A broad review on class imbalance learning techniques
The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex characteristics of imbalanced datasets, learning from such data need new algorithms and understandings to convert efficient large amounts of initi...
Saved in:
Published in | Applied soft computing Vol. 143; p. 110415 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex characteristics of imbalanced datasets, learning from such data need new algorithms and understandings to convert efficient large amounts of initial data into suitable datasets. Although several review papers can be found about imbalanced classification problems, none of them contributed an in-depth review of SVM for imbalanced classification problems. To fill this gap, we present an exhaustive review of existing methods to deal with issues linked with class imbalance learning. The majority of the existing survey addresses only classification tasks. We also describe methods to deal with similar problems in regression tasks. A new taxonomy for class imbalanced learning techniques is proposed and classified into three parts: (1) Data pre-processing, (2) Algorithmic structures, and (3) Hybrid techniques. The advantages and disadvantages of each type of imbalanced learning technique are discussed. Moreover, we explain the main difficulties in distributions of imbalanced datasets and discuss the main approaches that have been proposed to tackle these issues. Finally, to stimulate the next research in this area, we emphasize the main opportunities and challenges, which can be useful in research directions for learning algorithms from imbalanced data.
•We present an exhaustive review to deal with issues of class imbalance learning.•We addressed the classification and regression tasks in the imbalance problem.•We proposed a new taxonomy for class imbalanced learning techniques.•We discussed the advantages and disadvantages of imbalanced learning techniques.•We emphasized the major opportunities and challenges in the imbalance area. |
---|---|
AbstractList | The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex characteristics of imbalanced datasets, learning from such data need new algorithms and understandings to convert efficient large amounts of initial data into suitable datasets. Although several review papers can be found about imbalanced classification problems, none of them contributed an in-depth review of SVM for imbalanced classification problems. To fill this gap, we present an exhaustive review of existing methods to deal with issues linked with class imbalance learning. The majority of the existing survey addresses only classification tasks. We also describe methods to deal with similar problems in regression tasks. A new taxonomy for class imbalanced learning techniques is proposed and classified into three parts: (1) Data pre-processing, (2) Algorithmic structures, and (3) Hybrid techniques. The advantages and disadvantages of each type of imbalanced learning technique are discussed. Moreover, we explain the main difficulties in distributions of imbalanced datasets and discuss the main approaches that have been proposed to tackle these issues. Finally, to stimulate the next research in this area, we emphasize the main opportunities and challenges, which can be useful in research directions for learning algorithms from imbalanced data.
•We present an exhaustive review to deal with issues of class imbalance learning.•We addressed the classification and regression tasks in the imbalance problem.•We proposed a new taxonomy for class imbalanced learning techniques.•We discussed the advantages and disadvantages of imbalanced learning techniques.•We emphasized the major opportunities and challenges in the imbalance area. |
ArticleNumber | 110415 |
Author | Wang, Xizhao Rezvani, Salim |
Author_xml | – sequence: 1 givenname: Salim orcidid: 0000-0002-2277-5654 surname: Rezvani fullname: Rezvani, Salim email: salim.rezvani@torontomu.ca organization: Department of Computer Science, Toronto Metropolitan University, Toronto, Canada – sequence: 2 givenname: Xizhao surname: Wang fullname: Wang, Xizhao organization: Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China |
BookMark | eNp9kL1OwzAUhT0UibbwAkx-gQQ7TuxEYqkq_qRKLN0t5-YGHKU22AHE2-MoTAwdru5yviN9Z0NWzjsk5IaznDMub4fcRA95wQqRc85KXq3ImleyzsqmlJdkE-PAUrAp6jWpdrQN3nQ04JfFb-odhdHESO2pNaNxgHREE5x1r3RCeHP24xPjFbnozRjx-u9vyfHh_rh_yg4vj8_73SEDwdiUqR4MiFI2AhEYKGCqlFVdq66FkmOTQqroGKLoVDoJUokWCtVKaCXWYkvqpRaCjzFgr8FOZrLeTcHYUXOmZ2M96NlYz8Z6MU5o8Q99D_Zkws956G6BMDmlOYKOYDFt0NmAMOnO23P4L4hYc5Y |
CitedBy_id | crossref_primary_10_1016_j_cie_2024_110754 crossref_primary_10_1016_j_compbiomed_2025_109830 crossref_primary_10_1186_s40537_025_01119_4 crossref_primary_10_1016_j_inffus_2024_102874 crossref_primary_10_1016_j_aei_2024_102839 crossref_primary_10_1007_s11227_024_06108_7 crossref_primary_10_1186_s13040_024_00384_y crossref_primary_10_3390_math12121898 crossref_primary_10_1080_17460441_2024_2403639 crossref_primary_10_1007_s10115_024_02126_2 crossref_primary_10_1109_TITS_2024_3445664 crossref_primary_10_1016_j_ress_2024_110565 crossref_primary_10_1016_j_ipm_2024_103975 crossref_primary_10_1111_bor_12682 crossref_primary_10_1016_j_atech_2025_100808 crossref_primary_10_1016_j_compbiomed_2024_108996 crossref_primary_10_1016_j_aei_2024_102606 crossref_primary_10_1016_j_neucom_2024_128707 crossref_primary_10_1016_j_asoc_2024_111993 crossref_primary_10_3233_JIFS_234402 crossref_primary_10_1016_j_compeleceng_2024_109863 crossref_primary_10_1088_2632_2153_ad95dc crossref_primary_10_1109_TIP_2025_3531988 crossref_primary_10_3390_en18010059 crossref_primary_10_1016_j_ins_2025_122015 crossref_primary_10_1016_j_procs_2024_04_082 crossref_primary_10_1097_SHK_0000000000002490 crossref_primary_10_1109_TFUZZ_2024_3366936 crossref_primary_10_1016_j_procs_2024_10_155 crossref_primary_10_1016_j_patcog_2024_111195 crossref_primary_10_1016_j_neucom_2024_128475 crossref_primary_10_3390_math12223623 crossref_primary_10_1002_msd2_12100 crossref_primary_10_1021_acs_jpclett_3c02365 crossref_primary_10_1007_s10115_024_02079_6 crossref_primary_10_1109_TPAMI_2023_3310908 crossref_primary_10_3390_electronics14010069 crossref_primary_10_1109_ACCESS_2025_3536479 crossref_primary_10_1007_s41060_024_00604_y crossref_primary_10_3390_app131810305 crossref_primary_10_1007_s10614_023_10532_x crossref_primary_10_1016_j_asoc_2023_111072 crossref_primary_10_1016_j_asoc_2024_111393 crossref_primary_10_1111_exsy_13754 crossref_primary_10_1007_s13369_024_09428_1 crossref_primary_10_1016_j_clon_2025_103789 crossref_primary_10_1016_j_icte_2024_04_007 crossref_primary_10_29407_intensif_v8i1_21168 crossref_primary_10_1016_j_neucom_2024_127712 crossref_primary_10_1016_j_compbiomed_2023_107545 crossref_primary_10_1016_j_ins_2024_121430 crossref_primary_10_1007_s10462_024_10759_6 crossref_primary_10_1371_journal_pone_0315394 crossref_primary_10_1016_j_eswa_2025_126465 crossref_primary_10_1186_s12911_024_02649_2 crossref_primary_10_1186_s13014_024_02496_5 crossref_primary_10_1016_j_knosys_2024_112143 crossref_primary_10_1016_j_neunet_2025_107126 crossref_primary_10_1109_ACCESS_2024_3416872 crossref_primary_10_1016_j_engappai_2023_106911 crossref_primary_10_1038_s41598_024_65044_x crossref_primary_10_1016_j_patcog_2024_110886 crossref_primary_10_1155_acis_1013769 crossref_primary_10_3390_math12132064 crossref_primary_10_1038_s41598_024_80495_y crossref_primary_10_1016_j_neunet_2024_106767 crossref_primary_10_1061_AJRUA6_RUENG_1480 crossref_primary_10_1016_j_ins_2024_120351 crossref_primary_10_1016_j_asoc_2023_110986 crossref_primary_10_1016_j_asoc_2024_112349 crossref_primary_10_1007_s10462_025_11107_y crossref_primary_10_1016_j_asoc_2024_111659 crossref_primary_10_1186_s13040_025_00440_1 |
Cites_doi | 10.1016/j.neucom.2022.07.083 10.1109/ICMLA.2012.212 10.1007/3-540-59119-2_166 10.1109/TSMCA.2009.2029559 10.1016/j.asoc.2021.107457 10.1142/9789814417747_0128 10.1109/TKDE.2005.95 10.1145/1046456.1046475 10.1016/0893-6080(95)00120-4 10.1109/ISCID.2012.219 10.1016/j.datak.2009.08.005 10.1109/TSMCB.2008.2007853 10.1145/1007730.1007739 10.1109/ICICISYS.2009.5357925 10.1016/j.cose.2022.102777 10.1109/TNN.2010.2066988 10.1007/s10489-011-0287-y 10.1007/s13042-018-0853-2 10.1109/WCSE.2009.756 10.1145/1007730.1007734 10.1016/j.artmed.2005.03.002 10.1145/312129.312220 10.1016/j.eswa.2011.09.059 10.1109/CIDM.2011.5949434 10.1145/1180639.1180729 10.5176/978-981-08-7466-7_kd-21 10.1109/ICDM.2001.989527 10.1109/TNNLS.2013.2246188 10.1162/089976601750264965 10.1016/j.ins.2021.07.010 10.1016/j.compbiomed.2021.104888 10.1016/j.dss.2011.01.003 10.1109/ICCSE.2013.6553890 10.1145/1277741.1277927 10.1109/IJCNN.2010.5596787 10.1016/j.patcog.2013.05.006 10.1007/11941439_30 10.1109/ISCIT.2013.6645923 10.1007/978-3-540-30115-8_7 10.1109/FSKD.2009.608 10.1007/978-3-540-78671-9_23 10.1007/s10618-011-0222-1 10.1109/IJCNN.2008.4633794 10.1109/TSMCC.2011.2161285 10.1109/TIT.1968.1054155 10.1109/CIDM.2009.4938667 10.1007/978-3-540-24580-3_36 10.1109/ICICS.2011.6173603 10.1080/15389588.2020.1723794 10.1007/s10618-008-0087-0 10.1145/772862.772878 10.1109/COLCOM.2006.361856 10.1016/j.egypro.2012.02.078 10.1016/j.patcog.2021.107965 10.1023/A:1007452223027 10.1109/TPAMI.2006.134 10.1080/01621459.1961.10482090 10.1109/TFUZZ.2010.2042721 10.1145/1007730.1007737 10.1109/TKDE.2012.232 10.1016/S0167-9473(99)00095-X 10.1007/s13748-016-0094-0 10.1111/j.0824-7935.2004.t01-1-00228.x 10.1016/j.neucom.2010.11.024 10.2753/MIS0742-1222250309 10.1214/aos/1176344552 10.1007/s001800050018 10.1214/aoms/1177731944 10.1007/s13042-019-01044-y 10.1109/TKDE.2005.50 10.19026/rjaset.5.5044 10.1007/s10115-009-0198-y 10.1016/j.eswa.2021.116100 10.1109/ACCESS.2021.3051174 10.1007/978-3-642-03348-3_54 10.1016/j.ins.2009.12.014 10.1613/jair.1199 10.1109/TKDE.2008.239 10.1016/j.fss.2007.12.023 10.1007/978-981-10-5272-9_39 10.1093/bioinformatics/btp107 10.1016/S0031-3203(02)00257-1 10.1109/TFUZZ.2019.2893863 10.1007/978-3-540-39804-2_12 10.1016/j.eswa.2008.06.108 10.1162/evco.2009.17.3.275 10.1007/s10618-012-0295-5 10.1016/j.inffus.2013.04.006 10.1007/978-3-030-29407-6_17 10.1007/s13042-020-01272-7 10.1007/11893028_93 10.1145/1007730.1007735 10.1145/1007730.1007738 10.1007/s10115-011-0465-6 10.1016/j.eswa.2016.09.010 10.1007/s13042-020-01081-y 10.1109/TCSS.2014.2377811 10.1002/9780470417409.ch4 10.1093/jigpal/jzq027 10.1016/j.knosys.2019.105287 10.1613/jair.953 10.1145/1089827.1089830 10.1007/11731139_15 10.1080/07421222.2004.11045815 10.1109/TKDE.2006.17 10.1109/TVT.2022.3165526 10.1109/ICECENG.2011.6056838 10.1016/j.patcog.2007.04.009 10.1007/978-3-540-73007-1_20 10.1145/2641758 10.1007/s13042-019-00984-9 10.1016/j.cmpb.2022.107097 10.1109/BIBE.2008.4696724 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2023.110415 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_asoc_2023_110415 S1568494623004337 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AAYXX CITATION SSH |
ID | FETCH-LOGICAL-c300t-7fcac34693eec0c7c07465887dbc41e930072d0ee3d7e3d6c673bc27b6cb6e83 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Jul 10 08:27:24 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Sat Aug 09 17:32:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data pre-processing techniques Algorithmic structures techniques Support vector machine Imbalanced learning Hybrid techniques |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7fcac34693eec0c7c07465887dbc41e930072d0ee3d7e3d6c673bc27b6cb6e83 |
ORCID | 0000-0002-2277-5654 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2023_110415 crossref_primary_10_1016_j_asoc_2023_110415 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110415 |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mease, Wyner, Buja (b167) 2007; 8 Zhuang, Dai (b153) 2006 Zhou, Liu (b130) 2006; 18 Martinez-Garcia, Suarez-Araujo, Baaez (b107) 2012 P. Songwattanasiri, K. Sinapiromsaran, Smoute: Synthetics minority over-sampling and under-sampling techniques for class imbalanced problem, in: Proceedings of the Annual International Conference on Computer Science Education: Innovation and Technology, Special Track: Knowledge Discovery, 2010, pp. 78–83. Lee, Cho (b154) 2006 Galar, Fernandez, Barrenechea, Herrera (b161) 2013; 46 Vapnik (b42) 1995 S. Ertekin, J. Huang, L. Giles, Active learning for class imbalance problem, in: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007, pp. 823–824. Branco, Torgo, Ribeiro (b6) 2015 Hammad, Hewahi, Elmedany (b66) 2022; 120 Yong (b160) 2012; 17 M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: ICML-2003 Workshop on Learning from Imbalanced Data Sets II, Vol. 2, 2003, pp. 1–2. Tomek (b80) 1976; 11 H.Y. Wang, Combination approach of smote and biased-svm for imbalanced datasets, in: International Joint Conference on Neural Networks, IJCNN 2008, 2008, pp. 228–231. Fernandez, del Jesus, Herrera (b46) 2010; 180 N. Japkowicz, C. Myers, M. Gluck, A novelty detection approach to classification, in: Proceedings of the Fourteenth Joint Conference on Artificial Intelligence, 1995, pp. 518–523. Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (b104) 2011; 17 P. Domingos, Metacost: A general method for making classifiers cost-sensitive, in: KDD’99: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, 1999, pp. 155–164. Huang, Ling (b177) 2005; 17 Milaré, Batista, Carvalho (b20) 2011; 19 Kubat, Holte, Matwin (b39) 1998; 30 Estabrooks, Japkowicz (b142) 2001 J. Yuan, J. Li, B. Zhang, Learning concepts from large scale imbalanced data sets using support cluster machines, in: Proceedings of the 14th Annual ACM International Conference on Multimedia, 2006, pp. 441–450. T. Imam, K. Ting, J. Kamruzzaman, z-svm: An svm for improved classification of imbalanced data, in: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, 2006, pp. 264–273. Hernandez-Orallo (b140) 2012 Rezvani, Wang, Pourpanah (b27) 2019; 27 Doucette, Heywood (b158) 2008 Friedman (b179) 1940; 11 Dua, Graff (b175) 2017 Woniak, Graña, Corchado (b18) 2014; 16 Barua, Yao, Murase (b69) 2014; 26 Haibo, Yang, Edwardo, hutao (b3) 2008 Chawla, Bowyer, Hall, Kegelmeyer (b48) 2002; 16 C. Drummond, R.C. Holte, C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling, in: Workshop on Learning from Imbalanced Datasets II, Vol. 11, 2003. J. Stefanowski, S. Wilk, Improving rule based classifiers induced by modlem by selective pre-processing of imbalanced data, in: Proc. of the RSKD Workshop at ECML/PKDD, Warsaw, 2007, pp. 54–65. Y. Liu, A. An, X. Huang, Boosting prediction accuracy on imbalanced datasets with svm ensembles, in: Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2006, pp. 107–118. Hart (b82) 1968; 14 M. Joshi, V. Kumar, C. Agarwal, Evaluating boosting algorithms to classify rare classes: Comparison and improvements, in: Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 257–264. Ertekin (b171) 2013 Fu, Ruixiang, Yang, Simin, Wang, Wang, Shan, Liu, Gao (b86) 2004; 6 K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines, in: Proceedings of the International Joint Conference on AI, 1995, pp. 55–60. J. Chen, M. Casique, M. Karakoy, Classification of lung data by sampling and support vector machine, in: In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, 2004, pp. 3194–3197. Stefanowski, Wilk (b162) 2008 Tao, Tang, Li, Wu (b56) 2006; 28 Jeatrakul, Wong, Fung (b166) 2010 Menardi, Torelli (b61) 2014; 28 Elassad, Mousannif, Moatassime (b62) 2020; 21 Z. Lin, Z. Hao, X. Yang, X. Liu, Several svm ensemble methods integrated with under-sampling for imbalanced data learning, in: Proceedings of the 5th International Conference on Advanced Data Mining and Applications, 2009, pp. 536–544. Zhu, Hovy (b170) 2007; 7 He, Ma (b29) 2013 Cohen, Hilario, Sax, Hugonnet, Geissbuhler (b96) 2006; 37 Singla, Ghosh, Shukla (b12) 2020; 11 Raskutti, Kowalczyk (b120) 2004; 6 Han, Wen-Yuan, Bing-Huan (b34) 2005 E.Y. Chang, B. Li, G. Wu, K. Goh, Statistical learning for effective visual information retrieval, in: IEEE International Conference on Image Processing, 2003. W. Fan, S. Stolfo, J. Zhang, P. Chan, Adacost: Misclassification cost-sensitive boosting, in: In Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 97–105. R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in: Proceedings of the 15th European Conference on Machine Learning, 2004, pp. 39–50. R. Batuwita, V. Palade, An improved non-comparative classification method for human microrna gene prediction, in: Proceedings of the International Conference on Bioinformatics and Bioengineering, 2008, pp. 1–6. Lee (b75) 2000; 34 Wu, Chang (b157) 2005; 17 Breiman, Friedman, Olshen, Stone (b52) 1984 Batuwita, Palade (b111) 2010; 18 Phua, Alahakoon, Lee (b147) 2004; 6 T. Maciejewski, J. Stefanowski, Local neighbourhood extension of smote for mining imbalanced data, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111. Maheshwari, Agrawal, Sharma (b159) 2011; 2 Moya, Hush (b148) 1996; 9 A.Rivera, Xanthopoulos (b63) 2016; 66 Efron (b176) 1979; 7 I. Mani, J. Zhang, knn approach to unbalanced data distributions: A case study involving information extraction, in: Proceedings of Workshop on Learning from Imbalanced Datasets, 2003. Ramentol, Canallero, Bello, Herrera (b84) 2012; 33 Zhao, Sinha, Bansal (b139) 2011; 51 Batuwita, Palade (b89) 2009; 25 Barbado, Corcho, Benjamins (b31) 2022; 189 Rijsbergen (b35) 1979 Castro, de Padua Braga (b133) 2013; 24 Xiao, Xie, He, Jiang (b145) 2012; 39 N. Japkowicz, Learning from imbalanced data sets: A comparison of various strategies, in: AAAI Workshop on Learning from Imbalanced Data Sets, Vol. 68, 2000, pp. 10–15. C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Mute: Majority under-sampling technique, in: 8th International Conference on Information, Communications and Signal Processing, 2011, pp. 1–4. Don, Iacob (b26) 2020; 11 Hu (b173) 2012 Oh (b132) 2011; 74 Scholkopf, Platt, Shawe-Taylor, Smola, Williamson (b151) 2001; 13 Xue, Zhong, Zhang, Yu, Chen (b24) 2021; 12 Zhang, Zhou, Guo, Wang, Wang (b25) 2019; 10 Akpinar, FatihAdak, Guvenc (b32) 2021; 109 Bansal, Sinha, Zhao (b138) 2008; 25 G. Myatt, W. Johnson, Making Sense of Data II, John Wiley and Sons, Ltd, pp. 111–163 Y. Tang, S. Krasser, P. Judge, Y. Zhang, Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data, in: Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), 2006, pp. 1–6. Sun, Kamel, Wong, Wang (b125) 2007; 40 S. Tyagi, S. Mittal, Sampling Approaches for Imbalanced Data Classification Problem in Machine Learning, in: Proceedings of ICRIC 2019, 2019, pp. 209–221. N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: Proceedings of the Principles of Knowledge Discovery in Databases, 2003, pp. 107–119. E. Ramentol, N. Verbiest, R. Bello, Y. Canallero, C. Cornelis, F. Herrera, Smote-first: A new resampling method using fuzzy rough set theory, in: World Scientific Proceedings Series on Computer Engineering and Information Science Uncertainty Modeling in Knowledge Engineering and Decision Making, 2012, pp. 800–805. G. Wu, E. Chang, Class-Boundary Alignment for Imbalanced Dataset Learning, in: ICML 2003 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003. C. Bellinger, S. Sharma, N. Japkowicz, One-class versus binary classification: Which and when?, in: 2012 11th International Conference on Machine Learning and Applications, Vol. 2, 2012, pp. 102–106. Yen, Lee (b95) 2009; 36 Yao, Zheng, Jiang (b11) 2021; 9 Rezvani (b28) 2013; 5 Ganganwar (b21) 2012; 2 R.P. Ribeiro, L. Torgo, Predicting harmful algae blooms, in: Portuguese Conference on Artificial Intelligence EPIA 2003: Progress in Artificial Intelligence, 2003, pp. 308–312. Dunn (b180) 1961; 56 Zhang, Liu, Gong, Jin (b77) 2011; 7 Garcia, Herrera (b60) 2009; 17 Z.Z. Yang, D. Gao, An active under-sampling approach for imbalanced data classification, in: Fifth International Symposium on Computational Intelligence and Design, Vol. 2, 2012, pp. 270–273. Rezvani, Wang (b7) 2021; 578 Van Pulse, hi Jehoshaphat (b15) 2009; 68 R. Batuwita, V. Palade, Efficient resampling methods for training support vector machines with imbalanced datasets, in: Proceedings of the International Joint Conference on Neural Networks, 2010, pp. 1–8. Haibo, Yunqian (b2) 2013 P. Kang, S. Cho, Eus svms: Eensemble of under-sampled svms for data imbalance problems, in: Proceedings of the 13th International Conference on Neural Information Processing, 2006, pp. 837–846. Estabrooks, Jo, Japkowicz (b44) 2004; 20 Krawczyk (b8) 2016; 5 Azaria, Richardson, Kraus, Subrahmanian (b17) 2014; 1 URL. Kotsiantis, Pintelas (b146) 2003; 1 Fernandez, Garcia, del Jesus, Herrera (b45) 2008; 159 Verbiest, Ramentol, Cornelis, Herrera (b72) 2012 F.J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction algorithms, in: ICML’98: Proc. of the 15th Int. Conf. on Machine Learning, 1998, pp. 445–453. H. Ma, L. Wang, B. Shen, A New Fuzzy Support Vector Machines for Class Imbalance Learning, in: 2011 International Conference on Electrical and Control Engineering, 2011, pp. 3781–3784. Rezvani, Wang (b178) 2022; 507 Ji, Lee (b33) 2022; 71 Torgo, Ribeiro, Pfahringer, Branc Castro (10.1016/j.asoc.2023.110415_b133) 2013; 24 10.1016/j.asoc.2023.110415_b156 Mease (10.1016/j.asoc.2023.110415_b167) 2007; 8 10.1016/j.asoc.2023.110415_b71 Tarekegn (10.1016/j.asoc.2023.110415_b13) 2021; 118 10.1016/j.asoc.2023.110415_b73 Estabrooks (10.1016/j.asoc.2023.110415_b142) 2001 Lee (10.1016/j.asoc.2023.110415_b154) 2006 10.1016/j.asoc.2023.110415_b76 Hernandez-Orallo (10.1016/j.asoc.2023.110415_b141) 2014; 8 10.1016/j.asoc.2023.110415_b78 Kowalczyk (10.1016/j.asoc.2023.110415_b121) 2002; 4 10.1016/j.asoc.2023.110415_b164 10.1016/j.asoc.2023.110415_b163 Lian (10.1016/j.asoc.2023.110415_b65) 2022 10.1016/j.asoc.2023.110415_b165 Sun (10.1016/j.asoc.2023.110415_b125) 2007; 40 Krawczyk (10.1016/j.asoc.2023.110415_b8) 2016; 5 Doucette (10.1016/j.asoc.2023.110415_b158) 2008 Holte (10.1016/j.asoc.2023.110415_b92) 1989; 89 Yong (10.1016/j.asoc.2023.110415_b160) 2012; 17 Cieslak (10.1016/j.asoc.2023.110415_b129) 2012; 24 10.1016/j.asoc.2023.110415_b149 Cristianini (10.1016/j.asoc.2023.110415_b117) 2000 Oh (10.1016/j.asoc.2023.110415_b132) 2011; 74 Breiman (10.1016/j.asoc.2023.110415_b52) 1984 10.1016/j.asoc.2023.110415_b83 Hiabo (10.1016/j.asoc.2023.110415_b4) 2009; 21 10.1016/j.asoc.2023.110415_b85 Moya (10.1016/j.asoc.2023.110415_b148) 1996; 9 Woniak (10.1016/j.asoc.2023.110415_b18) 2014; 16 Jo (10.1016/j.asoc.2023.110415_b93) 2004; 6 Torgo (10.1016/j.asoc.2023.110415_b135) 2003 Branco (10.1016/j.asoc.2023.110415_b6) 2015 Tan (10.1016/j.asoc.2023.110415_b144) 2003; 14 Zhang (10.1016/j.asoc.2023.110415_b25) 2019; 10 Bunkhumpornpat (10.1016/j.asoc.2023.110415_b70) 2009 Menardi (10.1016/j.asoc.2023.110415_b61) 2014; 28 10.1016/j.asoc.2023.110415_b87 Batuwita (10.1016/j.asoc.2023.110415_b111) 2010; 18 Chawla (10.1016/j.asoc.2023.110415_b51) 2008; 17 Ramentol (10.1016/j.asoc.2023.110415_b84) 2012; 33 Wang (10.1016/j.asoc.2023.110415_b101) 2010; 25 Bunkhumpornpat (10.1016/j.asoc.2023.110415_b79) 2012; 36 10.1016/j.asoc.2023.110415_b88 A.Rivera (10.1016/j.asoc.2023.110415_b63) 2016; 66 Bansal (10.1016/j.asoc.2023.110415_b138) 2008; 25 10.1016/j.asoc.2023.110415_b150 Garcia (10.1016/j.asoc.2023.110415_b60) 2009; 17 10.1016/j.asoc.2023.110415_b136 10.1016/j.asoc.2023.110415_b50 Dunn (10.1016/j.asoc.2023.110415_b180) 1961; 56 Barandela (10.1016/j.asoc.2023.110415_b113) 2003; 36 Singla (10.1016/j.asoc.2023.110415_b12) 2020; 11 Akpinar (10.1016/j.asoc.2023.110415_b32) 2021; 109 Lee (10.1016/j.asoc.2023.110415_b74) 1999; 14 Seiffert (10.1016/j.asoc.2023.110415_b143) 2010; 40 10.1016/j.asoc.2023.110415_b58 Tao (10.1016/j.asoc.2023.110415_b56) 2006; 28 Hart (10.1016/j.asoc.2023.110415_b82) 1968; 14 Hernandez-Orallo (10.1016/j.asoc.2023.110415_b140) 2012 10.1016/j.asoc.2023.110415_b54 10.1016/j.asoc.2023.110415_b53 Friedman (10.1016/j.asoc.2023.110415_b179) 1940; 11 10.1016/j.asoc.2023.110415_b55 Haibo (10.1016/j.asoc.2023.110415_b3) 2008 Rijsbergen (10.1016/j.asoc.2023.110415_b35) 1979 Yen (10.1016/j.asoc.2023.110415_b94) 2006 Kurin (10.1016/j.asoc.2023.110415_b105) 2017 Phua (10.1016/j.asoc.2023.110415_b147) 2004; 6 Batista (10.1016/j.asoc.2023.110415_b81) 2004; 6 Weiss (10.1016/j.asoc.2023.110415_b114) 2004; 6 Liu (10.1016/j.asoc.2023.110415_b127) 2010; 10 Dua (10.1016/j.asoc.2023.110415_b175) 2017 Torgo (10.1016/j.asoc.2023.110415_b47) 2013 10.1016/j.asoc.2023.110415_b124 Lee (10.1016/j.asoc.2023.110415_b75) 2000; 34 10.1016/j.asoc.2023.110415_b126 Kotsiantis (10.1016/j.asoc.2023.110415_b146) 2003; 1 Zhang (10.1016/j.asoc.2023.110415_b77) 2011; 7 Rezvani (10.1016/j.asoc.2023.110415_b178) 2022; 507 Haibo (10.1016/j.asoc.2023.110415_b2) 2013 Han (10.1016/j.asoc.2023.110415_b34) 2005 Yen (10.1016/j.asoc.2023.110415_b95) 2009; 36 Rout (10.1016/j.asoc.2023.110415_b9) 2018 Zhuang (10.1016/j.asoc.2023.110415_b153) 2006 Ramyachitra (10.1016/j.asoc.2023.110415_b22) 2014; 5 10.1016/j.asoc.2023.110415_b68 Alcalá-Fdez (10.1016/j.asoc.2023.110415_b104) 2011; 17 Vapnik (10.1016/j.asoc.2023.110415_b42) 1995 Cieslak (10.1016/j.asoc.2023.110415_b128) 2008 Wang (10.1016/j.asoc.2023.110415_b23) 2020; 11 Efron (10.1016/j.asoc.2023.110415_b176) 1979; 7 Barbado (10.1016/j.asoc.2023.110415_b31) 2022; 189 Verbiest (10.1016/j.asoc.2023.110415_b72) 2012 10.1016/j.asoc.2023.110415_b67 Liu (10.1016/j.asoc.2023.110415_b155) 2009; 39 Chen (10.1016/j.asoc.2023.110415_b168) 2010; 21 Liu (10.1016/j.asoc.2023.110415_b106) 2007 Batuwita (10.1016/j.asoc.2023.110415_b89) 2009; 25 Ertekin (10.1016/j.asoc.2023.110415_b171) 2013 Ji (10.1016/j.asoc.2023.110415_b33) 2022; 71 10.1016/j.asoc.2023.110415_b116 Garcia (10.1016/j.asoc.2023.110415_b59) 2006 10.1016/j.asoc.2023.110415_b119 Stefanowski (10.1016/j.asoc.2023.110415_b162) 2008 10.1016/j.asoc.2023.110415_b118 10.1016/j.asoc.2023.110415_b112 10.1016/j.asoc.2023.110415_b115 Cohen (10.1016/j.asoc.2023.110415_b96) 2006; 37 Zhu (10.1016/j.asoc.2023.110415_b170) 2007; 7 Cao (10.1016/j.asoc.2023.110415_b134) 2013 Zhao (10.1016/j.asoc.2023.110415_b139) 2011; 51 Rezvani (10.1016/j.asoc.2023.110415_b28) 2013; 5 10.1016/j.asoc.2023.110415_b36 10.1016/j.asoc.2023.110415_b37 Xiao (10.1016/j.asoc.2023.110415_b145) 2012; 39 Scholkopf (10.1016/j.asoc.2023.110415_b151) 2001; 13 Metz (10.1016/j.asoc.2023.110415_b40) 1978; vol. 8 Madasamy (10.1016/j.asoc.2023.110415_b174) 2017; 13 Chawla (10.1016/j.asoc.2023.110415_b48) 2002; 16 10.1016/j.asoc.2023.110415_b122 Ribeiro (10.1016/j.asoc.2023.110415_b137) 2011 Hu (10.1016/j.asoc.2023.110415_b173) 2012 Galar (10.1016/j.asoc.2023.110415_b161) 2013; 46 Alejo (10.1016/j.asoc.2023.110415_b131) 2007 Frank (10.1016/j.asoc.2023.110415_b182) 2016 10.1016/j.asoc.2023.110415_b108 10.1016/j.asoc.2023.110415_b102 10.1016/j.asoc.2023.110415_b103 Martinez-Garcia (10.1016/j.asoc.2023.110415_b107) 2012 Don (10.1016/j.asoc.2023.110415_b26) 2020; 11 10.1016/j.asoc.2023.110415_b41 He (10.1016/j.asoc.2023.110415_b29) 2013 Manevitz (10.1016/j.asoc.2023.110415_b152) 2002; 2 Zhou (10.1016/j.asoc.2023.110415_b130) 2006; 18 10.1016/j.asoc.2023.110415_b43 Wu (10.1016/j.asoc.2023.110415_b157) 2005; 17 Yao (10.1016/j.asoc.2023.110415_b11) 2021; 9 Vapnik (10.1016/j.asoc.2023.110415_b38) 1998 Demar (10.1016/j.asoc.2023.110415_b181) 2006; 7 10.1016/j.asoc.2023.110415_b110 10.1016/j.asoc.2023.110415_b1 Galar (10.1016/j.asoc.2023.110415_b5) 2012; 42 Sinha (10.1016/j.asoc.2023.110415_b123) 2004; 21 Rezvani (10.1016/j.asoc.2023.110415_b27) 2019; 27 Estabrooks (10.1016/j.asoc.2023.110415_b44) 2004; 20 Fernandez (10.1016/j.asoc.2023.110415_b45) 2008; 159 10.1016/j.asoc.2023.110415_b90 Rezvani (10.1016/j.asoc.2023.110415_b109) 2020; 192 10.1016/j.asoc.2023.110415_b91 Van Pulse (10.1016/j.asoc.2023.110415_b15) 2009; 68 10.1016/j.asoc.2023.110415_b10 10.1016/j.asoc.2023.110415_b98 Milaré (10.1016/j.asoc.2023.110415_b20) 2011; 19 Chen (10.1016/j.asoc.2023.110415_b57) 2004 Makond (10.1016/j.asoc.2023.110415_b64) 2021; 138 10.1016/j.asoc.2023.110415_b97 10.1016/j.asoc.2023.110415_b99 Xue (10.1016/j.asoc.2023.110415_b24) 2021; 12 10.1016/j.asoc.2023.110415_b100 10.1016/j.asoc.2023.110415_b19 Azaria (10.1016/j.asoc.2023.110415_b17) 2014; 1 Kubat (10.1016/j.asoc.2023.110415_b39) 1998; 30 Ganaie (10.1016/j.asoc.2023.110415_b30) 2022; 245 10.1016/j.asoc.2023.110415_b169 Lakshmi (10.1016/j.asoc.2023.110415_b16) 2014 Rezvani (10.1016/j.asoc.2023.110415_b7) 2021; 578 Barua (10.1016/j.asoc.2023.110415_b69) 2014; 26 Raskutti (10.1016/j.asoc.2023.110415_b120) 2004; 6 Tomek (10.1016/j.asoc.2023.110415_b80) 1976; 11 Jeatrakul (10.1016/j.asoc.2023.110415_b166) 2010 Elassad (10.1016/j.asoc.2023.110415_b62) 2020; 21 Huang (10.1016/j.asoc.2023.110415_b177) 2005; 17 Fu (10.1016/j.asoc.2023.110415_b86) 2004; 6 Maheshwari (10.1016/j.asoc.2023.110415_b159) 2011; 2 Devi (10.1016/j.asoc.2023.110415_b14) 2020 Weiss (10.1016/j.asoc.2023.110415_b49) 2003; 19 Mi (10.1016/j.asoc.2023.110415_b172) 2013; 5 Hammad (10.1016/j.asoc.2023.110415_b66) 2022; 120 Fernandez (10.1016/j.asoc.2023.110415_b46) 2010; 180 Ganganwar (10.1016/j.asoc.2023.110415_b21) 2012; 2 |
References_xml | – start-page: 241 year: 2008 end-page: 256 ident: b128 article-title: Learning decision trees for unbalanced data publication-title: Mach. Learn. Knowl. Discov. Databases – volume: 8 start-page: 409 year: 2007 end-page: 439 ident: b167 article-title: Cost-weighted boosting with jittering and over/under-sampling: Jous-boost publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 1359 year: 2020 end-page: 1385 ident: b12 article-title: A survey of robust optimization based machine learning with special reference to support vector machines publication-title: Int. J. Mach. Learn. Cybern. – volume: 11 start-page: 433 year: 2020 end-page: 447 ident: b26 article-title: DCSVM: Fast multi-class classification using support vector machines publication-title: Int. J. Mach. Learn. Cybern. – volume: 24 start-page: 888 year: 2013 end-page: 899 ident: b133 article-title: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 21 year: 2006 end-page: 30 ident: b154 article-title: The novelty detection approach for different degrees of class imbalance publication-title: Neural Information Processing – volume: 56 start-page: 52 year: 1961 end-page: 64 ident: b180 article-title: Multiple comparisons among means publication-title: J. Amer. Statist. Assoc. – reference: W. Fan, S. Stolfo, J. Zhang, P. Chan, Adacost: Misclassification cost-sensitive boosting, in: In Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 97–105. – volume: 11 start-page: 1909 year: 2020 end-page: 1922 ident: b23 article-title: Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data publication-title: Int. J. Mach. Learn. Cybern. – volume: 21 start-page: 201 year: 2020 end-page: 208 ident: b62 article-title: Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study publication-title: Traffic Inj. Prev. – year: 2004 ident: b57 article-title: Using Random Forest to Learn Imbalanced Data – volume: 17 start-page: 299 year: 2005 end-page: 310 ident: b177 article-title: Using auc and accuracy in evaluating learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. – volume: 6 start-page: 20 year: 2004 end-page: 29 ident: b81 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD Explor. Newsl. – start-page: 169 year: 2012 end-page: 178 ident: b72 article-title: Improving smote with fuzzy rough prototype selection to detect noise in imbalanced classification data publication-title: Adv. Artif. Intell. IBERAMIA – volume: 7 start-page: 783 year: 2007 end-page: 790 ident: b170 article-title: Active learning for word sense disambiguation with methods for addressing the class imbalance problem publication-title: EMNLP-CoNLL – start-page: 34 year: 2001 end-page: 43 ident: b142 article-title: A mixture-of-experts framework for learning from imbalanced data sets publication-title: Advances in Intelligent Data Analysis – start-page: 261 year: 2013 end-page: 269 ident: b171 article-title: Adaptive oversampling for imbalanced data classification publication-title: Inf. Sci. Syst. – start-page: 66 year: 2007 end-page: 72 ident: b106 article-title: Generative oversampling for mining imbalanced datasets publication-title: DMIN – volume: 189 year: 2022 ident: b31 article-title: Rule extraction in unsupervised anomaly detection for model explainability: Application to OneClass SVM publication-title: Expert Syst. Appl. – reference: Y. Tang, S. Krasser, P. Judge, Y. Zhang, Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data, in: Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), 2006, pp. 1–6. – volume: 8 start-page: 1 year: 2014 end-page: 17 ident: b141 article-title: Probabilistic reframing for cost-sensitive regression publication-title: ACM Trans. Knowl. Discov. Data – start-page: 141 year: 2014 end-page: 145 ident: b16 article-title: A study on classifying imbalanced datasets publication-title: 2014 First International Conference on Networks Soft Computing – volume: 109 year: 2021 ident: b32 article-title: SVM-based anomaly detection in remote working: Intelligent software SmartRadar publication-title: Appl. Soft Comput. – reference: C. Drummond, R.C. Holte, C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling, in: Workshop on Learning from Imbalanced Datasets II, Vol. 11, 2003. – volume: 17 start-page: 786 year: 2005 end-page: 795 ident: b157 article-title: Kba: Kernel boundary alignment considering imbalanced data distribution publication-title: IEEE Trans. Knowl. Data Eng. – reference: S. Hu, Y. Liang, L. Ma, Y. He, Msmote: Improving classification performance when training data is imbalanced, in: Second International Workshop on Computer Science and Engineering, Vol. 2, 2009, pp. 13–17. – volume: 14 start-page: 277 year: 1999 end-page: 292 ident: b74 article-title: Regularization in skewed binary classification publication-title: Comput. Statist. – start-page: 475 year: 2009 end-page: 482 ident: b70 article-title: Safelevel-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem publication-title: Adv. Knowl. Discov. Data Min. – reference: T. Maciejewski, J. Stefanowski, Local neighbourhood extension of smote for mining imbalanced data, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111. – volume: 180 start-page: 1268 year: 2010 end-page: 1291 ident: b46 article-title: On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets publication-title: Inform. Sci. – volume: 6 start-page: 50 year: 2004 end-page: 59 ident: b147 article-title: Minority report in fraud detection: Classification of skewed data publication-title: ACM SIGKDD Explor. Newsl. – volume: 14 start-page: 515 year: 1968 end-page: 516 ident: b82 article-title: The condensed nearest neighbor rule publication-title: IEEE Trans. Inform. Theory – reference: K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines, in: Proceedings of the International Joint Conference on AI, 1995, pp. 55–60. – volume: 13 start-page: 2267 year: 2017 end-page: 2281 ident: b174 article-title: Data imbalance and classifiers: Impact and solutions from a big data perspective publication-title: Int. J. Comput. Intell. Res. – start-page: 626 year: 2020 end-page: 631 ident: b14 article-title: A review on solution to class imbalance problem: Undersampling approaches publication-title: 2020 International Conference on Computational Performance Evaluation – start-page: 152 year: 2010 end-page: 159 ident: b166 article-title: Classification of imbalanced data by combining the complementary neural network and smote algorithm publication-title: Neural Inf. Process.. Models Appl. – volume: 13 start-page: 1443 year: 2001 end-page: 1471 ident: b151 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. – reference: G. Wu, E. Chang, Class-Boundary Alignment for Imbalanced Dataset Learning, in: ICML 2003 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003. – year: 2017 ident: b105 article-title: A comparison of classification models for imbalanced datasets – volume: 4 start-page: 99 year: 2002 end-page: 100 ident: b121 article-title: One class svm for yeast regulation prediction publication-title: SIGKDD Explor. Newslett. – volume: 9 start-page: 463 year: 1996 end-page: 474 ident: b148 article-title: Network contraints and multiobjective optimization for one-class classification publication-title: Neural Netw. – reference: N. Japkowicz, C. Myers, M. Gluck, A novelty detection approach to classification, in: Proceedings of the Fourteenth Joint Conference on Artificial Intelligence, 1995, pp. 518–523. – start-page: 283 year: 2008 end-page: 292 ident: b162 article-title: Selective pre-processing of imbalanced data for improving classification performance publication-title: DaWaK 2008: Data Warehousing and Knowledge Discovery – reference: P. Kang, S. Cho, Eus svms: Eensemble of under-sampled svms for data imbalance problems, in: Proceedings of the 13th International Conference on Neural Information Processing, 2006, pp. 837–846. – volume: 42 start-page: 463 year: 2012 end-page: 484 ident: b5 article-title: A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev. – volume: 11 start-page: 769 year: 1976 end-page: 772 ident: b80 article-title: Two modifications of CNN publication-title: IEEE Trans. Syst. Man Cybern. – reference: B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-proportionate example weighting, in: ICDM’03 Proceedings of the Third IEEE International Conference on Data Mining, 2003, pp. 19–22. – year: 1995 ident: b42 article-title: The Nature of Statistical Learning Theory – reference: E.Y. Chang, B. Li, G. Wu, K. Goh, Statistical learning for effective visual information retrieval, in: IEEE International Conference on Image Processing, 2003. – volume: 245 year: 2022 ident: b30 article-title: KNN weighted reduced universum twin SVM for class imbalance learning publication-title: Knowl.-Based Syst. – reference: F.J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction algorithms, in: ICML’98: Proc. of the 15th Int. Conf. on Machine Learning, 1998, pp. 445–453. – reference: Y. Liu, A. An, X. Huang, Boosting prediction accuracy on imbalanced datasets with svm ensembles, in: Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2006, pp. 107–118. – volume: 68 start-page: 1513 year: 2009 end-page: 1542 ident: b15 article-title: Knowledge discovery from imbalanced and noisy data publication-title: Data Knowl. Eng. – start-page: 878 year: 2005 end-page: 887 ident: b34 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning publication-title: Advances in Intelligent Computing – reference: C. Bunkhumpornpat, S. Subpaiboonkit, Safe level graph for synthetic minority over-sampling techniques, in: 13th International Symposium on Communications and Information Technologies, ISCIT, 2013, pp. 570–575. – reference: S. Ertekin, J. Huang, L. Giles, Active learning for class imbalance problem, in: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007, pp. 823–824. – volume: 66 start-page: 124 year: 2016 end-page: 135 ident: b63 article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets publication-title: Expert Syst. Appl. – year: 1998 ident: b38 article-title: Statistical Learning Theory – volume: 89 start-page: 813 year: 1989 end-page: 818 ident: b92 article-title: Concept learning and the problem of small disjuncts publication-title: IJCAI – volume: 17 start-page: 275 year: 2009 end-page: 306 ident: b60 article-title: Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy publication-title: Evol. Comput. – volume: 33 start-page: 245 year: 2012 end-page: 265 ident: b84 article-title: Smote-rsb: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory publication-title: Knowl. Inf. Syst. – volume: 9 start-page: 16914 year: 2021 end-page: 16927 ident: b11 article-title: An ensemble model for fake online review detection based on data resampling, feature pruning, and parameter optimization publication-title: IEEE Access – reference: R.P. Ribeiro, L. Torgo, Predicting harmful algae blooms, in: Portuguese Conference on Artificial Intelligence EPIA 2003: Progress in Artificial Intelligence, 2003, pp. 308–312. – volume: 51 start-page: 372 year: 2011 end-page: 383 ident: b139 article-title: An extended tuning method for cost-sensitive regression and forecasting publication-title: Decis. Support Syst. – reference: T. Imam, K. Ting, J. Kamruzzaman, z-svm: An svm for improved classification of imbalanced data, in: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, 2006, pp. 264–273. – reference: R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in: Proceedings of the 15th European Conference on Machine Learning, 2004, pp. 39–50. – volume: 18 start-page: 63 year: 2006 end-page: 77 ident: b130 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. – volume: 6 start-page: 60 year: 2004 end-page: 69 ident: b120 article-title: Extreme re-balancing for svms: A case study publication-title: SIGKDD Explor. Newslett. – volume: 2 start-page: 42 year: 2012 end-page: 47 ident: b21 article-title: An overview of classification algorithms for imbalanced datasets publication-title: Int. J. Emerg. Technol. Adv. Eng. – reference: M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: ICML-2003 Workshop on Learning from Imbalanced Data Sets II, Vol. 2, 2003, pp. 1–2. – volume: 37 start-page: 7 year: 2006 end-page: 18 ident: b96 article-title: Learning from imbalanced data in surveillance of nosocomial infection publication-title: Artif. Intell. Med. – volume: 5 start-page: 515 year: 2013 end-page: 523 ident: b28 article-title: Ranking method of trapezoidal intuitionistic fuzzy numbers publication-title: Ann. Fuzzy Math. Inform. – year: 2022 ident: b65 article-title: Lung image segmentation based on DRD U-Net and combined WGAN with deep neural network publication-title: Comput. Methods Programs Biomed. – volume: 24 start-page: 136 year: 2012 end-page: 158 ident: b129 article-title: Hellinger distance decision trees are robust and skew-insensitive publication-title: Data Min. Knowl. Discov. – reference: , URL. – year: 1984 ident: b52 article-title: Classification and Regression Trees – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b48 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – volume: 19 start-page: 315 year: 2003 end-page: 354 ident: b49 article-title: Learning when training data are costly: The effect of class distribution on tree induction publication-title: J. Artif. Intell. Res – volume: 39 start-page: 3668 year: 2012 end-page: 3675 ident: b145 article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution publication-title: Expert Syst. Appl. – volume: 6 start-page: 40 year: 2004 end-page: 49 ident: b93 article-title: Class imbalances versus small disjuncts publication-title: ACM SIGKDD Explor. Newsl. – volume: 17 start-page: 164 year: 2012 end-page: 170 ident: b160 article-title: The research of imbalanced data set of sample sampling method based on k-means cluster and genetic algorithm publication-title: Energy Procedia – volume: 5 start-page: 944 year: 2013 end-page: 949 ident: b172 article-title: Imbalanced classification based on active learning smote publication-title: Res. J. Appl. Sci. Eng. Technol. – start-page: 1415 year: 2006 end-page: 1423 ident: b59 article-title: A proposal of evolutionary prototype selection for class imbalance problems publication-title: Intell. Data Eng. Automat. Learn., IDEAL – volume: 120 year: 2022 ident: b66 article-title: MMM-RF: A novel high accuracy multinomial mixture model for network intrusion detection systems publication-title: Comput. Secur. – volume: 30 start-page: 195 year: 1998 end-page: 215 ident: b39 article-title: Machine learning for the detection of oil spills in satellite radar images publication-title: Mach. Learn. – reference: H.Y. Wang, Combination approach of smote and biased-svm for imbalanced datasets, in: International Joint Conference on Neural Networks, IJCNN 2008, 2008, pp. 228–231. – volume: vol. 8 start-page: 283 year: 1978 end-page: 298 ident: b40 article-title: Basic principles of roc analysis publication-title: Seminars in Nuclear Medicine – reference: S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 324–331. – volume: 6 start-page: 7 year: 2004 end-page: 19 ident: b114 article-title: Mining with rarity: A unifying framework publication-title: SIGKDD Explor. Newslett. – reference: P. Songwattanasiri, K. Sinapiromsaran, Smoute: Synthetics minority over-sampling and under-sampling techniques for class imbalanced problem, in: Proceedings of the Annual International Conference on Computer Science Education: Innovation and Technology, Special Track: Knowledge Discovery, 2010, pp. 78–83. – start-page: 43 year: 2015 end-page: 48 ident: b6 article-title: A survey of predictive modelling under imbalanced distributions – reference: M. Joshi, V. Kumar, C. Agarwal, Evaluating boosting algorithms to classify rare classes: Comparison and improvements, in: Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 257–264. – volume: 40 start-page: 3358 year: 2007 end-page: 3378 ident: b125 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognit. – volume: 10 start-page: 1765 year: 2019 end-page: 1778 ident: b25 article-title: Research on classification method of high-dimensional class-imbalanced datasets based on SVM publication-title: Int. J. Mach. Learn. Cybern. – volume: 28 start-page: 92.122 year: 2014 ident: b61 article-title: Training and assessing classification rules with imbalanced data publication-title: Data Min. Knowl. Discov. – volume: 25 start-page: 989 year: 2009 end-page: 995 ident: b89 article-title: Micropred: Effective classification of pre-mirnas for human mirna gene prediction publication-title: Bioinformatics – volume: 159 start-page: 2378 year: 2008 end-page: 2398 ident: b45 article-title: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets publication-title: Fuzzy Sets and Systems – start-page: 162 year: 2007 end-page: 169 ident: b131 article-title: Improving the performance of the rbf neural networks trained with imbalanced samples publication-title: Comput. Ambient Intell. – volume: 1 start-page: 46 year: 2003 end-page: 55 ident: b146 article-title: Mixture of expert agents for handling imbalanced data sets publication-title: Ann. Math., Comput. Teleinform. – volume: 16 start-page: 3 year: 2014 end-page: 17 ident: b18 article-title: A survey of multiple classifier systems as hybrid systems publication-title: Inf. Fusion – volume: 7 start-page: 2204 year: 2011 end-page: 2211 ident: b77 article-title: A novel improved smote resampling algorithm based on fractal publication-title: J. Comput. Inf. Syst. – volume: 7 start-page: 1 year: 1979 end-page: 26 ident: b176 article-title: Bootstrap methods: Another look at the jackknife publication-title: Ann. Statist. – reference: G.M. Weiss, K. McCarthy, B. Zabar, Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?, in: Proceedings of the International Conference on Data Mining, 2007, pp. 25–28. – volume: 36 start-page: 5718 year: 2009 end-page: 5727 ident: b95 article-title: Cluster-based under-sampling approaches for imbalanced data distributions publication-title: Expert Syst. Appl. – volume: 25 start-page: 1 year: 2010 end-page: 20 ident: b101 article-title: Boosting support vector machines for imbalanced data sets publication-title: Knowl. Inf. Syst. – volume: 192 year: 2020 ident: b109 article-title: Erratum to entropy-based fuzzy support vector machine for imbalanced datasets” [Knowl.-Based Syst. 115 (2017) 87–99] publication-title: Knowl.-Based Syst. – reference: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Mute: Majority under-sampling technique, in: 8th International Conference on Information, Communications and Signal Processing, 2011, pp. 1–4. – reference: N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: Proceedings of the Principles of Knowledge Discovery in Databases, 2003, pp. 107–119. – year: 2012 ident: b140 article-title: Soft (Gaussian cde) regression models and loss functions – reference: S. Lessmann, Solving imbalanced classification problems with support vector machines, in: Proceedings of the International Conference on Artificial Intelligence, 2004, pp. 214–220. – year: 2013 ident: b29 article-title: Imbalanced Learning: Foundations, Algorithms, and Applications – reference: C. Li, C. Jing, G. Xin-tao, An improved p-svm method used to deal with imbalanced data sets, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, Vol. 1, 2009, pp. 118–122. – volume: 36 start-page: 849 year: 2003 end-page: 851 ident: b113 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recognit. – start-page: 447 year: 2003 end-page: 458 ident: b135 article-title: Predicting outliers publication-title: Knowl. Discov. Databases: PKDD – volume: 21 start-page: 1624 year: 2010 end-page: 1642 ident: b168 article-title: Ramoboost: Ranked minority oversampling in boosting publication-title: IEEE Trans. Neural Netw. – volume: 507 start-page: 16 year: 2022 end-page: 25 ident: b178 article-title: Intuitionistic fuzzy twin support vector machines for imbalanced data publication-title: Neurocomputing – reference: M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: One-sided selection, in: Proc. of the 14th Int. Conf. on Machine Learning, 1997, pp. 179–186. – volume: 36 start-page: 664 year: 2012 end-page: 684 ident: b79 article-title: Dbsmote: Density-based synthetic minority over-sampling technique publication-title: Appl. Intell. – volume: 19 start-page: 293 year: 2011 end-page: 303 ident: b20 article-title: A hybrid approach to learn with imbalanced classes using evolutionary algorithms publication-title: Logic J. IGPL – start-page: 431 year: 2018 end-page: 443 ident: b9 article-title: Handling imbalanced data: A survey publication-title: International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications – volume: 27 start-page: 2140 year: 2019 end-page: 2151 ident: b27 article-title: Intuitionistic fuzzy twin support vector machines publication-title: IEEE Trans. Fuzzy Syst. – volume: 138 year: 2021 ident: b64 article-title: Benchmarking prognosis methods for survivability. A case study for patients with contingent primary cancers publication-title: Comput. Biol. Med. – reference: R. Batuwita, V. Palade, An improved non-comparative classification method for human microrna gene prediction, in: Proceedings of the International Conference on Bioinformatics and Bioengineering, 2008, pp. 1–6. – year: 2000 ident: b117 article-title: An Introduction to Support Vector Machines and other kernel-based learning methods – reference: Y. Freund, R. Schapire, A decision-theoretic generalization of online learning and an application to boosting, in: Proceedings of the Second European Conference on Computational Learning Theory, 1995. – start-page: 83 year: 2013 end-page: 99 ident: b2 article-title: Class imbalance learning methods for support vector machines publication-title: Imbalanced Learning: Foundations, Algorithms, and Applications – volume: 34 start-page: 165 year: 2000 end-page: 191 ident: b75 article-title: Noisy replication in skewed binary classification publication-title: Comput. Statist. Data Anal. – reference: J. Chen, M. Casique, M. Karakoy, Classification of lung data by sampling and support vector machine, in: In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, 2004, pp. 3194–3197. – volume: 1 start-page: 135 year: 2014 end-page: 155 ident: b17 article-title: Behavioral analysis of insider threat: A survey and bootstrapped prediction in imbalanced data publication-title: IEEE Trans. Comput. Soc. Syst. – start-page: 731 year: 2006 end-page: 740 ident: b94 article-title: Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset publication-title: Intelligent Control and Automation – volume: 40 start-page: 185 year: 2010 end-page: 197 ident: b143 article-title: Rusboost: A hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. A – start-page: 490 year: 2012 end-page: 495 ident: b173 article-title: Active learning for imbalance problem using l-gem of rbfnn publication-title: ICMLC – volume: 39 start-page: 539 year: 2009 end-page: 550 ident: b155 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. B – start-page: 378 year: 2013 end-page: 389 ident: b47 article-title: Smote for regression publication-title: Progress in Artificial Intelligence – reference: G. Myatt, W. Johnson, Making Sense of Data II, John Wiley and Sons, Ltd, pp. 111–163, – reference: H. Ma, L. Wang, B. Shen, A New Fuzzy Support Vector Machines for Class Imbalance Learning, in: 2011 International Conference on Electrical and Control Engineering, 2011, pp. 3781–3784. – volume: 5 start-page: 221 year: 2016 end-page: 232 ident: b8 article-title: Learning from imbalanced data: Open challenges and future directions publication-title: Progress Artif. Intell. – volume: 46 start-page: 3460 year: 2013 end-page: 3471 ident: b161 article-title: Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling publication-title: Pattern Recognit. – reference: P. Domingos, Metacost: A general method for making classifiers cost-sensitive, in: KDD’99: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, 1999, pp. 155–164. – start-page: 584 year: 2012 end-page: 592 ident: b107 article-title: Sneom: A sanger network based extended over-sampling method. Application to imbalanced biomedical datasets publication-title: Neural Information Processing – reference: C. Bellinger, S. Sharma, N. Japkowicz, One-class versus binary classification: Which and when?, in: 2012 11th International Conference on Machine Learning and Applications, Vol. 2, 2012, pp. 102–106. – volume: 14 start-page: 206 year: 2003 end-page: 217 ident: b144 article-title: Multi-class protein fold classification using a new ensemble machine learning approach publication-title: Genome Inform. – volume: 12 start-page: 1753 year: 2021 end-page: 1768 ident: b24 article-title: Sample-based online learning for bi-regular hinge loss publication-title: Int. J. Mach. Learn. Cybern. – volume: 17 start-page: 255 year: 2011 end-page: 287 ident: b104 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Multiple-Valued Logic Soft Comput – reference: J. Stefanowski, S. Wilk, Improving rule based classifiers induced by modlem by selective pre-processing of imbalanced data, in: Proc. of the RSKD Workshop at ECML/PKDD, Warsaw, 2007, pp. 54–65. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b4 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 118 year: 2021 ident: b13 article-title: A review of methods for imbalanced multi-label classification publication-title: Pattern Recognit. – reference: N.V. Chawla, L.O. Hall, A. Joshi, Wrapper-based computation and evaluation of sampling methods for imbalanced datasets, in: Proceedings of the 1st International Workshop on Utility-Based Data Mining, 2005, pp. 24–33. – start-page: 538 year: 2006 end-page: 549 ident: b153 article-title: Parameter estimation of one-class svm on imbalance text classification publication-title: Advances in Artificial Intelligence – reference: I. Mani, J. Zhang, knn approach to unbalanced data distributions: A case study involving information extraction, in: Proceedings of Workshop on Learning from Imbalanced Datasets, 2003. – reference: L. Xuan, C. Zhigang, Y. Fan, Exploring of clustering algorithm on class-imbalanced data, in: 2013 8th International Conference on Computer Science and Education, 2013, pp. 89–93. – year: 2011 ident: b137 article-title: Utility-Based Regression – year: 2016 ident: b182 article-title: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques” – reference: N. Japkowicz, Learning from imbalanced data sets: A comparison of various strategies, in: AAAI Workshop on Learning from Imbalanced Data Sets, Vol. 68, 2000, pp. 10–15. – volume: 2 start-page: 1 year: 2011 end-page: 5 ident: b159 article-title: A new approach for classification of highly imbalanced datasets using evolutionary algorithms publication-title: Intl. J. Sci. Eng. Res. – year: 1979 ident: b35 article-title: Information Retrieval – volume: 20 start-page: 18 year: 2004 end-page: 36 ident: b44 article-title: A multiple resampling method for learning from imbalanced data sets publication-title: Comput. Intell. – reference: J. Song, X. Lu, X. Wu, An improved adaboost algorithm for unbalanced classification data, in: FSKD’09 Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery, Vol. 1, 2009, pp. 109–113. – start-page: 452 year: 2013 end-page: 463 ident: b134 article-title: A pso-based cost-sensitive neural network for imbalanced data classification publication-title: Trends Appl. Knowl. Discov. Data Min. – start-page: 1 year: 2008 end-page: 26 ident: b3 article-title: Adasyn: Adaptive synthetic sampling approach for imbalanced learning publication-title: Adv. Knowl. Discov. Data Min. – volume: 21 start-page: 249 year: 2004 end-page: 280 ident: b123 article-title: Evaluating and tuning predictive data mining models using receiver operating characteristic curves publication-title: J. Manage. Inf. Syst. – volume: 17 start-page: 225 year: 2008 end-page: 252 ident: b51 article-title: Automatically countering imbalance and its empirical relationship to cost publication-title: Data Min. Knowl. Discov. – volume: 71 start-page: 6032 year: 2022 end-page: 6043 ident: b33 article-title: Event-based anomaly detection using a one-class SVM for a hybrid electric vehicle publication-title: IEEE Trans. Veh. Technol. – volume: 26 start-page: 405 year: 2014 end-page: 425 ident: b69 article-title: Mwmote-majority weighted minority oversampling technique for imbalanced data set learning publication-title: IEEE Trans. Knowl. Data Eng. – reference: R. Batuwita, V. Palade, Efficient resampling methods for training support vector machines with imbalanced datasets, in: Proceedings of the International Joint Conference on Neural Networks, 2010, pp. 1–8. – reference: E. Ramentol, N. Verbiest, R. Bello, Y. Canallero, C. Cornelis, F. Herrera, Smote-first: A new resampling method using fuzzy rough set theory, in: World Scientific Proceedings Series on Computer Engineering and Information Science Uncertainty Modeling in Knowledge Engineering and Decision Making, 2012, pp. 800–805. – reference: S. Tyagi, S. Mittal, Sampling Approaches for Imbalanced Data Classification Problem in Machine Learning, in: Proceedings of ICRIC 2019, 2019, pp. 209–221. – volume: 18 start-page: 558 year: 2010 end-page: 571 ident: b111 article-title: Fsvm-cil: Fuzzy support vector machines for class imbalance learning publication-title: IEEE Trans. Fuzzy Syst. – volume: 74 start-page: 1058 year: 2011 end-page: 1061 ident: b132 article-title: Error back-propagation algorithm for classification of imbalanced data publication-title: Neurocomputing – reference: J. Yuan, J. Li, B. Zhang, Learning concepts from large scale imbalanced data sets using support cluster machines, in: Proceedings of the 14th Annual ACM International Conference on Multimedia, 2006, pp. 441–450. – volume: 2 start-page: 139 year: 2002 end-page: 154 ident: b152 article-title: One-class svms for document classification publication-title: J. Mach. Learn. Res. – start-page: 266 year: 2008 end-page: 277 ident: b158 article-title: Gp classification under imbalanced data sets: Active sub-sampling and auc approximation publication-title: Genetic Programm. – volume: 28 start-page: 1088 year: 2006 end-page: 1099 ident: b56 article-title: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 120 year: 2004 end-page: 124 ident: b86 article-title: A block-based support vector machine approach to the protein homology prediction task in kdd cup 2004 publication-title: SIGKDD Explor. Newslett. – volume: 578 start-page: 659 year: 2021 end-page: 682 ident: b7 article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines publication-title: Inform. Sci. – volume: 10 start-page: 766 year: 2010 end-page: 777 ident: b127 article-title: A robust decision tree algorithm for imbalanced data sets publication-title: SDM – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: b179 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – reference: Z.Z. Yang, D. Gao, An active under-sampling approach for imbalanced data classification, in: Fifth International Symposium on Computational Intelligence and Design, Vol. 2, 2012, pp. 270–273. – volume: 25 start-page: 315 year: 2008 end-page: 336 ident: b138 article-title: Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting publication-title: J. Manage. Inf. Syst. – volume: 5 year: 2014 ident: b22 article-title: Imbalance dataset classification and solutions: A review publication-title: Int. J. Comput. Bus. Res. – reference: Z. Lin, Z. Hao, X. Yang, X. Liu, Several svm ensemble methods integrated with under-sampling for imbalanced data learning, in: Proceedings of the 5th International Conference on Advanced Data Mining and Applications, 2009, pp. 536–544. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b181 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – year: 2017 ident: b175 article-title: UCI machine learning repository – start-page: 83 year: 2013 ident: 10.1016/j.asoc.2023.110415_b2 article-title: Class imbalance learning methods for support vector machines – year: 1979 ident: 10.1016/j.asoc.2023.110415_b35 – volume: 507 start-page: 16 year: 2022 ident: 10.1016/j.asoc.2023.110415_b178 article-title: Intuitionistic fuzzy twin support vector machines for imbalanced data publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.083 – volume: 5 issue: 4 year: 2014 ident: 10.1016/j.asoc.2023.110415_b22 article-title: Imbalance dataset classification and solutions: A review publication-title: Int. J. Comput. Bus. Res. – volume: 8 start-page: 409 year: 2007 ident: 10.1016/j.asoc.2023.110415_b167 article-title: Cost-weighted boosting with jittering and over/under-sampling: Jous-boost publication-title: J. Mach. Learn. Res. – year: 1984 ident: 10.1016/j.asoc.2023.110415_b52 – ident: 10.1016/j.asoc.2023.110415_b55 – start-page: 283 year: 2008 ident: 10.1016/j.asoc.2023.110415_b162 article-title: Selective pre-processing of imbalanced data for improving classification performance – volume: 11 start-page: 769 year: 1976 ident: 10.1016/j.asoc.2023.110415_b80 article-title: Two modifications of CNN publication-title: IEEE Trans. Syst. Man Cybern. – ident: 10.1016/j.asoc.2023.110415_b90 doi: 10.1109/ICMLA.2012.212 – ident: 10.1016/j.asoc.2023.110415_b124 doi: 10.1007/3-540-59119-2_166 – volume: 40 start-page: 185 year: 2010 ident: 10.1016/j.asoc.2023.110415_b143 article-title: Rusboost: A hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. A doi: 10.1109/TSMCA.2009.2029559 – start-page: 169 year: 2012 ident: 10.1016/j.asoc.2023.110415_b72 article-title: Improving smote with fuzzy rough prototype selection to detect noise in imbalanced classification data publication-title: Adv. Artif. Intell. IBERAMIA – start-page: 241 year: 2008 ident: 10.1016/j.asoc.2023.110415_b128 article-title: Learning decision trees for unbalanced data publication-title: Mach. Learn. Knowl. Discov. Databases – volume: 109 year: 2021 ident: 10.1016/j.asoc.2023.110415_b32 article-title: SVM-based anomaly detection in remote working: Intelligent software SmartRadar publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107457 – ident: 10.1016/j.asoc.2023.110415_b71 doi: 10.1142/9789814417747_0128 – volume: 17 start-page: 786 year: 2005 ident: 10.1016/j.asoc.2023.110415_b157 article-title: Kba: Kernel boundary alignment considering imbalanced data distribution publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.95 – volume: 6 start-page: 120 year: 2004 ident: 10.1016/j.asoc.2023.110415_b86 article-title: A block-based support vector machine approach to the protein homology prediction task in kdd cup 2004 publication-title: SIGKDD Explor. Newslett. doi: 10.1145/1046456.1046475 – ident: 10.1016/j.asoc.2023.110415_b115 – volume: 9 start-page: 463 year: 1996 ident: 10.1016/j.asoc.2023.110415_b148 article-title: Network contraints and multiobjective optimization for one-class classification publication-title: Neural Netw. doi: 10.1016/0893-6080(95)00120-4 – start-page: 452 year: 2013 ident: 10.1016/j.asoc.2023.110415_b134 article-title: A pso-based cost-sensitive neural network for imbalanced data classification publication-title: Trends Appl. Knowl. Discov. Data Min. – ident: 10.1016/j.asoc.2023.110415_b165 doi: 10.1109/ISCID.2012.219 – volume: 68 start-page: 1513 issue: 12 year: 2009 ident: 10.1016/j.asoc.2023.110415_b15 article-title: Knowledge discovery from imbalanced and noisy data publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2009.08.005 – start-page: 538 year: 2006 ident: 10.1016/j.asoc.2023.110415_b153 article-title: Parameter estimation of one-class svm on imbalance text classification – volume: 5 start-page: 515 issue: 3 year: 2013 ident: 10.1016/j.asoc.2023.110415_b28 article-title: Ranking method of trapezoidal intuitionistic fuzzy numbers publication-title: Ann. Fuzzy Math. Inform. – volume: 39 start-page: 539 year: 2009 ident: 10.1016/j.asoc.2023.110415_b155 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2008.2007853 – volume: 6 start-page: 60 year: 2004 ident: 10.1016/j.asoc.2023.110415_b120 article-title: Extreme re-balancing for svms: A case study publication-title: SIGKDD Explor. Newslett. doi: 10.1145/1007730.1007739 – ident: 10.1016/j.asoc.2023.110415_b112 doi: 10.1109/ICICISYS.2009.5357925 – volume: 120 year: 2022 ident: 10.1016/j.asoc.2023.110415_b66 article-title: MMM-RF: A novel high accuracy multinomial mixture model for network intrusion detection systems publication-title: Comput. Secur. doi: 10.1016/j.cose.2022.102777 – start-page: 1 year: 2008 ident: 10.1016/j.asoc.2023.110415_b3 article-title: Adasyn: Adaptive synthetic sampling approach for imbalanced learning publication-title: Adv. Knowl. Discov. Data Min. – ident: 10.1016/j.asoc.2023.110415_b58 – volume: 21 start-page: 1624 year: 2010 ident: 10.1016/j.asoc.2023.110415_b168 article-title: Ramoboost: Ranked minority oversampling in boosting publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2066988 – year: 2004 ident: 10.1016/j.asoc.2023.110415_b57 – volume: 36 start-page: 664 year: 2012 ident: 10.1016/j.asoc.2023.110415_b79 article-title: Dbsmote: Density-based synthetic minority over-sampling technique publication-title: Appl. Intell. doi: 10.1007/s10489-011-0287-y – volume: 10 start-page: 1765 year: 2019 ident: 10.1016/j.asoc.2023.110415_b25 article-title: Research on classification method of high-dimensional class-imbalanced datasets based on SVM publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0853-2 – ident: 10.1016/j.asoc.2023.110415_b76 doi: 10.1109/WCSE.2009.756 – volume: 6 start-page: 7 year: 2004 ident: 10.1016/j.asoc.2023.110415_b114 article-title: Mining with rarity: A unifying framework publication-title: SIGKDD Explor. Newslett. doi: 10.1145/1007730.1007734 – volume: vol. 8 start-page: 283 year: 1978 ident: 10.1016/j.asoc.2023.110415_b40 article-title: Basic principles of roc analysis – volume: 37 start-page: 7 year: 2006 ident: 10.1016/j.asoc.2023.110415_b96 article-title: Learning from imbalanced data in surveillance of nosocomial infection publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2005.03.002 – ident: 10.1016/j.asoc.2023.110415_b122 doi: 10.1145/312129.312220 – ident: 10.1016/j.asoc.2023.110415_b150 – start-page: 584 year: 2012 ident: 10.1016/j.asoc.2023.110415_b107 article-title: Sneom: A sanger network based extended over-sampling method. Application to imbalanced biomedical datasets – volume: 39 start-page: 3668 year: 2012 ident: 10.1016/j.asoc.2023.110415_b145 article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.059 – start-page: 626 year: 2020 ident: 10.1016/j.asoc.2023.110415_b14 article-title: A review on solution to class imbalance problem: Undersampling approaches – ident: 10.1016/j.asoc.2023.110415_b68 doi: 10.1109/CIDM.2011.5949434 – ident: 10.1016/j.asoc.2023.110415_b97 doi: 10.1145/1180639.1180729 – start-page: 141 year: 2014 ident: 10.1016/j.asoc.2023.110415_b16 article-title: A study on classifying imbalanced datasets – ident: 10.1016/j.asoc.2023.110415_b164 doi: 10.5176/978-981-08-7466-7_kd-21 – ident: 10.1016/j.asoc.2023.110415_b103 doi: 10.1109/ICDM.2001.989527 – volume: 24 start-page: 888 year: 2013 ident: 10.1016/j.asoc.2023.110415_b133 article-title: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2246188 – volume: 13 start-page: 1443 year: 2001 ident: 10.1016/j.asoc.2023.110415_b151 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 578 start-page: 659 year: 2021 ident: 10.1016/j.asoc.2023.110415_b7 article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.010 – ident: 10.1016/j.asoc.2023.110415_b83 – volume: 138 year: 2021 ident: 10.1016/j.asoc.2023.110415_b64 article-title: Benchmarking prognosis methods for survivability. A case study for patients with contingent primary cancers publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104888 – volume: 51 start-page: 372 year: 2011 ident: 10.1016/j.asoc.2023.110415_b139 article-title: An extended tuning method for cost-sensitive regression and forecasting publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2011.01.003 – ident: 10.1016/j.asoc.2023.110415_b91 doi: 10.1109/ICCSE.2013.6553890 – ident: 10.1016/j.asoc.2023.110415_b169 doi: 10.1145/1277741.1277927 – ident: 10.1016/j.asoc.2023.110415_b43 doi: 10.1109/IJCNN.2010.5596787 – volume: 46 start-page: 3460 year: 2013 ident: 10.1016/j.asoc.2023.110415_b161 article-title: Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.05.006 – ident: 10.1016/j.asoc.2023.110415_b119 doi: 10.1007/11941439_30 – ident: 10.1016/j.asoc.2023.110415_b78 doi: 10.1109/ISCIT.2013.6645923 – ident: 10.1016/j.asoc.2023.110415_b1 doi: 10.1007/978-3-540-30115-8_7 – ident: 10.1016/j.asoc.2023.110415_b41 – ident: 10.1016/j.asoc.2023.110415_b126 doi: 10.1109/FSKD.2009.608 – start-page: 266 year: 2008 ident: 10.1016/j.asoc.2023.110415_b158 article-title: Gp classification under imbalanced data sets: Active sub-sampling and auc approximation publication-title: Genetic Programm. doi: 10.1007/978-3-540-78671-9_23 – volume: 24 start-page: 136 year: 2012 ident: 10.1016/j.asoc.2023.110415_b129 article-title: Hellinger distance decision trees are robust and skew-insensitive publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-011-0222-1 – ident: 10.1016/j.asoc.2023.110415_b149 – start-page: 43 year: 2015 ident: 10.1016/j.asoc.2023.110415_b6 – year: 2000 ident: 10.1016/j.asoc.2023.110415_b117 – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.asoc.2023.110415_b181 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.asoc.2023.110415_b156 doi: 10.1109/IJCNN.2008.4633794 – volume: 42 start-page: 463 year: 2012 ident: 10.1016/j.asoc.2023.110415_b5 article-title: A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev. doi: 10.1109/TSMCC.2011.2161285 – volume: 14 start-page: 515 year: 1968 ident: 10.1016/j.asoc.2023.110415_b82 article-title: The condensed nearest neighbor rule publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1968.1054155 – ident: 10.1016/j.asoc.2023.110415_b54 doi: 10.1109/CIDM.2009.4938667 – ident: 10.1016/j.asoc.2023.110415_b136 doi: 10.1007/978-3-540-24580-3_36 – ident: 10.1016/j.asoc.2023.110415_b163 doi: 10.1109/ICICS.2011.6173603 – volume: 21 start-page: 201 issue: 3 year: 2020 ident: 10.1016/j.asoc.2023.110415_b62 article-title: Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2020.1723794 – start-page: 731 year: 2006 ident: 10.1016/j.asoc.2023.110415_b94 article-title: Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset – volume: 17 start-page: 225 year: 2008 ident: 10.1016/j.asoc.2023.110415_b51 article-title: Automatically countering imbalance and its empirical relationship to cost publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-008-0087-0 – ident: 10.1016/j.asoc.2023.110415_b110 – volume: 4 start-page: 99 year: 2002 ident: 10.1016/j.asoc.2023.110415_b121 article-title: One class svm for yeast regulation prediction publication-title: SIGKDD Explor. Newslett. doi: 10.1145/772862.772878 – ident: 10.1016/j.asoc.2023.110415_b37 doi: 10.1109/COLCOM.2006.361856 – volume: 17 start-page: 164 year: 2012 ident: 10.1016/j.asoc.2023.110415_b160 article-title: The research of imbalanced data set of sample sampling method based on k-means cluster and genetic algorithm publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.02.078 – volume: 1 start-page: 46 year: 2003 ident: 10.1016/j.asoc.2023.110415_b146 article-title: Mixture of expert agents for handling imbalanced data sets publication-title: Ann. Math., Comput. Teleinform. – volume: 118 year: 2021 ident: 10.1016/j.asoc.2023.110415_b13 article-title: A review of methods for imbalanced multi-label classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107965 – volume: 2 start-page: 42 issue: 4 year: 2012 ident: 10.1016/j.asoc.2023.110415_b21 article-title: An overview of classification algorithms for imbalanced datasets publication-title: Int. J. Emerg. Technol. Adv. Eng. – ident: 10.1016/j.asoc.2023.110415_b102 – volume: 30 start-page: 195 year: 1998 ident: 10.1016/j.asoc.2023.110415_b39 article-title: Machine learning for the detection of oil spills in satellite radar images publication-title: Mach. Learn. doi: 10.1023/A:1007452223027 – volume: 28 start-page: 1088 year: 2006 ident: 10.1016/j.asoc.2023.110415_b56 article-title: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.134 – volume: 7 start-page: 2204 year: 2011 ident: 10.1016/j.asoc.2023.110415_b77 article-title: A novel improved smote resampling algorithm based on fractal publication-title: J. Comput. Inf. Syst. – volume: 89 start-page: 813 year: 1989 ident: 10.1016/j.asoc.2023.110415_b92 article-title: Concept learning and the problem of small disjuncts publication-title: IJCAI – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.asoc.2023.110415_b159 article-title: A new approach for classification of highly imbalanced datasets using evolutionary algorithms publication-title: Intl. J. Sci. Eng. Res. – volume: 56 start-page: 52 issue: 293 year: 1961 ident: 10.1016/j.asoc.2023.110415_b180 article-title: Multiple comparisons among means publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1961.10482090 – year: 2013 ident: 10.1016/j.asoc.2023.110415_b29 – volume: 18 start-page: 558 year: 2010 ident: 10.1016/j.asoc.2023.110415_b111 article-title: Fsvm-cil: Fuzzy support vector machines for class imbalance learning publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2042721 – volume: 6 start-page: 40 year: 2004 ident: 10.1016/j.asoc.2023.110415_b93 article-title: Class imbalances versus small disjuncts publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007737 – volume: 26 start-page: 405 year: 2014 ident: 10.1016/j.asoc.2023.110415_b69 article-title: Mwmote-majority weighted minority oversampling technique for imbalanced data set learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2012.232 – volume: 34 start-page: 165 year: 2000 ident: 10.1016/j.asoc.2023.110415_b75 article-title: Noisy replication in skewed binary classification publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(99)00095-X – volume: 5 start-page: 221 issue: 4 year: 2016 ident: 10.1016/j.asoc.2023.110415_b8 article-title: Learning from imbalanced data: Open challenges and future directions publication-title: Progress Artif. Intell. doi: 10.1007/s13748-016-0094-0 – year: 1995 ident: 10.1016/j.asoc.2023.110415_b42 – volume: 20 start-page: 18 year: 2004 ident: 10.1016/j.asoc.2023.110415_b44 article-title: A multiple resampling method for learning from imbalanced data sets publication-title: Comput. Intell. doi: 10.1111/j.0824-7935.2004.t01-1-00228.x – volume: 74 start-page: 1058 year: 2011 ident: 10.1016/j.asoc.2023.110415_b132 article-title: Error back-propagation algorithm for classification of imbalanced data publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.024 – volume: 25 start-page: 315 year: 2008 ident: 10.1016/j.asoc.2023.110415_b138 article-title: Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting publication-title: J. Manage. Inf. Syst. doi: 10.2753/MIS0742-1222250309 – volume: 7 start-page: 1 issue: 1 year: 1979 ident: 10.1016/j.asoc.2023.110415_b176 article-title: Bootstrap methods: Another look at the jackknife publication-title: Ann. Statist. doi: 10.1214/aos/1176344552 – year: 2017 ident: 10.1016/j.asoc.2023.110415_b175 – ident: 10.1016/j.asoc.2023.110415_b85 – volume: 14 start-page: 277 year: 1999 ident: 10.1016/j.asoc.2023.110415_b74 article-title: Regularization in skewed binary classification publication-title: Comput. Statist. doi: 10.1007/s001800050018 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.asoc.2023.110415_b179 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – year: 2011 ident: 10.1016/j.asoc.2023.110415_b137 – volume: 11 start-page: 1359 year: 2020 ident: 10.1016/j.asoc.2023.110415_b12 article-title: A survey of robust optimization based machine learning with special reference to support vector machines publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-01044-y – volume: 17 start-page: 299 issue: 3 year: 2005 ident: 10.1016/j.asoc.2023.110415_b177 article-title: Using auc and accuracy in evaluating learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.50 – volume: 17 start-page: 255 issue: 2–3 year: 2011 ident: 10.1016/j.asoc.2023.110415_b104 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Multiple-Valued Logic Soft Comput – start-page: 1415 year: 2006 ident: 10.1016/j.asoc.2023.110415_b59 article-title: A proposal of evolutionary prototype selection for class imbalance problems publication-title: Intell. Data Eng. Automat. Learn., IDEAL – year: 2012 ident: 10.1016/j.asoc.2023.110415_b140 – volume: 5 start-page: 944 year: 2013 ident: 10.1016/j.asoc.2023.110415_b172 article-title: Imbalanced classification based on active learning smote publication-title: Res. J. Appl. Sci. Eng. Technol. doi: 10.19026/rjaset.5.5044 – volume: 25 start-page: 1 year: 2010 ident: 10.1016/j.asoc.2023.110415_b101 article-title: Boosting support vector machines for imbalanced data sets publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-009-0198-y – volume: 189 year: 2022 ident: 10.1016/j.asoc.2023.110415_b31 article-title: Rule extraction in unsupervised anomaly detection for model explainability: Application to OneClass SVM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116100 – volume: 9 start-page: 16914 year: 2021 ident: 10.1016/j.asoc.2023.110415_b11 article-title: An ensemble model for fake online review detection based on data resampling, feature pruning, and parameter optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051174 – ident: 10.1016/j.asoc.2023.110415_b116 – start-page: 34 year: 2001 ident: 10.1016/j.asoc.2023.110415_b142 article-title: A mixture-of-experts framework for learning from imbalanced data sets – ident: 10.1016/j.asoc.2023.110415_b98 doi: 10.1007/978-3-642-03348-3_54 – year: 2017 ident: 10.1016/j.asoc.2023.110415_b105 – volume: 180 start-page: 1268 year: 2010 ident: 10.1016/j.asoc.2023.110415_b46 article-title: On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.12.014 – volume: 19 start-page: 315 year: 2003 ident: 10.1016/j.asoc.2023.110415_b49 article-title: Learning when training data are costly: The effect of class distribution on tree induction publication-title: J. Artif. Intell. Res doi: 10.1613/jair.1199 – volume: 245 issue: 7 year: 2022 ident: 10.1016/j.asoc.2023.110415_b30 article-title: KNN weighted reduced universum twin SVM for class imbalance learning publication-title: Knowl.-Based Syst. – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.asoc.2023.110415_b4 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – start-page: 378 year: 2013 ident: 10.1016/j.asoc.2023.110415_b47 article-title: Smote for regression – ident: 10.1016/j.asoc.2023.110415_b19 – volume: 159 start-page: 2378 year: 2008 ident: 10.1016/j.asoc.2023.110415_b45 article-title: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2007.12.023 – start-page: 447 year: 2003 ident: 10.1016/j.asoc.2023.110415_b135 article-title: Predicting outliers publication-title: Knowl. Discov. Databases: PKDD – start-page: 431 year: 2018 ident: 10.1016/j.asoc.2023.110415_b9 article-title: Handling imbalanced data: A survey doi: 10.1007/978-981-10-5272-9_39 – volume: 25 start-page: 989 year: 2009 ident: 10.1016/j.asoc.2023.110415_b89 article-title: Micropred: Effective classification of pre-mirnas for human mirna gene prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp107 – volume: 36 start-page: 849 year: 2003 ident: 10.1016/j.asoc.2023.110415_b113 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00257-1 – volume: 27 start-page: 2140 issue: 11 year: 2019 ident: 10.1016/j.asoc.2023.110415_b27 article-title: Intuitionistic fuzzy twin support vector machines publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2893863 – ident: 10.1016/j.asoc.2023.110415_b67 doi: 10.1007/978-3-540-39804-2_12 – start-page: 475 year: 2009 ident: 10.1016/j.asoc.2023.110415_b70 article-title: Safelevel-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem publication-title: Adv. Knowl. Discov. Data Min. – volume: 36 start-page: 5718 year: 2009 ident: 10.1016/j.asoc.2023.110415_b95 article-title: Cluster-based under-sampling approaches for imbalanced data distributions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.06.108 – volume: 17 start-page: 275 year: 2009 ident: 10.1016/j.asoc.2023.110415_b60 article-title: Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy publication-title: Evol. Comput. doi: 10.1162/evco.2009.17.3.275 – start-page: 66 year: 2007 ident: 10.1016/j.asoc.2023.110415_b106 article-title: Generative oversampling for mining imbalanced datasets publication-title: DMIN – ident: 10.1016/j.asoc.2023.110415_b53 – start-page: 878 year: 2005 ident: 10.1016/j.asoc.2023.110415_b34 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning – volume: 28 start-page: 92.122 year: 2014 ident: 10.1016/j.asoc.2023.110415_b61 article-title: Training and assessing classification rules with imbalanced data publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-012-0295-5 – volume: 16 start-page: 3 year: 2014 ident: 10.1016/j.asoc.2023.110415_b18 article-title: A survey of multiple classifier systems as hybrid systems publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.04.006 – ident: 10.1016/j.asoc.2023.110415_b10 doi: 10.1007/978-3-030-29407-6_17 – volume: 12 start-page: 1753 year: 2021 ident: 10.1016/j.asoc.2023.110415_b24 article-title: Sample-based online learning for bi-regular hinge loss publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01272-7 – ident: 10.1016/j.asoc.2023.110415_b99 doi: 10.1007/11893028_93 – volume: 7 start-page: 783 year: 2007 ident: 10.1016/j.asoc.2023.110415_b170 article-title: Active learning for word sense disambiguation with methods for addressing the class imbalance problem publication-title: EMNLP-CoNLL – volume: 6 start-page: 20 year: 2004 ident: 10.1016/j.asoc.2023.110415_b81 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007735 – start-page: 21 year: 2006 ident: 10.1016/j.asoc.2023.110415_b154 article-title: The novelty detection approach for different degrees of class imbalance – volume: 6 start-page: 50 year: 2004 ident: 10.1016/j.asoc.2023.110415_b147 article-title: Minority report in fraud detection: Classification of skewed data publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007738 – volume: 33 start-page: 245 year: 2012 ident: 10.1016/j.asoc.2023.110415_b84 article-title: Smote-rsb: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-011-0465-6 – year: 2016 ident: 10.1016/j.asoc.2023.110415_b182 – volume: 66 start-page: 124 issue: 30 year: 2016 ident: 10.1016/j.asoc.2023.110415_b63 article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.010 – volume: 11 start-page: 1909 year: 2020 ident: 10.1016/j.asoc.2023.110415_b23 article-title: Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01081-y – volume: 1 start-page: 135 issue: 2 year: 2014 ident: 10.1016/j.asoc.2023.110415_b17 article-title: Behavioral analysis of insider threat: A survey and bootstrapped prediction in imbalanced data publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2014.2377811 – start-page: 490 year: 2012 ident: 10.1016/j.asoc.2023.110415_b173 article-title: Active learning for imbalance problem using l-gem of rbfnn publication-title: ICMLC – volume: 14 start-page: 206 year: 2003 ident: 10.1016/j.asoc.2023.110415_b144 article-title: Multi-class protein fold classification using a new ensemble machine learning approach publication-title: Genome Inform. – volume: 13 start-page: 2267 issue: 9 year: 2017 ident: 10.1016/j.asoc.2023.110415_b174 article-title: Data imbalance and classifiers: Impact and solutions from a big data perspective publication-title: Int. J. Comput. Intell. Res. – ident: 10.1016/j.asoc.2023.110415_b87 – volume: 10 start-page: 766 year: 2010 ident: 10.1016/j.asoc.2023.110415_b127 article-title: A robust decision tree algorithm for imbalanced data sets publication-title: SDM – ident: 10.1016/j.asoc.2023.110415_b108 – ident: 10.1016/j.asoc.2023.110415_b36 doi: 10.1002/9780470417409.ch4 – volume: 19 start-page: 293 issue: 2 year: 2011 ident: 10.1016/j.asoc.2023.110415_b20 article-title: A hybrid approach to learn with imbalanced classes using evolutionary algorithms publication-title: Logic J. IGPL doi: 10.1093/jigpal/jzq027 – volume: 192 year: 2020 ident: 10.1016/j.asoc.2023.110415_b109 article-title: Erratum to entropy-based fuzzy support vector machine for imbalanced datasets” [Knowl.-Based Syst. 115 (2017) 87–99] publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105287 – volume: 2 start-page: 139 year: 2002 ident: 10.1016/j.asoc.2023.110415_b152 article-title: One-class svms for document classification publication-title: J. Mach. Learn. Res. – start-page: 261 year: 2013 ident: 10.1016/j.asoc.2023.110415_b171 article-title: Adaptive oversampling for imbalanced data classification publication-title: Inf. Sci. Syst. – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.asoc.2023.110415_b48 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – ident: 10.1016/j.asoc.2023.110415_b50 doi: 10.1145/1089827.1089830 – ident: 10.1016/j.asoc.2023.110415_b100 doi: 10.1007/11731139_15 – volume: 21 start-page: 249 year: 2004 ident: 10.1016/j.asoc.2023.110415_b123 article-title: Evaluating and tuning predictive data mining models using receiver operating characteristic curves publication-title: J. Manage. Inf. Syst. doi: 10.1080/07421222.2004.11045815 – volume: 18 start-page: 63 year: 2006 ident: 10.1016/j.asoc.2023.110415_b130 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.17 – volume: 71 start-page: 6032 issue: 6 year: 2022 ident: 10.1016/j.asoc.2023.110415_b33 article-title: Event-based anomaly detection using a one-class SVM for a hybrid electric vehicle publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3165526 – ident: 10.1016/j.asoc.2023.110415_b118 doi: 10.1109/ICECENG.2011.6056838 – ident: 10.1016/j.asoc.2023.110415_b73 – volume: 40 start-page: 3358 year: 2007 ident: 10.1016/j.asoc.2023.110415_b125 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.04.009 – start-page: 162 year: 2007 ident: 10.1016/j.asoc.2023.110415_b131 article-title: Improving the performance of the rbf neural networks trained with imbalanced samples publication-title: Comput. Ambient Intell. doi: 10.1007/978-3-540-73007-1_20 – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2023.110415_b141 article-title: Probabilistic reframing for cost-sensitive regression publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2641758 – volume: 11 start-page: 433 year: 2020 ident: 10.1016/j.asoc.2023.110415_b26 article-title: DCSVM: Fast multi-class classification using support vector machines publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00984-9 – year: 2022 ident: 10.1016/j.asoc.2023.110415_b65 article-title: Lung image segmentation based on DRD U-Net and combined WGAN with deep neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2022.107097 – start-page: 152 year: 2010 ident: 10.1016/j.asoc.2023.110415_b166 article-title: Classification of imbalanced data by combining the complementary neural network and smote algorithm publication-title: Neural Inf. Process.. Models Appl. – ident: 10.1016/j.asoc.2023.110415_b88 doi: 10.1109/BIBE.2008.4696724 – year: 1998 ident: 10.1016/j.asoc.2023.110415_b38 |
SSID | ssj0016928 |
Score | 2.6755674 |
SecondaryResourceType | review_article |
Snippet | The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110415 |
SubjectTerms | Algorithmic structures techniques Data pre-processing techniques Hybrid techniques Imbalanced learning Support vector machine |
Title | A broad review on class imbalance learning techniques |
URI | https://dx.doi.org/10.1016/j.asoc.2023.110415 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LX6OHLxJtnZJk_U4hmN-DdEJu4XmJZWJdmPOq3-7eWs6FGQHD6W05EH7a_qSl_ze-xFykQgncwOKtU1umMiEZakxjqXO4LadFZHDdcj7oRw8i5txMq6RXpULg7TK4PtLn7701uFOK6DZmk0mrScfeXREKvz4jdtZHDPKhVDYy5tfK5pHLNOlvio2Ztg6JM6UHK_MI9BEAXFkwwuUxv1rcPox4PR3yFaYKdJu-TC7pOaKPbJdqTDQ8FPuk6RLzXyaWVpmodBpQQGnxHTybpC3CI4GaYgXuqrY-nFARv2rUW_AghgCA_9-C6ZyyID7YJY7BxEoQKGQxLsIa0DELuVYA9xGznGr_CFBKm6grYwEI12HH5J6MS3cEaFghDdti8zmIFTGM8lVlOdgY4fRkD0mcQWChlAoHPUq3nTFCHvVCJxG4HQJ3DG5XNnMyjIZa1snFbb618fW3o-vsTv5p90p2cSrkrd3RuqL-ac793OJhWksO0uDbHR7j3cPeL6-HQy_ARV3ye4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmBC6SN24mZgqHio0MJCkdis-OygImgrKEIs_Ch-Ib7GqUBCDEgMWRJf5Hxx7nzx5_sA9iNh40yjDEKd6UCkwgSJ1jZIrKZlOyPqlv5DXl7F7RtxcRvdluCj2AtDtErv-3OfPvHW_kzNo1kb9fu1a5d5NEUiXPym5SwuPbOyY99eXd72fHR-4l7yQRienfaO24GXFgjQtR4HMsMUuUsNubVYR4kkuxG5D85oFA2bcKqoberWciPdEWMsucZQ6hh1bJvc3XYGZoXzFqSaUH2f0koacTLRc6XOBdQ7v1En55SlDvEqCZYT-16QFO9PwfBLgDtbggU_M2Wt_OGXoWQHK7BYqD4w7wRWIWox_TRMDct3vbDhgCFNwVn_URNPEi3zUhR3bFoh9nkNev-B0DqUB8OB3QCGWjjTUKQmQyFTnsZc1rMMTcNS9mUq0ChAUOgLk5M-xoMqGGj3ioBTBJzKgavA4dRmlJfl-LV1VGCrvg0u5eLGL3abf7Tbg7l277KruudXnS2Ypys5Z3AbyuOnF7vj5jFjvTsZOAzUPw_UT6adBCY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+broad+review+on+class+imbalance+learning+techniques&rft.jtitle=Applied+soft+computing&rft.au=Rezvani%2C+Salim&rft.au=Wang%2C+Xizhao&rft.date=2023-08-01&rft.issn=1568-4946&rft.volume=143&rft.spage=110415&rft_id=info:doi/10.1016%2Fj.asoc.2023.110415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_110415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |