Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning

In modern manufacturing industry, dynamic scheduling methods are urgently needed with the sharp increase of uncertainty and complexity in production process. To this end, this paper addresses the dynamic flexible job shop scheduling problem (DFJSP) under new job insertions aiming at minimizing the t...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 91; p. 106208
Main Author Luo, Shu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In modern manufacturing industry, dynamic scheduling methods are urgently needed with the sharp increase of uncertainty and complexity in production process. To this end, this paper addresses the dynamic flexible job shop scheduling problem (DFJSP) under new job insertions aiming at minimizing the total tardiness. Without lose of generality, the DFJSP can be modeled as a Markov decision process (MDP) where an intelligent agent should successively determine which operation to process next and which machine to assign it on according to the production status of current decision point, making it particularly feasible to be solved by reinforcement learning (RL) methods. In order to cope with continuous production states and learn the most suitable action (i.e. dispatching rule) at each rescheduling point, a deep Q-network (DQN) is developed to address this problem. Six composite dispatching rules are proposed to simultaneously select an operation and assign it on a feasible machine every time an operation is completed or a new job arrives. Seven generic state features are extracted to represent the production status at a rescheduling point. By taking the continuous state features as input to the DQN, the state–action value (Q-value) of each dispatching rule can be obtained. The proposed DQN is trained using deep Q-learning (DQL) enhanced by two improvements namely double DQN and soft target weight update. Moreover, a “softmax” action selection policy is utilized in real implementation of the trained DQN so as to promote the rules with higher Q-values while maintaining the policy entropy. Numerical experiments are conducted on a large number of instances with different production configurations. The results have confirmed both the superiority and generality of DQN compared to each composite rule, other well-known dispatching rules as well as the stand Q-learning-based agent. •A deep Q-network (DQN) is proposed to select the appropriate dispatching rules.•Seven generic state features are extracted to represent the production status.•Six composite dispatching rules are designed to minimize the total tardiness.•The DQN is trained by deep reinforcement learning combined with two improvements.•Numerical experiments have verified the effectiveness and generality of the DQN.
AbstractList In modern manufacturing industry, dynamic scheduling methods are urgently needed with the sharp increase of uncertainty and complexity in production process. To this end, this paper addresses the dynamic flexible job shop scheduling problem (DFJSP) under new job insertions aiming at minimizing the total tardiness. Without lose of generality, the DFJSP can be modeled as a Markov decision process (MDP) where an intelligent agent should successively determine which operation to process next and which machine to assign it on according to the production status of current decision point, making it particularly feasible to be solved by reinforcement learning (RL) methods. In order to cope with continuous production states and learn the most suitable action (i.e. dispatching rule) at each rescheduling point, a deep Q-network (DQN) is developed to address this problem. Six composite dispatching rules are proposed to simultaneously select an operation and assign it on a feasible machine every time an operation is completed or a new job arrives. Seven generic state features are extracted to represent the production status at a rescheduling point. By taking the continuous state features as input to the DQN, the state–action value (Q-value) of each dispatching rule can be obtained. The proposed DQN is trained using deep Q-learning (DQL) enhanced by two improvements namely double DQN and soft target weight update. Moreover, a “softmax” action selection policy is utilized in real implementation of the trained DQN so as to promote the rules with higher Q-values while maintaining the policy entropy. Numerical experiments are conducted on a large number of instances with different production configurations. The results have confirmed both the superiority and generality of DQN compared to each composite rule, other well-known dispatching rules as well as the stand Q-learning-based agent. •A deep Q-network (DQN) is proposed to select the appropriate dispatching rules.•Seven generic state features are extracted to represent the production status.•Six composite dispatching rules are designed to minimize the total tardiness.•The DQN is trained by deep reinforcement learning combined with two improvements.•Numerical experiments have verified the effectiveness and generality of the DQN.
ArticleNumber 106208
Author Luo, Shu
Author_xml – sequence: 1
  givenname: Shu
  orcidid: 0000-0002-8251-865X
  surname: Luo
  fullname: Luo, Shu
  email: luos17@mails.tsinghua.edu.cn
  organization: National Engineering Research Center for Computer Integrated Manufacturing Systems, Department of Automation, Tsinghua University, Beijing 100084, China
BookMark eNp9kM9OAyEQh4mpiW31BTzxAluBZVlIvJj6N2niRc-EhcHSbNkGVmvf3l3ryUNPM5nM98vMN0OT2EVA6JqSBSVU3GwWJnd2wQgbB4IReYamVNasUELSydBXQhZccXGBZjlvyAApJqdI3x-i2QaLs12D-2xD_MC-S9i38B2aFvCma3Bedzu8D_0aR9j_TkLMkPrQxYybA3YAO5wgxIG0sIXY4xZMikPYJTr3ps1w9Vfn6P3x4W35XKxen16Wd6vCloT0RW2tgopAxUvLpRKmrB0QpjiXrq4pr6FivmrKWpSKeuMtHVa8IKWjjlvlyzmSx1ybupwTeG1Db8YL-2RCqynRoyi90aMoPYrSR1EDyv6huxS2Jh1OQ7dHCIanvgIknW2AaMGFBLbXrgun8B8pl4Uz
CitedBy_id crossref_primary_10_1007_s42979_020_00326_5
crossref_primary_10_1016_j_eswa_2024_123970
crossref_primary_10_1007_s00607_022_01078_1
crossref_primary_10_1007_s10462_024_11059_9
crossref_primary_10_1016_j_asoc_2024_112461
crossref_primary_10_1016_j_aei_2025_103216
crossref_primary_10_1109_TNNLS_2022_3208942
crossref_primary_10_1007_s00500_021_06053_0
crossref_primary_10_1016_j_aei_2024_102872
crossref_primary_10_3390_pr10040760
crossref_primary_10_1016_j_cirpj_2022_12_001
crossref_primary_10_1016_j_engappai_2024_109488
crossref_primary_10_3390_su14095340
crossref_primary_10_1016_j_aei_2023_102230
crossref_primary_10_3390_pr12010051
crossref_primary_10_1016_j_eswa_2025_127251
crossref_primary_10_1109_TII_2023_3281661
crossref_primary_10_3390_app14125208
crossref_primary_10_1016_j_jmsy_2024_03_002
crossref_primary_10_1051_e3sconf_202451201010
crossref_primary_10_1016_j_cor_2022_106095
crossref_primary_10_1016_j_asoc_2022_109717
crossref_primary_10_3390_su15108262
crossref_primary_10_1007_s00170_021_08290_x
crossref_primary_10_1007_s10696_024_09574_6
crossref_primary_10_1007_s00521_023_08877_3
crossref_primary_10_3390_jmse11050892
crossref_primary_10_1080_21680566_2023_2248400
crossref_primary_10_1016_j_aei_2024_102646
crossref_primary_10_1109_TSMC_2024_3520381
crossref_primary_10_1016_j_asoc_2024_111234
crossref_primary_10_3390_app14177435
crossref_primary_10_1002_int_23090
crossref_primary_10_1109_TCYB_2022_3151855
crossref_primary_10_3233_JIFS_236981
crossref_primary_10_1016_j_omega_2022_102643
crossref_primary_10_1109_TITS_2024_3412932
crossref_primary_10_1016_j_cie_2024_110855
crossref_primary_10_1109_ACCESS_2023_3305951
crossref_primary_10_1016_j_cie_2021_107489
crossref_primary_10_1007_s10696_024_09587_1
crossref_primary_10_1016_j_jclepro_2022_130419
crossref_primary_10_1016_j_engappai_2024_108841
crossref_primary_10_3390_a17080343
crossref_primary_10_3390_buildings15050697
crossref_primary_10_1016_j_jmsy_2022_04_019
crossref_primary_10_1016_j_rcim_2021_102261
crossref_primary_10_1109_JIOT_2024_3485748
crossref_primary_10_3390_machines10030210
crossref_primary_10_1016_j_cie_2025_111062
crossref_primary_10_1016_j_swevo_2024_101619
crossref_primary_10_1007_s10479_022_05134_z
crossref_primary_10_1016_j_procir_2022_09_024
crossref_primary_10_1016_j_autcon_2021_103737
crossref_primary_10_1109_ACCESS_2024_3457429
crossref_primary_10_1007_s10845_023_02161_w
crossref_primary_10_1177_09544054241272855
crossref_primary_10_1109_ACCESS_2024_3448260
crossref_primary_10_1016_j_cie_2024_109995
crossref_primary_10_1016_j_eswa_2022_117380
crossref_primary_10_1016_j_aei_2024_102748
crossref_primary_10_1007_s10489_023_04479_7
crossref_primary_10_1007_s00521_024_09513_4
crossref_primary_10_1109_TSMC_2023_3289322
crossref_primary_10_3390_pr11123434
crossref_primary_10_1016_j_jmsy_2024_03_012
crossref_primary_10_3233_JIFS_233337
crossref_primary_10_1016_j_asoc_2024_111699
crossref_primary_10_1109_MCI_2024_3363970
crossref_primary_10_1016_j_swevo_2024_101605
crossref_primary_10_1016_j_swevo_2025_101901
crossref_primary_10_1080_00207543_2021_1943037
crossref_primary_10_1016_j_swevo_2025_101902
crossref_primary_10_1038_s41598_023_28630_z
crossref_primary_10_1016_j_jmsy_2023_01_008
crossref_primary_10_1016_j_swevo_2024_101602
crossref_primary_10_1016_j_jmsy_2023_01_004
crossref_primary_10_1093_jcde_qwac044
crossref_primary_10_1016_j_caeai_2023_100181
crossref_primary_10_1109_ACCESS_2022_3188765
crossref_primary_10_1016_j_cie_2024_110359
crossref_primary_10_1109_TASE_2023_3271666
crossref_primary_10_1016_j_engappai_2021_104307
crossref_primary_10_1016_j_energy_2022_126034
crossref_primary_10_1016_j_cirpj_2022_11_003
crossref_primary_10_1016_j_engappai_2024_109557
crossref_primary_10_1016_j_rcim_2021_102283
crossref_primary_10_1080_09544828_2025_2450759
crossref_primary_10_1080_23080477_2024_2345951
crossref_primary_10_3390_math13010004
crossref_primary_10_1016_j_asoc_2023_110596
crossref_primary_10_1016_j_rcim_2022_102324
crossref_primary_10_1016_j_eswa_2023_123019
crossref_primary_10_3390_machines12010008
crossref_primary_10_1016_j_jclepro_2023_139249
crossref_primary_10_1016_j_cie_2023_109650
crossref_primary_10_1016_j_knosys_2022_108489
crossref_primary_10_1109_LRA_2022_3184795
crossref_primary_10_1016_j_procir_2024_08_027
crossref_primary_10_1109_TETCI_2022_3145706
crossref_primary_10_1080_00207543_2021_1968526
crossref_primary_10_1016_j_engappai_2024_108699
crossref_primary_10_1016_j_procir_2021_09_089
crossref_primary_10_3390_pr11072018
crossref_primary_10_1177_09544054231167086
crossref_primary_10_1016_j_procir_2022_05_117
crossref_primary_10_1016_j_engappai_2023_107790
crossref_primary_10_1109_TCYB_2022_3169210
crossref_primary_10_46810_tdfd_833452
crossref_primary_10_1080_00207543_2025_2461131
crossref_primary_10_1016_j_softx_2023_101383
crossref_primary_10_1016_j_jmsy_2022_08_013
crossref_primary_10_3390_s21144836
crossref_primary_10_1007_s40815_023_01605_y
crossref_primary_10_1016_j_jmsy_2023_11_016
crossref_primary_10_1177_09544054221121934
crossref_primary_10_1016_j_cie_2024_110018
crossref_primary_10_1080_00207543_2024_2436126
crossref_primary_10_1016_j_aei_2024_102417
crossref_primary_10_1145_3590163
crossref_primary_10_1016_j_eswa_2021_116222
crossref_primary_10_1007_s10845_022_01915_2
crossref_primary_10_1016_j_knosys_2022_110083
crossref_primary_10_1016_j_simpat_2024_102948
crossref_primary_10_1360_SST_2022_0481
crossref_primary_10_1080_00207543_2024_2403112
crossref_primary_10_1080_00207543_2023_2252932
crossref_primary_10_1002_tee_23788
crossref_primary_10_3233_JIFS_222362
crossref_primary_10_1007_s10845_024_02484_2
crossref_primary_10_1007_s10845_021_01847_3
crossref_primary_10_1016_j_aei_2022_101776
crossref_primary_10_3389_fenrg_2023_1251335
crossref_primary_10_1016_j_jmsy_2023_09_009
crossref_primary_10_1080_23080477_2023_2187528
crossref_primary_10_1016_j_swevo_2024_101808
crossref_primary_10_1007_s10586_024_04970_x
crossref_primary_10_1007_s40747_025_01828_6
crossref_primary_10_1016_j_is_2024_102492
crossref_primary_10_1016_j_engappai_2024_108487
crossref_primary_10_1080_00207543_2025_2481184
crossref_primary_10_1109_JIOT_2024_3386888
crossref_primary_10_1109_TSMC_2024_3446671
crossref_primary_10_1080_23302674_2024_2396432
crossref_primary_10_1007_s10845_024_02363_w
crossref_primary_10_1016_j_ejor_2024_02_006
crossref_primary_10_1038_s41598_024_79593_8
crossref_primary_10_1049_cim2_12061
crossref_primary_10_1049_cim2_12060
crossref_primary_10_1038_s41598_024_71355_w
crossref_primary_10_1007_s00170_023_12595_4
crossref_primary_10_1016_j_asoc_2024_112614
crossref_primary_10_1109_ACCESS_2021_3097254
crossref_primary_10_3390_machines10121169
crossref_primary_10_1016_j_cie_2023_109053
crossref_primary_10_1016_j_jmsy_2023_03_003
crossref_primary_10_1109_TETCI_2024_3402685
crossref_primary_10_1016_j_engappai_2025_110588
crossref_primary_10_1016_j_rcim_2024_102923
crossref_primary_10_3390_s21134553
crossref_primary_10_1016_j_cie_2023_109718
crossref_primary_10_1016_j_jclepro_2021_126489
crossref_primary_10_1016_j_engappai_2022_104976
crossref_primary_10_3390_pr11051571
crossref_primary_10_1016_j_cor_2023_106401
crossref_primary_10_1016_j_jmsy_2024_01_002
crossref_primary_10_3390_math13060932
crossref_primary_10_1007_s10479_025_06482_2
crossref_primary_10_1016_j_asoc_2023_110600
crossref_primary_10_1016_j_eswa_2023_121205
crossref_primary_10_1016_j_jmsy_2024_10_026
crossref_primary_10_53941_ijndi_2023_100015
crossref_primary_10_3390_machines10111001
crossref_primary_10_1007_s10791_024_09474_1
crossref_primary_10_1016_j_engappai_2024_107917
crossref_primary_10_1016_j_comnet_2024_110418
crossref_primary_10_3390_ma15197019
crossref_primary_10_1016_j_ijpe_2023_109102
crossref_primary_10_3390_machines10121195
crossref_primary_10_46740_alku_1390397
crossref_primary_10_1016_j_cor_2024_106914
crossref_primary_10_1016_j_jmsy_2022_10_019
crossref_primary_10_1016_j_eswa_2022_117796
crossref_primary_10_3390_pr11010267
crossref_primary_10_3389_fenvs_2022_1059451
crossref_primary_10_3233_JIFS_223827
crossref_primary_10_1016_j_swevo_2023_101414
crossref_primary_10_1007_s10489_022_03579_0
crossref_primary_10_1109_TII_2024_3371489
crossref_primary_10_3390_app14010049
crossref_primary_10_1016_j_eswa_2021_114666
crossref_primary_10_1016_j_cor_2024_106929
crossref_primary_10_1109_TII_2023_3272661
crossref_primary_10_1080_00207543_2022_2058432
crossref_primary_10_1016_j_aei_2022_101733
crossref_primary_10_1109_ACCESS_2024_3357969
crossref_primary_10_3390_pr9081391
crossref_primary_10_1016_j_rcim_2024_102917
crossref_primary_10_1016_j_cie_2023_109180
crossref_primary_10_1007_s40747_022_00844_0
crossref_primary_10_1016_j_swevo_2023_101421
crossref_primary_10_1007_s00170_021_07950_2
crossref_primary_10_3390_info15020082
crossref_primary_10_1016_j_cie_2023_109802
crossref_primary_10_1016_j_rcim_2025_103017
crossref_primary_10_1109_ACCESS_2024_3522107
crossref_primary_10_1080_00207543_2024_2328116
crossref_primary_10_1088_1742_6596_1848_1_012029
crossref_primary_10_1016_j_jmsy_2020_06_005
crossref_primary_10_1007_s10845_023_02094_4
crossref_primary_10_1016_j_jmsy_2023_06_007
crossref_primary_10_1016_j_asoc_2025_112898
crossref_primary_10_1016_j_rcim_2023_102605
crossref_primary_10_1109_TII_2022_3167380
crossref_primary_10_3390_electronics13183696
crossref_primary_10_3390_a14070211
crossref_primary_10_3390_app15010232
crossref_primary_10_1080_23302674_2025_2467782
crossref_primary_10_1061_JCCEE5_CPENG_6042
crossref_primary_10_1515_astro_2022_0033
crossref_primary_10_1016_j_aei_2024_102392
crossref_primary_10_1007_s12065_023_00885_5
crossref_primary_10_1016_j_cie_2023_109255
crossref_primary_10_1109_TII_2023_3282313
crossref_primary_10_1016_j_cie_2024_110646
crossref_primary_10_23919_CSMS_2021_0024
crossref_primary_10_1016_j_jii_2024_100582
crossref_primary_10_1016_j_swevo_2024_101550
crossref_primary_10_23919_CSMS_2021_0027
crossref_primary_10_1016_j_ifacol_2021_08_093
crossref_primary_10_1109_TETCI_2021_3098354
crossref_primary_10_1016_j_aei_2023_102307
crossref_primary_10_1016_j_jmsy_2024_08_006
crossref_primary_10_1016_j_cor_2024_106744
crossref_primary_10_1016_j_asoc_2025_112787
crossref_primary_10_1007_s10845_024_02470_8
crossref_primary_10_1016_j_eswa_2022_117489
crossref_primary_10_1080_00207543_2023_2245918
crossref_primary_10_1016_j_engappai_2024_107893
crossref_primary_10_1016_j_mlwa_2022_100445
crossref_primary_10_1016_j_cie_2025_110863
crossref_primary_10_1080_0305215X_2022_2141236
crossref_primary_10_1016_j_rcim_2025_102959
crossref_primary_10_54392_irjmt24614
crossref_primary_10_1109_TASE_2021_3104716
crossref_primary_10_1016_j_aei_2025_103195
crossref_primary_10_1016_j_cor_2022_105823
crossref_primary_10_3934_mbe_2024062
crossref_primary_10_32604_cmc_2022_030803
crossref_primary_10_3390_su16083234
crossref_primary_10_1016_j_jmsy_2024_04_028
crossref_primary_10_23919_CSMS_2022_0007
crossref_primary_10_1080_0305215X_2024_2437004
crossref_primary_10_1016_j_dsp_2022_103419
crossref_primary_10_1016_j_swevo_2024_101658
crossref_primary_10_3390_app13148483
crossref_primary_10_1080_0951192X_2024_2343677
crossref_primary_10_1109_JIOT_2023_3283056
crossref_primary_10_1109_TCYB_2021_3128075
crossref_primary_10_1016_j_ejor_2022_11_034
crossref_primary_10_1016_j_asoc_2023_110658
crossref_primary_10_1016_j_jmsy_2025_01_011
crossref_primary_10_1016_j_cie_2025_110856
crossref_primary_10_1016_j_asoc_2021_107212
crossref_primary_10_3390_su132313016
crossref_primary_10_1016_j_eswa_2022_117460
crossref_primary_10_1111_bjet_13429
crossref_primary_10_1016_j_cor_2023_106306
crossref_primary_10_1016_j_jmsy_2022_11_001
crossref_primary_10_3390_info13060286
crossref_primary_10_3390_electronics12234752
crossref_primary_10_1080_00207543_2021_1973138
crossref_primary_10_1016_j_asoc_2025_112764
crossref_primary_10_3390_machines10090759
crossref_primary_10_1080_21681015_2021_1883135
crossref_primary_10_1007_s10845_023_02249_3
crossref_primary_10_1016_j_procir_2023_09_012
crossref_primary_10_1007_s10845_024_02454_8
crossref_primary_10_1016_j_knosys_2024_111940
crossref_primary_10_1016_j_asoc_2024_111937
crossref_primary_10_3389_fieng_2024_1337174
crossref_primary_10_1007_s10489_022_03963_w
crossref_primary_10_3390_s21031019
Cites_doi 10.1007/s12652-016-0370-7
10.1016/S0272-6963(96)00090-3
10.1016/S0377-2217(98)00023-X
10.1016/S0921-8890(00)00087-7
10.1016/j.cie.2017.05.026
10.1007/s10951-008-0090-8
10.1007/s10845-012-0626-9
10.1016/j.eswa.2015.06.004
10.1016/j.cie.2016.12.020
10.1080/00207540802662896
10.1016/j.ijpe.2011.04.020
10.1287/moor.1.2.117
10.1038/nature14236
10.1080/00207543.2017.1306134
10.1080/00207543.2011.571443
10.1007/s001700070008
10.1109/70.678447
10.1609/aaai.v30i1.10295
10.1016/j.ejor.2016.07.030
10.1016/j.ins.2014.11.036
10.1007/s00170-011-3482-4
10.1016/j.cie.2016.03.011
10.1016/j.ifacol.2017.08.2354
10.1016/j.nancom.2018.02.003
10.1504/IJMOR.2019.097759
10.1080/05695557708975127
10.1016/j.rcim.2004.07.003
10.1080/095119299130443
10.1016/j.ifacol.2018.08.357
10.1016/j.cie.2018.03.039
10.1016/j.procir.2018.03.212
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106208
S1568494620301484
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-7cc9e50e543c4896a37de029448d77147e52f5b376391fafc16a3f603d1d4c9f3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 01:50:05 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep Q network
New job insertion
Deep reinforcement learning
Dispatching rules
Flexible job shop scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-7cc9e50e543c4896a37de029448d77147e52f5b376391fafc16a3f603d1d4c9f3
ORCID 0000-0002-8251-865X
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106208
crossref_primary_10_1016_j_asoc_2020_106208
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b45) 2015; 518
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (b48) 2015
Shen, Yao (b35) 2015; 298
Howard (b7) 1960
Nelson, Holloway, Wong (b33) 1977; 9
Chen, Hao, Lin, Murata (b12) 2010
Al-Hinai, ElMekkawy (b40) 2011; 132
Aydin, Öztemel (b10) 2000; 33
Gabel, Riedmiller (b13) 2012; 50
Mirhoseini, Pham, Le, Steiner, Larsen, Zhou, Kumar, Norouzi, Bengio, Dean (b24) 2017
P. Michael, Scheduling, theory, algorithms, and systems, Englewood Cli s, New Jersey, 1995.
Khalil, Dai, Zhang, Dilkina, Song (b23) 2017
Sutton, Barto (b8) 2018
Kundakcı, Kulak (b5) 2016; 96
Shiue, Lee, Su (b17) 2018
Wang (b16) 2018
Xiong, Fan, Jiang, Li (b32) 2017; 257
Lu, Li, Gao, Liao, Yi (b49) 2017; 104
Mehta, Uzsoy (b38) 1998; 14
Shahrabi, Adibi, Mahootchi (b15) 2017; 110
Wang, Usher (b11) 2004; 20
Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b22) 2018; 72
Gabel, Riedmiller (b29) 2008; 24
Bellman (b44) 1957
Cao, Zhang, Liu (b21) 2019
Baykasoğlu, Karaslan (b34) 2017; 55
Nouiri, Bekrar, Trentesaux (b37) 2018; 51
Buddala, Mahapatra (b41) 2018
Mehta (b25) 1999; 12
H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in: AAAI, vol. 2, Phoenix, AZ, 2016, p. 5.
Wang, Xie, Xia, Zhang (b43) 2018
Garey, Johnson, Sethi (b2) 1976; 1
S. Riedmiller, M. Riedmiller, A neural reinforcement learning approach to learn local dispatching policies in production scheduling, in: IJCAI, vol. 2, 1999, pp. 764–771.
Li, Cai, Liu, Lin, Wang (b18) 2018; 16
Subramaniam, Lee, Ramesh, Hong, Wong (b28) 2000; 16
Gao, Suganthan, Chua, Chong, Cai, Pan (b1) 2015; 42
Lou, Liu, Zhou, Wang, Sun (b4) 2012; 59
Matlab, version 9.1 (R2016b), 2016.
Nie, Gao, Li, Li (b31) 2013; 24
Tao, Ming, Xu, Hua (b6) 2016; 7
Shahgholi Zadeh, Katebi, Doniavi (b36) 2018
Ouelhadj, Petrovic (b3) 2009; 12
Hasselt (b46) 2010
Lawrence, Sewell (b27) 1997; 15
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (b20) 2013
Sajadi, Alizadeh, Zandieh, Tavan (b42) 2019; 14
Rajendran, Holthaus (b26) 1999; 116
Li (b19) 2017
Zandieh, Adibi (b30) 2010; 48
Bouazza, Sallez, Beldjilali (b14) 2017; 50
Mnih (10.1016/j.asoc.2020.106208_b45) 2015; 518
Wang (10.1016/j.asoc.2020.106208_b11) 2004; 20
Khalil (10.1016/j.asoc.2020.106208_b23) 2017
Lou (10.1016/j.asoc.2020.106208_b4) 2012; 59
Lillicrap (10.1016/j.asoc.2020.106208_b48) 2015
Bouazza (10.1016/j.asoc.2020.106208_b14) 2017; 50
Lu (10.1016/j.asoc.2020.106208_b49) 2017; 104
10.1016/j.asoc.2020.106208_b39
Nie (10.1016/j.asoc.2020.106208_b31) 2013; 24
Nouiri (10.1016/j.asoc.2020.106208_b37) 2018; 51
Howard (10.1016/j.asoc.2020.106208_b7) 1960
Bellman (10.1016/j.asoc.2020.106208_b44) 1957
Nelson (10.1016/j.asoc.2020.106208_b33) 1977; 9
Gabel (10.1016/j.asoc.2020.106208_b13) 2012; 50
Shiue (10.1016/j.asoc.2020.106208_b17) 2018
Subramaniam (10.1016/j.asoc.2020.106208_b28) 2000; 16
Sutton (10.1016/j.asoc.2020.106208_b8) 2018
10.1016/j.asoc.2020.106208_b47
Sajadi (10.1016/j.asoc.2020.106208_b42) 2019; 14
Xiong (10.1016/j.asoc.2020.106208_b32) 2017; 257
Waschneck (10.1016/j.asoc.2020.106208_b22) 2018; 72
Mehta (10.1016/j.asoc.2020.106208_b38) 1998; 14
Li (10.1016/j.asoc.2020.106208_b18) 2018; 16
Gao (10.1016/j.asoc.2020.106208_b1) 2015; 42
Mirhoseini (10.1016/j.asoc.2020.106208_b24) 2017
Shahrabi (10.1016/j.asoc.2020.106208_b15) 2017; 110
Mehta (10.1016/j.asoc.2020.106208_b25) 1999; 12
Al-Hinai (10.1016/j.asoc.2020.106208_b40) 2011; 132
Lawrence (10.1016/j.asoc.2020.106208_b27) 1997; 15
Garey (10.1016/j.asoc.2020.106208_b2) 1976; 1
Cao (10.1016/j.asoc.2020.106208_b21) 2019
Tao (10.1016/j.asoc.2020.106208_b6) 2016; 7
Mnih (10.1016/j.asoc.2020.106208_b20) 2013
Wang (10.1016/j.asoc.2020.106208_b16) 2018
Shahgholi Zadeh (10.1016/j.asoc.2020.106208_b36) 2018
10.1016/j.asoc.2020.106208_b50
10.1016/j.asoc.2020.106208_b9
Baykasoğlu (10.1016/j.asoc.2020.106208_b34) 2017; 55
Shen (10.1016/j.asoc.2020.106208_b35) 2015; 298
Hasselt (10.1016/j.asoc.2020.106208_b46) 2010
Ouelhadj (10.1016/j.asoc.2020.106208_b3) 2009; 12
Aydin (10.1016/j.asoc.2020.106208_b10) 2000; 33
Li (10.1016/j.asoc.2020.106208_b19) 2017
Chen (10.1016/j.asoc.2020.106208_b12) 2010
Buddala (10.1016/j.asoc.2020.106208_b41) 2018
Kundakcı (10.1016/j.asoc.2020.106208_b5) 2016; 96
Wang (10.1016/j.asoc.2020.106208_b43) 2018
Gabel (10.1016/j.asoc.2020.106208_b29) 2008; 24
Rajendran (10.1016/j.asoc.2020.106208_b26) 1999; 116
Zandieh (10.1016/j.asoc.2020.106208_b30) 2010; 48
References_xml – year: 2018
  ident: b43
  article-title: A NSGA-II algorithm hybridizing local simulated-annealing operators for a bicriteria robust job-shop scheduling problem under scenarios
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2013
  ident: b20
  article-title: Playing atari with deep reinforcement learning
– volume: 16
  start-page: 81
  year: 2018
  end-page: 90
  ident: b18
  article-title: Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation
  publication-title: Nano Commun. Netw.
– reference: P. Michael, Scheduling, theory, algorithms, and systems, Englewood Cli s, New Jersey, 1995.
– volume: 50
  start-page: 15890
  year: 2017
  end-page: 15895
  ident: b14
  article-title: A distributed approach solving partially flexible job-shop scheduling problem with a Q-learning effect
  publication-title: IFAC-PapersOnLine
– start-page: 2613
  year: 2010
  end-page: 2621
  ident: b46
  article-title: Double q-learning
  publication-title: Advances in Neural Information Processing Systems
– reference: H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in: AAAI, vol. 2, Phoenix, AZ, 2016, p. 5.
– year: 1960
  ident: b7
  article-title: Dynamic Programming and Markov Processes
– start-page: 2430
  year: 2017
  end-page: 2439
  ident: b24
  article-title: Device placement optimization with reinforcement learning
  publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70
– volume: 12
  start-page: 417
  year: 2009
  end-page: 431
  ident: b3
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: J. Sched.
– year: 2018
  ident: b17
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Comput. Ind. Eng.
– volume: 15
  start-page: 71
  year: 1997
  end-page: 82
  ident: b27
  article-title: Heuristic, optimal, static, and dynamic schedules when processing times are uncertain
  publication-title: J. Oper. Manage.
– volume: 132
  start-page: 279
  year: 2011
  end-page: 291
  ident: b40
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm
  publication-title: Int. J. Prod. Econ.
– volume: 110
  start-page: 75
  year: 2017
  end-page: 82
  ident: b15
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Comput. Ind. Eng.
– start-page: 6348
  year: 2017
  end-page: 6358
  ident: b23
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2018
  end-page: 14
  ident: b41
  article-title: Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 1
  year: 2018
  end-page: 16
  ident: b36
  article-title: A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times
  publication-title: Int. J. Prod. Res.
– reference: S. Riedmiller, M. Riedmiller, A neural reinforcement learning approach to learn local dispatching policies in production scheduling, in: IJCAI, vol. 2, 1999, pp. 764–771.
– volume: 12
  start-page: 15
  year: 1999
  end-page: 38
  ident: b25
  article-title: Predictable scheduling of a single machine subject to breakdowns
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 24
  year: 2008
  ident: b29
  article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents
  publication-title: Int. J. Inf. Technol. Intell. Comput.
– volume: 298
  start-page: 198
  year: 2015
  end-page: 224
  ident: b35
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inform. Sci.
– volume: 104
  start-page: 156
  year: 2017
  end-page: 174
  ident: b49
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Comput. Ind. Eng.
– volume: 20
  start-page: 553
  year: 2004
  end-page: 562
  ident: b11
  article-title: Learning policies for single machine job dispatching
  publication-title: Robot. Comput.-Integr. Manuf.
– year: 2019
  ident: b21
  article-title: A deep reinforcement learning approach to multi-component job scheduling in edge computing
– year: 2018
  ident: b8
  article-title: Reinforcement Learning: An Introduction
– volume: 33
  start-page: 169
  year: 2000
  end-page: 178
  ident: b10
  article-title: Dynamic job-shop scheduling using reinforcement learning agents
  publication-title: Robot. Auton. Syst.
– volume: 257
  start-page: 13
  year: 2017
  end-page: 24
  ident: b32
  article-title: A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints
  publication-title: European J. Oper. Res.
– start-page: 396
  year: 2010
  end-page: 401
  ident: b12
  article-title: Rule driven multi objective dynamic scheduling by data envelopment analysis and reinforcement learning
  publication-title: 2010 IEEE International Conference on Automation and Logistics
– volume: 14
  start-page: 365
  year: 1998
  end-page: 378
  ident: b38
  article-title: Predictable scheduling of a job shop subject to breakdowns
  publication-title: IEEE Trans. Robot. Autom.
– volume: 59
  start-page: 311
  year: 2012
  end-page: 324
  ident: b4
  article-title: Multi-agent-based proactive–reactive scheduling for a job shop
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 16
  start-page: 902
  year: 2000
  end-page: 908
  ident: b28
  article-title: Machine selection rules in a dynamic job shop
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 24
  start-page: 763
  year: 2013
  end-page: 774
  ident: b31
  article-title: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates
  publication-title: J. Intell. Manuf.
– year: 2015
  ident: b48
  article-title: Continuous control with deep reinforcement learning
– volume: 50
  start-page: 41
  year: 2012
  end-page: 61
  ident: b13
  article-title: Distributed policy search reinforcement learning for job-shop scheduling tasks
  publication-title: Int. J. Prod. Res.
– volume: 48
  start-page: 2449
  year: 2010
  end-page: 2458
  ident: b30
  article-title: Dynamic job shop scheduling using variable neighbourhood search
  publication-title: Int. J. Prod. Res.
– start-page: 679
  year: 1957
  end-page: 684
  ident: b44
  article-title: A Markovian decision process
  publication-title: J. Math. Mech.
– year: 2017
  ident: b19
  article-title: Deep reinforcement learning: An overview
– volume: 7
  start-page: 721
  year: 2016
  end-page: 729
  ident: b6
  article-title: A novel dynamic scheduling strategy for solving flexible job-shop problems
  publication-title: J. Ambient Intell. Human. Comput.
– volume: 14
  start-page: 268
  year: 2019
  end-page: 289
  ident: b42
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns: multi-objectives genetic algorithm approach
  publication-title: Int. J. Math. Oper. Res.
– volume: 518
  start-page: 529
  year: 2015
  ident: b45
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 116
  start-page: 156
  year: 1999
  end-page: 170
  ident: b26
  article-title: A comparative study of dispatching rules in dynamic flowshops and jobshops
  publication-title: European J. Oper. Res.
– volume: 51
  start-page: 1275
  year: 2018
  end-page: 1280
  ident: b37
  article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem
  publication-title: IFAC-PapersOnLine
– start-page: 1
  year: 2018
  end-page: 16
  ident: b16
  article-title: Adaptive job shop scheduling strategy based on weighted q-learning algorithm
  publication-title: J. Intell. Manuf.
– volume: 9
  start-page: 95
  year: 1977
  end-page: 102
  ident: b33
  article-title: Centralized scheduling and priority implementation heuristics for a dynamic job shop model
  publication-title: AIIE Trans.
– volume: 1
  start-page: 117
  year: 1976
  end-page: 129
  ident: b2
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math. Oper. Res.
– volume: 42
  start-page: 7652
  year: 2015
  end-page: 7663
  ident: b1
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Syst. Appl.
– reference: Matlab, version 9.1 (R2016b), 2016.
– volume: 72
  start-page: 1264
  year: 2018
  end-page: 1269
  ident: b22
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Proc. CIRP
– volume: 96
  start-page: 31
  year: 2016
  end-page: 51
  ident: b5
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 55
  start-page: 3308
  year: 2017
  end-page: 3325
  ident: b34
  article-title: Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach
  publication-title: Int. J. Prod. Res.
– ident: 10.1016/j.asoc.2020.106208_b39
– volume: 7
  start-page: 721
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2020.106208_b6
  article-title: A novel dynamic scheduling strategy for solving flexible job-shop problems
  publication-title: J. Ambient Intell. Human. Comput.
  doi: 10.1007/s12652-016-0370-7
– year: 2018
  ident: 10.1016/j.asoc.2020.106208_b43
  article-title: A NSGA-II algorithm hybridizing local simulated-annealing operators for a bicriteria robust job-shop scheduling problem under scenarios
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 24
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2020.106208_b29
  article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents
  publication-title: Int. J. Inf. Technol. Intell. Comput.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106208_b16
  article-title: Adaptive job shop scheduling strategy based on weighted q-learning algorithm
  publication-title: J. Intell. Manuf.
– volume: 15
  start-page: 71
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106208_b27
  article-title: Heuristic, optimal, static, and dynamic schedules when processing times are uncertain
  publication-title: J. Oper. Manage.
  doi: 10.1016/S0272-6963(96)00090-3
– volume: 116
  start-page: 156
  issue: 1
  year: 1999
  ident: 10.1016/j.asoc.2020.106208_b26
  article-title: A comparative study of dispatching rules in dynamic flowshops and jobshops
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00023-X
– year: 2013
  ident: 10.1016/j.asoc.2020.106208_b20
– year: 2017
  ident: 10.1016/j.asoc.2020.106208_b19
– start-page: 2430
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b24
  article-title: Device placement optimization with reinforcement learning
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106208_b41
  article-title: Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106208_b36
  article-title: A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times
  publication-title: Int. J. Prod. Res.
– volume: 33
  start-page: 169
  issue: 2–3
  year: 2000
  ident: 10.1016/j.asoc.2020.106208_b10
  article-title: Dynamic job-shop scheduling using reinforcement learning agents
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(00)00087-7
– volume: 110
  start-page: 75
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b15
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.05.026
– volume: 12
  start-page: 417
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2020.106208_b3
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: J. Sched.
  doi: 10.1007/s10951-008-0090-8
– year: 2018
  ident: 10.1016/j.asoc.2020.106208_b8
– volume: 24
  start-page: 763
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2020.106208_b31
  article-title: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-012-0626-9
– volume: 42
  start-page: 7652
  issue: 21
  year: 2015
  ident: 10.1016/j.asoc.2020.106208_b1
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.06.004
– start-page: 2613
  year: 2010
  ident: 10.1016/j.asoc.2020.106208_b46
  article-title: Double q-learning
– ident: 10.1016/j.asoc.2020.106208_b9
– year: 2019
  ident: 10.1016/j.asoc.2020.106208_b21
– volume: 104
  start-page: 156
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b49
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.12.020
– start-page: 6348
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b23
  article-title: Learning combinatorial optimization algorithms over graphs
– volume: 48
  start-page: 2449
  issue: 8
  year: 2010
  ident: 10.1016/j.asoc.2020.106208_b30
  article-title: Dynamic job shop scheduling using variable neighbourhood search
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540802662896
– volume: 132
  start-page: 279
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2020.106208_b40
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2011.04.020
– volume: 1
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.asoc.2020.106208_b2
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1.2.117
– year: 2015
  ident: 10.1016/j.asoc.2020.106208_b48
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.asoc.2020.106208_b45
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 55
  start-page: 3308
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b34
  article-title: Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1306134
– volume: 50
  start-page: 41
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106208_b13
  article-title: Distributed policy search reinforcement learning for job-shop scheduling tasks
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.571443
– volume: 16
  start-page: 902
  issue: 12
  year: 2000
  ident: 10.1016/j.asoc.2020.106208_b28
  article-title: Machine selection rules in a dynamic job shop
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s001700070008
– volume: 14
  start-page: 365
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2020.106208_b38
  article-title: Predictable scheduling of a job shop subject to breakdowns
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.678447
– year: 1960
  ident: 10.1016/j.asoc.2020.106208_b7
– ident: 10.1016/j.asoc.2020.106208_b47
  doi: 10.1609/aaai.v30i1.10295
– volume: 257
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b32
  article-title: A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2016.07.030
– volume: 298
  start-page: 198
  year: 2015
  ident: 10.1016/j.asoc.2020.106208_b35
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.11.036
– volume: 59
  start-page: 311
  issue: 1–4
  year: 2012
  ident: 10.1016/j.asoc.2020.106208_b4
  article-title: Multi-agent-based proactive–reactive scheduling for a job shop
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3482-4
– volume: 96
  start-page: 31
  year: 2016
  ident: 10.1016/j.asoc.2020.106208_b5
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.03.011
– volume: 50
  start-page: 15890
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106208_b14
  article-title: A distributed approach solving partially flexible job-shop scheduling problem with a Q-learning effect
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.2354
– volume: 16
  start-page: 81
  year: 2018
  ident: 10.1016/j.asoc.2020.106208_b18
  article-title: Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation
  publication-title: Nano Commun. Netw.
  doi: 10.1016/j.nancom.2018.02.003
– volume: 14
  start-page: 268
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106208_b42
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns: multi-objectives genetic algorithm approach
  publication-title: Int. J. Math. Oper. Res.
  doi: 10.1504/IJMOR.2019.097759
– volume: 9
  start-page: 95
  issue: 1
  year: 1977
  ident: 10.1016/j.asoc.2020.106208_b33
  article-title: Centralized scheduling and priority implementation heuristics for a dynamic job shop model
  publication-title: AIIE Trans.
  doi: 10.1080/05695557708975127
– volume: 20
  start-page: 553
  issue: 6
  year: 2004
  ident: 10.1016/j.asoc.2020.106208_b11
  article-title: Learning policies for single machine job dispatching
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2004.07.003
– volume: 12
  start-page: 15
  issue: 1
  year: 1999
  ident: 10.1016/j.asoc.2020.106208_b25
  article-title: Predictable scheduling of a single machine subject to breakdowns
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/095119299130443
– ident: 10.1016/j.asoc.2020.106208_b50
– start-page: 396
  year: 2010
  ident: 10.1016/j.asoc.2020.106208_b12
  article-title: Rule driven multi objective dynamic scheduling by data envelopment analysis and reinforcement learning
– volume: 51
  start-page: 1275
  issue: 11
  year: 2018
  ident: 10.1016/j.asoc.2020.106208_b37
  article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.357
– start-page: 679
  year: 1957
  ident: 10.1016/j.asoc.2020.106208_b44
  article-title: A Markovian decision process
  publication-title: J. Math. Mech.
– year: 2018
  ident: 10.1016/j.asoc.2020.106208_b17
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.03.039
– volume: 72
  start-page: 1264
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106208_b22
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2018.03.212
SSID ssj0016928
Score 2.6708462
Snippet In modern manufacturing industry, dynamic scheduling methods are urgently needed with the sharp increase of uncertainty and complexity in production process....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106208
SubjectTerms Deep Q network
Deep reinforcement learning
Dispatching rules
Flexible job shop scheduling
New job insertion
Title Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
URI https://dx.doi.org/10.1016/j.asoc.2020.106208
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHrxJbDbZbLrHUi31QRG10FvIvrSltKXWgxd_uzPJpihID55ClpkQvp3MYzMPQi7AQiZRzmEH4pQHPEp1oARjgXFWWLAZlpXdPvuiN-B3w2RYI52qFgbTKr3uL3V6oa39StOj2ZyPRs1niDxaXHIRFWFBC3uCcp6ilF99rdI8mJDFfFUkDpDaF86UOV45IAAxYoQL8JzW38bph8Hp7pAt7ynSdvkyu6Rmp3tku5rCQP1HuU-y63KoPIU4FewGlpdT8ESpw1aXamLpeKbo-9tsTvHMlYIbXayMpvgfHoWOqk9qrJ3ThS3aqOrixJD6eRKvB2TQvXnp9AI_NiHQcRgug1RraZPQJjzWvCVFHqcGYJcQiJk0ZTy1SeQShZpFMpc7zYDEiTA2zHAtXXxI6tPZ1B4RqnNmcpVIpUTOpTDKaRfGCry-yNiYm2PCKrwy7XuK42iLSVYlj40zxDhDjLMS42NyueKZlx011lIn1TZkv-QiA5W_hu_kn3ynZBPvymSwM1JfLj7sObgdS9Uo5KpBNtqdp4dHvN7e9_rfsCTYpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2woNE4cpx5RARUoXWilblb8glZVG5UysPDbOSdOBRLqwOrcRdFn-x7O-T6ELsFDJlFGYQbilAY0SlUgGSGBtoYZ8BmGlN0-e6wzoI_DZFhD7eoujCur9La_tOmFtfYjTY9mMx-Nmi-QebQopywq0oIWXUPrFLavozG4_lrWeRDGC4JVJx04cX9zpizyygACSBIjNwAvav3tnX54nPsdtOVDRXxTfs0uqpnpHtquaBiw35X7SNyWrPIYElVwHO5-OYZQFFvX61JODB7PJH5_m-XYHbpiiKOLkdHU_Yh3qw7LT6yNyfHcFH1UVXFkiD2hxOsBGtzf9dudwPMmBCoOw0WQKsVNEpqExoq2OMviVAPuHDIxnaaEpiaJbCKdaeHEZlYRELEsjDXRVHEbH6L6dDY1RwirjOhMJlxKllHOtLTKhrGEsC_SJqa6gUiFl1C-qbjjtpiIqnpsLBzGwmEsSowb6Gqpk5ctNVZKJ9U0iF8LQ4DNX6F3_E-9C7TR6T93Rfeh93SCNt2TsjLsFNUX8w9zBjHIQp4Xa-wbABDYnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+scheduling+for+flexible+job+shop+with+new+job+insertions+by+deep+reinforcement+learning&rft.jtitle=Applied+soft+computing&rft.au=Luo%2C+Shu&rft.date=2020-06-01&rft.issn=1568-4946&rft.volume=91&rft.spage=106208&rft_id=info:doi/10.1016%2Fj.asoc.2020.106208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon