.10.091_bib15
  article-title: Integrability aspects and soliton solutions for an inhomogeneous nonlinear system with symbolic computation
  publication-title: Commun. Nonl. Sci. Num. Simul.
  doi: 10.1016/j.cnsns.2011.11.029
– volume: 6
  start-page: L7
  year: 1997
  ident: 10.1016/j.spmi.2016.10.091_bib6
  article-title: Optical solitons in birefringent fibre-Bäcklund transformation approach
  publication-title: Pure Appl. Opt.
  doi: 10.1088/0963-9659/6/1/002
– volume: 25
  start-page: 3111
  issue: 6
  year: 2015
  ident: 10.1016/j.spmi.2016.10.091_bib13
  article-title: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers
  publication-title: Chaos Interdiscip. J. Nonl. Sci.
– volume: 52
  start-page: 023515
  year: 2011
  ident: 10.1016/j.spmi.2016.10.091_bib21
  article-title: Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3553182
– volume: 334
  start-page: 198
  year: 2013
  ident: 10.1016/j.spmi.2016.10.091_bib22
  article-title: High-order rogue waves for the Hirota equation
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2013.04.004
– volume: 219
  start-page: 8018
  year: 2013
  ident: 10.1016/j.spmi.2016.10.091_bib29
  article-title: HBFGen: a maple package to construct the Hirota bilinear form for nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 142
  issue: 3
  year: 1973
  ident: 10.1016/j.spmi.2016.10.091_bib1
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1654836
– year: 2004
  ident: 10.1016/j.spmi.2016.10.091_bib9
– year: 1995
  ident: 10.1016/j.spmi.2016.10.091_bib7
– volume: 18
  start-page: 915
  issue: 4
  year: 2013
  ident: 10.1016/j.spmi.2016.10.091_bib16
  article-title: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method
  publication-title: Commun. Nonl. Sci. Num. Simul.
  doi: 10.1016/j.cnsns.2012.08.034
– volume: 110
  start-page: 264101
  year: 2013
  ident: 10.1016/j.spmi.2016.10.091_bib5
  article-title: Matter-wave bright solitons in spinCorbit coupled BoseCEinstein condensates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.264101
– volume: 38
  start-page: 248
  issue: 4
  year: 1988
  ident: 10.1016/j.spmi.2016.10.091_bib3
  article-title: Bound solitary waves in a birefringent optical fiber
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.2011
– volume: 25
  start-page: 2674
  issue: 12
  year: 1988
  ident: 10.1016/j.spmi.2016.10.091_bib4
  article-title: Pulse propagation in an elliptically birefringent Kerr medium
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.40656
– volume: 24
  start-page: 522
  year: 1983
  ident: 10.1016/j.spmi.2016.10.091_bib12
  article-title: The Painlevé property for partial differential equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525721
– volume: 38
  start-page: 248
  year: 1974
  ident: 10.1016/j.spmi.2016.10.091_bib2
  article-title: On the theory of two-dimensional stationary self-focusing of electromagnetic waves
  publication-title: Sov. Phys. JETP
– year: 2003
  ident: 10.1016/j.spmi.2016.10.091_bib10
– volume: 201
  start-page: 489
  year: 2008
  ident: 10.1016/j.spmi.2016.10.091_bib27
  article-title: The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves
  publication-title: Appl. Math. Comput.
– volume: 35
  start-page: 46
  year: 2014
  ident: 10.1016/j.spmi.2016.10.091_bib28
  article-title: Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.03.017
– volume: 70
  start-page: 59
  year: 2015
  ident: 10.1016/j.spmi.2016.10.091_bib24
  article-title: Incompressible-fluid symbolic computation and Bäcklund transformation: (3+1)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli model
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2014-0272
– volume: 362
  start-page: 671
  year: 2015
  ident: 10.1016/j.spmi.2016.10.091_bib14
  article-title: Lax pair, conservation laws and solitons for a (2+1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 19
  start-page: 1783
  year: 2014
  ident: 10.1016/j.spmi.2016.10.091_bib20
  article-title: Integrability and soliton-like solutions for the coupled higher-order nonlinear Schrödinger equations with variable coefficients in inhomogeneous optical fibers
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2013.09.003
SSID ssj0009417
Score 2.0986452
Snippet Under investigation in this paper is the generalized coupled nonlinear Hirota (GCH) equations with addition effects by the Hirota method, which is better than...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 172
SubjectTerms Multi-soliton solution and breather
Symbolic computation
The generalized coupled nonlinear Hirota equations
The Hirota method
Title Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method
URI https://dx.doi.org/10.1016/j.spmi.2016.10.091
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXriz14k9gku9mkRy2WqtiLCr2FzT4kUtuaVg8e_O3OJJuqIB4kh4TNTFhmJzvfwjczhJxEHPxES-2FykYeD2LmJZmFBclYxqyUVhjMd74disEDvx5Fowbp1bkwSKt0e3-1p5e7tRvpOGt2ZnneuYPgB_CbCUAUAWZ8YgY7j9HLzz6-aB5dXnbdRWEPpV3iTMXxms-ec6R3iTNkeHWD34PTt4DT3yQbDinS82oyW6RhJi2y1qsbtLXIasneVPNtUpRptN4cuWzTCV26E5UTTS8Kh_Io4FMKT_SxKjWdvxtN1fR1Nob7pCqZIQs6yIvpQlLzUhUBn9O3XJZq7kXVc3qHPPQv73sDzzVT8BTz_YUHgVn6mlmAczJjImMqgcORMRFXXAU606GWSgoFkMpy3_g2TqQ2NoGLhTaO2S5pwlTMHqGhFDIxCATx_9esK7j04VMiDFTYzWSbBLUVU-UqjWPDi3FaU8qeUrR8ipbHMbB8m5wudWZVnY0_paN6cdIf3pJCIPhDb_-fegdkPcRwXhIdD0lzUbyaIwAji-y49LZjsnJ-dTMYfgJh7uFB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2lRVV6QaWlaoHCHtpT5cTeXW-cAwcorVLa5tJEys2s96MyCklqpyA48Kf4g8za6xYk1ANS5IOttWe1nh3NvJXezAAcxhztREsdUGXjgEc9FiSZxQ3JWMaslFYYl-98NRSDMf84iSct-NXkwjhapff9tU-vvLUf6Xptdhd53r3G4IfwmwlEFJHL-PTMygvz_Rue28q35x9wk48oPTsdnQwC31ogUCwMlwGGKRlqZhHcyIyJjKkEjwrGxFxxFelMUy2VFAoBhuWhCW0vkdrYBC9Gba_HcN41eMLRXbi2CZ2fD7ySPq_a_LrVBW55PlOnJpWViy-545OJjqOU9aN_R8M_ItzZFjz10JS8q__-GbTMbBvaJ01HuG3YqOiiqtyBosrbDUpHnpvPyL39EjnT5H3hYSVBQEzwidzUta3zH0YTNb9bTPE-q2t0yIIM8mK-lMTc1lXHS_I1l5WYf1E3uX4O45WoeBfWcSlmDwiVQibGIU_ncDTrCy5DnErQSNF-JvcharSYKl_a3HXYmKYNh-1z6jSfOs27MdT8Phzfyyzqwh6Pfh03m5P-ZZ4pRp5H5F78p9wbaA9GV5fp5fnw4iVsUoclKpblK1hfFnfmAJHQMntdWR6BT6s29d-7CR5y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-soliton+solutions+and+Breathers+for+the+generalized+coupled+nonlinear+Hirota+equations+via+the+Hirota+method&rft.jtitle=Superlattices+and+microstructures&rft.au=Jia%2C+Ting-Ting&rft.au=Chai%2C+Yu-Zhen&rft.au=Hao%2C+Hui-Qin&rft.date=2017-05-01&rft.issn=0749-6036&rft.volume=105&rft.spage=172&rft.epage=182&rft_id=info:doi/10.1016%2Fj.spmi.2016.10.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2016_10_091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon