Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study
In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching th...
Saved in:
Published in | Superlattices and microstructures Vol. 112; pp. 30 - 45 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0749-6036 1096-3677 |
DOI | 10.1016/j.spmi.2017.09.005 |
Cover
Abstract | In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.
•Evaluating Young’s modulus of of Group (III)-Nitride multilayers graphene using DFT method.•Modeling interfacial interaction between layers of graphene by using Lennard-Jones potential.•Using Lennard-Jones parameters for modeling interaction between layers of graphene with classical linear spring.•Using the density of states (DOS) to understanding electronic properties of mentioned systems better. |
---|---|
AbstractList | In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.
•Evaluating Young’s modulus of of Group (III)-Nitride multilayers graphene using DFT method.•Modeling interfacial interaction between layers of graphene by using Lennard-Jones potential.•Using Lennard-Jones parameters for modeling interaction between layers of graphene with classical linear spring.•Using the density of states (DOS) to understanding electronic properties of mentioned systems better. |
Author | Fereidoon, A. Hamed Mashhadzadeh, Amin Ghorbanzadeh Ahangari, Morteza |
Author_xml | – sequence: 1 givenname: Morteza surname: Ghorbanzadeh Ahangari fullname: Ghorbanzadeh Ahangari, Morteza organization: Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran – sequence: 2 givenname: A. surname: Fereidoon fullname: Fereidoon, A. organization: Department of Mechanical Engineering, Semnan University, Semnan, Iran – sequence: 3 givenname: Amin surname: Hamed Mashhadzadeh fullname: Hamed Mashhadzadeh, Amin email: amin.hamed.m@gmail.com, amin.hamedmashhadzadeh@yahoo.com organization: Department of Mechanical Engineering, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran |
BookMark | eNp9kMFO3DAQhi1EpS6UF-jJD9CkYycbY9TLlnYpEmov9GwZZwKzOE5qO0j7YH2_Jt0ioR44eTz6v9HMd8KOwxCQsfcCSgGi-bgr09hTKUGoEnQJsD5iKwG6KapGqWO2AlXrooGqectOUtoBgK6FWrHf1yFj9HaPkdNSWpdpCNyGlvfoHmwgZz0f4zBizIRpTvF-8pmKA3Qf7fiAAT_wz0McQvGdcqR2_m781FOY-ufO35FX1nt60XumC0-PyFOOk8tTxAu-4b8mG_IcfbHFl-3tnJna_Tv2prM-4dm_95T93H69vfxW3Py4ur7c3BSuAsiFQtuqTjuHthJS1BprbFWjpdOVFXeqg7qTAlRX162QjV5L20glxNpJd15VXXXKzg9zXRxSitgZR9kugnK05I0As-g3O7PoN4t-A9rM-mdU_oeOkXob969Dnw4Qzkc9EUaTHGFw2FJEl0070Gv4HwTjpdE |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2020_107194 crossref_primary_10_1016_j_surfin_2024_105464 crossref_primary_10_1016_j_apsusc_2019_01_083 crossref_primary_10_1016_j_commatsci_2024_112998 crossref_primary_10_1007_s00894_021_04691_7 crossref_primary_10_1016_j_matchemphys_2018_09_016 crossref_primary_10_1016_j_engfracmech_2021_107552 crossref_primary_10_3390_c6040074 crossref_primary_10_3390_nano13202759 crossref_primary_10_3390_nano14211736 crossref_primary_10_1016_j_vacuum_2019_04_003 crossref_primary_10_1016_j_commatsci_2020_109860 crossref_primary_10_1142_S0217984923501166 crossref_primary_10_1016_j_seppur_2024_129678 crossref_primary_10_1016_j_apsusc_2021_151376 crossref_primary_10_1016_j_commatsci_2021_110345 crossref_primary_10_1007_s00894_020_04381_w crossref_primary_10_1080_17415993_2020_1780236 crossref_primary_10_1016_j_mtcomm_2023_107183 crossref_primary_10_1021_acs_jpcc_1c02610 crossref_primary_10_1016_j_diamond_2024_111323 crossref_primary_10_1016_j_materresbull_2021_111533 crossref_primary_10_1016_j_molliq_2023_121842 crossref_primary_10_3390_nano10050894 crossref_primary_10_1016_j_mseb_2022_115973 crossref_primary_10_1016_j_engfracmech_2021_107782 crossref_primary_10_1016_j_jmgm_2021_107899 crossref_primary_10_1016_j_mssp_2024_108323 crossref_primary_10_1016_j_compositesa_2020_106035 crossref_primary_10_1007_s00894_024_06015_x crossref_primary_10_1016_j_cej_2022_135794 crossref_primary_10_3390_nano9010059 crossref_primary_10_1016_j_molliq_2021_116349 crossref_primary_10_1016_j_commatsci_2020_110157 crossref_primary_10_1016_j_spmi_2020_106498 crossref_primary_10_1016_j_commatsci_2021_110770 crossref_primary_10_1515_ntrev_2020_0075 crossref_primary_10_1007_s00339_024_08126_x crossref_primary_10_1007_s12633_018_9885_1 crossref_primary_10_1016_j_rinp_2021_104545 crossref_primary_10_3390_ma17040799 crossref_primary_10_1016_j_commatsci_2020_110152 |
Cites_doi | 10.1038/nature04233 10.1016/j.spmi.2015.06.001 10.1103/RevModPhys.71.1253 10.1021/nl9011497 10.1002/anie.201003328 10.1016/j.ssc.2012.06.005 10.1038/nmat1134 10.1021/jp2106988 10.1021/jp902214f 10.1103/PhysRevB.83.235312 10.1007/s00339-013-7551-4 10.1007/s11671-009-9368-9 10.1016/j.inoche.2004.02.012 10.1021/nl801384y 10.1126/science.1137201 10.1021/nn901648q 10.1126/science.1157996 10.1038/442254a 10.1016/j.nimb.2014.11.096 10.1103/PhysRevB.83.193403 10.1088/0957-4484/20/6/065709 10.1002/macp.200900157 10.1103/PhysRevB.74.245413 10.1039/c3ra40841h 10.1021/nl0731872 10.1016/j.commatsci.2014.05.035 10.1103/PhysRev.136.B864 10.1038/nnano.2008.96 10.1021/jp311189a 10.1002/polb.21695 10.1016/j.commatsci.2011.08.007 10.1103/PhysRevLett.102.195505 10.1126/science.1102896 10.1016/j.spmi.2016.10.079 10.1007/s12274-009-9032-9 10.1103/PhysRevB.53.R10441 10.1016/j.carbon.2003.09.011 10.1016/S0009-2614(00)01404-4 10.1039/C5RA14292J 10.1103/PhysRevLett.95.127601 10.1021/nn800593m 10.1021/jp901284d 10.1038/nature04969 10.1016/j.spmi.2015.07.036 10.1016/j.compositesa.2009.06.012 10.1016/j.physe.2012.12.013 10.1016/S0009-2614(00)00764-8 10.1021/nl1022139 10.1021/cm900764n 10.1007/s11224-012-0183-z 10.1088/0953-8984/14/11/302 10.1016/j.matdes.2009.07.058 10.1021/ja0359963 10.1140/epjb/e2011-20538-6 10.1103/PhysRevB.72.113402 10.1021/nl8035367 10.1063/1.3041639 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2017.09.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 45 |
ExternalDocumentID | 10_1016_j_spmi_2017_09_005 S0749603617319572 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-7ead7f9ccea312149e4ed7692c93a1b7f04f2107f44d126952a627115c2c833f3 |
IEDL.DBID | AIKHN |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:07 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 23 02:28:13 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Mechanical properties Electronic properties DFT Graphene Lennard-Jones potential |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7ead7f9ccea312149e4ed7692c93a1b7f04f2107f44d126952a627115c2c833f3 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2017_09_005 crossref_primary_10_1016_j_spmi_2017_09_005 elsevier_sciencedirect_doi_10_1016_j_spmi_2017_09_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 2017-12-00 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ordejón, Artacho, Soler (bib39) 1996; 53 Zhou, Duan, Gu (bib45) 2001; 333 Novoselov, Geim, Morozov, Jiang, Grigorieva, Dubonos, Firsov (bib2) 2005; 438 Yuan, Sun, Duan, Wang (bib48) 2009; 4 Lee, Wei, Kysar, Hone (bib8) 2008; 321 Quan, Zhang, Zhao, Yuen, Li (bib19) 2009; 40 Ghorbanzadeh Ahangari, Fereidoon, Jahanshahi, Ganji (bib32) 2013; 48 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib1) 2004; 306 Burress, Gadipelli, Ford, Simmons, Zhou, Yildirim (bib52) 2010; 49 Van Lier, Van Alsenoy, Van Doren, Geerlings (bib9) 2000; 326 Wang, Li, Too, Wallace (bib12) 2009; 21 Kan, Ren, Wu, Li, Lu, Xiao, Deng, Yang (bib41) 2012; 116 Watanabe, Taniguchi, Kanda (bib57) 2004; 3 Ramanathan, Abdala, Stankovich, Dikin, Herrera Alonso, Piner, Adamson, Schniepp, Chen, Ruoff, Nguyen, Aksay, Prud'Homme, Brinson (bib16) 2008; 3 Peng, Chen, Liu, De (bib46) 2013; 3 Kotov (bib10) 2006; 442 Scarpa, Adhikari, Phani (bib54) 2009; 20 Novoselov, Jiang, Zhang, Morozov, Stormer, Zeitler, Maan, Boebinger, Kim, Geim (bib3) 2007; 315 Sharifi, Ardjmand, Ahangari, Ganji (bib34) 2013; 24 Liang, Xu, Huang, Zhang, Wang, Ma, Li, Guo, Chen (bib21) 2009; 113 Arenal, Stéphan, Kociak, Taverna, Loiseau, Colliex (bib58) 2005; 95 Kohn (bib38) 1999; 71 Ghorbanzadeh Ahangari (bib36) 2015; 5 Memarian, Fereidoon, Darvish Ganji (bib51) 2015; 85 Lee, Raghu, Jeong, Kim (bib17) 2009; 210 Gomez-Navarro, Burghard, Kern (bib7) 2008; 8 Han, Wu, Zhu, Watanabe, Taniguchi (bib25) 2008; 93 Huang, Wu, Hwang (bib55) 2006; 74 Turgut, Pandiyan, Mether, Belmahi, Nordlund, Philipp (bib30) 2015; 352 José, Emilio, Julian, Alberto, Javier, Pablo, Daniel (bib40) 2002; 14 Shokrieh, Rafiee (bib53) 2010; 31 Jin, Lin, Suenaga, Iijima (bib27) 2009; 102 Peng, Liang, Ji, De (bib50) 2013; 113 Warner, Rümmeli, Bachmatiuk, Büchner (bib26) 2010; 4 Xu, Wang, Liang, Huang, Ma, Wan, Chen (bib18) 2009; 2 Song, Ci, Lu, Sorokin, Jin, Ni, Kvashnin, Kvashnin, Lou, Yakobson, Ajayan (bib24) 2010; 10 Natsuki, Tantrakarn, Endo (bib56) 2004; 42 Fowler, Allen, Tung, Yang, Kaner, Weiller (bib11) 2009; 3 Meyer, Chuvilin, Algara-Siller, Biskupek, Kaiser (bib28) 2009; 9 Lee, Wei, Kysar, Hone (bib4) 2008; 321 Han, Lee, Kang, Lee (bib59) 2005; 72 Wu, Hu, Wang, Lu, Chen, Xu, Chen (bib29) 2003; 125 Ansari, Giannelis (bib15) 2009; 47 Zhong, Yap, Pandey, Karna (bib43) 2011; 83 Xie, Lin, Wu, Yuan, Jiang, Ye, Meng, Zhang (bib49) 2004; 7 Ganji, Sharifi, Ahangari (bib23) 2014; 92 Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (bib14) 2006; 442 Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (bib5) 2008; 8 Wang, Shi, Huang, Ma, Wang, Chen, Chen (bib13) 2009; 113 de Almeida Junior, de Brito Mota, de Castilho, Kakanakova-Georgieva, Gueorguiev (bib47) 2012; 85 Hohenberg, Kohn (bib37) 1964; 136 Eda, Chhowalla (bib20) 2009; 9 Ribeiro, Peres (bib44) 2011; 83 Mashhadzadeh, Vahedi, Ardjmand, Ahangari (bib22) 2016; 100 Fereidoon, Mostafaei, Ganji, Memarian (bib35) 2015; 86 Wang, Ding (bib42) 2013; 117 Fereidoon, Ghorbanzadeh Ahangari, Ganji, Jahanshahi (bib33) 2012; 53 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib6) 2004; 306 Ganji, Fereidoon, Jahanshahi, Ghorbanzadeh Ahangari (bib31) 2012; 152 Lee (10.1016/j.spmi.2017.09.005_bib17) 2009; 210 Han (10.1016/j.spmi.2017.09.005_bib59) 2005; 72 Ghorbanzadeh Ahangari (10.1016/j.spmi.2017.09.005_bib32) 2013; 48 Ribeiro (10.1016/j.spmi.2017.09.005_bib44) 2011; 83 Yuan (10.1016/j.spmi.2017.09.005_bib48) 2009; 4 Jin (10.1016/j.spmi.2017.09.005_bib27) 2009; 102 Turgut (10.1016/j.spmi.2017.09.005_bib30) 2015; 352 Peng (10.1016/j.spmi.2017.09.005_bib50) 2013; 113 Eda (10.1016/j.spmi.2017.09.005_bib20) 2009; 9 Liang (10.1016/j.spmi.2017.09.005_bib21) 2009; 113 Scarpa (10.1016/j.spmi.2017.09.005_bib54) 2009; 20 Ganji (10.1016/j.spmi.2017.09.005_bib23) 2014; 92 Van Lier (10.1016/j.spmi.2017.09.005_bib9) 2000; 326 Watanabe (10.1016/j.spmi.2017.09.005_bib57) 2004; 3 Han (10.1016/j.spmi.2017.09.005_bib25) 2008; 93 Kotov (10.1016/j.spmi.2017.09.005_bib10) 2006; 442 Gomez-Navarro (10.1016/j.spmi.2017.09.005_bib7) 2008; 8 Novoselov (10.1016/j.spmi.2017.09.005_bib3) 2007; 315 Wang (10.1016/j.spmi.2017.09.005_bib12) 2009; 21 Song (10.1016/j.spmi.2017.09.005_bib24) 2010; 10 Natsuki (10.1016/j.spmi.2017.09.005_bib56) 2004; 42 Balandin (10.1016/j.spmi.2017.09.005_bib5) 2008; 8 Lee (10.1016/j.spmi.2017.09.005_bib4) 2008; 321 José (10.1016/j.spmi.2017.09.005_bib40) 2002; 14 Mashhadzadeh (10.1016/j.spmi.2017.09.005_bib22) 2016; 100 Xie (10.1016/j.spmi.2017.09.005_bib49) 2004; 7 Warner (10.1016/j.spmi.2017.09.005_bib26) 2010; 4 de Almeida Junior (10.1016/j.spmi.2017.09.005_bib47) 2012; 85 Sharifi (10.1016/j.spmi.2017.09.005_bib34) 2013; 24 Zhou (10.1016/j.spmi.2017.09.005_bib45) 2001; 333 Burress (10.1016/j.spmi.2017.09.005_bib52) 2010; 49 Ramanathan (10.1016/j.spmi.2017.09.005_bib16) 2008; 3 Ordejón (10.1016/j.spmi.2017.09.005_bib39) 1996; 53 Fereidoon (10.1016/j.spmi.2017.09.005_bib33) 2012; 53 Ansari (10.1016/j.spmi.2017.09.005_bib15) 2009; 47 Huang (10.1016/j.spmi.2017.09.005_bib55) 2006; 74 Fereidoon (10.1016/j.spmi.2017.09.005_bib35) 2015; 86 Fowler (10.1016/j.spmi.2017.09.005_bib11) 2009; 3 Zhong (10.1016/j.spmi.2017.09.005_bib43) 2011; 83 Wang (10.1016/j.spmi.2017.09.005_bib42) 2013; 117 Novoselov (10.1016/j.spmi.2017.09.005_bib6) 2004; 306 Kan (10.1016/j.spmi.2017.09.005_bib41) 2012; 116 Memarian (10.1016/j.spmi.2017.09.005_bib51) 2015; 85 Quan (10.1016/j.spmi.2017.09.005_bib19) 2009; 40 Ganji (10.1016/j.spmi.2017.09.005_bib31) 2012; 152 Novoselov (10.1016/j.spmi.2017.09.005_bib2) 2005; 438 Lee (10.1016/j.spmi.2017.09.005_bib8) 2008; 321 Hohenberg (10.1016/j.spmi.2017.09.005_bib37) 1964; 136 Peng (10.1016/j.spmi.2017.09.005_bib46) 2013; 3 Wang (10.1016/j.spmi.2017.09.005_bib13) 2009; 113 Novoselov (10.1016/j.spmi.2017.09.005_bib1) 2004; 306 Kohn (10.1016/j.spmi.2017.09.005_bib38) 1999; 71 Arenal (10.1016/j.spmi.2017.09.005_bib58) 2005; 95 Ghorbanzadeh Ahangari (10.1016/j.spmi.2017.09.005_bib36) 2015; 5 Xu (10.1016/j.spmi.2017.09.005_bib18) 2009; 2 Wu (10.1016/j.spmi.2017.09.005_bib29) 2003; 125 Shokrieh (10.1016/j.spmi.2017.09.005_bib53) 2010; 31 Stankovich (10.1016/j.spmi.2017.09.005_bib14) 2006; 442 Meyer (10.1016/j.spmi.2017.09.005_bib28) 2009; 9 |
References_xml | – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib8 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science – volume: 326 start-page: 181 year: 2000 end-page: 185 ident: bib9 article-title: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene publication-title: Chem. Phys. Lett. – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: bib5 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. – volume: 53 start-page: 377 year: 2012 end-page: 381 ident: bib33 article-title: Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes publication-title: Comput. Mater. Sci. – volume: 85 start-page: 348 year: 2015 end-page: 356 ident: bib51 article-title: Graphene Young's modulus: molecular mechanics and DFT treatments publication-title: Superlattices Microstruct. – volume: 10 start-page: 3209 year: 2010 end-page: 3215 ident: bib24 article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers publication-title: Nano Lett. – volume: 442 start-page: 282 year: 2006 end-page: 286 ident: bib14 article-title: Graphene-based composite materials publication-title: Nature – volume: 9 start-page: 814 year: 2009 end-page: 818 ident: bib20 article-title: Graphene-based composite thin films for electronics publication-title: Nano Lett. – volume: 136 start-page: B864 year: 1964 end-page: B871 ident: bib37 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. – volume: 2 start-page: 343 year: 2009 end-page: 348 ident: bib18 article-title: A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency publication-title: Nano Res. – volume: 47 start-page: 888 year: 2009 end-page: 897 ident: bib15 article-title: Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites publication-title: J. Polym. Sci. Part B Polym. Phys. – volume: 3 start-page: 404 year: 2004 end-page: 409 ident: bib57 article-title: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal publication-title: Nat. Mater – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: bib2 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature – volume: 48 start-page: 148 year: 2013 end-page: 156 ident: bib32 article-title: Electronic and mechanical properties of single-walled carbon nanotubes interacting with epoxy: a DFT study publication-title: Phys. E Low-dimensional Syst. Nanostructures – volume: 14 start-page: 2745 year: 2002 ident: bib40 article-title: The SIESTA method for ab initio order- N materials simulation publication-title: J. Phys. Condens. Matter – volume: 4 start-page: 1299 year: 2010 end-page: 1304 ident: bib26 article-title: Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation publication-title: ACS Nano – volume: 20 start-page: 065709 year: 2009 ident: bib54 article-title: Effective elastic mechanical properties of single layer graphene sheets publication-title: Nanotechnology – volume: 85 start-page: 48 year: 2012 ident: bib47 article-title: Defects in hexagonal-AlN sheets by first-principles calculations publication-title: Eur. Phys. J. B – volume: 102 start-page: 195505 year: 2009 ident: bib27 article-title: Fabrication of a freestanding boron nitride single layer and its defect assignments publication-title: Phys. Rev. Lett. – volume: 9 start-page: 2683 year: 2009 end-page: 2689 ident: bib28 article-title: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes publication-title: Nano Lett. – volume: 72 start-page: 113402 year: 2005 ident: bib59 article-title: High coverage of hydrogen on a (10,0) single-walled boron nitride nanotube publication-title: Phys. Rev. B – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib6 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 3 start-page: 301 year: 2009 end-page: 306 ident: bib11 article-title: Practical chemical sensors from chemically derived graphene publication-title: Acs Nano – volume: 442 start-page: 254 year: 2006 end-page: 255 ident: bib10 article-title: Materials science: carbon sheet solutions publication-title: Nature – volume: 125 start-page: 10176 year: 2003 end-page: 10177 ident: bib29 article-title: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 545 year: 2004 end-page: 547 ident: bib49 article-title: AlN serrated nanoribbons synthesized by chloride assisted vapor–solid route publication-title: Inorg. Chem. Commun. – volume: 53 start-page: R10441 year: 1996 end-page: R10444 ident: bib39 article-title: Self-consistent order-$N$ density-functional calculations for very large systems publication-title: Phys. Rev. B – volume: 74 start-page: 245413 year: 2006 ident: bib55 article-title: Thickness of graphene and single-wall carbon nanotubes publication-title: Phys. Rev. B – volume: 31 start-page: 790 year: 2010 end-page: 795 ident: bib53 article-title: Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach publication-title: Mater. Des. – volume: 315 year: 2007 ident: bib3 article-title: Room-temperature quantum Hall effect in graphene publication-title: Science – volume: 42 start-page: 39 year: 2004 end-page: 45 ident: bib56 article-title: Prediction of elastic properties for single-walled carbon nanotubes publication-title: Carbon – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib4 publication-title: Science – volume: 86 start-page: 126 year: 2015 end-page: 133 ident: bib35 article-title: Atomistic simulations on the influence of diameter, number of walls, interlayer distance and temperature on the mechanical properties of BNNTs publication-title: Superlattices Microstruct. – volume: 93 start-page: 223103 year: 2008 ident: bib25 article-title: Structure of chemically derived mono- and few-atomic-layer boron nitride sheets publication-title: Appl. Phys. Lett. – volume: 352 start-page: 206 year: 2015 end-page: 209 ident: bib30 article-title: Influence of alkane chain length on adsorption on an α-alumina surface by MD simulations publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 71 start-page: 1253 year: 1999 end-page: 1266 ident: bib38 article-title: Nobel Lecture: electronic structure of matter wave functions and density functionals publication-title: Rev. Mod. Phys. – volume: 100 start-page: 1094 year: 2016 end-page: 1102 ident: bib22 article-title: Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: a density functional theory study publication-title: Superlattices Microstruct. – volume: 113 start-page: 13103 year: 2009 end-page: 13107 ident: bib13 article-title: Supercapacitor devices based on graphene materials publication-title: J. Phys. Chem. C – volume: 333 start-page: 344 year: 2001 end-page: 349 ident: bib45 article-title: First-principles study on morphology and mechanical properties of single-walled carbon nanotube publication-title: Chem. Phys. Lett. – volume: 113 start-page: 483 year: 2013 end-page: 490 ident: bib50 article-title: Mechanical properties of g-GaN: a first principles study publication-title: Appl. Phys. A – volume: 21 start-page: 2604 year: 2009 end-page: 2606 ident: bib12 article-title: Electrochemical properties of graphene paper electrodes used in lithium batteries publication-title: Chem. Mater. – volume: 24 start-page: 1473 year: 2013 end-page: 1483 ident: bib34 article-title: Si-decorated graphene: a superior media for lithium-ions storage publication-title: Struct. Chem. – volume: 83 start-page: 235312 year: 2011 ident: bib44 article-title: Stability of boron nitride bilayers: ground-state energies, interlayer distances, and tight-binding description publication-title: Phys. Rev. B – volume: 92 start-page: 127 year: 2014 end-page: 134 ident: bib23 article-title: Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: a van der Waals density functional study publication-title: Comput. Mater. Sci. – volume: 3 start-page: 7083 year: 2013 end-page: 7092 ident: bib46 article-title: Mechanical stabilities and properties of graphene-like aluminum nitride predicted from first-principles calculations publication-title: RSC Adv. – volume: 8 start-page: 2045 year: 2008 end-page: 2049 ident: bib7 article-title: Elastic properties of chemically derived single graphene sheets publication-title: Nano Lett. – volume: 210 start-page: 1247 year: 2009 end-page: 1254 ident: bib17 article-title: Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method publication-title: Macromol. Chem. Phys. – volume: 117 start-page: 3114 year: 2013 end-page: 3121 ident: bib42 article-title: Structural, electronic, and magnetic properties of the semifluorinated boron nitride bilayer: a first-principles study publication-title: J. Phys. Chem. C – volume: 3 start-page: 327 year: 2008 end-page: 331 ident: bib16 article-title: Functionalized graphene sheets for polymer nanocomposites publication-title: Nat. Nano – volume: 5 start-page: 80779 year: 2015 end-page: 80785 ident: bib36 article-title: Modeling of the interaction between polypropylene and monolayer sheets: a quantum mechanical study publication-title: RSC Adv. – volume: 83 start-page: 193403 year: 2011 ident: bib43 article-title: First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers publication-title: Phys. Rev. B – volume: 113 start-page: 9921 year: 2009 end-page: 9927 ident: bib21 article-title: Infrared-triggered actuators from graphene-based nanocomposites publication-title: J. Phys. Chem. C – volume: 40 start-page: 1506 year: 2009 end-page: 1513 ident: bib19 article-title: Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 49 start-page: 8902 year: 2010 end-page: 8904 ident: bib52 article-title: Graphene oxide framework materials: theoretical predictions and experimental results publication-title: Angew. Chem. Int. Ed. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib1 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 152 start-page: 1526 year: 2012 end-page: 1530 ident: bib31 article-title: Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment publication-title: Solid State Commun. – volume: 95 start-page: 127601 year: 2005 ident: bib58 article-title: Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes publication-title: Phys. Rev. Lett. – volume: 4 start-page: 1126 year: 2009 ident: bib48 article-title: Fabrication of densely packed AlN nanowires by a chemical conversion of Al2O3Nanowires based on porous anodic alumina film publication-title: Nanoscale Res. Lett. – volume: 116 start-page: 3142 year: 2012 end-page: 3146 ident: bib41 article-title: Why the band gap of graphene is tunable on hexagonal boron nitride publication-title: J. Phys. Chem. C – volume: 438 start-page: 197 year: 2005 ident: 10.1016/j.spmi.2017.09.005_bib2 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 – volume: 85 start-page: 348 year: 2015 ident: 10.1016/j.spmi.2017.09.005_bib51 article-title: Graphene Young's modulus: molecular mechanics and DFT treatments publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.06.001 – volume: 71 start-page: 1253 year: 1999 ident: 10.1016/j.spmi.2017.09.005_bib38 article-title: Nobel Lecture: electronic structure of matter wave functions and density functionals publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.1253 – volume: 9 start-page: 2683 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib28 article-title: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes publication-title: Nano Lett. doi: 10.1021/nl9011497 – volume: 49 start-page: 8902 year: 2010 ident: 10.1016/j.spmi.2017.09.005_bib52 article-title: Graphene oxide framework materials: theoretical predictions and experimental results publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201003328 – volume: 152 start-page: 1526 year: 2012 ident: 10.1016/j.spmi.2017.09.005_bib31 article-title: Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.06.005 – volume: 3 start-page: 404 year: 2004 ident: 10.1016/j.spmi.2017.09.005_bib57 article-title: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal publication-title: Nat. Mater doi: 10.1038/nmat1134 – volume: 116 start-page: 3142 year: 2012 ident: 10.1016/j.spmi.2017.09.005_bib41 article-title: Why the band gap of graphene is tunable on hexagonal boron nitride publication-title: J. Phys. Chem. C doi: 10.1021/jp2106988 – volume: 113 start-page: 13103 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib13 article-title: Supercapacitor devices based on graphene materials publication-title: J. Phys. Chem. C doi: 10.1021/jp902214f – volume: 83 start-page: 235312 year: 2011 ident: 10.1016/j.spmi.2017.09.005_bib44 article-title: Stability of boron nitride bilayers: ground-state energies, interlayer distances, and tight-binding description publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235312 – volume: 113 start-page: 483 year: 2013 ident: 10.1016/j.spmi.2017.09.005_bib50 article-title: Mechanical properties of g-GaN: a first principles study publication-title: Appl. Phys. A doi: 10.1007/s00339-013-7551-4 – volume: 4 start-page: 1126 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib48 article-title: Fabrication of densely packed AlN nanowires by a chemical conversion of Al2O3Nanowires based on porous anodic alumina film publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-009-9368-9 – volume: 7 start-page: 545 year: 2004 ident: 10.1016/j.spmi.2017.09.005_bib49 article-title: AlN serrated nanoribbons synthesized by chloride assisted vapor–solid route publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2004.02.012 – volume: 8 start-page: 2045 year: 2008 ident: 10.1016/j.spmi.2017.09.005_bib7 article-title: Elastic properties of chemically derived single graphene sheets publication-title: Nano Lett. doi: 10.1021/nl801384y – volume: 315 year: 2007 ident: 10.1016/j.spmi.2017.09.005_bib3 article-title: Room-temperature quantum Hall effect in graphene publication-title: Science doi: 10.1126/science.1137201 – volume: 4 start-page: 1299 year: 2010 ident: 10.1016/j.spmi.2017.09.005_bib26 article-title: Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation publication-title: ACS Nano doi: 10.1021/nn901648q – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.spmi.2017.09.005_bib8 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 442 start-page: 254 year: 2006 ident: 10.1016/j.spmi.2017.09.005_bib10 article-title: Materials science: carbon sheet solutions publication-title: Nature doi: 10.1038/442254a – volume: 352 start-page: 206 year: 2015 ident: 10.1016/j.spmi.2017.09.005_bib30 article-title: Influence of alkane chain length on adsorption on an α-alumina surface by MD simulations publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/j.nimb.2014.11.096 – volume: 83 start-page: 193403 year: 2011 ident: 10.1016/j.spmi.2017.09.005_bib43 article-title: First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.193403 – volume: 20 start-page: 065709 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib54 article-title: Effective elastic mechanical properties of single layer graphene sheets publication-title: Nanotechnology doi: 10.1088/0957-4484/20/6/065709 – volume: 210 start-page: 1247 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib17 article-title: Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200900157 – volume: 74 start-page: 245413 year: 2006 ident: 10.1016/j.spmi.2017.09.005_bib55 article-title: Thickness of graphene and single-wall carbon nanotubes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.245413 – volume: 3 start-page: 7083 year: 2013 ident: 10.1016/j.spmi.2017.09.005_bib46 article-title: Mechanical stabilities and properties of graphene-like aluminum nitride predicted from first-principles calculations publication-title: RSC Adv. doi: 10.1039/c3ra40841h – volume: 8 start-page: 902 year: 2008 ident: 10.1016/j.spmi.2017.09.005_bib5 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 92 start-page: 127 year: 2014 ident: 10.1016/j.spmi.2017.09.005_bib23 article-title: Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: a van der Waals density functional study publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.05.035 – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.spmi.2017.09.005_bib4 publication-title: Science doi: 10.1126/science.1157996 – volume: 136 start-page: B864 year: 1964 ident: 10.1016/j.spmi.2017.09.005_bib37 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 3 start-page: 327 year: 2008 ident: 10.1016/j.spmi.2017.09.005_bib16 article-title: Functionalized graphene sheets for polymer nanocomposites publication-title: Nat. Nano doi: 10.1038/nnano.2008.96 – volume: 117 start-page: 3114 year: 2013 ident: 10.1016/j.spmi.2017.09.005_bib42 article-title: Structural, electronic, and magnetic properties of the semifluorinated boron nitride bilayer: a first-principles study publication-title: J. Phys. Chem. C doi: 10.1021/jp311189a – volume: 47 start-page: 888 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib15 article-title: Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/polb.21695 – volume: 53 start-page: 377 year: 2012 ident: 10.1016/j.spmi.2017.09.005_bib33 article-title: Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.08.007 – volume: 102 start-page: 195505 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib27 article-title: Fabrication of a freestanding boron nitride single layer and its defect assignments publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.195505 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.spmi.2017.09.005_bib1 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 100 start-page: 1094 year: 2016 ident: 10.1016/j.spmi.2017.09.005_bib22 article-title: Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: a density functional theory study publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2016.10.079 – volume: 2 start-page: 343 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib18 article-title: A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency publication-title: Nano Res. doi: 10.1007/s12274-009-9032-9 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.spmi.2017.09.005_bib6 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 53 start-page: R10441 year: 1996 ident: 10.1016/j.spmi.2017.09.005_bib39 article-title: Self-consistent order-$N$ density-functional calculations for very large systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.R10441 – volume: 42 start-page: 39 year: 2004 ident: 10.1016/j.spmi.2017.09.005_bib56 article-title: Prediction of elastic properties for single-walled carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2003.09.011 – volume: 333 start-page: 344 year: 2001 ident: 10.1016/j.spmi.2017.09.005_bib45 article-title: First-principles study on morphology and mechanical properties of single-walled carbon nanotube publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)01404-4 – volume: 5 start-page: 80779 year: 2015 ident: 10.1016/j.spmi.2017.09.005_bib36 article-title: Modeling of the interaction between polypropylene and monolayer sheets: a quantum mechanical study publication-title: RSC Adv. doi: 10.1039/C5RA14292J – volume: 95 start-page: 127601 year: 2005 ident: 10.1016/j.spmi.2017.09.005_bib58 article-title: Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.127601 – volume: 3 start-page: 301 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib11 article-title: Practical chemical sensors from chemically derived graphene publication-title: Acs Nano doi: 10.1021/nn800593m – volume: 113 start-page: 9921 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib21 article-title: Infrared-triggered actuators from graphene-based nanocomposites publication-title: J. Phys. Chem. C doi: 10.1021/jp901284d – volume: 442 start-page: 282 year: 2006 ident: 10.1016/j.spmi.2017.09.005_bib14 article-title: Graphene-based composite materials publication-title: Nature doi: 10.1038/nature04969 – volume: 86 start-page: 126 year: 2015 ident: 10.1016/j.spmi.2017.09.005_bib35 article-title: Atomistic simulations on the influence of diameter, number of walls, interlayer distance and temperature on the mechanical properties of BNNTs publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.07.036 – volume: 40 start-page: 1506 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib19 article-title: Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.06.012 – volume: 48 start-page: 148 year: 2013 ident: 10.1016/j.spmi.2017.09.005_bib32 article-title: Electronic and mechanical properties of single-walled carbon nanotubes interacting with epoxy: a DFT study publication-title: Phys. E Low-dimensional Syst. Nanostructures doi: 10.1016/j.physe.2012.12.013 – volume: 326 start-page: 181 year: 2000 ident: 10.1016/j.spmi.2017.09.005_bib9 article-title: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00764-8 – volume: 10 start-page: 3209 year: 2010 ident: 10.1016/j.spmi.2017.09.005_bib24 article-title: Large scale growth and characterization of atomic hexagonal boron nitride layers publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 21 start-page: 2604 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib12 article-title: Electrochemical properties of graphene paper electrodes used in lithium batteries publication-title: Chem. Mater. doi: 10.1021/cm900764n – volume: 24 start-page: 1473 year: 2013 ident: 10.1016/j.spmi.2017.09.005_bib34 article-title: Si-decorated graphene: a superior media for lithium-ions storage publication-title: Struct. Chem. doi: 10.1007/s11224-012-0183-z – volume: 14 start-page: 2745 year: 2002 ident: 10.1016/j.spmi.2017.09.005_bib40 article-title: The SIESTA method for ab initio order- N materials simulation publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 31 start-page: 790 year: 2010 ident: 10.1016/j.spmi.2017.09.005_bib53 article-title: Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.07.058 – volume: 125 start-page: 10176 year: 2003 ident: 10.1016/j.spmi.2017.09.005_bib29 article-title: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0359963 – volume: 85 start-page: 48 year: 2012 ident: 10.1016/j.spmi.2017.09.005_bib47 article-title: Defects in hexagonal-AlN sheets by first-principles calculations publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2011-20538-6 – volume: 72 start-page: 113402 year: 2005 ident: 10.1016/j.spmi.2017.09.005_bib59 article-title: High coverage of hydrogen on a (10,0) single-walled boron nitride nanotube publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.113402 – volume: 9 start-page: 814 year: 2009 ident: 10.1016/j.spmi.2017.09.005_bib20 article-title: Graphene-based composite thin films for electronics publication-title: Nano Lett. doi: 10.1021/nl8035367 – volume: 93 start-page: 223103 year: 2008 ident: 10.1016/j.spmi.2017.09.005_bib25 article-title: Structure of chemically derived mono- and few-atomic-layer boron nitride sheets publication-title: Appl. Phys. Lett. doi: 10.1063/1.3041639 |
SSID | ssj0009417 |
Score | 1.992922 |
Snippet | In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 30 |
SubjectTerms | DFT Electronic properties Graphene Lennard-Jones potential Mechanical properties |
Title | Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study |
URI | https://dx.doi.org/10.1016/j.spmi.2017.09.005 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTghepjFAbGOVH3gD0_hH4npvpaMUEH2hlfoWOY4jZaSh69pX_iv-v52dZBQJ7YFHW3eRle90d7buvgN4w22G94acUZOxhKKFCPSDPKZCDqXBCMPy0OX6bZZMF_LLMl4ewLjrhfFlla3vb3x68NbtzqD9m4N1WQ6-Y_DD9FtgCEYzihX64UMudBL34HD0-et09od7V4bBu16eeoW2d6Yp87pdr0pf4aUC3amfYvev-LQXcybHcNQmi2TUnOcZHLj6BJ6MuxltJ_A4FHDa2-fwOzztVQYzaOIpIDZNwwIxdU5Wzrf3ejTI2r-9bzyJKkqRUE1IG6XAXI2O7x354EkN6KzcbsoclyN0X2W9W3U74ZOfTFWVe3udNq3KH440pLS7jbskI3KzQ_BQdO8UV5M5Cby2L2Ax-TgfT2k7koFaEUVbqtDwVKGtdUYwjrcrJ12uEs2tFoZlqohkgZdIVUjEnyc65ibhCrNOy-1QiEK8hF79s3avgGipmSsKPdRZLFFeMxsbTBgixW0ic3cKrAMitS1fuR-bUaVdYdp16sFLPXhppFME7xTe3uusG7aOB6XjDt_0L5tLMZw8oHf2n3rn8NSvmmKY19BDLNwFpjTbrA-P3v9i_dZw7wA9R_fe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCWKFEN3KbZuw9qtnQ67rUJsSbai3dJ0afqVS1OgN0GWZcCb46Zp8tP2_0bJ9poBQw89WiYNwY8gKYF8BPjKbIbnhjymJotTihbC0Q-yhHIxEAYjTJyHLtfraTq5FRd3yd0WjLpeGF9W2fr-xqcHb92u9Nu_2V-UZf8Ggx-m3xxDMJpRItEPb4sET3s92B6eX06mT9y7Igze9fLUK7S9M02Z1-NiXvoKLxnoTv0Uu__Fp42YM34Du22ySIbNft7Clqv3YGfUzWjbg1ehgNM-voPf4WqvMphBE08BsWwaFoipczJ3vr3Xo0EW_u596UlUUYqEakLaKAXmanR8x-TEkxrQablaljk-DtF9lfV63q2ET56Zqio31jptWpW_HGlIaddL950MycMawUPRjV2cjmck8Nq-h9vxj9loQtuRDNTyKFpRiYYnC2WtMzxmeLpywuUyVcwqbuJMFpEo8BApC4H4s1QlzKRMYtZpmR1wXvAP0Kvva_cRiBIqdkWhBipLBMqr2CYGE4ZIMpuK3O1D3AGhbctX7sdmVLorTPupPXjag6cjpRG8ffj2V2fRsHU8K510-Op_bE5jOHlG7-CFel9gZzK7vtJX59PLT_Dav2kKYz5DD3Fxh5jerLKj1nz_AC4c-c0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+interaction+and+mechanical+properties+in+multi-layer+graphene%2C+Boron-Nitride%2C+Aluminum-Nitride+and+Gallium-Nitride+graphene-like+structure%3A+A+quantum-mechanical+DFT+study&rft.jtitle=Superlattices+and+microstructures&rft.au=Ghorbanzadeh+Ahangari%2C+Morteza&rft.au=Fereidoon%2C+A.&rft.au=Hamed+Mashhadzadeh%2C+Amin&rft.date=2017-12-01&rft.issn=0749-6036&rft.volume=112&rft.spage=30&rft.epage=45&rft_id=info:doi/10.1016%2Fj.spmi.2017.09.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2017_09_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |