A broad review on class imbalance learning techniques

The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex characteristics of imbalanced datasets, learning from such data need new algorithms and understandings to convert efficient large amounts of initi...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 143; p. 110415
Main Authors Rezvani, Salim, Wang, Xizhao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex characteristics of imbalanced datasets, learning from such data need new algorithms and understandings to convert efficient large amounts of initial data into suitable datasets. Although several review papers can be found about imbalanced classification problems, none of them contributed an in-depth review of SVM for imbalanced classification problems. To fill this gap, we present an exhaustive review of existing methods to deal with issues linked with class imbalance learning. The majority of the existing survey addresses only classification tasks. We also describe methods to deal with similar problems in regression tasks. A new taxonomy for class imbalanced learning techniques is proposed and classified into three parts: (1) Data pre-processing, (2) Algorithmic structures, and (3) Hybrid techniques. The advantages and disadvantages of each type of imbalanced learning technique are discussed. Moreover, we explain the main difficulties in distributions of imbalanced datasets and discuss the main approaches that have been proposed to tackle these issues. Finally, to stimulate the next research in this area, we emphasize the main opportunities and challenges, which can be useful in research directions for learning algorithms from imbalanced data. •We present an exhaustive review to deal with issues of class imbalance learning.•We addressed the classification and regression tasks in the imbalance problem.•We proposed a new taxonomy for class imbalanced learning techniques.•We discussed the advantages and disadvantages of imbalanced learning techniques.•We emphasized the major opportunities and challenges in the imbalance area.
AbstractList The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex characteristics of imbalanced datasets, learning from such data need new algorithms and understandings to convert efficient large amounts of initial data into suitable datasets. Although several review papers can be found about imbalanced classification problems, none of them contributed an in-depth review of SVM for imbalanced classification problems. To fill this gap, we present an exhaustive review of existing methods to deal with issues linked with class imbalance learning. The majority of the existing survey addresses only classification tasks. We also describe methods to deal with similar problems in regression tasks. A new taxonomy for class imbalanced learning techniques is proposed and classified into three parts: (1) Data pre-processing, (2) Algorithmic structures, and (3) Hybrid techniques. The advantages and disadvantages of each type of imbalanced learning technique are discussed. Moreover, we explain the main difficulties in distributions of imbalanced datasets and discuss the main approaches that have been proposed to tackle these issues. Finally, to stimulate the next research in this area, we emphasize the main opportunities and challenges, which can be useful in research directions for learning algorithms from imbalanced data. •We present an exhaustive review to deal with issues of class imbalance learning.•We addressed the classification and regression tasks in the imbalance problem.•We proposed a new taxonomy for class imbalanced learning techniques.•We discussed the advantages and disadvantages of imbalanced learning techniques.•We emphasized the major opportunities and challenges in the imbalance area.
ArticleNumber 110415
Author Wang, Xizhao
Rezvani, Salim
Author_xml – sequence: 1
  givenname: Salim
  orcidid: 0000-0002-2277-5654
  surname: Rezvani
  fullname: Rezvani, Salim
  email: salim.rezvani@torontomu.ca
  organization: Department of Computer Science, Toronto Metropolitan University, Toronto, Canada
– sequence: 2
  givenname: Xizhao
  surname: Wang
  fullname: Wang, Xizhao
  organization: Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
BookMark eNp9kL1OwzAUhT0UibbwAkx-gQQ7TuxEYqkq_qRKLN0t5-YGHKU22AHE2-MoTAwdru5yviN9Z0NWzjsk5IaznDMub4fcRA95wQqRc85KXq3ImleyzsqmlJdkE-PAUrAp6jWpdrQN3nQ04JfFb-odhdHESO2pNaNxgHREE5x1r3RCeHP24xPjFbnozRjx-u9vyfHh_rh_yg4vj8_73SEDwdiUqR4MiFI2AhEYKGCqlFVdq66FkmOTQqroGKLoVDoJUokWCtVKaCXWYkvqpRaCjzFgr8FOZrLeTcHYUXOmZ2M96NlYz8Z6MU5o8Q99D_Zkws956G6BMDmlOYKOYDFt0NmAMOnO23P4L4hYc5Y
CitedBy_id crossref_primary_10_1016_j_cie_2024_110754
crossref_primary_10_1016_j_compbiomed_2025_109830
crossref_primary_10_1186_s40537_025_01119_4
crossref_primary_10_1016_j_inffus_2024_102874
crossref_primary_10_1016_j_aei_2024_102839
crossref_primary_10_1007_s11227_024_06108_7
crossref_primary_10_1186_s13040_024_00384_y
crossref_primary_10_3390_math12121898
crossref_primary_10_1080_17460441_2024_2403639
crossref_primary_10_1007_s10115_024_02126_2
crossref_primary_10_1109_TITS_2024_3445664
crossref_primary_10_1016_j_ress_2024_110565
crossref_primary_10_1016_j_ipm_2024_103975
crossref_primary_10_1111_bor_12682
crossref_primary_10_1016_j_atech_2025_100808
crossref_primary_10_1016_j_compbiomed_2024_108996
crossref_primary_10_1016_j_aei_2024_102606
crossref_primary_10_1016_j_neucom_2024_128707
crossref_primary_10_1016_j_asoc_2024_111993
crossref_primary_10_3233_JIFS_234402
crossref_primary_10_1016_j_compeleceng_2024_109863
crossref_primary_10_1088_2632_2153_ad95dc
crossref_primary_10_1109_TIP_2025_3531988
crossref_primary_10_3390_en18010059
crossref_primary_10_1016_j_ins_2025_122015
crossref_primary_10_1016_j_procs_2024_04_082
crossref_primary_10_1097_SHK_0000000000002490
crossref_primary_10_1109_TFUZZ_2024_3366936
crossref_primary_10_1016_j_procs_2024_10_155
crossref_primary_10_1016_j_patcog_2024_111195
crossref_primary_10_1016_j_neucom_2024_128475
crossref_primary_10_3390_math12223623
crossref_primary_10_1002_msd2_12100
crossref_primary_10_1021_acs_jpclett_3c02365
crossref_primary_10_1007_s10115_024_02079_6
crossref_primary_10_1109_TPAMI_2023_3310908
crossref_primary_10_3390_electronics14010069
crossref_primary_10_1109_ACCESS_2025_3536479
crossref_primary_10_1007_s41060_024_00604_y
crossref_primary_10_3390_app131810305
crossref_primary_10_1007_s10614_023_10532_x
crossref_primary_10_1016_j_asoc_2023_111072
crossref_primary_10_1016_j_asoc_2024_111393
crossref_primary_10_1111_exsy_13754
crossref_primary_10_1007_s13369_024_09428_1
crossref_primary_10_1016_j_clon_2025_103789
crossref_primary_10_1016_j_icte_2024_04_007
crossref_primary_10_29407_intensif_v8i1_21168
crossref_primary_10_1016_j_neucom_2024_127712
crossref_primary_10_1016_j_compbiomed_2023_107545
crossref_primary_10_1016_j_ins_2024_121430
crossref_primary_10_1007_s10462_024_10759_6
crossref_primary_10_1371_journal_pone_0315394
crossref_primary_10_1016_j_eswa_2025_126465
crossref_primary_10_1186_s12911_024_02649_2
crossref_primary_10_1186_s13014_024_02496_5
crossref_primary_10_1016_j_knosys_2024_112143
crossref_primary_10_1016_j_neunet_2025_107126
crossref_primary_10_1109_ACCESS_2024_3416872
crossref_primary_10_1016_j_engappai_2023_106911
crossref_primary_10_1038_s41598_024_65044_x
crossref_primary_10_1016_j_patcog_2024_110886
crossref_primary_10_1155_acis_1013769
crossref_primary_10_3390_math12132064
crossref_primary_10_1038_s41598_024_80495_y
crossref_primary_10_1016_j_neunet_2024_106767
crossref_primary_10_1061_AJRUA6_RUENG_1480
crossref_primary_10_1016_j_ins_2024_120351
crossref_primary_10_1016_j_asoc_2023_110986
crossref_primary_10_1016_j_asoc_2024_112349
crossref_primary_10_1007_s10462_025_11107_y
crossref_primary_10_1016_j_asoc_2024_111659
crossref_primary_10_1186_s13040_025_00440_1
Cites_doi 10.1016/j.neucom.2022.07.083
10.1109/ICMLA.2012.212
10.1007/3-540-59119-2_166
10.1109/TSMCA.2009.2029559
10.1016/j.asoc.2021.107457
10.1142/9789814417747_0128
10.1109/TKDE.2005.95
10.1145/1046456.1046475
10.1016/0893-6080(95)00120-4
10.1109/ISCID.2012.219
10.1016/j.datak.2009.08.005
10.1109/TSMCB.2008.2007853
10.1145/1007730.1007739
10.1109/ICICISYS.2009.5357925
10.1016/j.cose.2022.102777
10.1109/TNN.2010.2066988
10.1007/s10489-011-0287-y
10.1007/s13042-018-0853-2
10.1109/WCSE.2009.756
10.1145/1007730.1007734
10.1016/j.artmed.2005.03.002
10.1145/312129.312220
10.1016/j.eswa.2011.09.059
10.1109/CIDM.2011.5949434
10.1145/1180639.1180729
10.5176/978-981-08-7466-7_kd-21
10.1109/ICDM.2001.989527
10.1109/TNNLS.2013.2246188
10.1162/089976601750264965
10.1016/j.ins.2021.07.010
10.1016/j.compbiomed.2021.104888
10.1016/j.dss.2011.01.003
10.1109/ICCSE.2013.6553890
10.1145/1277741.1277927
10.1109/IJCNN.2010.5596787
10.1016/j.patcog.2013.05.006
10.1007/11941439_30
10.1109/ISCIT.2013.6645923
10.1007/978-3-540-30115-8_7
10.1109/FSKD.2009.608
10.1007/978-3-540-78671-9_23
10.1007/s10618-011-0222-1
10.1109/IJCNN.2008.4633794
10.1109/TSMCC.2011.2161285
10.1109/TIT.1968.1054155
10.1109/CIDM.2009.4938667
10.1007/978-3-540-24580-3_36
10.1109/ICICS.2011.6173603
10.1080/15389588.2020.1723794
10.1007/s10618-008-0087-0
10.1145/772862.772878
10.1109/COLCOM.2006.361856
10.1016/j.egypro.2012.02.078
10.1016/j.patcog.2021.107965
10.1023/A:1007452223027
10.1109/TPAMI.2006.134
10.1080/01621459.1961.10482090
10.1109/TFUZZ.2010.2042721
10.1145/1007730.1007737
10.1109/TKDE.2012.232
10.1016/S0167-9473(99)00095-X
10.1007/s13748-016-0094-0
10.1111/j.0824-7935.2004.t01-1-00228.x
10.1016/j.neucom.2010.11.024
10.2753/MIS0742-1222250309
10.1214/aos/1176344552
10.1007/s001800050018
10.1214/aoms/1177731944
10.1007/s13042-019-01044-y
10.1109/TKDE.2005.50
10.19026/rjaset.5.5044
10.1007/s10115-009-0198-y
10.1016/j.eswa.2021.116100
10.1109/ACCESS.2021.3051174
10.1007/978-3-642-03348-3_54
10.1016/j.ins.2009.12.014
10.1613/jair.1199
10.1109/TKDE.2008.239
10.1016/j.fss.2007.12.023
10.1007/978-981-10-5272-9_39
10.1093/bioinformatics/btp107
10.1016/S0031-3203(02)00257-1
10.1109/TFUZZ.2019.2893863
10.1007/978-3-540-39804-2_12
10.1016/j.eswa.2008.06.108
10.1162/evco.2009.17.3.275
10.1007/s10618-012-0295-5
10.1016/j.inffus.2013.04.006
10.1007/978-3-030-29407-6_17
10.1007/s13042-020-01272-7
10.1007/11893028_93
10.1145/1007730.1007735
10.1145/1007730.1007738
10.1007/s10115-011-0465-6
10.1016/j.eswa.2016.09.010
10.1007/s13042-020-01081-y
10.1109/TCSS.2014.2377811
10.1002/9780470417409.ch4
10.1093/jigpal/jzq027
10.1016/j.knosys.2019.105287
10.1613/jair.953
10.1145/1089827.1089830
10.1007/11731139_15
10.1080/07421222.2004.11045815
10.1109/TKDE.2006.17
10.1109/TVT.2022.3165526
10.1109/ICECENG.2011.6056838
10.1016/j.patcog.2007.04.009
10.1007/978-3-540-73007-1_20
10.1145/2641758
10.1007/s13042-019-00984-9
10.1016/j.cmpb.2022.107097
10.1109/BIBE.2008.4696724
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110415
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2023_110415
S1568494623004337
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAYXX
CITATION
SSH
ID FETCH-LOGICAL-c300t-7fcac34693eec0c7c07465887dbc41e930072d0ee3d7e3d6c673bc27b6cb6e83
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Jul 10 08:27:24 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Sat Aug 09 17:32:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Data pre-processing techniques
Algorithmic structures techniques
Support vector machine
Imbalanced learning
Hybrid techniques
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-7fcac34693eec0c7c07465887dbc41e930072d0ee3d7e3d6c673bc27b6cb6e83
ORCID 0000-0002-2277-5654
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_110415
crossref_primary_10_1016_j_asoc_2023_110415
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110415
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mease, Wyner, Buja (b167) 2007; 8
Zhuang, Dai (b153) 2006
Zhou, Liu (b130) 2006; 18
Martinez-Garcia, Suarez-Araujo, Baaez (b107) 2012
P. Songwattanasiri, K. Sinapiromsaran, Smoute: Synthetics minority over-sampling and under-sampling techniques for class imbalanced problem, in: Proceedings of the Annual International Conference on Computer Science Education: Innovation and Technology, Special Track: Knowledge Discovery, 2010, pp. 78–83.
Lee, Cho (b154) 2006
Galar, Fernandez, Barrenechea, Herrera (b161) 2013; 46
Vapnik (b42) 1995
S. Ertekin, J. Huang, L. Giles, Active learning for class imbalance problem, in: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007, pp. 823–824.
Branco, Torgo, Ribeiro (b6) 2015
Hammad, Hewahi, Elmedany (b66) 2022; 120
Yong (b160) 2012; 17
M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: ICML-2003 Workshop on Learning from Imbalanced Data Sets II, Vol. 2, 2003, pp. 1–2.
Tomek (b80) 1976; 11
H.Y. Wang, Combination approach of smote and biased-svm for imbalanced datasets, in: International Joint Conference on Neural Networks, IJCNN 2008, 2008, pp. 228–231.
Fernandez, del Jesus, Herrera (b46) 2010; 180
N. Japkowicz, C. Myers, M. Gluck, A novelty detection approach to classification, in: Proceedings of the Fourteenth Joint Conference on Artificial Intelligence, 1995, pp. 518–523.
Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (b104) 2011; 17
P. Domingos, Metacost: A general method for making classifiers cost-sensitive, in: KDD’99: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, 1999, pp. 155–164.
Huang, Ling (b177) 2005; 17
Milaré, Batista, Carvalho (b20) 2011; 19
Kubat, Holte, Matwin (b39) 1998; 30
Estabrooks, Japkowicz (b142) 2001
J. Yuan, J. Li, B. Zhang, Learning concepts from large scale imbalanced data sets using support cluster machines, in: Proceedings of the 14th Annual ACM International Conference on Multimedia, 2006, pp. 441–450.
T. Imam, K. Ting, J. Kamruzzaman, z-svm: An svm for improved classification of imbalanced data, in: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, 2006, pp. 264–273.
Hernandez-Orallo (b140) 2012
Rezvani, Wang, Pourpanah (b27) 2019; 27
Doucette, Heywood (b158) 2008
Friedman (b179) 1940; 11
Dua, Graff (b175) 2017
Woniak, Graña, Corchado (b18) 2014; 16
Barua, Yao, Murase (b69) 2014; 26
Haibo, Yang, Edwardo, hutao (b3) 2008
Chawla, Bowyer, Hall, Kegelmeyer (b48) 2002; 16
C. Drummond, R.C. Holte, C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling, in: Workshop on Learning from Imbalanced Datasets II, Vol. 11, 2003.
J. Stefanowski, S. Wilk, Improving rule based classifiers induced by modlem by selective pre-processing of imbalanced data, in: Proc. of the RSKD Workshop at ECML/PKDD, Warsaw, 2007, pp. 54–65.
Y. Liu, A. An, X. Huang, Boosting prediction accuracy on imbalanced datasets with svm ensembles, in: Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2006, pp. 107–118.
Hart (b82) 1968; 14
M. Joshi, V. Kumar, C. Agarwal, Evaluating boosting algorithms to classify rare classes: Comparison and improvements, in: Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 257–264.
Ertekin (b171) 2013
Fu, Ruixiang, Yang, Simin, Wang, Wang, Shan, Liu, Gao (b86) 2004; 6
K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines, in: Proceedings of the International Joint Conference on AI, 1995, pp. 55–60.
J. Chen, M. Casique, M. Karakoy, Classification of lung data by sampling and support vector machine, in: In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, 2004, pp. 3194–3197.
Stefanowski, Wilk (b162) 2008
Tao, Tang, Li, Wu (b56) 2006; 28
Jeatrakul, Wong, Fung (b166) 2010
Menardi, Torelli (b61) 2014; 28
Elassad, Mousannif, Moatassime (b62) 2020; 21
Z. Lin, Z. Hao, X. Yang, X. Liu, Several svm ensemble methods integrated with under-sampling for imbalanced data learning, in: Proceedings of the 5th International Conference on Advanced Data Mining and Applications, 2009, pp. 536–544.
Zhu, Hovy (b170) 2007; 7
He, Ma (b29) 2013
Cohen, Hilario, Sax, Hugonnet, Geissbuhler (b96) 2006; 37
Singla, Ghosh, Shukla (b12) 2020; 11
Raskutti, Kowalczyk (b120) 2004; 6
Han, Wen-Yuan, Bing-Huan (b34) 2005
E.Y. Chang, B. Li, G. Wu, K. Goh, Statistical learning for effective visual information retrieval, in: IEEE International Conference on Image Processing, 2003.
W. Fan, S. Stolfo, J. Zhang, P. Chan, Adacost: Misclassification cost-sensitive boosting, in: In Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 97–105.
R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in: Proceedings of the 15th European Conference on Machine Learning, 2004, pp. 39–50.
R. Batuwita, V. Palade, An improved non-comparative classification method for human microrna gene prediction, in: Proceedings of the International Conference on Bioinformatics and Bioengineering, 2008, pp. 1–6.
Lee (b75) 2000; 34
Wu, Chang (b157) 2005; 17
Breiman, Friedman, Olshen, Stone (b52) 1984
Batuwita, Palade (b111) 2010; 18
Phua, Alahakoon, Lee (b147) 2004; 6
T. Maciejewski, J. Stefanowski, Local neighbourhood extension of smote for mining imbalanced data, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111.
Maheshwari, Agrawal, Sharma (b159) 2011; 2
Moya, Hush (b148) 1996; 9
A.Rivera, Xanthopoulos (b63) 2016; 66
Efron (b176) 1979; 7
I. Mani, J. Zhang, knn approach to unbalanced data distributions: A case study involving information extraction, in: Proceedings of Workshop on Learning from Imbalanced Datasets, 2003.
Ramentol, Canallero, Bello, Herrera (b84) 2012; 33
Zhao, Sinha, Bansal (b139) 2011; 51
Batuwita, Palade (b89) 2009; 25
Barbado, Corcho, Benjamins (b31) 2022; 189
Rijsbergen (b35) 1979
Castro, de Padua Braga (b133) 2013; 24
Xiao, Xie, He, Jiang (b145) 2012; 39
N. Japkowicz, Learning from imbalanced data sets: A comparison of various strategies, in: AAAI Workshop on Learning from Imbalanced Data Sets, Vol. 68, 2000, pp. 10–15.
C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Mute: Majority under-sampling technique, in: 8th International Conference on Information, Communications and Signal Processing, 2011, pp. 1–4.
Don, Iacob (b26) 2020; 11
Hu (b173) 2012
Oh (b132) 2011; 74
Scholkopf, Platt, Shawe-Taylor, Smola, Williamson (b151) 2001; 13
Xue, Zhong, Zhang, Yu, Chen (b24) 2021; 12
Zhang, Zhou, Guo, Wang, Wang (b25) 2019; 10
Akpinar, FatihAdak, Guvenc (b32) 2021; 109
Bansal, Sinha, Zhao (b138) 2008; 25
G. Myatt, W. Johnson, Making Sense of Data II, John Wiley and Sons, Ltd, pp. 111–163
Y. Tang, S. Krasser, P. Judge, Y. Zhang, Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data, in: Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), 2006, pp. 1–6.
Sun, Kamel, Wong, Wang (b125) 2007; 40
S. Tyagi, S. Mittal, Sampling Approaches for Imbalanced Data Classification Problem in Machine Learning, in: Proceedings of ICRIC 2019, 2019, pp. 209–221.
N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: Proceedings of the Principles of Knowledge Discovery in Databases, 2003, pp. 107–119.
E. Ramentol, N. Verbiest, R. Bello, Y. Canallero, C. Cornelis, F. Herrera, Smote-first: A new resampling method using fuzzy rough set theory, in: World Scientific Proceedings Series on Computer Engineering and Information Science Uncertainty Modeling in Knowledge Engineering and Decision Making, 2012, pp. 800–805.
G. Wu, E. Chang, Class-Boundary Alignment for Imbalanced Dataset Learning, in: ICML 2003 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.
C. Bellinger, S. Sharma, N. Japkowicz, One-class versus binary classification: Which and when?, in: 2012 11th International Conference on Machine Learning and Applications, Vol. 2, 2012, pp. 102–106.
Yen, Lee (b95) 2009; 36
Yao, Zheng, Jiang (b11) 2021; 9
Rezvani (b28) 2013; 5
Ganganwar (b21) 2012; 2
R.P. Ribeiro, L. Torgo, Predicting harmful algae blooms, in: Portuguese Conference on Artificial Intelligence EPIA 2003: Progress in Artificial Intelligence, 2003, pp. 308–312.
Dunn (b180) 1961; 56
Zhang, Liu, Gong, Jin (b77) 2011; 7
Garcia, Herrera (b60) 2009; 17
Z.Z. Yang, D. Gao, An active under-sampling approach for imbalanced data classification, in: Fifth International Symposium on Computational Intelligence and Design, Vol. 2, 2012, pp. 270–273.
Rezvani, Wang (b7) 2021; 578
Van Pulse, hi Jehoshaphat (b15) 2009; 68
R. Batuwita, V. Palade, Efficient resampling methods for training support vector machines with imbalanced datasets, in: Proceedings of the International Joint Conference on Neural Networks, 2010, pp. 1–8.
Haibo, Yunqian (b2) 2013
P. Kang, S. Cho, Eus svms: Eensemble of under-sampled svms for data imbalance problems, in: Proceedings of the 13th International Conference on Neural Information Processing, 2006, pp. 837–846.
Estabrooks, Jo, Japkowicz (b44) 2004; 20
Krawczyk (b8) 2016; 5
Azaria, Richardson, Kraus, Subrahmanian (b17) 2014; 1
URL.
Kotsiantis, Pintelas (b146) 2003; 1
Fernandez, Garcia, del Jesus, Herrera (b45) 2008; 159
Verbiest, Ramentol, Cornelis, Herrera (b72) 2012
F.J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction algorithms, in: ICML’98: Proc. of the 15th Int. Conf. on Machine Learning, 1998, pp. 445–453.
H. Ma, L. Wang, B. Shen, A New Fuzzy Support Vector Machines for Class Imbalance Learning, in: 2011 International Conference on Electrical and Control Engineering, 2011, pp. 3781–3784.
Rezvani, Wang (b178) 2022; 507
Ji, Lee (b33) 2022; 71
Torgo, Ribeiro, Pfahringer, Branc
Castro (10.1016/j.asoc.2023.110415_b133) 2013; 24
10.1016/j.asoc.2023.110415_b156
Mease (10.1016/j.asoc.2023.110415_b167) 2007; 8
10.1016/j.asoc.2023.110415_b71
Tarekegn (10.1016/j.asoc.2023.110415_b13) 2021; 118
10.1016/j.asoc.2023.110415_b73
Estabrooks (10.1016/j.asoc.2023.110415_b142) 2001
Lee (10.1016/j.asoc.2023.110415_b154) 2006
10.1016/j.asoc.2023.110415_b76
Hernandez-Orallo (10.1016/j.asoc.2023.110415_b141) 2014; 8
10.1016/j.asoc.2023.110415_b78
Kowalczyk (10.1016/j.asoc.2023.110415_b121) 2002; 4
10.1016/j.asoc.2023.110415_b164
10.1016/j.asoc.2023.110415_b163
Lian (10.1016/j.asoc.2023.110415_b65) 2022
10.1016/j.asoc.2023.110415_b165
Sun (10.1016/j.asoc.2023.110415_b125) 2007; 40
Krawczyk (10.1016/j.asoc.2023.110415_b8) 2016; 5
Doucette (10.1016/j.asoc.2023.110415_b158) 2008
Holte (10.1016/j.asoc.2023.110415_b92) 1989; 89
Yong (10.1016/j.asoc.2023.110415_b160) 2012; 17
Cieslak (10.1016/j.asoc.2023.110415_b129) 2012; 24
10.1016/j.asoc.2023.110415_b149
Cristianini (10.1016/j.asoc.2023.110415_b117) 2000
Oh (10.1016/j.asoc.2023.110415_b132) 2011; 74
Breiman (10.1016/j.asoc.2023.110415_b52) 1984
10.1016/j.asoc.2023.110415_b83
Hiabo (10.1016/j.asoc.2023.110415_b4) 2009; 21
10.1016/j.asoc.2023.110415_b85
Moya (10.1016/j.asoc.2023.110415_b148) 1996; 9
Woniak (10.1016/j.asoc.2023.110415_b18) 2014; 16
Jo (10.1016/j.asoc.2023.110415_b93) 2004; 6
Torgo (10.1016/j.asoc.2023.110415_b135) 2003
Branco (10.1016/j.asoc.2023.110415_b6) 2015
Tan (10.1016/j.asoc.2023.110415_b144) 2003; 14
Zhang (10.1016/j.asoc.2023.110415_b25) 2019; 10
Bunkhumpornpat (10.1016/j.asoc.2023.110415_b70) 2009
Menardi (10.1016/j.asoc.2023.110415_b61) 2014; 28
10.1016/j.asoc.2023.110415_b87
Batuwita (10.1016/j.asoc.2023.110415_b111) 2010; 18
Chawla (10.1016/j.asoc.2023.110415_b51) 2008; 17
Ramentol (10.1016/j.asoc.2023.110415_b84) 2012; 33
Wang (10.1016/j.asoc.2023.110415_b101) 2010; 25
Bunkhumpornpat (10.1016/j.asoc.2023.110415_b79) 2012; 36
10.1016/j.asoc.2023.110415_b88
A.Rivera (10.1016/j.asoc.2023.110415_b63) 2016; 66
Bansal (10.1016/j.asoc.2023.110415_b138) 2008; 25
10.1016/j.asoc.2023.110415_b150
Garcia (10.1016/j.asoc.2023.110415_b60) 2009; 17
10.1016/j.asoc.2023.110415_b136
10.1016/j.asoc.2023.110415_b50
Dunn (10.1016/j.asoc.2023.110415_b180) 1961; 56
Barandela (10.1016/j.asoc.2023.110415_b113) 2003; 36
Singla (10.1016/j.asoc.2023.110415_b12) 2020; 11
Akpinar (10.1016/j.asoc.2023.110415_b32) 2021; 109
Lee (10.1016/j.asoc.2023.110415_b74) 1999; 14
Seiffert (10.1016/j.asoc.2023.110415_b143) 2010; 40
10.1016/j.asoc.2023.110415_b58
Tao (10.1016/j.asoc.2023.110415_b56) 2006; 28
Hart (10.1016/j.asoc.2023.110415_b82) 1968; 14
Hernandez-Orallo (10.1016/j.asoc.2023.110415_b140) 2012
10.1016/j.asoc.2023.110415_b54
10.1016/j.asoc.2023.110415_b53
Friedman (10.1016/j.asoc.2023.110415_b179) 1940; 11
10.1016/j.asoc.2023.110415_b55
Haibo (10.1016/j.asoc.2023.110415_b3) 2008
Rijsbergen (10.1016/j.asoc.2023.110415_b35) 1979
Yen (10.1016/j.asoc.2023.110415_b94) 2006
Kurin (10.1016/j.asoc.2023.110415_b105) 2017
Phua (10.1016/j.asoc.2023.110415_b147) 2004; 6
Batista (10.1016/j.asoc.2023.110415_b81) 2004; 6
Weiss (10.1016/j.asoc.2023.110415_b114) 2004; 6
Liu (10.1016/j.asoc.2023.110415_b127) 2010; 10
Dua (10.1016/j.asoc.2023.110415_b175) 2017
Torgo (10.1016/j.asoc.2023.110415_b47) 2013
10.1016/j.asoc.2023.110415_b124
Lee (10.1016/j.asoc.2023.110415_b75) 2000; 34
10.1016/j.asoc.2023.110415_b126
Kotsiantis (10.1016/j.asoc.2023.110415_b146) 2003; 1
Zhang (10.1016/j.asoc.2023.110415_b77) 2011; 7
Rezvani (10.1016/j.asoc.2023.110415_b178) 2022; 507
Haibo (10.1016/j.asoc.2023.110415_b2) 2013
Han (10.1016/j.asoc.2023.110415_b34) 2005
Yen (10.1016/j.asoc.2023.110415_b95) 2009; 36
Rout (10.1016/j.asoc.2023.110415_b9) 2018
Zhuang (10.1016/j.asoc.2023.110415_b153) 2006
Ramyachitra (10.1016/j.asoc.2023.110415_b22) 2014; 5
10.1016/j.asoc.2023.110415_b68
Alcalá-Fdez (10.1016/j.asoc.2023.110415_b104) 2011; 17
Vapnik (10.1016/j.asoc.2023.110415_b42) 1995
Cieslak (10.1016/j.asoc.2023.110415_b128) 2008
Wang (10.1016/j.asoc.2023.110415_b23) 2020; 11
Efron (10.1016/j.asoc.2023.110415_b176) 1979; 7
Barbado (10.1016/j.asoc.2023.110415_b31) 2022; 189
Verbiest (10.1016/j.asoc.2023.110415_b72) 2012
10.1016/j.asoc.2023.110415_b67
Liu (10.1016/j.asoc.2023.110415_b155) 2009; 39
Chen (10.1016/j.asoc.2023.110415_b168) 2010; 21
Liu (10.1016/j.asoc.2023.110415_b106) 2007
Batuwita (10.1016/j.asoc.2023.110415_b89) 2009; 25
Ertekin (10.1016/j.asoc.2023.110415_b171) 2013
Ji (10.1016/j.asoc.2023.110415_b33) 2022; 71
10.1016/j.asoc.2023.110415_b116
Garcia (10.1016/j.asoc.2023.110415_b59) 2006
10.1016/j.asoc.2023.110415_b119
Stefanowski (10.1016/j.asoc.2023.110415_b162) 2008
10.1016/j.asoc.2023.110415_b118
10.1016/j.asoc.2023.110415_b112
10.1016/j.asoc.2023.110415_b115
Cohen (10.1016/j.asoc.2023.110415_b96) 2006; 37
Zhu (10.1016/j.asoc.2023.110415_b170) 2007; 7
Cao (10.1016/j.asoc.2023.110415_b134) 2013
Zhao (10.1016/j.asoc.2023.110415_b139) 2011; 51
Rezvani (10.1016/j.asoc.2023.110415_b28) 2013; 5
10.1016/j.asoc.2023.110415_b36
10.1016/j.asoc.2023.110415_b37
Xiao (10.1016/j.asoc.2023.110415_b145) 2012; 39
Scholkopf (10.1016/j.asoc.2023.110415_b151) 2001; 13
Metz (10.1016/j.asoc.2023.110415_b40) 1978; vol. 8
Madasamy (10.1016/j.asoc.2023.110415_b174) 2017; 13
Chawla (10.1016/j.asoc.2023.110415_b48) 2002; 16
10.1016/j.asoc.2023.110415_b122
Ribeiro (10.1016/j.asoc.2023.110415_b137) 2011
Hu (10.1016/j.asoc.2023.110415_b173) 2012
Galar (10.1016/j.asoc.2023.110415_b161) 2013; 46
Alejo (10.1016/j.asoc.2023.110415_b131) 2007
Frank (10.1016/j.asoc.2023.110415_b182) 2016
10.1016/j.asoc.2023.110415_b108
10.1016/j.asoc.2023.110415_b102
10.1016/j.asoc.2023.110415_b103
Martinez-Garcia (10.1016/j.asoc.2023.110415_b107) 2012
Don (10.1016/j.asoc.2023.110415_b26) 2020; 11
10.1016/j.asoc.2023.110415_b41
He (10.1016/j.asoc.2023.110415_b29) 2013
Manevitz (10.1016/j.asoc.2023.110415_b152) 2002; 2
Zhou (10.1016/j.asoc.2023.110415_b130) 2006; 18
10.1016/j.asoc.2023.110415_b43
Wu (10.1016/j.asoc.2023.110415_b157) 2005; 17
Yao (10.1016/j.asoc.2023.110415_b11) 2021; 9
Vapnik (10.1016/j.asoc.2023.110415_b38) 1998
Demar (10.1016/j.asoc.2023.110415_b181) 2006; 7
10.1016/j.asoc.2023.110415_b110
10.1016/j.asoc.2023.110415_b1
Galar (10.1016/j.asoc.2023.110415_b5) 2012; 42
Sinha (10.1016/j.asoc.2023.110415_b123) 2004; 21
Rezvani (10.1016/j.asoc.2023.110415_b27) 2019; 27
Estabrooks (10.1016/j.asoc.2023.110415_b44) 2004; 20
Fernandez (10.1016/j.asoc.2023.110415_b45) 2008; 159
10.1016/j.asoc.2023.110415_b90
Rezvani (10.1016/j.asoc.2023.110415_b109) 2020; 192
10.1016/j.asoc.2023.110415_b91
Van Pulse (10.1016/j.asoc.2023.110415_b15) 2009; 68
10.1016/j.asoc.2023.110415_b10
10.1016/j.asoc.2023.110415_b98
Milaré (10.1016/j.asoc.2023.110415_b20) 2011; 19
Chen (10.1016/j.asoc.2023.110415_b57) 2004
Makond (10.1016/j.asoc.2023.110415_b64) 2021; 138
10.1016/j.asoc.2023.110415_b97
10.1016/j.asoc.2023.110415_b99
Xue (10.1016/j.asoc.2023.110415_b24) 2021; 12
10.1016/j.asoc.2023.110415_b100
10.1016/j.asoc.2023.110415_b19
Azaria (10.1016/j.asoc.2023.110415_b17) 2014; 1
Kubat (10.1016/j.asoc.2023.110415_b39) 1998; 30
Ganaie (10.1016/j.asoc.2023.110415_b30) 2022; 245
10.1016/j.asoc.2023.110415_b169
Lakshmi (10.1016/j.asoc.2023.110415_b16) 2014
Rezvani (10.1016/j.asoc.2023.110415_b7) 2021; 578
Barua (10.1016/j.asoc.2023.110415_b69) 2014; 26
Raskutti (10.1016/j.asoc.2023.110415_b120) 2004; 6
Tomek (10.1016/j.asoc.2023.110415_b80) 1976; 11
Jeatrakul (10.1016/j.asoc.2023.110415_b166) 2010
Elassad (10.1016/j.asoc.2023.110415_b62) 2020; 21
Huang (10.1016/j.asoc.2023.110415_b177) 2005; 17
Fu (10.1016/j.asoc.2023.110415_b86) 2004; 6
Maheshwari (10.1016/j.asoc.2023.110415_b159) 2011; 2
Devi (10.1016/j.asoc.2023.110415_b14) 2020
Weiss (10.1016/j.asoc.2023.110415_b49) 2003; 19
Mi (10.1016/j.asoc.2023.110415_b172) 2013; 5
Hammad (10.1016/j.asoc.2023.110415_b66) 2022; 120
Fernandez (10.1016/j.asoc.2023.110415_b46) 2010; 180
Ganganwar (10.1016/j.asoc.2023.110415_b21) 2012; 2
References_xml – start-page: 241
  year: 2008
  end-page: 256
  ident: b128
  article-title: Learning decision trees for unbalanced data
  publication-title: Mach. Learn. Knowl. Discov. Databases
– volume: 8
  start-page: 409
  year: 2007
  end-page: 439
  ident: b167
  article-title: Cost-weighted boosting with jittering and over/under-sampling: Jous-boost
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 1359
  year: 2020
  end-page: 1385
  ident: b12
  article-title: A survey of robust optimization based machine learning with special reference to support vector machines
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 11
  start-page: 433
  year: 2020
  end-page: 447
  ident: b26
  article-title: DCSVM: Fast multi-class classification using support vector machines
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 24
  start-page: 888
  year: 2013
  end-page: 899
  ident: b133
  article-title: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 21
  year: 2006
  end-page: 30
  ident: b154
  article-title: The novelty detection approach for different degrees of class imbalance
  publication-title: Neural Information Processing
– volume: 56
  start-page: 52
  year: 1961
  end-page: 64
  ident: b180
  article-title: Multiple comparisons among means
  publication-title: J. Amer. Statist. Assoc.
– reference: W. Fan, S. Stolfo, J. Zhang, P. Chan, Adacost: Misclassification cost-sensitive boosting, in: In Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 97–105.
– volume: 11
  start-page: 1909
  year: 2020
  end-page: 1922
  ident: b23
  article-title: Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 21
  start-page: 201
  year: 2020
  end-page: 208
  ident: b62
  article-title: Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study
  publication-title: Traffic Inj. Prev.
– year: 2004
  ident: b57
  article-title: Using Random Forest to Learn Imbalanced Data
– volume: 17
  start-page: 299
  year: 2005
  end-page: 310
  ident: b177
  article-title: Using auc and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: b81
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
– start-page: 169
  year: 2012
  end-page: 178
  ident: b72
  article-title: Improving smote with fuzzy rough prototype selection to detect noise in imbalanced classification data
  publication-title: Adv. Artif. Intell. IBERAMIA
– volume: 7
  start-page: 783
  year: 2007
  end-page: 790
  ident: b170
  article-title: Active learning for word sense disambiguation with methods for addressing the class imbalance problem
  publication-title: EMNLP-CoNLL
– start-page: 34
  year: 2001
  end-page: 43
  ident: b142
  article-title: A mixture-of-experts framework for learning from imbalanced data sets
  publication-title: Advances in Intelligent Data Analysis
– start-page: 261
  year: 2013
  end-page: 269
  ident: b171
  article-title: Adaptive oversampling for imbalanced data classification
  publication-title: Inf. Sci. Syst.
– start-page: 66
  year: 2007
  end-page: 72
  ident: b106
  article-title: Generative oversampling for mining imbalanced datasets
  publication-title: DMIN
– volume: 189
  year: 2022
  ident: b31
  article-title: Rule extraction in unsupervised anomaly detection for model explainability: Application to OneClass SVM
  publication-title: Expert Syst. Appl.
– reference: Y. Tang, S. Krasser, P. Judge, Y. Zhang, Fast and Effective Spam Sender Detection with Granular SVM on Highly Imbalanced Mail Server Behavior Data, in: Proceedings of 2nd International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborativeCom), 2006, pp. 1–6.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 17
  ident: b141
  article-title: Probabilistic reframing for cost-sensitive regression
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 141
  year: 2014
  end-page: 145
  ident: b16
  article-title: A study on classifying imbalanced datasets
  publication-title: 2014 First International Conference on Networks Soft Computing
– volume: 109
  year: 2021
  ident: b32
  article-title: SVM-based anomaly detection in remote working: Intelligent software SmartRadar
  publication-title: Appl. Soft Comput.
– reference: C. Drummond, R.C. Holte, C4. 5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling, in: Workshop on Learning from Imbalanced Datasets II, Vol. 11, 2003.
– volume: 17
  start-page: 786
  year: 2005
  end-page: 795
  ident: b157
  article-title: Kba: Kernel boundary alignment considering imbalanced data distribution
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: S. Hu, Y. Liang, L. Ma, Y. He, Msmote: Improving classification performance when training data is imbalanced, in: Second International Workshop on Computer Science and Engineering, Vol. 2, 2009, pp. 13–17.
– volume: 14
  start-page: 277
  year: 1999
  end-page: 292
  ident: b74
  article-title: Regularization in skewed binary classification
  publication-title: Comput. Statist.
– start-page: 475
  year: 2009
  end-page: 482
  ident: b70
  article-title: Safelevel-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
  publication-title: Adv. Knowl. Discov. Data Min.
– reference: T. Maciejewski, J. Stefanowski, Local neighbourhood extension of smote for mining imbalanced data, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111.
– volume: 180
  start-page: 1268
  year: 2010
  end-page: 1291
  ident: b46
  article-title: On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
  publication-title: Inform. Sci.
– volume: 6
  start-page: 50
  year: 2004
  end-page: 59
  ident: b147
  article-title: Minority report in fraud detection: Classification of skewed data
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 14
  start-page: 515
  year: 1968
  end-page: 516
  ident: b82
  article-title: The condensed nearest neighbor rule
  publication-title: IEEE Trans. Inform. Theory
– reference: K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines, in: Proceedings of the International Joint Conference on AI, 1995, pp. 55–60.
– volume: 13
  start-page: 2267
  year: 2017
  end-page: 2281
  ident: b174
  article-title: Data imbalance and classifiers: Impact and solutions from a big data perspective
  publication-title: Int. J. Comput. Intell. Res.
– start-page: 626
  year: 2020
  end-page: 631
  ident: b14
  article-title: A review on solution to class imbalance problem: Undersampling approaches
  publication-title: 2020 International Conference on Computational Performance Evaluation
– start-page: 152
  year: 2010
  end-page: 159
  ident: b166
  article-title: Classification of imbalanced data by combining the complementary neural network and smote algorithm
  publication-title: Neural Inf. Process.. Models Appl.
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: b151
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
– reference: G. Wu, E. Chang, Class-Boundary Alignment for Imbalanced Dataset Learning, in: ICML 2003 Workshop on Learning from Imbalanced Data Sets II, Washington, DC, 2003.
– year: 2017
  ident: b105
  article-title: A comparison of classification models for imbalanced datasets
– volume: 4
  start-page: 99
  year: 2002
  end-page: 100
  ident: b121
  article-title: One class svm for yeast regulation prediction
  publication-title: SIGKDD Explor. Newslett.
– volume: 9
  start-page: 463
  year: 1996
  end-page: 474
  ident: b148
  article-title: Network contraints and multiobjective optimization for one-class classification
  publication-title: Neural Netw.
– reference: N. Japkowicz, C. Myers, M. Gluck, A novelty detection approach to classification, in: Proceedings of the Fourteenth Joint Conference on Artificial Intelligence, 1995, pp. 518–523.
– start-page: 283
  year: 2008
  end-page: 292
  ident: b162
  article-title: Selective pre-processing of imbalanced data for improving classification performance
  publication-title: DaWaK 2008: Data Warehousing and Knowledge Discovery
– reference: P. Kang, S. Cho, Eus svms: Eensemble of under-sampled svms for data imbalance problems, in: Proceedings of the 13th International Conference on Neural Information Processing, 2006, pp. 837–846.
– volume: 42
  start-page: 463
  year: 2012
  end-page: 484
  ident: b5
  article-title: A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.
– volume: 11
  start-page: 769
  year: 1976
  end-page: 772
  ident: b80
  article-title: Two modifications of CNN
  publication-title: IEEE Trans. Syst. Man Cybern.
– reference: B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-proportionate example weighting, in: ICDM’03 Proceedings of the Third IEEE International Conference on Data Mining, 2003, pp. 19–22.
– year: 1995
  ident: b42
  article-title: The Nature of Statistical Learning Theory
– reference: E.Y. Chang, B. Li, G. Wu, K. Goh, Statistical learning for effective visual information retrieval, in: IEEE International Conference on Image Processing, 2003.
– volume: 245
  year: 2022
  ident: b30
  article-title: KNN weighted reduced universum twin SVM for class imbalance learning
  publication-title: Knowl.-Based Syst.
– reference: F.J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction algorithms, in: ICML’98: Proc. of the 15th Int. Conf. on Machine Learning, 1998, pp. 445–453.
– reference: Y. Liu, A. An, X. Huang, Boosting prediction accuracy on imbalanced datasets with svm ensembles, in: Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2006, pp. 107–118.
– volume: 68
  start-page: 1513
  year: 2009
  end-page: 1542
  ident: b15
  article-title: Knowledge discovery from imbalanced and noisy data
  publication-title: Data Knowl. Eng.
– start-page: 878
  year: 2005
  end-page: 887
  ident: b34
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Advances in Intelligent Computing
– reference: C. Bunkhumpornpat, S. Subpaiboonkit, Safe level graph for synthetic minority over-sampling techniques, in: 13th International Symposium on Communications and Information Technologies, ISCIT, 2013, pp. 570–575.
– reference: S. Ertekin, J. Huang, L. Giles, Active learning for class imbalance problem, in: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007, pp. 823–824.
– volume: 66
  start-page: 124
  year: 2016
  end-page: 135
  ident: b63
  article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
  publication-title: Expert Syst. Appl.
– year: 1998
  ident: b38
  article-title: Statistical Learning Theory
– volume: 89
  start-page: 813
  year: 1989
  end-page: 818
  ident: b92
  article-title: Concept learning and the problem of small disjuncts
  publication-title: IJCAI
– volume: 17
  start-page: 275
  year: 2009
  end-page: 306
  ident: b60
  article-title: Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
  publication-title: Evol. Comput.
– volume: 33
  start-page: 245
  year: 2012
  end-page: 265
  ident: b84
  article-title: Smote-rsb: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory
  publication-title: Knowl. Inf. Syst.
– volume: 9
  start-page: 16914
  year: 2021
  end-page: 16927
  ident: b11
  article-title: An ensemble model for fake online review detection based on data resampling, feature pruning, and parameter optimization
  publication-title: IEEE Access
– reference: R.P. Ribeiro, L. Torgo, Predicting harmful algae blooms, in: Portuguese Conference on Artificial Intelligence EPIA 2003: Progress in Artificial Intelligence, 2003, pp. 308–312.
– volume: 51
  start-page: 372
  year: 2011
  end-page: 383
  ident: b139
  article-title: An extended tuning method for cost-sensitive regression and forecasting
  publication-title: Decis. Support Syst.
– reference: T. Imam, K. Ting, J. Kamruzzaman, z-svm: An svm for improved classification of imbalanced data, in: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, 2006, pp. 264–273.
– reference: R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in: Proceedings of the 15th European Conference on Machine Learning, 2004, pp. 39–50.
– volume: 18
  start-page: 63
  year: 2006
  end-page: 77
  ident: b130
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 6
  start-page: 60
  year: 2004
  end-page: 69
  ident: b120
  article-title: Extreme re-balancing for svms: A case study
  publication-title: SIGKDD Explor. Newslett.
– volume: 2
  start-page: 42
  year: 2012
  end-page: 47
  ident: b21
  article-title: An overview of classification algorithms for imbalanced datasets
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– reference: M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: ICML-2003 Workshop on Learning from Imbalanced Data Sets II, Vol. 2, 2003, pp. 1–2.
– volume: 37
  start-page: 7
  year: 2006
  end-page: 18
  ident: b96
  article-title: Learning from imbalanced data in surveillance of nosocomial infection
  publication-title: Artif. Intell. Med.
– volume: 5
  start-page: 515
  year: 2013
  end-page: 523
  ident: b28
  article-title: Ranking method of trapezoidal intuitionistic fuzzy numbers
  publication-title: Ann. Fuzzy Math. Inform.
– year: 2022
  ident: b65
  article-title: Lung image segmentation based on DRD U-Net and combined WGAN with deep neural network
  publication-title: Comput. Methods Programs Biomed.
– volume: 24
  start-page: 136
  year: 2012
  end-page: 158
  ident: b129
  article-title: Hellinger distance decision trees are robust and skew-insensitive
  publication-title: Data Min. Knowl. Discov.
– reference: , URL.
– year: 1984
  ident: b52
  article-title: Classification and Regression Trees
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b48
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– volume: 19
  start-page: 315
  year: 2003
  end-page: 354
  ident: b49
  article-title: Learning when training data are costly: The effect of class distribution on tree induction
  publication-title: J. Artif. Intell. Res
– volume: 39
  start-page: 3668
  year: 2012
  end-page: 3675
  ident: b145
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 40
  year: 2004
  end-page: 49
  ident: b93
  article-title: Class imbalances versus small disjuncts
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 17
  start-page: 164
  year: 2012
  end-page: 170
  ident: b160
  article-title: The research of imbalanced data set of sample sampling method based on k-means cluster and genetic algorithm
  publication-title: Energy Procedia
– volume: 5
  start-page: 944
  year: 2013
  end-page: 949
  ident: b172
  article-title: Imbalanced classification based on active learning smote
  publication-title: Res. J. Appl. Sci. Eng. Technol.
– start-page: 1415
  year: 2006
  end-page: 1423
  ident: b59
  article-title: A proposal of evolutionary prototype selection for class imbalance problems
  publication-title: Intell. Data Eng. Automat. Learn., IDEAL
– volume: 120
  year: 2022
  ident: b66
  article-title: MMM-RF: A novel high accuracy multinomial mixture model for network intrusion detection systems
  publication-title: Comput. Secur.
– volume: 30
  start-page: 195
  year: 1998
  end-page: 215
  ident: b39
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Mach. Learn.
– reference: H.Y. Wang, Combination approach of smote and biased-svm for imbalanced datasets, in: International Joint Conference on Neural Networks, IJCNN 2008, 2008, pp. 228–231.
– volume: vol. 8
  start-page: 283
  year: 1978
  end-page: 298
  ident: b40
  article-title: Basic principles of roc analysis
  publication-title: Seminars in Nuclear Medicine
– reference: S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 324–331.
– volume: 6
  start-page: 7
  year: 2004
  end-page: 19
  ident: b114
  article-title: Mining with rarity: A unifying framework
  publication-title: SIGKDD Explor. Newslett.
– reference: P. Songwattanasiri, K. Sinapiromsaran, Smoute: Synthetics minority over-sampling and under-sampling techniques for class imbalanced problem, in: Proceedings of the Annual International Conference on Computer Science Education: Innovation and Technology, Special Track: Knowledge Discovery, 2010, pp. 78–83.
– start-page: 43
  year: 2015
  end-page: 48
  ident: b6
  article-title: A survey of predictive modelling under imbalanced distributions
– reference: M. Joshi, V. Kumar, C. Agarwal, Evaluating boosting algorithms to classify rare classes: Comparison and improvements, in: Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 257–264.
– volume: 40
  start-page: 3358
  year: 2007
  end-page: 3378
  ident: b125
  article-title: Cost-sensitive boosting for classification of imbalanced data
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 1765
  year: 2019
  end-page: 1778
  ident: b25
  article-title: Research on classification method of high-dimensional class-imbalanced datasets based on SVM
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 28
  start-page: 92.122
  year: 2014
  ident: b61
  article-title: Training and assessing classification rules with imbalanced data
  publication-title: Data Min. Knowl. Discov.
– volume: 25
  start-page: 989
  year: 2009
  end-page: 995
  ident: b89
  article-title: Micropred: Effective classification of pre-mirnas for human mirna gene prediction
  publication-title: Bioinformatics
– volume: 159
  start-page: 2378
  year: 2008
  end-page: 2398
  ident: b45
  article-title: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
  publication-title: Fuzzy Sets and Systems
– start-page: 162
  year: 2007
  end-page: 169
  ident: b131
  article-title: Improving the performance of the rbf neural networks trained with imbalanced samples
  publication-title: Comput. Ambient Intell.
– volume: 1
  start-page: 46
  year: 2003
  end-page: 55
  ident: b146
  article-title: Mixture of expert agents for handling imbalanced data sets
  publication-title: Ann. Math., Comput. Teleinform.
– volume: 16
  start-page: 3
  year: 2014
  end-page: 17
  ident: b18
  article-title: A survey of multiple classifier systems as hybrid systems
  publication-title: Inf. Fusion
– volume: 7
  start-page: 2204
  year: 2011
  end-page: 2211
  ident: b77
  article-title: A novel improved smote resampling algorithm based on fractal
  publication-title: J. Comput. Inf. Syst.
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  ident: b176
  article-title: Bootstrap methods: Another look at the jackknife
  publication-title: Ann. Statist.
– reference: G.M. Weiss, K. McCarthy, B. Zabar, Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?, in: Proceedings of the International Conference on Data Mining, 2007, pp. 25–28.
– volume: 36
  start-page: 5718
  year: 2009
  end-page: 5727
  ident: b95
  article-title: Cluster-based under-sampling approaches for imbalanced data distributions
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 1
  year: 2010
  end-page: 20
  ident: b101
  article-title: Boosting support vector machines for imbalanced data sets
  publication-title: Knowl. Inf. Syst.
– volume: 192
  year: 2020
  ident: b109
  article-title: Erratum to entropy-based fuzzy support vector machine for imbalanced datasets” [Knowl.-Based Syst. 115 (2017) 87–99]
  publication-title: Knowl.-Based Syst.
– reference: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Mute: Majority under-sampling technique, in: 8th International Conference on Information, Communications and Signal Processing, 2011, pp. 1–4.
– reference: N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: Proceedings of the Principles of Knowledge Discovery in Databases, 2003, pp. 107–119.
– year: 2012
  ident: b140
  article-title: Soft (Gaussian cde) regression models and loss functions
– reference: S. Lessmann, Solving imbalanced classification problems with support vector machines, in: Proceedings of the International Conference on Artificial Intelligence, 2004, pp. 214–220.
– year: 2013
  ident: b29
  article-title: Imbalanced Learning: Foundations, Algorithms, and Applications
– reference: C. Li, C. Jing, G. Xin-tao, An improved p-svm method used to deal with imbalanced data sets, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, Vol. 1, 2009, pp. 118–122.
– volume: 36
  start-page: 849
  year: 2003
  end-page: 851
  ident: b113
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recognit.
– start-page: 447
  year: 2003
  end-page: 458
  ident: b135
  article-title: Predicting outliers
  publication-title: Knowl. Discov. Databases: PKDD
– volume: 21
  start-page: 1624
  year: 2010
  end-page: 1642
  ident: b168
  article-title: Ramoboost: Ranked minority oversampling in boosting
  publication-title: IEEE Trans. Neural Netw.
– volume: 507
  start-page: 16
  year: 2022
  end-page: 25
  ident: b178
  article-title: Intuitionistic fuzzy twin support vector machines for imbalanced data
  publication-title: Neurocomputing
– reference: M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: One-sided selection, in: Proc. of the 14th Int. Conf. on Machine Learning, 1997, pp. 179–186.
– volume: 36
  start-page: 664
  year: 2012
  end-page: 684
  ident: b79
  article-title: Dbsmote: Density-based synthetic minority over-sampling technique
  publication-title: Appl. Intell.
– volume: 19
  start-page: 293
  year: 2011
  end-page: 303
  ident: b20
  article-title: A hybrid approach to learn with imbalanced classes using evolutionary algorithms
  publication-title: Logic J. IGPL
– start-page: 431
  year: 2018
  end-page: 443
  ident: b9
  article-title: Handling imbalanced data: A survey
  publication-title: International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications
– volume: 27
  start-page: 2140
  year: 2019
  end-page: 2151
  ident: b27
  article-title: Intuitionistic fuzzy twin support vector machines
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 138
  year: 2021
  ident: b64
  article-title: Benchmarking prognosis methods for survivability. A case study for patients with contingent primary cancers
  publication-title: Comput. Biol. Med.
– reference: R. Batuwita, V. Palade, An improved non-comparative classification method for human microrna gene prediction, in: Proceedings of the International Conference on Bioinformatics and Bioengineering, 2008, pp. 1–6.
– year: 2000
  ident: b117
  article-title: An Introduction to Support Vector Machines and other kernel-based learning methods
– reference: Y. Freund, R. Schapire, A decision-theoretic generalization of online learning and an application to boosting, in: Proceedings of the Second European Conference on Computational Learning Theory, 1995.
– start-page: 83
  year: 2013
  end-page: 99
  ident: b2
  article-title: Class imbalance learning methods for support vector machines
  publication-title: Imbalanced Learning: Foundations, Algorithms, and Applications
– volume: 34
  start-page: 165
  year: 2000
  end-page: 191
  ident: b75
  article-title: Noisy replication in skewed binary classification
  publication-title: Comput. Statist. Data Anal.
– reference: J. Chen, M. Casique, M. Karakoy, Classification of lung data by sampling and support vector machine, in: In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, 2004, pp. 3194–3197.
– volume: 1
  start-page: 135
  year: 2014
  end-page: 155
  ident: b17
  article-title: Behavioral analysis of insider threat: A survey and bootstrapped prediction in imbalanced data
  publication-title: IEEE Trans. Comput. Soc. Syst.
– start-page: 731
  year: 2006
  end-page: 740
  ident: b94
  article-title: Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset
  publication-title: Intelligent Control and Automation
– volume: 40
  start-page: 185
  year: 2010
  end-page: 197
  ident: b143
  article-title: Rusboost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans. Syst. Man Cybern. A
– start-page: 490
  year: 2012
  end-page: 495
  ident: b173
  article-title: Active learning for imbalance problem using l-gem of rbfnn
  publication-title: ICMLC
– volume: 39
  start-page: 539
  year: 2009
  end-page: 550
  ident: b155
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
– start-page: 378
  year: 2013
  end-page: 389
  ident: b47
  article-title: Smote for regression
  publication-title: Progress in Artificial Intelligence
– reference: G. Myatt, W. Johnson, Making Sense of Data II, John Wiley and Sons, Ltd, pp. 111–163,
– reference: H. Ma, L. Wang, B. Shen, A New Fuzzy Support Vector Machines for Class Imbalance Learning, in: 2011 International Conference on Electrical and Control Engineering, 2011, pp. 3781–3784.
– volume: 5
  start-page: 221
  year: 2016
  end-page: 232
  ident: b8
  article-title: Learning from imbalanced data: Open challenges and future directions
  publication-title: Progress Artif. Intell.
– volume: 46
  start-page: 3460
  year: 2013
  end-page: 3471
  ident: b161
  article-title: Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
  publication-title: Pattern Recognit.
– reference: P. Domingos, Metacost: A general method for making classifiers cost-sensitive, in: KDD’99: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, 1999, pp. 155–164.
– start-page: 584
  year: 2012
  end-page: 592
  ident: b107
  article-title: Sneom: A sanger network based extended over-sampling method. Application to imbalanced biomedical datasets
  publication-title: Neural Information Processing
– reference: C. Bellinger, S. Sharma, N. Japkowicz, One-class versus binary classification: Which and when?, in: 2012 11th International Conference on Machine Learning and Applications, Vol. 2, 2012, pp. 102–106.
– volume: 14
  start-page: 206
  year: 2003
  end-page: 217
  ident: b144
  article-title: Multi-class protein fold classification using a new ensemble machine learning approach
  publication-title: Genome Inform.
– volume: 12
  start-page: 1753
  year: 2021
  end-page: 1768
  ident: b24
  article-title: Sample-based online learning for bi-regular hinge loss
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 17
  start-page: 255
  year: 2011
  end-page: 287
  ident: b104
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Logic Soft Comput
– reference: J. Stefanowski, S. Wilk, Improving rule based classifiers induced by modlem by selective pre-processing of imbalanced data, in: Proc. of the RSKD Workshop at ECML/PKDD, Warsaw, 2007, pp. 54–65.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b4
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 118
  year: 2021
  ident: b13
  article-title: A review of methods for imbalanced multi-label classification
  publication-title: Pattern Recognit.
– reference: N.V. Chawla, L.O. Hall, A. Joshi, Wrapper-based computation and evaluation of sampling methods for imbalanced datasets, in: Proceedings of the 1st International Workshop on Utility-Based Data Mining, 2005, pp. 24–33.
– start-page: 538
  year: 2006
  end-page: 549
  ident: b153
  article-title: Parameter estimation of one-class svm on imbalance text classification
  publication-title: Advances in Artificial Intelligence
– reference: I. Mani, J. Zhang, knn approach to unbalanced data distributions: A case study involving information extraction, in: Proceedings of Workshop on Learning from Imbalanced Datasets, 2003.
– reference: L. Xuan, C. Zhigang, Y. Fan, Exploring of clustering algorithm on class-imbalanced data, in: 2013 8th International Conference on Computer Science and Education, 2013, pp. 89–93.
– year: 2011
  ident: b137
  article-title: Utility-Based Regression
– year: 2016
  ident: b182
  article-title: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”
– reference: N. Japkowicz, Learning from imbalanced data sets: A comparison of various strategies, in: AAAI Workshop on Learning from Imbalanced Data Sets, Vol. 68, 2000, pp. 10–15.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 5
  ident: b159
  article-title: A new approach for classification of highly imbalanced datasets using evolutionary algorithms
  publication-title: Intl. J. Sci. Eng. Res.
– year: 1979
  ident: b35
  article-title: Information Retrieval
– volume: 20
  start-page: 18
  year: 2004
  end-page: 36
  ident: b44
  article-title: A multiple resampling method for learning from imbalanced data sets
  publication-title: Comput. Intell.
– reference: J. Song, X. Lu, X. Wu, An improved adaboost algorithm for unbalanced classification data, in: FSKD’09 Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery, Vol. 1, 2009, pp. 109–113.
– start-page: 452
  year: 2013
  end-page: 463
  ident: b134
  article-title: A pso-based cost-sensitive neural network for imbalanced data classification
  publication-title: Trends Appl. Knowl. Discov. Data Min.
– start-page: 1
  year: 2008
  end-page: 26
  ident: b3
  article-title: Adasyn: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Adv. Knowl. Discov. Data Min.
– volume: 21
  start-page: 249
  year: 2004
  end-page: 280
  ident: b123
  article-title: Evaluating and tuning predictive data mining models using receiver operating characteristic curves
  publication-title: J. Manage. Inf. Syst.
– volume: 17
  start-page: 225
  year: 2008
  end-page: 252
  ident: b51
  article-title: Automatically countering imbalance and its empirical relationship to cost
  publication-title: Data Min. Knowl. Discov.
– volume: 71
  start-page: 6032
  year: 2022
  end-page: 6043
  ident: b33
  article-title: Event-based anomaly detection using a one-class SVM for a hybrid electric vehicle
  publication-title: IEEE Trans. Veh. Technol.
– volume: 26
  start-page: 405
  year: 2014
  end-page: 425
  ident: b69
  article-title: Mwmote-majority weighted minority oversampling technique for imbalanced data set learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: R. Batuwita, V. Palade, Efficient resampling methods for training support vector machines with imbalanced datasets, in: Proceedings of the International Joint Conference on Neural Networks, 2010, pp. 1–8.
– reference: E. Ramentol, N. Verbiest, R. Bello, Y. Canallero, C. Cornelis, F. Herrera, Smote-first: A new resampling method using fuzzy rough set theory, in: World Scientific Proceedings Series on Computer Engineering and Information Science Uncertainty Modeling in Knowledge Engineering and Decision Making, 2012, pp. 800–805.
– reference: S. Tyagi, S. Mittal, Sampling Approaches for Imbalanced Data Classification Problem in Machine Learning, in: Proceedings of ICRIC 2019, 2019, pp. 209–221.
– volume: 18
  start-page: 558
  year: 2010
  end-page: 571
  ident: b111
  article-title: Fsvm-cil: Fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 74
  start-page: 1058
  year: 2011
  end-page: 1061
  ident: b132
  article-title: Error back-propagation algorithm for classification of imbalanced data
  publication-title: Neurocomputing
– reference: J. Yuan, J. Li, B. Zhang, Learning concepts from large scale imbalanced data sets using support cluster machines, in: Proceedings of the 14th Annual ACM International Conference on Multimedia, 2006, pp. 441–450.
– volume: 2
  start-page: 139
  year: 2002
  end-page: 154
  ident: b152
  article-title: One-class svms for document classification
  publication-title: J. Mach. Learn. Res.
– start-page: 266
  year: 2008
  end-page: 277
  ident: b158
  article-title: Gp classification under imbalanced data sets: Active sub-sampling and auc approximation
  publication-title: Genetic Programm.
– volume: 28
  start-page: 1088
  year: 2006
  end-page: 1099
  ident: b56
  article-title: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 120
  year: 2004
  end-page: 124
  ident: b86
  article-title: A block-based support vector machine approach to the protein homology prediction task in kdd cup 2004
  publication-title: SIGKDD Explor. Newslett.
– volume: 578
  start-page: 659
  year: 2021
  end-page: 682
  ident: b7
  article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines
  publication-title: Inform. Sci.
– volume: 10
  start-page: 766
  year: 2010
  end-page: 777
  ident: b127
  article-title: A robust decision tree algorithm for imbalanced data sets
  publication-title: SDM
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b179
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– reference: Z.Z. Yang, D. Gao, An active under-sampling approach for imbalanced data classification, in: Fifth International Symposium on Computational Intelligence and Design, Vol. 2, 2012, pp. 270–273.
– volume: 25
  start-page: 315
  year: 2008
  end-page: 336
  ident: b138
  article-title: Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting
  publication-title: J. Manage. Inf. Syst.
– volume: 5
  year: 2014
  ident: b22
  article-title: Imbalance dataset classification and solutions: A review
  publication-title: Int. J. Comput. Bus. Res.
– reference: Z. Lin, Z. Hao, X. Yang, X. Liu, Several svm ensemble methods integrated with under-sampling for imbalanced data learning, in: Proceedings of the 5th International Conference on Advanced Data Mining and Applications, 2009, pp. 536–544.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b181
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: b175
  article-title: UCI machine learning repository
– start-page: 83
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b2
  article-title: Class imbalance learning methods for support vector machines
– year: 1979
  ident: 10.1016/j.asoc.2023.110415_b35
– volume: 507
  start-page: 16
  year: 2022
  ident: 10.1016/j.asoc.2023.110415_b178
  article-title: Intuitionistic fuzzy twin support vector machines for imbalanced data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.083
– volume: 5
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b22
  article-title: Imbalance dataset classification and solutions: A review
  publication-title: Int. J. Comput. Bus. Res.
– volume: 8
  start-page: 409
  year: 2007
  ident: 10.1016/j.asoc.2023.110415_b167
  article-title: Cost-weighted boosting with jittering and over/under-sampling: Jous-boost
  publication-title: J. Mach. Learn. Res.
– year: 1984
  ident: 10.1016/j.asoc.2023.110415_b52
– ident: 10.1016/j.asoc.2023.110415_b55
– start-page: 283
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b162
  article-title: Selective pre-processing of imbalanced data for improving classification performance
– volume: 11
  start-page: 769
  year: 1976
  ident: 10.1016/j.asoc.2023.110415_b80
  article-title: Two modifications of CNN
  publication-title: IEEE Trans. Syst. Man Cybern.
– ident: 10.1016/j.asoc.2023.110415_b90
  doi: 10.1109/ICMLA.2012.212
– ident: 10.1016/j.asoc.2023.110415_b124
  doi: 10.1007/3-540-59119-2_166
– volume: 40
  start-page: 185
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b143
  article-title: Rusboost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans. Syst. Man Cybern. A
  doi: 10.1109/TSMCA.2009.2029559
– start-page: 169
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b72
  article-title: Improving smote with fuzzy rough prototype selection to detect noise in imbalanced classification data
  publication-title: Adv. Artif. Intell. IBERAMIA
– start-page: 241
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b128
  article-title: Learning decision trees for unbalanced data
  publication-title: Mach. Learn. Knowl. Discov. Databases
– volume: 109
  year: 2021
  ident: 10.1016/j.asoc.2023.110415_b32
  article-title: SVM-based anomaly detection in remote working: Intelligent software SmartRadar
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107457
– ident: 10.1016/j.asoc.2023.110415_b71
  doi: 10.1142/9789814417747_0128
– volume: 17
  start-page: 786
  year: 2005
  ident: 10.1016/j.asoc.2023.110415_b157
  article-title: Kba: Kernel boundary alignment considering imbalanced data distribution
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.95
– volume: 6
  start-page: 120
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b86
  article-title: A block-based support vector machine approach to the protein homology prediction task in kdd cup 2004
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/1046456.1046475
– ident: 10.1016/j.asoc.2023.110415_b115
– volume: 9
  start-page: 463
  year: 1996
  ident: 10.1016/j.asoc.2023.110415_b148
  article-title: Network contraints and multiobjective optimization for one-class classification
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(95)00120-4
– start-page: 452
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b134
  article-title: A pso-based cost-sensitive neural network for imbalanced data classification
  publication-title: Trends Appl. Knowl. Discov. Data Min.
– ident: 10.1016/j.asoc.2023.110415_b165
  doi: 10.1109/ISCID.2012.219
– volume: 68
  start-page: 1513
  issue: 12
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b15
  article-title: Knowledge discovery from imbalanced and noisy data
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2009.08.005
– start-page: 538
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b153
  article-title: Parameter estimation of one-class svm on imbalance text classification
– volume: 5
  start-page: 515
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b28
  article-title: Ranking method of trapezoidal intuitionistic fuzzy numbers
  publication-title: Ann. Fuzzy Math. Inform.
– volume: 39
  start-page: 539
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b155
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2008.2007853
– volume: 6
  start-page: 60
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b120
  article-title: Extreme re-balancing for svms: A case study
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007739
– ident: 10.1016/j.asoc.2023.110415_b112
  doi: 10.1109/ICICISYS.2009.5357925
– volume: 120
  year: 2022
  ident: 10.1016/j.asoc.2023.110415_b66
  article-title: MMM-RF: A novel high accuracy multinomial mixture model for network intrusion detection systems
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2022.102777
– start-page: 1
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b3
  article-title: Adasyn: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Adv. Knowl. Discov. Data Min.
– ident: 10.1016/j.asoc.2023.110415_b58
– volume: 21
  start-page: 1624
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b168
  article-title: Ramoboost: Ranked minority oversampling in boosting
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2066988
– year: 2004
  ident: 10.1016/j.asoc.2023.110415_b57
– volume: 36
  start-page: 664
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b79
  article-title: Dbsmote: Density-based synthetic minority over-sampling technique
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-011-0287-y
– volume: 10
  start-page: 1765
  year: 2019
  ident: 10.1016/j.asoc.2023.110415_b25
  article-title: Research on classification method of high-dimensional class-imbalanced datasets based on SVM
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0853-2
– ident: 10.1016/j.asoc.2023.110415_b76
  doi: 10.1109/WCSE.2009.756
– volume: 6
  start-page: 7
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b114
  article-title: Mining with rarity: A unifying framework
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007734
– volume: vol. 8
  start-page: 283
  year: 1978
  ident: 10.1016/j.asoc.2023.110415_b40
  article-title: Basic principles of roc analysis
– volume: 37
  start-page: 7
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b96
  article-title: Learning from imbalanced data in surveillance of nosocomial infection
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2005.03.002
– ident: 10.1016/j.asoc.2023.110415_b122
  doi: 10.1145/312129.312220
– ident: 10.1016/j.asoc.2023.110415_b150
– start-page: 584
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b107
  article-title: Sneom: A sanger network based extended over-sampling method. Application to imbalanced biomedical datasets
– volume: 39
  start-page: 3668
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b145
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.059
– start-page: 626
  year: 2020
  ident: 10.1016/j.asoc.2023.110415_b14
  article-title: A review on solution to class imbalance problem: Undersampling approaches
– ident: 10.1016/j.asoc.2023.110415_b68
  doi: 10.1109/CIDM.2011.5949434
– ident: 10.1016/j.asoc.2023.110415_b97
  doi: 10.1145/1180639.1180729
– start-page: 141
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b16
  article-title: A study on classifying imbalanced datasets
– ident: 10.1016/j.asoc.2023.110415_b164
  doi: 10.5176/978-981-08-7466-7_kd-21
– ident: 10.1016/j.asoc.2023.110415_b103
  doi: 10.1109/ICDM.2001.989527
– volume: 24
  start-page: 888
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b133
  article-title: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2246188
– volume: 13
  start-page: 1443
  year: 2001
  ident: 10.1016/j.asoc.2023.110415_b151
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 578
  start-page: 659
  year: 2021
  ident: 10.1016/j.asoc.2023.110415_b7
  article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.07.010
– ident: 10.1016/j.asoc.2023.110415_b83
– volume: 138
  year: 2021
  ident: 10.1016/j.asoc.2023.110415_b64
  article-title: Benchmarking prognosis methods for survivability. A case study for patients with contingent primary cancers
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104888
– volume: 51
  start-page: 372
  year: 2011
  ident: 10.1016/j.asoc.2023.110415_b139
  article-title: An extended tuning method for cost-sensitive regression and forecasting
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2011.01.003
– ident: 10.1016/j.asoc.2023.110415_b91
  doi: 10.1109/ICCSE.2013.6553890
– ident: 10.1016/j.asoc.2023.110415_b169
  doi: 10.1145/1277741.1277927
– ident: 10.1016/j.asoc.2023.110415_b43
  doi: 10.1109/IJCNN.2010.5596787
– volume: 46
  start-page: 3460
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b161
  article-title: Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.05.006
– ident: 10.1016/j.asoc.2023.110415_b119
  doi: 10.1007/11941439_30
– ident: 10.1016/j.asoc.2023.110415_b78
  doi: 10.1109/ISCIT.2013.6645923
– ident: 10.1016/j.asoc.2023.110415_b1
  doi: 10.1007/978-3-540-30115-8_7
– ident: 10.1016/j.asoc.2023.110415_b41
– ident: 10.1016/j.asoc.2023.110415_b126
  doi: 10.1109/FSKD.2009.608
– start-page: 266
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b158
  article-title: Gp classification under imbalanced data sets: Active sub-sampling and auc approximation
  publication-title: Genetic Programm.
  doi: 10.1007/978-3-540-78671-9_23
– volume: 24
  start-page: 136
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b129
  article-title: Hellinger distance decision trees are robust and skew-insensitive
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-011-0222-1
– ident: 10.1016/j.asoc.2023.110415_b149
– start-page: 43
  year: 2015
  ident: 10.1016/j.asoc.2023.110415_b6
– year: 2000
  ident: 10.1016/j.asoc.2023.110415_b117
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b181
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.asoc.2023.110415_b156
  doi: 10.1109/IJCNN.2008.4633794
– volume: 42
  start-page: 463
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b5
  article-title: A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.
  doi: 10.1109/TSMCC.2011.2161285
– volume: 14
  start-page: 515
  year: 1968
  ident: 10.1016/j.asoc.2023.110415_b82
  article-title: The condensed nearest neighbor rule
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1968.1054155
– ident: 10.1016/j.asoc.2023.110415_b54
  doi: 10.1109/CIDM.2009.4938667
– ident: 10.1016/j.asoc.2023.110415_b136
  doi: 10.1007/978-3-540-24580-3_36
– ident: 10.1016/j.asoc.2023.110415_b163
  doi: 10.1109/ICICS.2011.6173603
– volume: 21
  start-page: 201
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110415_b62
  article-title: Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2020.1723794
– start-page: 731
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b94
  article-title: Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset
– volume: 17
  start-page: 225
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b51
  article-title: Automatically countering imbalance and its empirical relationship to cost
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-008-0087-0
– ident: 10.1016/j.asoc.2023.110415_b110
– volume: 4
  start-page: 99
  year: 2002
  ident: 10.1016/j.asoc.2023.110415_b121
  article-title: One class svm for yeast regulation prediction
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/772862.772878
– ident: 10.1016/j.asoc.2023.110415_b37
  doi: 10.1109/COLCOM.2006.361856
– volume: 17
  start-page: 164
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b160
  article-title: The research of imbalanced data set of sample sampling method based on k-means cluster and genetic algorithm
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.02.078
– volume: 1
  start-page: 46
  year: 2003
  ident: 10.1016/j.asoc.2023.110415_b146
  article-title: Mixture of expert agents for handling imbalanced data sets
  publication-title: Ann. Math., Comput. Teleinform.
– volume: 118
  year: 2021
  ident: 10.1016/j.asoc.2023.110415_b13
  article-title: A review of methods for imbalanced multi-label classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107965
– volume: 2
  start-page: 42
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b21
  article-title: An overview of classification algorithms for imbalanced datasets
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– ident: 10.1016/j.asoc.2023.110415_b102
– volume: 30
  start-page: 195
  year: 1998
  ident: 10.1016/j.asoc.2023.110415_b39
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007452223027
– volume: 28
  start-page: 1088
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b56
  article-title: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.134
– volume: 7
  start-page: 2204
  year: 2011
  ident: 10.1016/j.asoc.2023.110415_b77
  article-title: A novel improved smote resampling algorithm based on fractal
  publication-title: J. Comput. Inf. Syst.
– volume: 89
  start-page: 813
  year: 1989
  ident: 10.1016/j.asoc.2023.110415_b92
  article-title: Concept learning and the problem of small disjuncts
  publication-title: IJCAI
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.110415_b159
  article-title: A new approach for classification of highly imbalanced datasets using evolutionary algorithms
  publication-title: Intl. J. Sci. Eng. Res.
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 10.1016/j.asoc.2023.110415_b180
  article-title: Multiple comparisons among means
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1961.10482090
– year: 2013
  ident: 10.1016/j.asoc.2023.110415_b29
– volume: 18
  start-page: 558
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b111
  article-title: Fsvm-cil: Fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2010.2042721
– volume: 6
  start-page: 40
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b93
  article-title: Class imbalances versus small disjuncts
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007737
– volume: 26
  start-page: 405
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b69
  article-title: Mwmote-majority weighted minority oversampling technique for imbalanced data set learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.232
– volume: 34
  start-page: 165
  year: 2000
  ident: 10.1016/j.asoc.2023.110415_b75
  article-title: Noisy replication in skewed binary classification
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(99)00095-X
– volume: 5
  start-page: 221
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2023.110415_b8
  article-title: Learning from imbalanced data: Open challenges and future directions
  publication-title: Progress Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– year: 1995
  ident: 10.1016/j.asoc.2023.110415_b42
– volume: 20
  start-page: 18
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b44
  article-title: A multiple resampling method for learning from imbalanced data sets
  publication-title: Comput. Intell.
  doi: 10.1111/j.0824-7935.2004.t01-1-00228.x
– volume: 74
  start-page: 1058
  year: 2011
  ident: 10.1016/j.asoc.2023.110415_b132
  article-title: Error back-propagation algorithm for classification of imbalanced data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.024
– volume: 25
  start-page: 315
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b138
  article-title: Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting
  publication-title: J. Manage. Inf. Syst.
  doi: 10.2753/MIS0742-1222250309
– volume: 7
  start-page: 1
  issue: 1
  year: 1979
  ident: 10.1016/j.asoc.2023.110415_b176
  article-title: Bootstrap methods: Another look at the jackknife
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344552
– year: 2017
  ident: 10.1016/j.asoc.2023.110415_b175
– ident: 10.1016/j.asoc.2023.110415_b85
– volume: 14
  start-page: 277
  year: 1999
  ident: 10.1016/j.asoc.2023.110415_b74
  article-title: Regularization in skewed binary classification
  publication-title: Comput. Statist.
  doi: 10.1007/s001800050018
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.asoc.2023.110415_b179
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– year: 2011
  ident: 10.1016/j.asoc.2023.110415_b137
– volume: 11
  start-page: 1359
  year: 2020
  ident: 10.1016/j.asoc.2023.110415_b12
  article-title: A survey of robust optimization based machine learning with special reference to support vector machines
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01044-y
– volume: 17
  start-page: 299
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2023.110415_b177
  article-title: Using auc and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.50
– volume: 17
  start-page: 255
  issue: 2–3
  year: 2011
  ident: 10.1016/j.asoc.2023.110415_b104
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Logic Soft Comput
– start-page: 1415
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b59
  article-title: A proposal of evolutionary prototype selection for class imbalance problems
  publication-title: Intell. Data Eng. Automat. Learn., IDEAL
– year: 2012
  ident: 10.1016/j.asoc.2023.110415_b140
– volume: 5
  start-page: 944
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b172
  article-title: Imbalanced classification based on active learning smote
  publication-title: Res. J. Appl. Sci. Eng. Technol.
  doi: 10.19026/rjaset.5.5044
– volume: 25
  start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b101
  article-title: Boosting support vector machines for imbalanced data sets
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0198-y
– volume: 189
  year: 2022
  ident: 10.1016/j.asoc.2023.110415_b31
  article-title: Rule extraction in unsupervised anomaly detection for model explainability: Application to OneClass SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116100
– volume: 9
  start-page: 16914
  year: 2021
  ident: 10.1016/j.asoc.2023.110415_b11
  article-title: An ensemble model for fake online review detection based on data resampling, feature pruning, and parameter optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051174
– ident: 10.1016/j.asoc.2023.110415_b116
– start-page: 34
  year: 2001
  ident: 10.1016/j.asoc.2023.110415_b142
  article-title: A mixture-of-experts framework for learning from imbalanced data sets
– ident: 10.1016/j.asoc.2023.110415_b98
  doi: 10.1007/978-3-642-03348-3_54
– year: 2017
  ident: 10.1016/j.asoc.2023.110415_b105
– volume: 180
  start-page: 1268
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b46
  article-title: On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.12.014
– volume: 19
  start-page: 315
  year: 2003
  ident: 10.1016/j.asoc.2023.110415_b49
  article-title: Learning when training data are costly: The effect of class distribution on tree induction
  publication-title: J. Artif. Intell. Res
  doi: 10.1613/jair.1199
– volume: 245
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2023.110415_b30
  article-title: KNN weighted reduced universum twin SVM for class imbalance learning
  publication-title: Knowl.-Based Syst.
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b4
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– start-page: 378
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b47
  article-title: Smote for regression
– ident: 10.1016/j.asoc.2023.110415_b19
– volume: 159
  start-page: 2378
  year: 2008
  ident: 10.1016/j.asoc.2023.110415_b45
  article-title: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2007.12.023
– start-page: 447
  year: 2003
  ident: 10.1016/j.asoc.2023.110415_b135
  article-title: Predicting outliers
  publication-title: Knowl. Discov. Databases: PKDD
– start-page: 431
  year: 2018
  ident: 10.1016/j.asoc.2023.110415_b9
  article-title: Handling imbalanced data: A survey
  doi: 10.1007/978-981-10-5272-9_39
– volume: 25
  start-page: 989
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b89
  article-title: Micropred: Effective classification of pre-mirnas for human mirna gene prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp107
– volume: 36
  start-page: 849
  year: 2003
  ident: 10.1016/j.asoc.2023.110415_b113
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00257-1
– volume: 27
  start-page: 2140
  issue: 11
  year: 2019
  ident: 10.1016/j.asoc.2023.110415_b27
  article-title: Intuitionistic fuzzy twin support vector machines
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2893863
– ident: 10.1016/j.asoc.2023.110415_b67
  doi: 10.1007/978-3-540-39804-2_12
– start-page: 475
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b70
  article-title: Safelevel-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
  publication-title: Adv. Knowl. Discov. Data Min.
– volume: 36
  start-page: 5718
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b95
  article-title: Cluster-based under-sampling approaches for imbalanced data distributions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.06.108
– volume: 17
  start-page: 275
  year: 2009
  ident: 10.1016/j.asoc.2023.110415_b60
  article-title: Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2009.17.3.275
– start-page: 66
  year: 2007
  ident: 10.1016/j.asoc.2023.110415_b106
  article-title: Generative oversampling for mining imbalanced datasets
  publication-title: DMIN
– ident: 10.1016/j.asoc.2023.110415_b53
– start-page: 878
  year: 2005
  ident: 10.1016/j.asoc.2023.110415_b34
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
– volume: 28
  start-page: 92.122
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b61
  article-title: Training and assessing classification rules with imbalanced data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-012-0295-5
– volume: 16
  start-page: 3
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b18
  article-title: A survey of multiple classifier systems as hybrid systems
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.04.006
– ident: 10.1016/j.asoc.2023.110415_b10
  doi: 10.1007/978-3-030-29407-6_17
– volume: 12
  start-page: 1753
  year: 2021
  ident: 10.1016/j.asoc.2023.110415_b24
  article-title: Sample-based online learning for bi-regular hinge loss
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01272-7
– ident: 10.1016/j.asoc.2023.110415_b99
  doi: 10.1007/11893028_93
– volume: 7
  start-page: 783
  year: 2007
  ident: 10.1016/j.asoc.2023.110415_b170
  article-title: Active learning for word sense disambiguation with methods for addressing the class imbalance problem
  publication-title: EMNLP-CoNLL
– volume: 6
  start-page: 20
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b81
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007735
– start-page: 21
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b154
  article-title: The novelty detection approach for different degrees of class imbalance
– volume: 6
  start-page: 50
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b147
  article-title: Minority report in fraud detection: Classification of skewed data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007738
– volume: 33
  start-page: 245
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b84
  article-title: Smote-rsb: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-011-0465-6
– year: 2016
  ident: 10.1016/j.asoc.2023.110415_b182
– volume: 66
  start-page: 124
  issue: 30
  year: 2016
  ident: 10.1016/j.asoc.2023.110415_b63
  article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.010
– volume: 11
  start-page: 1909
  year: 2020
  ident: 10.1016/j.asoc.2023.110415_b23
  article-title: Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01081-y
– volume: 1
  start-page: 135
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b17
  article-title: Behavioral analysis of insider threat: A survey and bootstrapped prediction in imbalanced data
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2014.2377811
– start-page: 490
  year: 2012
  ident: 10.1016/j.asoc.2023.110415_b173
  article-title: Active learning for imbalance problem using l-gem of rbfnn
  publication-title: ICMLC
– volume: 14
  start-page: 206
  year: 2003
  ident: 10.1016/j.asoc.2023.110415_b144
  article-title: Multi-class protein fold classification using a new ensemble machine learning approach
  publication-title: Genome Inform.
– volume: 13
  start-page: 2267
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2023.110415_b174
  article-title: Data imbalance and classifiers: Impact and solutions from a big data perspective
  publication-title: Int. J. Comput. Intell. Res.
– ident: 10.1016/j.asoc.2023.110415_b87
– volume: 10
  start-page: 766
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b127
  article-title: A robust decision tree algorithm for imbalanced data sets
  publication-title: SDM
– ident: 10.1016/j.asoc.2023.110415_b108
– ident: 10.1016/j.asoc.2023.110415_b36
  doi: 10.1002/9780470417409.ch4
– volume: 19
  start-page: 293
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2023.110415_b20
  article-title: A hybrid approach to learn with imbalanced classes using evolutionary algorithms
  publication-title: Logic J. IGPL
  doi: 10.1093/jigpal/jzq027
– volume: 192
  year: 2020
  ident: 10.1016/j.asoc.2023.110415_b109
  article-title: Erratum to entropy-based fuzzy support vector machine for imbalanced datasets” [Knowl.-Based Syst. 115 (2017) 87–99]
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105287
– volume: 2
  start-page: 139
  year: 2002
  ident: 10.1016/j.asoc.2023.110415_b152
  article-title: One-class svms for document classification
  publication-title: J. Mach. Learn. Res.
– start-page: 261
  year: 2013
  ident: 10.1016/j.asoc.2023.110415_b171
  article-title: Adaptive oversampling for imbalanced data classification
  publication-title: Inf. Sci. Syst.
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.asoc.2023.110415_b48
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– ident: 10.1016/j.asoc.2023.110415_b50
  doi: 10.1145/1089827.1089830
– ident: 10.1016/j.asoc.2023.110415_b100
  doi: 10.1007/11731139_15
– volume: 21
  start-page: 249
  year: 2004
  ident: 10.1016/j.asoc.2023.110415_b123
  article-title: Evaluating and tuning predictive data mining models using receiver operating characteristic curves
  publication-title: J. Manage. Inf. Syst.
  doi: 10.1080/07421222.2004.11045815
– volume: 18
  start-page: 63
  year: 2006
  ident: 10.1016/j.asoc.2023.110415_b130
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.17
– volume: 71
  start-page: 6032
  issue: 6
  year: 2022
  ident: 10.1016/j.asoc.2023.110415_b33
  article-title: Event-based anomaly detection using a one-class SVM for a hybrid electric vehicle
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3165526
– ident: 10.1016/j.asoc.2023.110415_b118
  doi: 10.1109/ICECENG.2011.6056838
– ident: 10.1016/j.asoc.2023.110415_b73
– volume: 40
  start-page: 3358
  year: 2007
  ident: 10.1016/j.asoc.2023.110415_b125
  article-title: Cost-sensitive boosting for classification of imbalanced data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.04.009
– start-page: 162
  year: 2007
  ident: 10.1016/j.asoc.2023.110415_b131
  article-title: Improving the performance of the rbf neural networks trained with imbalanced samples
  publication-title: Comput. Ambient Intell.
  doi: 10.1007/978-3-540-73007-1_20
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2023.110415_b141
  article-title: Probabilistic reframing for cost-sensitive regression
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2641758
– volume: 11
  start-page: 433
  year: 2020
  ident: 10.1016/j.asoc.2023.110415_b26
  article-title: DCSVM: Fast multi-class classification using support vector machines
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00984-9
– year: 2022
  ident: 10.1016/j.asoc.2023.110415_b65
  article-title: Lung image segmentation based on DRD U-Net and combined WGAN with deep neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.107097
– start-page: 152
  year: 2010
  ident: 10.1016/j.asoc.2023.110415_b166
  article-title: Classification of imbalanced data by combining the complementary neural network and smote algorithm
  publication-title: Neural Inf. Process.. Models Appl.
– ident: 10.1016/j.asoc.2023.110415_b88
  doi: 10.1109/BIBE.2008.4696724
– year: 1998
  ident: 10.1016/j.asoc.2023.110415_b38
SSID ssj0016928
Score 2.6755674
SecondaryResourceType review_article
Snippet The imbalanced learning issue is related to the performance of learning algorithms in the presence of asymmetrical class distribution. Due to the complex...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110415
SubjectTerms Algorithmic structures techniques
Data pre-processing techniques
Hybrid techniques
Imbalanced learning
Support vector machine
Title A broad review on class imbalance learning techniques
URI https://dx.doi.org/10.1016/j.asoc.2023.110415
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LX6OHLxJtnZJk_U4hmN-DdEJu4XmJZWJdmPOq3-7eWs6FGQHD6W05EH7a_qSl_ze-xFykQgncwOKtU1umMiEZakxjqXO4LadFZHDdcj7oRw8i5txMq6RXpULg7TK4PtLn7701uFOK6DZmk0mrScfeXREKvz4jdtZHDPKhVDYy5tfK5pHLNOlvio2Ztg6JM6UHK_MI9BEAXFkwwuUxv1rcPox4PR3yFaYKdJu-TC7pOaKPbJdqTDQ8FPuk6RLzXyaWVpmodBpQQGnxHTybpC3CI4GaYgXuqrY-nFARv2rUW_AghgCA_9-C6ZyyID7YJY7BxEoQKGQxLsIa0DELuVYA9xGznGr_CFBKm6grYwEI12HH5J6MS3cEaFghDdti8zmIFTGM8lVlOdgY4fRkD0mcQWChlAoHPUq3nTFCHvVCJxG4HQJ3DG5XNnMyjIZa1snFbb618fW3o-vsTv5p90p2cSrkrd3RuqL-ac793OJhWksO0uDbHR7j3cPeL6-HQy_ARV3ye4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmBC6SN24mZgqHio0MJCkdis-OygImgrKEIs_Ch-Ib7GqUBCDEgMWRJf5Hxx7nzx5_sA9iNh40yjDEKd6UCkwgSJ1jZIrKZlOyPqlv5DXl7F7RtxcRvdluCj2AtDtErv-3OfPvHW_kzNo1kb9fu1a5d5NEUiXPym5SwuPbOyY99eXd72fHR-4l7yQRienfaO24GXFgjQtR4HMsMUuUsNubVYR4kkuxG5D85oFA2bcKqoberWciPdEWMsucZQ6hh1bJvc3XYGZoXzFqSaUH2f0koacTLRc6XOBdQ7v1En55SlDvEqCZYT-16QFO9PwfBLgDtbggU_M2Wt_OGXoWQHK7BYqD4w7wRWIWox_TRMDct3vbDhgCFNwVn_URNPEi3zUhR3bFoh9nkNev-B0DqUB8OB3QCGWjjTUKQmQyFTnsZc1rMMTcNS9mUq0ChAUOgLk5M-xoMqGGj3ioBTBJzKgavA4dRmlJfl-LV1VGCrvg0u5eLGL3abf7Tbg7l277KruudXnS2Ypys5Z3AbyuOnF7vj5jFjvTsZOAzUPw_UT6adBCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+broad+review+on+class+imbalance+learning+techniques&rft.jtitle=Applied+soft+computing&rft.au=Rezvani%2C+Salim&rft.au=Wang%2C+Xizhao&rft.date=2023-08-01&rft.issn=1568-4946&rft.volume=143&rft.spage=110415&rft_id=info:doi/10.1016%2Fj.asoc.2023.110415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_110415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon