Investigation of electrical tree growth characteristics and partial discharge pattern analysis using deep neural network
•Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with presence of a void at different applied voltage.•Identify the degradation of XLPE insulation and corresponding images of PRPD pattern during electr...
Saved in:
Published in | Electric power systems research Vol. 220; p. 109287 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with presence of a void at different applied voltage.•Identify the degradation of XLPE insulation and corresponding images of PRPD pattern during electrical tree growth instances.•PRPD image feature extraction, PD detection, and classify the level of insulation degradation using CNN and pre-trained NN.•Further, analyze the electric field strength in XLPE insulation in the presence of a void using COMSOL multiphysics.
Partial discharge (PD) activities due to void and crack in high-voltage cross-linked polyethylene (XLPE) cables deteriorate insulation properties. The existence of void amplifies the electric field stress caused by variations in the dielectric constant between air and the insulation that is all around it. PD activities on such XLPE insulation under high voltage stress are responsible for the growth of electrical- trees. Deep learning techniques have given opportunities for automated feature extraction and classification of the severity level of discharge activity during tree growth. In this work, the XLPE sample specimens are aged at different applied AC voltages, and the respective PD signals are continuously saved for every 500 cycles. PD signals are used for three different stages of pattern classification including fast-growth, slow-growth, and breakdown phases during the growth of an electrical tree with the help of a convolutional neural network (CNN) and pre-trained neural network (VGG, Inception, ResNet, Xeception, DenseNet, NasNet) architectures. For each stage, 500 phase-resolved PD (PRPD) pattern images are obtained for training the neural network (NN) model. The performance of CNN with Adam optimizer obtains 98.44% total accuracy, whereas Densenet201 with Nadam achieves 99.78%. |
---|---|
AbstractList | •Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with presence of a void at different applied voltage.•Identify the degradation of XLPE insulation and corresponding images of PRPD pattern during electrical tree growth instances.•PRPD image feature extraction, PD detection, and classify the level of insulation degradation using CNN and pre-trained NN.•Further, analyze the electric field strength in XLPE insulation in the presence of a void using COMSOL multiphysics.
Partial discharge (PD) activities due to void and crack in high-voltage cross-linked polyethylene (XLPE) cables deteriorate insulation properties. The existence of void amplifies the electric field stress caused by variations in the dielectric constant between air and the insulation that is all around it. PD activities on such XLPE insulation under high voltage stress are responsible for the growth of electrical- trees. Deep learning techniques have given opportunities for automated feature extraction and classification of the severity level of discharge activity during tree growth. In this work, the XLPE sample specimens are aged at different applied AC voltages, and the respective PD signals are continuously saved for every 500 cycles. PD signals are used for three different stages of pattern classification including fast-growth, slow-growth, and breakdown phases during the growth of an electrical tree with the help of a convolutional neural network (CNN) and pre-trained neural network (VGG, Inception, ResNet, Xeception, DenseNet, NasNet) architectures. For each stage, 500 phase-resolved PD (PRPD) pattern images are obtained for training the neural network (NN) model. The performance of CNN with Adam optimizer obtains 98.44% total accuracy, whereas Densenet201 with Nadam achieves 99.78%. |
ArticleNumber | 109287 |
Author | Sahoo, Rakesh Karmakar, Subrata |
Author_xml | – sequence: 1 givenname: Rakesh surname: Sahoo fullname: Sahoo, Rakesh – sequence: 2 givenname: Subrata surname: Karmakar fullname: Karmakar, Subrata email: karmakar.subrata@gmail.com |
BookMark | eNp9kMtOwzAQRb0oEm3hB1j5B1Icp0lsiQ2qeFSqxAbWluuMU5fgRGO3pX-PS1mx6GqkmXtGumdCRr73QMhdzmY5y6v77QyGgDPOeJEWkot6RMasqEVW17K6JpMQtoyxStblmHwv_R5CdK2Orve0txQ6MBGd0R2NCEBb7A9xQ81GozYR0KW0CVT7hg4ao0u5xoXTuYW0iSni01V3x-AC3QXnW9oADNTDDlPYQzz0-HlDrqzuAtz-zSn5eH56X7xmq7eX5eJxlZmCsZjVINamAlHJRqQKbD2HOW-MlXNdSsGlEbnmJS8tCLCFLUuQoI1e24Zzw5gtpkSc_xrsQ0Cwyrj4Wzaidp3KmTpZU1t1sqZO1tTZWkL5P3RA96XxeBl6OEOQSu0doArGgTfQOExiVdO7S_gP4xaPWQ |
CitedBy_id | crossref_primary_10_1016_j_epsr_2023_109712 crossref_primary_10_3390_s24082660 crossref_primary_10_1109_TDEI_2024_3399171 crossref_primary_10_3390_s24237602 crossref_primary_10_3390_app13148214 crossref_primary_10_1007_s00202_024_02571_w crossref_primary_10_1109_TDEI_2023_3310946 crossref_primary_10_1016_j_measurement_2024_114947 crossref_primary_10_1080_15325008_2024_2341163 crossref_primary_10_3390_smartcities7060144 crossref_primary_10_3390_app142411915 crossref_primary_10_1109_TIM_2024_3363790 crossref_primary_10_3390_s24051363 crossref_primary_10_1038_s41598_024_73196_z crossref_primary_10_1109_ACCESS_2024_3368866 |
Cites_doi | 10.3390/en14133886 10.1016/j.epsr.2004.07.003 10.1016/j.epsr.2014.01.010 10.1109/ACCESS.2021.3102415 10.1109/TE.2016.2586754 10.1016/j.epsr.2021.107105 10.1016/j.epsr.2022.107790 10.1109/TDEI.2020.009070 10.1109/TDEI.2015.7076803 10.1109/94.729696 10.1109/MDM.2016.87 10.1049/iet-gtd:20060125 10.1109/MEI.2015.7303259 10.1109/TPWRD.2021.3111862 10.1109/TPS.2021.3102115 10.3390/en12132485 10.1109/TIM.2020.3027925 10.1016/j.ijepes.2019.105386 10.1109/MEPCON55441.2022.10021795 10.1109/TDEI.2016.005864 10.1109/TIM.2015.2454651 10.1016/j.epsr.2012.08.016 10.3390/en13205496 10.1109/TDEI.2021.009609 10.1109/TDEI.2012.6260011 10.1109/TDEI.2021.009717 10.1109/TDEI.2011.5931074 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.epsr.2023.109287 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_epsr_2023_109287 S0378779623001761 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSH SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION EFKBS |
ID | FETCH-LOGICAL-c300t-7e8bc6e869d83780b4e42dcf94a59829c81a2525fe8ef3f55e9eacabfd22c00f3 |
IEDL.DBID | .~1 |
ISSN | 0378-7796 |
IngestDate | Tue Aug 05 12:04:02 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Sat Apr 26 15:42:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | XLPE NN CNN Conv2D Partial discharge Electrical tree DNN Convolutional neural network FM DL MCC HV FEM Cross-linked polyethylene PRPD PD Pre-trained neural network VGG Growth characteristics FC ML |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7e8bc6e869d83780b4e42dcf94a59829c81a2525fe8ef3f55e9eacabfd22c00f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_epsr_2023_109287 crossref_primary_10_1016_j_epsr_2023_109287 elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109287 |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Electric power systems research |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saleh, Refaat, Olesz, Abu-Rub (bib0006) 2021; 28 Sian, Kuo, Der Lu, Wang (bib0018) 2022 Hussein, Shaban, El-Hag (bib0014) 2015; 64 Florkowski, Florkowska (bib0015) 2007; 1 Raymond, Illias, Abu Bakar (bib0012) 2017; 24 Wang, Li, Zhang, Gao, Cheng, Liu, Liao, Grzybowski (bib0017) 2015; 22 Borghei, Ghassemi (bib0022) 2021; 49 Zhu, Zhou, Lu, Fu, Liu, Yang (bib0029) 2022 Bozzo, Guastavino, Montanari (bib0008) 1998; 5 Han, Feng, Yang, Xu, Zalhaf (bib0025) 2022; 206 J.B. Gomes, H.L. Nguyen, M. Wu, J. Cao, S. Krishnaswamy, “June. Active learning for on-line partial discharge monitoring in noisy environments” in: 2016 17th IEEE International Conference on Mobile Data Management (MDM), 2016, pp. 37–42. https://doi.org/10.1109/MDM.2016.87. Hammarstrom, Gubanski (bib0004) 2021; 28 Uckol, Ilhan, Ozdemir (bib0023) 2021; 194 Wu, Cao, Cao, Nguyen, Gomes, Krishnaswamy (bib0009) 2015; 31 Taha, Ibrahim, Mansour (bib0024) 2021; 9 Chen, Xu, Cao, Dodd, Dissado (bib0002) 2011; 18 Florkowski (bib0019) 2020; 13 Florkowski (bib0020) 2021; 14 Mas'Ud, Stewart, McMeekin (bib0010) 2014; 110 Vigneshwaran, Willjuice Iruthayarajan, Maheswari (bib0026) 2022; 144 Sarathi, Raju (bib0003) 2005; 73 Zheng, Chen, Rowland (bib0005) 2020; 114 Perpiñán, Sánchez-Urán, Álvarez, Ortego, Garnacho (bib0013) 2013; 95 M. Badawi, S.A. Ibrahim, E.F. Adel, D.E.A. Mansour, S.A. Ward, “A novel DGA oil interpretation approach based on combined techniques,” in: 2022 23rd IEEE International Middle East Power Systems Conference (MEPCON), 2022, pp. 01–08. https://doi.org/10.1109/MEPCON55441.2022.10021795. Wang, Yan, Yang, Jing, Qi, J. Wang, Geng (bib0027) 2021; 37 Barrios, Buldain, Comech, Gilbert, Orue (bib0021) 2019; 12 Khan, Refaat, Abu-Rub, Toliyat, Olesz, Darwish (bib0001) 2021; 70 Lu, Chai, Sahoo, Phung (bib0016) 2020; 27 A. Géron, “Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems,” O'Reilly Media, 2019. Karmakar (bib0030) 2016; 60 Li, Li, Yin, Li, Zhao, Ouyang, Ohki (bib0007) 2012; 19 Hussein (10.1016/j.epsr.2023.109287_bib0014) 2015; 64 Khan (10.1016/j.epsr.2023.109287_bib0001) 2021; 70 Raymond (10.1016/j.epsr.2023.109287_bib0012) 2017; 24 Sarathi (10.1016/j.epsr.2023.109287_bib0003) 2005; 73 Mas'Ud (10.1016/j.epsr.2023.109287_bib0010) 2014; 110 Florkowski (10.1016/j.epsr.2023.109287_bib0015) 2007; 1 Zhu (10.1016/j.epsr.2023.109287_bib0029) 2022 10.1016/j.epsr.2023.109287_bib0028 Wu (10.1016/j.epsr.2023.109287_bib0009) 2015; 31 Borghei (10.1016/j.epsr.2023.109287_bib0022) 2021; 49 Saleh (10.1016/j.epsr.2023.109287_bib0006) 2021; 28 Li (10.1016/j.epsr.2023.109287_bib0007) 2012; 19 Bozzo (10.1016/j.epsr.2023.109287_bib0008) 1998; 5 Hammarstrom (10.1016/j.epsr.2023.109287_bib0004) 2021; 28 Wang (10.1016/j.epsr.2023.109287_bib0017) 2015; 22 Sian (10.1016/j.epsr.2023.109287_bib0018) 2022 10.1016/j.epsr.2023.109287_bib0031 10.1016/j.epsr.2023.109287_bib0011 Karmakar (10.1016/j.epsr.2023.109287_bib0030) 2016; 60 Perpiñán (10.1016/j.epsr.2023.109287_bib0013) 2013; 95 Uckol (10.1016/j.epsr.2023.109287_bib0023) 2021; 194 Taha (10.1016/j.epsr.2023.109287_bib0024) 2021; 9 Wang (10.1016/j.epsr.2023.109287_bib0027) 2021; 37 Chen (10.1016/j.epsr.2023.109287_bib0002) 2011; 18 Han (10.1016/j.epsr.2023.109287_bib0025) 2022; 206 Florkowski (10.1016/j.epsr.2023.109287_bib0019) 2020; 13 Lu (10.1016/j.epsr.2023.109287_bib0016) 2020; 27 Florkowski (10.1016/j.epsr.2023.109287_bib0020) 2021; 14 Zheng (10.1016/j.epsr.2023.109287_bib0005) 2020; 114 Barrios (10.1016/j.epsr.2023.109287_bib0021) 2019; 12 Vigneshwaran (10.1016/j.epsr.2023.109287_bib0026) 2022; 144 |
References_xml | – volume: 144 start-page: 1 year: 2022 end-page: 16 ident: bib0026 article-title: Enhanced particle swarm optimization-based convolution neural network hyperparameters tuning for transformer failure diagnosis under complex data sources publication-title: Electr. Eng. – volume: 28 start-page: 1669 year: 2021 end-page: 1676 ident: bib0004 article-title: Detection of electrical tree formation in XLPE insulation through applying disturbed DC waveforms publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 5 start-page: 734 year: 1998 end-page: 740 ident: bib0008 article-title: Electrical tree tests. Probabilistic inference and insulating material evaluation publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 110 start-page: 154 year: 2014 end-page: 162 ident: bib0010 article-title: Application of an ensemble neural network for classifying partial discharge patterns publication-title: Electr. Power Syst. Res. – reference: A. Géron, “Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems,” O'Reilly Media, 2019. – volume: 114 year: 2020 ident: bib0005 article-title: The influence of AC and DC voltages on electrical treeing in low density polyethylene publication-title: Int. J. Electr. Power Energy Syst. – year: 2022 ident: bib0018 article-title: A novel fault diagnosis method of power cable based on convolutional probabilistic neural network with discrete wavelet transform and symmetrized dot pattern publication-title: IET Sci. Meas. Technol. – volume: 37 start-page: 2514 year: 2021 end-page: 2523 ident: bib0027 article-title: A domain adaptive deep transfer learning method for gas-insulated switchgear partial discharge diagnosis publication-title: IEEE Trans. Power Deliv. – reference: M. Badawi, S.A. Ibrahim, E.F. Adel, D.E.A. Mansour, S.A. Ward, “A novel DGA oil interpretation approach based on combined techniques,” in: 2022 23rd IEEE International Middle East Power Systems Conference (MEPCON), 2022, pp. 01–08. https://doi.org/10.1109/MEPCON55441.2022.10021795. – volume: 12 start-page: 2485 year: 2019 ident: bib0021 article-title: Partial discharge classification using deep learning methods-survey of recent progress publication-title: Energies – volume: 1 start-page: 340 year: 2007 end-page: 347 ident: bib0015 article-title: Wavelet-based partial discharge image denoising publication-title: IET Gen. Trans. Dist. – volume: 206 year: 2022 ident: bib0025 article-title: An efficient algorithm for atomic decomposition of power quality disturbance signals using convolutional neural network publication-title: Electr. Power Syst. Res. – volume: 60 start-page: 29 year: 2016 end-page: 37 ident: bib0030 article-title: Virtual-instrument-based online monitoring system for hands-on laboratory experiment of partial discharges publication-title: IEEE Trans. Educ. – volume: 9 start-page: 111162 year: 2021 end-page: 111170 ident: bib0024 article-title: Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements publication-title: IEEE Access – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: bib0001 article-title: Characterization of defects inside the cable dielectric with partial discharge modelling publication-title: IEEE Trans. Instrum. Meas. – volume: 19 start-page: 1351 year: 2012 end-page: 1359 ident: bib0007 article-title: Frequency dependence of breakdown performance of XLPE with different artificial defects publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 28 start-page: 1775 year: 2021 end-page: 1784 ident: bib0006 article-title: “Inception and propagation of electrical trees in the presence of space charge in HVAC extruded cables publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 24 start-page: 66 year: 2017 end-page: 74 ident: bib0012 article-title: High noise tolerance feature extraction for partial discharge classification in XLPE cable joints publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 194 year: 2021 ident: bib0023 article-title: Workmanship defect classification in medium voltage cable terminations with convolutional neural network publication-title: Electr. Power Syst. Res. – volume: 13 start-page: 5496 year: 2020 ident: bib0019 article-title: Classification of partial discharge images using deep convolutional neural networks publication-title: Energies – volume: 73 start-page: 159 year: 2005 end-page: 168 ident: bib0003 article-title: Study of electrical treeing phenomena in XLPE cable samples using acoustic techniques publication-title: Electr. Power Syst. Res. – volume: 31 start-page: 22 year: 2015 end-page: 35 ident: bib0009 article-title: An overview of state-of the-art partial discharge analysis techniques for condition monitoring publication-title: IEEE Electr. Insul. Mag. – volume: 22 start-page: 1015 year: 2015 end-page: 1024 ident: bib0017 article-title: A new image-oriented feature extraction method for partial discharges publication-title: IEEE Trans. Dielectr. Electr. Insul. – year: 2022 ident: bib0029 article-title: Partial discharge data augmentation based on improved wasserstein generative adversarial network with gradient penalty publication-title: IEEE Trans. Ind. Electron. – volume: 27 start-page: 1861 year: 2020 end-page: 1888 ident: bib0016 article-title: Condition monitoring based on partial discharge diagnostics using machine learning methods: a comprehensive state-of-the-art review publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 95 start-page: 56 year: 2013 end-page: 65 ident: bib0013 article-title: Signal analysis and feature generation for pattern identification of partial discharges in high-voltage equipment publication-title: Electr. Power Syst. Res. – volume: 64 start-page: 3601 year: 2015 end-page: 3614 ident: bib0014 article-title: Wavelet transform with histogram-based threshold estimation for online partial discharge signal denoising publication-title: IEEE Trans. Instrum. Meas. – reference: J.B. Gomes, H.L. Nguyen, M. Wu, J. Cao, S. Krishnaswamy, “June. Active learning for on-line partial discharge monitoring in noisy environments” in: 2016 17th IEEE International Conference on Mobile Data Management (MDM), 2016, pp. 37–42. https://doi.org/10.1109/MDM.2016.87. – volume: 18 start-page: 847 year: 2011 end-page: 860 ident: bib0002 article-title: Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 14 start-page: 3886 year: 2021 ident: bib0020 article-title: Anomaly detection, trend evolution, and feature extraction in partial discharge patterns publication-title: Energies – volume: 49 start-page: 2936 year: 2021 end-page: 2945 ident: bib0022 article-title: A deep learning approach for discrimination of single-and multi-source corona discharges publication-title: IEEE Trans. Plasma. Sci. – volume: 14 start-page: 3886 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0020 article-title: Anomaly detection, trend evolution, and feature extraction in partial discharge patterns publication-title: Energies doi: 10.3390/en14133886 – volume: 73 start-page: 159 year: 2005 ident: 10.1016/j.epsr.2023.109287_bib0003 article-title: Study of electrical treeing phenomena in XLPE cable samples using acoustic techniques publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2004.07.003 – volume: 110 start-page: 154 year: 2014 ident: 10.1016/j.epsr.2023.109287_bib0010 article-title: Application of an ensemble neural network for classifying partial discharge patterns publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.01.010 – year: 2022 ident: 10.1016/j.epsr.2023.109287_bib0018 article-title: A novel fault diagnosis method of power cable based on convolutional probabilistic neural network with discrete wavelet transform and symmetrized dot pattern publication-title: IET Sci. Meas. Technol. – volume: 9 start-page: 111162 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0024 article-title: Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3102415 – volume: 60 start-page: 29 year: 2016 ident: 10.1016/j.epsr.2023.109287_bib0030 article-title: Virtual-instrument-based online monitoring system for hands-on laboratory experiment of partial discharges publication-title: IEEE Trans. Educ. doi: 10.1109/TE.2016.2586754 – volume: 194 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0023 article-title: Workmanship defect classification in medium voltage cable terminations with convolutional neural network publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107105 – volume: 206 year: 2022 ident: 10.1016/j.epsr.2023.109287_bib0025 article-title: An efficient algorithm for atomic decomposition of power quality disturbance signals using convolutional neural network publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.107790 – volume: 27 start-page: 1861 year: 2020 ident: 10.1016/j.epsr.2023.109287_bib0016 article-title: Condition monitoring based on partial discharge diagnostics using machine learning methods: a comprehensive state-of-the-art review publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2020.009070 – volume: 22 start-page: 1015 year: 2015 ident: 10.1016/j.epsr.2023.109287_bib0017 article-title: A new image-oriented feature extraction method for partial discharges publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2015.7076803 – year: 2022 ident: 10.1016/j.epsr.2023.109287_bib0029 article-title: Partial discharge data augmentation based on improved wasserstein generative adversarial network with gradient penalty publication-title: IEEE Trans. Ind. Electron. – ident: 10.1016/j.epsr.2023.109287_bib0031 – volume: 5 start-page: 734 year: 1998 ident: 10.1016/j.epsr.2023.109287_bib0008 article-title: Electrical tree tests. Probabilistic inference and insulating material evaluation publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/94.729696 – ident: 10.1016/j.epsr.2023.109287_bib0028 doi: 10.1109/MDM.2016.87 – volume: 1 start-page: 340 year: 2007 ident: 10.1016/j.epsr.2023.109287_bib0015 article-title: Wavelet-based partial discharge image denoising publication-title: IET Gen. Trans. Dist. doi: 10.1049/iet-gtd:20060125 – volume: 31 start-page: 22 year: 2015 ident: 10.1016/j.epsr.2023.109287_bib0009 article-title: An overview of state-of the-art partial discharge analysis techniques for condition monitoring publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2015.7303259 – volume: 144 start-page: 1 year: 2022 ident: 10.1016/j.epsr.2023.109287_bib0026 article-title: Enhanced particle swarm optimization-based convolution neural network hyperparameters tuning for transformer failure diagnosis under complex data sources publication-title: Electr. Eng. – volume: 37 start-page: 2514 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0027 article-title: A domain adaptive deep transfer learning method for gas-insulated switchgear partial discharge diagnosis publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2021.3111862 – volume: 49 start-page: 2936 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0022 article-title: A deep learning approach for discrimination of single-and multi-source corona discharges publication-title: IEEE Trans. Plasma. Sci. doi: 10.1109/TPS.2021.3102115 – volume: 12 start-page: 2485 year: 2019 ident: 10.1016/j.epsr.2023.109287_bib0021 article-title: Partial discharge classification using deep learning methods-survey of recent progress publication-title: Energies doi: 10.3390/en12132485 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0001 article-title: Characterization of defects inside the cable dielectric with partial discharge modelling publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3027925 – volume: 114 year: 2020 ident: 10.1016/j.epsr.2023.109287_bib0005 article-title: The influence of AC and DC voltages on electrical treeing in low density polyethylene publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105386 – ident: 10.1016/j.epsr.2023.109287_bib0011 doi: 10.1109/MEPCON55441.2022.10021795 – volume: 24 start-page: 66 year: 2017 ident: 10.1016/j.epsr.2023.109287_bib0012 article-title: High noise tolerance feature extraction for partial discharge classification in XLPE cable joints publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2016.005864 – volume: 64 start-page: 3601 year: 2015 ident: 10.1016/j.epsr.2023.109287_bib0014 article-title: Wavelet transform with histogram-based threshold estimation for online partial discharge signal denoising publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2454651 – volume: 95 start-page: 56 year: 2013 ident: 10.1016/j.epsr.2023.109287_bib0013 article-title: Signal analysis and feature generation for pattern identification of partial discharges in high-voltage equipment publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2012.08.016 – volume: 13 start-page: 5496 year: 2020 ident: 10.1016/j.epsr.2023.109287_bib0019 article-title: Classification of partial discharge images using deep convolutional neural networks publication-title: Energies doi: 10.3390/en13205496 – volume: 28 start-page: 1775 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0006 article-title: “Inception and propagation of electrical trees in the presence of space charge in HVAC extruded cables publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2021.009609 – volume: 19 start-page: 1351 year: 2012 ident: 10.1016/j.epsr.2023.109287_bib0007 article-title: Frequency dependence of breakdown performance of XLPE with different artificial defects publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2012.6260011 – volume: 28 start-page: 1669 year: 2021 ident: 10.1016/j.epsr.2023.109287_bib0004 article-title: Detection of electrical tree formation in XLPE insulation through applying disturbed DC waveforms publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2021.009717 – volume: 18 start-page: 847 year: 2011 ident: 10.1016/j.epsr.2023.109287_bib0002 article-title: Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2011.5931074 |
SSID | ssj0006975 |
Score | 2.4658918 |
Snippet | •Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109287 |
SubjectTerms | Convolutional neural network Cross-linked polyethylene Electrical tree Growth characteristics Partial discharge Pre-trained neural network |
Title | Investigation of electrical tree growth characteristics and partial discharge pattern analysis using deep neural network |
URI | https://dx.doi.org/10.1016/j.epsr.2023.109287 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BTlo_LAhkITx4ntsaqoCoguUKlblDh2KUJpBEFi4rdzF6fQSqgDY5yzkryc7uzk3TtCLmM_55DHpKfTIPM4S3NPZtjMLJRMCJ0KUX_TfRjHowm_m0bTFhksa2GQVtnEfhfT62jdjPQaNHvlfN579ENwNqEgf2OorbdAnAv08uuvX5pHrGqxXTT20LopnHEcL1O-oyYoC1FViSGt7q_ktJJwhntkt1kp0r67mX3SMsUB2VnRDzwknysqGYuCLix1XW0QeIq_m-kMdtnVM9Xrssw0LXJa4mOCHdblolySgREs7SngrBMqoUiKn9HcmJKi7iUYF441fkQmw5unwchrWil4GtCpPGFkpmMjY5WjgryfccNZrq3iKSr4KS2DlEUsskYaG9ooMgoicprZnDHt-zY8Ju1iUZgTQi0YZr6JfWUF17Bd04pLuAqsZALNTdAhwRLDRDc649ju4jVZEspeEsQ9QdwTh3uHXP3MKZ3KxkbraPlqkjVfSSANbJh3-s95Z2QbjxxJ95y0q7cPcwFLkSrr1r7WJVv92_vR-Bv06OB9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbCk0c5-ERVVQF2i60UjcrcexShNIIgsTEb-cuTqGVUAdW-6wkX5w72_nuO0KuQjfjEMdiRyVe6nCWZE6cYjEzP2ZRpJIoqs50B8OwN-YPk2DSIJ1FLgzSKmvfb3165a3rlnaNZruYzdpPrg-TLRIQv9HV4hZog8Pni2UMbr5-eR6hqNR20dpB8zpzxpK8dPGOoqDMR1klhry6v6LTUsTp7pKdeqlIb-3d7JGGzvfJ9pKA4AH5XJLJmOd0bqgta4PIU_zfTKewzS6fqVrVZaZJntECnxPsMDEX9ZI0tGBuTw69VqmEIit-SjOtC4rCl2CcW9r4IRl370adnlPXUnAUwFM6kY5TFeo4FBlKyLsp15xlygieoISfULGXsIAFRsfa-CYItACXnKQmY0y5rvGPSDOf5_qYUAOGqatDV5iIK9ivKcFjuAosZTzFtdci3gJDqWqhcax38SoXjLIXibhLxF1a3Fvk-mdMYWU21loHi1cjVyaLhDiwZtzJP8ddks3eaNCX_fvh4ynZwh7L2D0jzfLtQ5_DuqRML6p59w0s1uIL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+electrical+tree+growth+characteristics+and+partial+discharge+pattern+analysis+using+deep+neural+network&rft.jtitle=Electric+power+systems+research&rft.au=Sahoo%2C+Rakesh&rft.au=Karmakar%2C+Subrata&rft.date=2023-07-01&rft.issn=0378-7796&rft.volume=220&rft.spage=109287&rft_id=info:doi/10.1016%2Fj.epsr.2023.109287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2023_109287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |