Investigation of electrical tree growth characteristics and partial discharge pattern analysis using deep neural network

•Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with presence of a void at different applied voltage.•Identify the degradation of XLPE insulation and corresponding images of PRPD pattern during electr...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 220; p. 109287
Main Authors Sahoo, Rakesh, Karmakar, Subrata
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with presence of a void at different applied voltage.•Identify the degradation of XLPE insulation and corresponding images of PRPD pattern during electrical tree growth instances.•PRPD image feature extraction, PD detection, and classify the level of insulation degradation using CNN and pre-trained NN.•Further, analyze the electric field strength in XLPE insulation in the presence of a void using COMSOL multiphysics. Partial discharge (PD) activities due to void and crack in high-voltage cross-linked polyethylene (XLPE) cables deteriorate insulation properties. The existence of void amplifies the electric field stress caused by variations in the dielectric constant between air and the insulation that is all around it. PD activities on such XLPE insulation under high voltage stress are responsible for the growth of electrical- trees. Deep learning techniques have given opportunities for automated feature extraction and classification of the severity level of discharge activity during tree growth. In this work, the XLPE sample specimens are aged at different applied AC voltages, and the respective PD signals are continuously saved for every 500 cycles. PD signals are used for three different stages of pattern classification including fast-growth, slow-growth, and breakdown phases during the growth of an electrical tree with the help of a convolutional neural network (CNN) and pre-trained neural network (VGG, Inception, ResNet, Xeception, DenseNet, NasNet) architectures. For each stage, 500 phase-resolved PD (PRPD) pattern images are obtained for training the neural network (NN) model. The performance of CNN with Adam optimizer obtains 98.44% total accuracy, whereas Densenet201 with Nadam achieves 99.78%.
AbstractList •Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with presence of a void at different applied voltage.•Identify the degradation of XLPE insulation and corresponding images of PRPD pattern during electrical tree growth instances.•PRPD image feature extraction, PD detection, and classify the level of insulation degradation using CNN and pre-trained NN.•Further, analyze the electric field strength in XLPE insulation in the presence of a void using COMSOL multiphysics. Partial discharge (PD) activities due to void and crack in high-voltage cross-linked polyethylene (XLPE) cables deteriorate insulation properties. The existence of void amplifies the electric field stress caused by variations in the dielectric constant between air and the insulation that is all around it. PD activities on such XLPE insulation under high voltage stress are responsible for the growth of electrical- trees. Deep learning techniques have given opportunities for automated feature extraction and classification of the severity level of discharge activity during tree growth. In this work, the XLPE sample specimens are aged at different applied AC voltages, and the respective PD signals are continuously saved for every 500 cycles. PD signals are used for three different stages of pattern classification including fast-growth, slow-growth, and breakdown phases during the growth of an electrical tree with the help of a convolutional neural network (CNN) and pre-trained neural network (VGG, Inception, ResNet, Xeception, DenseNet, NasNet) architectures. For each stage, 500 phase-resolved PD (PRPD) pattern images are obtained for training the neural network (NN) model. The performance of CNN with Adam optimizer obtains 98.44% total accuracy, whereas Densenet201 with Nadam achieves 99.78%.
ArticleNumber 109287
Author Sahoo, Rakesh
Karmakar, Subrata
Author_xml – sequence: 1
  givenname: Rakesh
  surname: Sahoo
  fullname: Sahoo, Rakesh
– sequence: 2
  givenname: Subrata
  surname: Karmakar
  fullname: Karmakar, Subrata
  email: karmakar.subrata@gmail.com
BookMark eNp9kMtOwzAQRb0oEm3hB1j5B1Icp0lsiQ2qeFSqxAbWluuMU5fgRGO3pX-PS1mx6GqkmXtGumdCRr73QMhdzmY5y6v77QyGgDPOeJEWkot6RMasqEVW17K6JpMQtoyxStblmHwv_R5CdK2Orve0txQ6MBGd0R2NCEBb7A9xQ81GozYR0KW0CVT7hg4ao0u5xoXTuYW0iSni01V3x-AC3QXnW9oADNTDDlPYQzz0-HlDrqzuAtz-zSn5eH56X7xmq7eX5eJxlZmCsZjVINamAlHJRqQKbD2HOW-MlXNdSsGlEbnmJS8tCLCFLUuQoI1e24Zzw5gtpkSc_xrsQ0Cwyrj4Wzaidp3KmTpZU1t1sqZO1tTZWkL5P3RA96XxeBl6OEOQSu0doArGgTfQOExiVdO7S_gP4xaPWQ
CitedBy_id crossref_primary_10_1016_j_epsr_2023_109712
crossref_primary_10_3390_s24082660
crossref_primary_10_1109_TDEI_2024_3399171
crossref_primary_10_3390_s24237602
crossref_primary_10_3390_app13148214
crossref_primary_10_1007_s00202_024_02571_w
crossref_primary_10_1109_TDEI_2023_3310946
crossref_primary_10_1016_j_measurement_2024_114947
crossref_primary_10_1080_15325008_2024_2341163
crossref_primary_10_3390_smartcities7060144
crossref_primary_10_3390_app142411915
crossref_primary_10_1109_TIM_2024_3363790
crossref_primary_10_3390_s24051363
crossref_primary_10_1038_s41598_024_73196_z
crossref_primary_10_1109_ACCESS_2024_3368866
Cites_doi 10.3390/en14133886
10.1016/j.epsr.2004.07.003
10.1016/j.epsr.2014.01.010
10.1109/ACCESS.2021.3102415
10.1109/TE.2016.2586754
10.1016/j.epsr.2021.107105
10.1016/j.epsr.2022.107790
10.1109/TDEI.2020.009070
10.1109/TDEI.2015.7076803
10.1109/94.729696
10.1109/MDM.2016.87
10.1049/iet-gtd:20060125
10.1109/MEI.2015.7303259
10.1109/TPWRD.2021.3111862
10.1109/TPS.2021.3102115
10.3390/en12132485
10.1109/TIM.2020.3027925
10.1016/j.ijepes.2019.105386
10.1109/MEPCON55441.2022.10021795
10.1109/TDEI.2016.005864
10.1109/TIM.2015.2454651
10.1016/j.epsr.2012.08.016
10.3390/en13205496
10.1109/TDEI.2021.009609
10.1109/TDEI.2012.6260011
10.1109/TDEI.2021.009717
10.1109/TDEI.2011.5931074
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2023.109287
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2023_109287
S0378779623001761
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
ID FETCH-LOGICAL-c300t-7e8bc6e869d83780b4e42dcf94a59829c81a2525fe8ef3f55e9eacabfd22c00f3
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Tue Aug 05 12:04:02 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Sat Apr 26 15:42:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords XLPE
NN
CNN
Conv2D
Partial discharge
Electrical tree
DNN
Convolutional neural network
FM
DL
MCC
HV
FEM
Cross-linked polyethylene
PRPD
PD
Pre-trained neural network
VGG
Growth characteristics
FC
ML
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-7e8bc6e869d83780b4e42dcf94a59829c81a2525fe8ef3f55e9eacabfd22c00f3
ParticipantIDs crossref_citationtrail_10_1016_j_epsr_2023_109287
crossref_primary_10_1016_j_epsr_2023_109287
elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109287
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saleh, Refaat, Olesz, Abu-Rub (bib0006) 2021; 28
Sian, Kuo, Der Lu, Wang (bib0018) 2022
Hussein, Shaban, El-Hag (bib0014) 2015; 64
Florkowski, Florkowska (bib0015) 2007; 1
Raymond, Illias, Abu Bakar (bib0012) 2017; 24
Wang, Li, Zhang, Gao, Cheng, Liu, Liao, Grzybowski (bib0017) 2015; 22
Borghei, Ghassemi (bib0022) 2021; 49
Zhu, Zhou, Lu, Fu, Liu, Yang (bib0029) 2022
Bozzo, Guastavino, Montanari (bib0008) 1998; 5
Han, Feng, Yang, Xu, Zalhaf (bib0025) 2022; 206
J.B. Gomes, H.L. Nguyen, M. Wu, J. Cao, S. Krishnaswamy, “June. Active learning for on-line partial discharge monitoring in noisy environments” in: 2016 17th IEEE International Conference on Mobile Data Management (MDM), 2016, pp. 37–42. https://doi.org/10.1109/MDM.2016.87.
Hammarstrom, Gubanski (bib0004) 2021; 28
Uckol, Ilhan, Ozdemir (bib0023) 2021; 194
Wu, Cao, Cao, Nguyen, Gomes, Krishnaswamy (bib0009) 2015; 31
Taha, Ibrahim, Mansour (bib0024) 2021; 9
Chen, Xu, Cao, Dodd, Dissado (bib0002) 2011; 18
Florkowski (bib0019) 2020; 13
Florkowski (bib0020) 2021; 14
Mas'Ud, Stewart, McMeekin (bib0010) 2014; 110
Vigneshwaran, Willjuice Iruthayarajan, Maheswari (bib0026) 2022; 144
Sarathi, Raju (bib0003) 2005; 73
Zheng, Chen, Rowland (bib0005) 2020; 114
Perpiñán, Sánchez-Urán, Álvarez, Ortego, Garnacho (bib0013) 2013; 95
M. Badawi, S.A. Ibrahim, E.F. Adel, D.E.A. Mansour, S.A. Ward, “A novel DGA oil interpretation approach based on combined techniques,” in: 2022 23rd IEEE International Middle East Power Systems Conference (MEPCON), 2022, pp. 01–08. https://doi.org/10.1109/MEPCON55441.2022.10021795.
Wang, Yan, Yang, Jing, Qi, J. Wang, Geng (bib0027) 2021; 37
Barrios, Buldain, Comech, Gilbert, Orue (bib0021) 2019; 12
Khan, Refaat, Abu-Rub, Toliyat, Olesz, Darwish (bib0001) 2021; 70
Lu, Chai, Sahoo, Phung (bib0016) 2020; 27
A. Géron, “Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems,” O'Reilly Media, 2019.
Karmakar (bib0030) 2016; 60
Li, Li, Yin, Li, Zhao, Ouyang, Ohki (bib0007) 2012; 19
Hussein (10.1016/j.epsr.2023.109287_bib0014) 2015; 64
Khan (10.1016/j.epsr.2023.109287_bib0001) 2021; 70
Raymond (10.1016/j.epsr.2023.109287_bib0012) 2017; 24
Sarathi (10.1016/j.epsr.2023.109287_bib0003) 2005; 73
Mas'Ud (10.1016/j.epsr.2023.109287_bib0010) 2014; 110
Florkowski (10.1016/j.epsr.2023.109287_bib0015) 2007; 1
Zhu (10.1016/j.epsr.2023.109287_bib0029) 2022
10.1016/j.epsr.2023.109287_bib0028
Wu (10.1016/j.epsr.2023.109287_bib0009) 2015; 31
Borghei (10.1016/j.epsr.2023.109287_bib0022) 2021; 49
Saleh (10.1016/j.epsr.2023.109287_bib0006) 2021; 28
Li (10.1016/j.epsr.2023.109287_bib0007) 2012; 19
Bozzo (10.1016/j.epsr.2023.109287_bib0008) 1998; 5
Hammarstrom (10.1016/j.epsr.2023.109287_bib0004) 2021; 28
Wang (10.1016/j.epsr.2023.109287_bib0017) 2015; 22
Sian (10.1016/j.epsr.2023.109287_bib0018) 2022
10.1016/j.epsr.2023.109287_bib0031
10.1016/j.epsr.2023.109287_bib0011
Karmakar (10.1016/j.epsr.2023.109287_bib0030) 2016; 60
Perpiñán (10.1016/j.epsr.2023.109287_bib0013) 2013; 95
Uckol (10.1016/j.epsr.2023.109287_bib0023) 2021; 194
Taha (10.1016/j.epsr.2023.109287_bib0024) 2021; 9
Wang (10.1016/j.epsr.2023.109287_bib0027) 2021; 37
Chen (10.1016/j.epsr.2023.109287_bib0002) 2011; 18
Han (10.1016/j.epsr.2023.109287_bib0025) 2022; 206
Florkowski (10.1016/j.epsr.2023.109287_bib0019) 2020; 13
Lu (10.1016/j.epsr.2023.109287_bib0016) 2020; 27
Florkowski (10.1016/j.epsr.2023.109287_bib0020) 2021; 14
Zheng (10.1016/j.epsr.2023.109287_bib0005) 2020; 114
Barrios (10.1016/j.epsr.2023.109287_bib0021) 2019; 12
Vigneshwaran (10.1016/j.epsr.2023.109287_bib0026) 2022; 144
References_xml – volume: 144
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib0026
  article-title: Enhanced particle swarm optimization-based convolution neural network hyperparameters tuning for transformer failure diagnosis under complex data sources
  publication-title: Electr. Eng.
– volume: 28
  start-page: 1669
  year: 2021
  end-page: 1676
  ident: bib0004
  article-title: Detection of electrical tree formation in XLPE insulation through applying disturbed DC waveforms
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 5
  start-page: 734
  year: 1998
  end-page: 740
  ident: bib0008
  article-title: Electrical tree tests. Probabilistic inference and insulating material evaluation
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 110
  start-page: 154
  year: 2014
  end-page: 162
  ident: bib0010
  article-title: Application of an ensemble neural network for classifying partial discharge patterns
  publication-title: Electr. Power Syst. Res.
– reference: A. Géron, “Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems,” O'Reilly Media, 2019.
– volume: 114
  year: 2020
  ident: bib0005
  article-title: The influence of AC and DC voltages on electrical treeing in low density polyethylene
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2022
  ident: bib0018
  article-title: A novel fault diagnosis method of power cable based on convolutional probabilistic neural network with discrete wavelet transform and symmetrized dot pattern
  publication-title: IET Sci. Meas. Technol.
– volume: 37
  start-page: 2514
  year: 2021
  end-page: 2523
  ident: bib0027
  article-title: A domain adaptive deep transfer learning method for gas-insulated switchgear partial discharge diagnosis
  publication-title: IEEE Trans. Power Deliv.
– reference: M. Badawi, S.A. Ibrahim, E.F. Adel, D.E.A. Mansour, S.A. Ward, “A novel DGA oil interpretation approach based on combined techniques,” in: 2022 23rd IEEE International Middle East Power Systems Conference (MEPCON), 2022, pp. 01–08. https://doi.org/10.1109/MEPCON55441.2022.10021795.
– volume: 12
  start-page: 2485
  year: 2019
  ident: bib0021
  article-title: Partial discharge classification using deep learning methods-survey of recent progress
  publication-title: Energies
– volume: 1
  start-page: 340
  year: 2007
  end-page: 347
  ident: bib0015
  article-title: Wavelet-based partial discharge image denoising
  publication-title: IET Gen. Trans. Dist.
– volume: 206
  year: 2022
  ident: bib0025
  article-title: An efficient algorithm for atomic decomposition of power quality disturbance signals using convolutional neural network
  publication-title: Electr. Power Syst. Res.
– volume: 60
  start-page: 29
  year: 2016
  end-page: 37
  ident: bib0030
  article-title: Virtual-instrument-based online monitoring system for hands-on laboratory experiment of partial discharges
  publication-title: IEEE Trans. Educ.
– volume: 9
  start-page: 111162
  year: 2021
  end-page: 111170
  ident: bib0024
  article-title: Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements
  publication-title: IEEE Access
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib0001
  article-title: Characterization of defects inside the cable dielectric with partial discharge modelling
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 19
  start-page: 1351
  year: 2012
  end-page: 1359
  ident: bib0007
  article-title: Frequency dependence of breakdown performance of XLPE with different artificial defects
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 28
  start-page: 1775
  year: 2021
  end-page: 1784
  ident: bib0006
  article-title: “Inception and propagation of electrical trees in the presence of space charge in HVAC extruded cables
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 24
  start-page: 66
  year: 2017
  end-page: 74
  ident: bib0012
  article-title: High noise tolerance feature extraction for partial discharge classification in XLPE cable joints
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 194
  year: 2021
  ident: bib0023
  article-title: Workmanship defect classification in medium voltage cable terminations with convolutional neural network
  publication-title: Electr. Power Syst. Res.
– volume: 13
  start-page: 5496
  year: 2020
  ident: bib0019
  article-title: Classification of partial discharge images using deep convolutional neural networks
  publication-title: Energies
– volume: 73
  start-page: 159
  year: 2005
  end-page: 168
  ident: bib0003
  article-title: Study of electrical treeing phenomena in XLPE cable samples using acoustic techniques
  publication-title: Electr. Power Syst. Res.
– volume: 31
  start-page: 22
  year: 2015
  end-page: 35
  ident: bib0009
  article-title: An overview of state-of the-art partial discharge analysis techniques for condition monitoring
  publication-title: IEEE Electr. Insul. Mag.
– volume: 22
  start-page: 1015
  year: 2015
  end-page: 1024
  ident: bib0017
  article-title: A new image-oriented feature extraction method for partial discharges
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– year: 2022
  ident: bib0029
  article-title: Partial discharge data augmentation based on improved wasserstein generative adversarial network with gradient penalty
  publication-title: IEEE Trans. Ind. Electron.
– volume: 27
  start-page: 1861
  year: 2020
  end-page: 1888
  ident: bib0016
  article-title: Condition monitoring based on partial discharge diagnostics using machine learning methods: a comprehensive state-of-the-art review
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 95
  start-page: 56
  year: 2013
  end-page: 65
  ident: bib0013
  article-title: Signal analysis and feature generation for pattern identification of partial discharges in high-voltage equipment
  publication-title: Electr. Power Syst. Res.
– volume: 64
  start-page: 3601
  year: 2015
  end-page: 3614
  ident: bib0014
  article-title: Wavelet transform with histogram-based threshold estimation for online partial discharge signal denoising
  publication-title: IEEE Trans. Instrum. Meas.
– reference: J.B. Gomes, H.L. Nguyen, M. Wu, J. Cao, S. Krishnaswamy, “June. Active learning for on-line partial discharge monitoring in noisy environments” in: 2016 17th IEEE International Conference on Mobile Data Management (MDM), 2016, pp. 37–42. https://doi.org/10.1109/MDM.2016.87.
– volume: 18
  start-page: 847
  year: 2011
  end-page: 860
  ident: bib0002
  article-title: Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 14
  start-page: 3886
  year: 2021
  ident: bib0020
  article-title: Anomaly detection, trend evolution, and feature extraction in partial discharge patterns
  publication-title: Energies
– volume: 49
  start-page: 2936
  year: 2021
  end-page: 2945
  ident: bib0022
  article-title: A deep learning approach for discrimination of single-and multi-source corona discharges
  publication-title: IEEE Trans. Plasma. Sci.
– volume: 14
  start-page: 3886
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0020
  article-title: Anomaly detection, trend evolution, and feature extraction in partial discharge patterns
  publication-title: Energies
  doi: 10.3390/en14133886
– volume: 73
  start-page: 159
  year: 2005
  ident: 10.1016/j.epsr.2023.109287_bib0003
  article-title: Study of electrical treeing phenomena in XLPE cable samples using acoustic techniques
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2004.07.003
– volume: 110
  start-page: 154
  year: 2014
  ident: 10.1016/j.epsr.2023.109287_bib0010
  article-title: Application of an ensemble neural network for classifying partial discharge patterns
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.01.010
– year: 2022
  ident: 10.1016/j.epsr.2023.109287_bib0018
  article-title: A novel fault diagnosis method of power cable based on convolutional probabilistic neural network with discrete wavelet transform and symmetrized dot pattern
  publication-title: IET Sci. Meas. Technol.
– volume: 9
  start-page: 111162
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0024
  article-title: Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3102415
– volume: 60
  start-page: 29
  year: 2016
  ident: 10.1016/j.epsr.2023.109287_bib0030
  article-title: Virtual-instrument-based online monitoring system for hands-on laboratory experiment of partial discharges
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/TE.2016.2586754
– volume: 194
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0023
  article-title: Workmanship defect classification in medium voltage cable terminations with convolutional neural network
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107105
– volume: 206
  year: 2022
  ident: 10.1016/j.epsr.2023.109287_bib0025
  article-title: An efficient algorithm for atomic decomposition of power quality disturbance signals using convolutional neural network
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107790
– volume: 27
  start-page: 1861
  year: 2020
  ident: 10.1016/j.epsr.2023.109287_bib0016
  article-title: Condition monitoring based on partial discharge diagnostics using machine learning methods: a comprehensive state-of-the-art review
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2020.009070
– volume: 22
  start-page: 1015
  year: 2015
  ident: 10.1016/j.epsr.2023.109287_bib0017
  article-title: A new image-oriented feature extraction method for partial discharges
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2015.7076803
– year: 2022
  ident: 10.1016/j.epsr.2023.109287_bib0029
  article-title: Partial discharge data augmentation based on improved wasserstein generative adversarial network with gradient penalty
  publication-title: IEEE Trans. Ind. Electron.
– ident: 10.1016/j.epsr.2023.109287_bib0031
– volume: 5
  start-page: 734
  year: 1998
  ident: 10.1016/j.epsr.2023.109287_bib0008
  article-title: Electrical tree tests. Probabilistic inference and insulating material evaluation
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/94.729696
– ident: 10.1016/j.epsr.2023.109287_bib0028
  doi: 10.1109/MDM.2016.87
– volume: 1
  start-page: 340
  year: 2007
  ident: 10.1016/j.epsr.2023.109287_bib0015
  article-title: Wavelet-based partial discharge image denoising
  publication-title: IET Gen. Trans. Dist.
  doi: 10.1049/iet-gtd:20060125
– volume: 31
  start-page: 22
  year: 2015
  ident: 10.1016/j.epsr.2023.109287_bib0009
  article-title: An overview of state-of the-art partial discharge analysis techniques for condition monitoring
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2015.7303259
– volume: 144
  start-page: 1
  year: 2022
  ident: 10.1016/j.epsr.2023.109287_bib0026
  article-title: Enhanced particle swarm optimization-based convolution neural network hyperparameters tuning for transformer failure diagnosis under complex data sources
  publication-title: Electr. Eng.
– volume: 37
  start-page: 2514
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0027
  article-title: A domain adaptive deep transfer learning method for gas-insulated switchgear partial discharge diagnosis
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2021.3111862
– volume: 49
  start-page: 2936
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0022
  article-title: A deep learning approach for discrimination of single-and multi-source corona discharges
  publication-title: IEEE Trans. Plasma. Sci.
  doi: 10.1109/TPS.2021.3102115
– volume: 12
  start-page: 2485
  year: 2019
  ident: 10.1016/j.epsr.2023.109287_bib0021
  article-title: Partial discharge classification using deep learning methods-survey of recent progress
  publication-title: Energies
  doi: 10.3390/en12132485
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0001
  article-title: Characterization of defects inside the cable dielectric with partial discharge modelling
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3027925
– volume: 114
  year: 2020
  ident: 10.1016/j.epsr.2023.109287_bib0005
  article-title: The influence of AC and DC voltages on electrical treeing in low density polyethylene
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105386
– ident: 10.1016/j.epsr.2023.109287_bib0011
  doi: 10.1109/MEPCON55441.2022.10021795
– volume: 24
  start-page: 66
  year: 2017
  ident: 10.1016/j.epsr.2023.109287_bib0012
  article-title: High noise tolerance feature extraction for partial discharge classification in XLPE cable joints
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2016.005864
– volume: 64
  start-page: 3601
  year: 2015
  ident: 10.1016/j.epsr.2023.109287_bib0014
  article-title: Wavelet transform with histogram-based threshold estimation for online partial discharge signal denoising
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2454651
– volume: 95
  start-page: 56
  year: 2013
  ident: 10.1016/j.epsr.2023.109287_bib0013
  article-title: Signal analysis and feature generation for pattern identification of partial discharges in high-voltage equipment
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2012.08.016
– volume: 13
  start-page: 5496
  year: 2020
  ident: 10.1016/j.epsr.2023.109287_bib0019
  article-title: Classification of partial discharge images using deep convolutional neural networks
  publication-title: Energies
  doi: 10.3390/en13205496
– volume: 28
  start-page: 1775
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0006
  article-title: “Inception and propagation of electrical trees in the presence of space charge in HVAC extruded cables
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2021.009609
– volume: 19
  start-page: 1351
  year: 2012
  ident: 10.1016/j.epsr.2023.109287_bib0007
  article-title: Frequency dependence of breakdown performance of XLPE with different artificial defects
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2012.6260011
– volume: 28
  start-page: 1669
  year: 2021
  ident: 10.1016/j.epsr.2023.109287_bib0004
  article-title: Detection of electrical tree formation in XLPE insulation through applying disturbed DC waveforms
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2021.009717
– volume: 18
  start-page: 847
  year: 2011
  ident: 10.1016/j.epsr.2023.109287_bib0002
  article-title: Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2011.5931074
SSID ssj0006975
Score 2.4658918
Snippet •Formation of the electrical tree structure due to PD in XLPE insulation under sinusoidal high voltage.•Analyses of the tree growth characteristics with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109287
SubjectTerms Convolutional neural network
Cross-linked polyethylene
Electrical tree
Growth characteristics
Partial discharge
Pre-trained neural network
Title Investigation of electrical tree growth characteristics and partial discharge pattern analysis using deep neural network
URI https://dx.doi.org/10.1016/j.epsr.2023.109287
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BTlo_LAhkITx4ntsaqoCoguUKlblDh2KUJpBEFi4rdzF6fQSqgDY5yzkryc7uzk3TtCLmM_55DHpKfTIPM4S3NPZtjMLJRMCJ0KUX_TfRjHowm_m0bTFhksa2GQVtnEfhfT62jdjPQaNHvlfN579ENwNqEgf2OorbdAnAv08uuvX5pHrGqxXTT20LopnHEcL1O-oyYoC1FViSGt7q_ktJJwhntkt1kp0r67mX3SMsUB2VnRDzwknysqGYuCLix1XW0QeIq_m-kMdtnVM9Xrssw0LXJa4mOCHdblolySgREs7SngrBMqoUiKn9HcmJKi7iUYF441fkQmw5unwchrWil4GtCpPGFkpmMjY5WjgryfccNZrq3iKSr4KS2DlEUsskYaG9ooMgoicprZnDHt-zY8Ju1iUZgTQi0YZr6JfWUF17Bd04pLuAqsZALNTdAhwRLDRDc649ju4jVZEspeEsQ9QdwTh3uHXP3MKZ3KxkbraPlqkjVfSSANbJh3-s95Z2QbjxxJ95y0q7cPcwFLkSrr1r7WJVv92_vR-Bv06OB9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbCk0c5-ERVVQF2i60UjcrcexShNIIgsTEb-cuTqGVUAdW-6wkX5w72_nuO0KuQjfjEMdiRyVe6nCWZE6cYjEzP2ZRpJIoqs50B8OwN-YPk2DSIJ1FLgzSKmvfb3165a3rlnaNZruYzdpPrg-TLRIQv9HV4hZog8Pni2UMbr5-eR6hqNR20dpB8zpzxpK8dPGOoqDMR1klhry6v6LTUsTp7pKdeqlIb-3d7JGGzvfJ9pKA4AH5XJLJmOd0bqgta4PIU_zfTKewzS6fqVrVZaZJntECnxPsMDEX9ZI0tGBuTw69VqmEIit-SjOtC4rCl2CcW9r4IRl370adnlPXUnAUwFM6kY5TFeo4FBlKyLsp15xlygieoISfULGXsIAFRsfa-CYItACXnKQmY0y5rvGPSDOf5_qYUAOGqatDV5iIK9ivKcFjuAosZTzFtdci3gJDqWqhcax38SoXjLIXibhLxF1a3Fvk-mdMYWU21loHi1cjVyaLhDiwZtzJP8ddks3eaNCX_fvh4ynZwh7L2D0jzfLtQ5_DuqRML6p59w0s1uIL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+electrical+tree+growth+characteristics+and+partial+discharge+pattern+analysis+using+deep+neural+network&rft.jtitle=Electric+power+systems+research&rft.au=Sahoo%2C+Rakesh&rft.au=Karmakar%2C+Subrata&rft.date=2023-07-01&rft.issn=0378-7796&rft.volume=220&rft.spage=109287&rft_id=info:doi/10.1016%2Fj.epsr.2023.109287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2023_109287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon