Multimodal fake news detection through data augmentation-based contrastive learning
During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or fabricated news can also spread unscrupulously, leading to serious consequences, such as poor decisions or even health risk. Thus, in order to discrim...
Saved in:
Published in | Applied soft computing Vol. 136; p. 110125 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or fabricated news can also spread unscrupulously, leading to serious consequences, such as poor decisions or even health risk. Thus, in order to discriminate the fake news, several fake news detection approaches have been proposed and the majority of these methods suffer from low efficacy of detection, due to the lack of multimodal information and the small data size. Hence, we develop a novel machine learning based framework, i.e., BERT-based back-Translation Text and Entire-image multimodal model with Contrastive learning (TTEC). In this framework, the text of news is first back-translated encouraging the framework to learn some general characteristics regarding a particular topic. Secondly, both textual and visual features are fed into a BERT-based model in order to produce multimodal features. Thirdly, the contrastive learning is utilized to derive more reasonable multimodal representations through utilizing similar news published in the past. Eventually, to demonstrate the effectiveness of the proposed framework, extensive experiments are conducted and the results show our method outperforms the state of art methods by 3.1% on Mac. F1 scores.
•We present a new multimodal fake news detection framework with contrastive learning.•The combination of back-translation and contrastive learning is proved effective.•The specific effects of contrastive learning and different image forms are discussed.•Several SOTA models are compared and extensive experiments are conducted. |
---|---|
AbstractList | During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or fabricated news can also spread unscrupulously, leading to serious consequences, such as poor decisions or even health risk. Thus, in order to discriminate the fake news, several fake news detection approaches have been proposed and the majority of these methods suffer from low efficacy of detection, due to the lack of multimodal information and the small data size. Hence, we develop a novel machine learning based framework, i.e., BERT-based back-Translation Text and Entire-image multimodal model with Contrastive learning (TTEC). In this framework, the text of news is first back-translated encouraging the framework to learn some general characteristics regarding a particular topic. Secondly, both textual and visual features are fed into a BERT-based model in order to produce multimodal features. Thirdly, the contrastive learning is utilized to derive more reasonable multimodal representations through utilizing similar news published in the past. Eventually, to demonstrate the effectiveness of the proposed framework, extensive experiments are conducted and the results show our method outperforms the state of art methods by 3.1% on Mac. F1 scores.
•We present a new multimodal fake news detection framework with contrastive learning.•The combination of back-translation and contrastive learning is proved effective.•The specific effects of contrastive learning and different image forms are discussed.•Several SOTA models are compared and extensive experiments are conducted. |
ArticleNumber | 110125 |
Author | Tang, Keke Hua, Jiaheng Cui, Xiaodong Zhu, Peican Li, Xianghua |
Author_xml | – sequence: 1 givenname: Jiaheng surname: Hua fullname: Hua, Jiaheng organization: School of Computer Science, Northwestern Polytechnical University (NWPU), Xi’an 710072, China – sequence: 2 givenname: Xiaodong surname: Cui fullname: Cui, Xiaodong email: xiaodong.cui@nwpu.edu.cn organization: School of Marine Science and Technology, NWPU, Xi’an 710072, China – sequence: 3 givenname: Xianghua surname: Li fullname: Li, Xianghua organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), NWPU, Xi’an 710072, China – sequence: 4 givenname: Keke surname: Tang fullname: Tang, Keke organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China – sequence: 5 givenname: Peican orcidid: 0000-0002-8389-1093 surname: Zhu fullname: Zhu, Peican email: ericcan@nwpu.edu.cn organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), NWPU, Xi’an 710072, China |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDyTYjuMkEhtU8ZKKWABry7EnrUtqI9st4u9JFFYsuprRXJ2R7lmgmfMOELqmJKeEiptdrqLXOSOsyOlwYeUZmtO6Ylkjajob9lLUGW-4uECLGHdkgBpWz9Hby6FPdu-N6nGnPgE7-I7YQAKdrHc4bYM_bLbYqKSwOmz24JIak6xVEQzW3qWgYrJHwD2o4KzbXKLzTvURrv7mEn083L-vnrL16-Pz6m6d6YKQlFW6bI0oFDHUAAUoRMdKJQRXADWnHLTWtGgJbxrBKl61VHelJh1nVNOqNsUSsemvDj7GAJ38Cnavwo-kRI5a5E6OWuSoRU5aBqj-B2k7NRp62P40ejuhMJQ6WggyagtOg7Fh0CWNt6fwXyWMgdg |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2024_102160 crossref_primary_10_1007_s13278_023_01104_w crossref_primary_10_1016_j_elerap_2025_101485 crossref_primary_10_1186_s40537_025_01093_x crossref_primary_10_3390_electronics13152958 crossref_primary_10_3390_electronics14061113 crossref_primary_10_1007_s40747_024_01473_5 crossref_primary_10_1007_s00607_025_01413_2 crossref_primary_10_1007_s00521_024_10924_6 crossref_primary_10_1016_j_ins_2023_119446 crossref_primary_10_1007_s10844_023_00789_x crossref_primary_10_1007_s40747_024_01413_3 crossref_primary_10_3389_fcomp_2024_1473457 crossref_primary_10_1016_j_health_2024_100340 crossref_primary_10_1109_ACCESS_2024_3406258 crossref_primary_10_1016_j_ipm_2025_104091 crossref_primary_10_3390_jmse12020264 crossref_primary_10_3390_app14209533 crossref_primary_10_3390_rs16132442 crossref_primary_10_1016_j_asoc_2025_112796 crossref_primary_10_1016_j_neucom_2025_129997 crossref_primary_10_1109_ACCESS_2024_3462151 crossref_primary_10_1177_1088467X251325354 crossref_primary_10_1016_j_nlp_2024_100073 crossref_primary_10_1109_TBDATA_2023_3325746 crossref_primary_10_1007_s10489_024_05460_8 crossref_primary_10_1007_s10489_024_05883_3 crossref_primary_10_1016_j_ins_2023_119897 crossref_primary_10_1177_10591478251319686 crossref_primary_10_1111_exsy_13665 crossref_primary_10_1007_s13278_024_01201_4 crossref_primary_10_1016_j_asoc_2025_112794 crossref_primary_10_1007_s11227_023_05531_6 crossref_primary_10_1016_j_asoc_2024_111553 crossref_primary_10_1109_ACCESS_2024_3369918 crossref_primary_10_5753_jisa_2025_5035 crossref_primary_10_1177_00368504241292685 crossref_primary_10_1016_j_ipm_2024_103807 crossref_primary_10_1016_j_aej_2024_08_103 crossref_primary_10_1016_j_eswa_2023_121588 crossref_primary_10_1007_s13369_024_09354_2 crossref_primary_10_1016_j_datak_2025_102441 crossref_primary_10_1007_s11042_023_16198_9 crossref_primary_10_1016_j_knosys_2023_111342 crossref_primary_10_3934_mbe_2023657 crossref_primary_10_1007_s13278_024_01376_w |
Cites_doi | 10.1145/3292500.3332287 10.1109/BigMM.2019.00-44 10.1145/3459637.3482196 10.1145/1963405.1963500 10.1145/3219819.3219903 10.1007/978-3-030-42699-6_8 10.1145/3308558.3313552 10.24963/ijcai.2017/545 10.1007/978-3-030-47436-2_27 10.1145/3161603 10.1109/TSMC.2016.2608658 10.1016/B978-0-444-63685-0.00014-0 10.1145/3123266.3123454 10.1109/CVPR.2016.90 10.1145/3340531.3412880 10.18653/v1/D15-1280 10.1145/3137597.3137600 10.1177/0093650212453600 10.1145/3485447.3512184 10.1145/3305260 10.3115/v1/D14-1181 10.1007/978-3-030-04503-6_4 10.1145/3340531.3412046 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2023.110125 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2023_110125 S1568494623001436 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-7c5bd63a0d1de1ee36f25a664aee8414eccc13b049962747b1cf5c0f421c178d3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 01:50:19 EDT 2025 Fri Feb 23 02:38:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fake news detection Multimodal framework Machine learning Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7c5bd63a0d1de1ee36f25a664aee8414eccc13b049962747b1cf5c0f421c178d3 |
ORCID | 0000-0002-8389-1093 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2023_110125 crossref_citationtrail_10_1016_j_asoc_2023_110125 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gao, Liu (b2) 2016; 47 V. Pérez-Rosas, B. Kleinberg, A. Lefevre, R. Mihalcea, Automatic Detection of Fake News, in: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 3391–3401. Z. Jin, J. Cao, H. Guo, et al., Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 795–816. Zubiaga, Aker, Bontcheva (b9) 2018; 51 D. Khattar, J.S. Goud, M. Gupta, V. Varma, MVAE: Multimodal Variational Autoencoder for Fake News Detection, in: Proceedings of the 28th International Conference on World Wide Web, 2019, pp. 2915–2921. Van der Maaten, Hinton (b43) 2008; 9 R. Zafarani, X. Zhou, K. Shu, H. Liu, Fake News Research: Theories, Detection Strategies, and Open Problems, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 3207–3208. Simonyan, Zisserman (b33) 2014 K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Y. Wang, F. Ma, Z. Jin, et al., EANN: Event Adversarial Neural Networks for Multi-modal Fake News Detection, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 849–857. Fisher, Cox, Hermann (b5) 2016 P. Liu, X. Qiu, X. Chen, S. Wu, X. Huang, Multi-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and Documents, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 2326–2335. Wang, Zhang, Wang, Du, Gao (b7) 2022 F. Yu, Q. Liu, S. Wu, et al., A Convolutional Approach for Misinformation Identification, in: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 3901–3907. Gao, Zhu, Zhang, Wang, Li (b23) 2022 J. Lu, D. Batra, D. Parikh, S. Lee, ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 13–23. Z. Wang, D. Hou, C. Gao, J. Huang, Q. Xuan, A Rapid Source Localization Method in the Early Stage of Large-scale Network Propagation, in: Proceedings of the ACM Web Conference, 2022, pp. 1372–1380. J. Cao, P. Qi, Q. Sheng, et al., Exploring the Role of Visual Content in Fake News Detection, in: Disinformation, Misinformation, and Fake News in Social Media, 2020, pp. 141–161. T. Chen, X. Li, H. Yin, J. Zhang, Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection, in: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2018, pp. 40–52. Kogan, Moskowitz, Niessner (b4) 2019 V.-H. Nguyen, K. Sugiyama, P. Nakov, M.-Y. Kan, FANG: Leveraging Social Context for Fake News Detection Using Graph Representation, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 1165–1174. Y.-J. Lu, C.-T. Li, GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 505–514. J. Ma, W. Gao, P. Mitra, et al., Detecting Rumors from Microblogs with Recurrent Neural Networks, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 3818–3824. Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b36) 2020 Kumar, Shah (b8) 2018 S. Singhal, R.R. Shah, T. Chakraborty, et al., SpotFake: A Multi-modal Framework for Fake News Detection, in: Proceedings of the 5th IEEE International Conference on Multimedia Big Data, 2019, pp. 39–47. Li, Cheng, Wang, Li, Li, Zhu (b1) 2023; 442 Balmas (b3) 2014; 41 Shu, Sliva, Wang (b11) 2017; 19 M. Gentzkow, J.M. Shapiro, D.F. Stone, Media bias in the marketplace: Theory, in: Handbook of Media Economics, 2015, pp. 623–645. Chen (b32) 2015 C. Castillo, M. Mendoza, B. Poblete, Information Credibility on Twitter, in: Proceedings of the 20th International Conference on World Wide Web, 2011, pp. 675–684. Picard (b42) 2021 X. Zhou, A. Mulay, E. Ferrara, R. Zafarani, ReCOVery: A Multimodal Repository for COVID-19 News Credibility Research, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 3205–3212. X. Zhou, J. Wu, R. Zafarani, SAFE: Similarity-Aware Multi-Modal Fake News Detection, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020, pp. 354–367. Tang, Ma, Miao, Song, Gu, Tian, Wang (b31) 2022 Guo, Ding, Yao (b10) 2020; 53 Sharma, Qian, Jiang, Ruchansky, Zhang, Liu (b15) 2019; 10 J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171–4186. W. Zhang, L. Gui, Y. He, Supervised Contrastive Learning for Multimodal Unreliable News Detection in COVID-19 Pandemic, in: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, 2021, pp. 3637–3641. V. Qazvinian, E. Rosengren, D. Radev, Q. Mei, Rumor has it: Identifying Misinformation in Microblogs, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, pp. 1589–1599. Bhargava, Sharma, Bhargava, Mathuria (b30) 2013; 3 Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1746–1751. Chen (10.1016/j.asoc.2023.110125_b32) 2015 Sharma (10.1016/j.asoc.2023.110125_b15) 2019; 10 10.1016/j.asoc.2023.110125_b6 10.1016/j.asoc.2023.110125_b22 10.1016/j.asoc.2023.110125_b21 10.1016/j.asoc.2023.110125_b20 10.1016/j.asoc.2023.110125_b41 10.1016/j.asoc.2023.110125_b40 Balmas (10.1016/j.asoc.2023.110125_b3) 2014; 41 10.1016/j.asoc.2023.110125_b29 10.1016/j.asoc.2023.110125_b28 10.1016/j.asoc.2023.110125_b27 10.1016/j.asoc.2023.110125_b26 10.1016/j.asoc.2023.110125_b25 10.1016/j.asoc.2023.110125_b24 Simonyan (10.1016/j.asoc.2023.110125_b33) 2014 Fisher (10.1016/j.asoc.2023.110125_b5) 2016 Tang (10.1016/j.asoc.2023.110125_b31) 2022 Kumar (10.1016/j.asoc.2023.110125_b8) 2018 Zubiaga (10.1016/j.asoc.2023.110125_b9) 2018; 51 Bhargava (10.1016/j.asoc.2023.110125_b30) 2013; 3 Picard (10.1016/j.asoc.2023.110125_b42) 2021 Dosovitskiy (10.1016/j.asoc.2023.110125_b36) 2020 10.1016/j.asoc.2023.110125_b12 Gao (10.1016/j.asoc.2023.110125_b23) 2022 10.1016/j.asoc.2023.110125_b34 Wang (10.1016/j.asoc.2023.110125_b7) 2022 Guo (10.1016/j.asoc.2023.110125_b10) 2020; 53 Li (10.1016/j.asoc.2023.110125_b1) 2023; 442 Gao (10.1016/j.asoc.2023.110125_b2) 2016; 47 10.1016/j.asoc.2023.110125_b19 Kogan (10.1016/j.asoc.2023.110125_b4) 2019 10.1016/j.asoc.2023.110125_b18 10.1016/j.asoc.2023.110125_b17 10.1016/j.asoc.2023.110125_b39 Shu (10.1016/j.asoc.2023.110125_b11) 2017; 19 10.1016/j.asoc.2023.110125_b16 10.1016/j.asoc.2023.110125_b38 10.1016/j.asoc.2023.110125_b37 10.1016/j.asoc.2023.110125_b14 10.1016/j.asoc.2023.110125_b13 10.1016/j.asoc.2023.110125_b35 Van der Maaten (10.1016/j.asoc.2023.110125_b43) 2008; 9 |
References_xml | – reference: Y. Wang, F. Ma, Z. Jin, et al., EANN: Event Adversarial Neural Networks for Multi-modal Fake News Detection, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 849–857. – volume: 442 start-page: 12 year: 2023 end-page: 21 ident: b1 article-title: Influence maximization through exploring structural information publication-title: Appl. Math. Comput. – start-page: 1 year: 2021 end-page: 9 ident: b42 article-title: Torch. manual_seed (3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision – reference: J. Lu, D. Batra, D. Parikh, S. Lee, ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 13–23. – reference: M. Gentzkow, J.M. Shapiro, D.F. Stone, Media bias in the marketplace: Theory, in: Handbook of Media Economics, 2015, pp. 623–645. – reference: Z. Wang, D. Hou, C. Gao, J. Huang, Q. Xuan, A Rapid Source Localization Method in the Early Stage of Large-scale Network Propagation, in: Proceedings of the ACM Web Conference, 2022, pp. 1372–1380. – reference: R. Zafarani, X. Zhou, K. Shu, H. Liu, Fake News Research: Theories, Detection Strategies, and Open Problems, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 3207–3208. – reference: T. Chen, X. Li, H. Yin, J. Zhang, Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection, in: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2018, pp. 40–52. – reference: Z. Jin, J. Cao, H. Guo, et al., Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 795–816. – reference: F. Yu, Q. Liu, S. Wu, et al., A Convolutional Approach for Misinformation Identification, in: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 3901–3907. – start-page: 1 year: 2018 end-page: 35 ident: b8 article-title: False information on web and social media: A survey – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – reference: P. Liu, X. Qiu, X. Chen, S. Wu, X. Huang, Multi-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and Documents, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 2326–2335. – volume: 47 start-page: 171 year: 2016 end-page: 183 ident: b2 article-title: Network-based modeling for characterizing human collective behaviors during extreme events publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 3 start-page: 114 year: 2013 end-page: 1119 ident: b30 article-title: Decision tree analysis on j48 algorithm for data mining publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – start-page: 1 year: 2019 end-page: 71 ident: b4 article-title: Fake news: Evidence from financial markets – reference: C. Castillo, M. Mendoza, B. Poblete, Information Credibility on Twitter, in: Proceedings of the 20th International Conference on World Wide Web, 2011, pp. 675–684. – reference: X. Zhou, A. Mulay, E. Ferrara, R. Zafarani, ReCOVery: A Multimodal Repository for COVID-19 News Credibility Research, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 3205–3212. – volume: 19 start-page: 22 year: 2017 end-page: 36 ident: b11 article-title: Fake news detection on social media: A data mining perspective publication-title: ACM SIGKDD Explor. Newsl. – volume: 9 start-page: 2079 year: 2008 end-page: 2605 ident: b43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 1 year: 2019 end-page: 42 ident: b15 article-title: Combating fake news: A survey on identification and mitigation techniques publication-title: ACM Trans. Intell. Syst. Technol. – reference: D. Khattar, J.S. Goud, M. Gupta, V. Varma, MVAE: Multimodal Variational Autoencoder for Fake News Detection, in: Proceedings of the 28th International Conference on World Wide Web, 2019, pp. 2915–2921. – reference: J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171–4186. – volume: 53 start-page: 1 year: 2020 end-page: 36 ident: b10 article-title: The future of false information detection on social media: New perspectives and trends publication-title: ACM Comput. Surv. – reference: V. Pérez-Rosas, B. Kleinberg, A. Lefevre, R. Mihalcea, Automatic Detection of Fake News, in: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 3391–3401. – reference: S. Singhal, R.R. Shah, T. Chakraborty, et al., SpotFake: A Multi-modal Framework for Fake News Detection, in: Proceedings of the 5th IEEE International Conference on Multimedia Big Data, 2019, pp. 39–47. – start-page: 1 year: 2022 end-page: 14 ident: b31 article-title: Decision fusion networks for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2014 end-page: 14 ident: b33 article-title: Very deep convolutional networks for large-scale image recognition – volume: 41 start-page: 430 year: 2014 end-page: 454 ident: b3 article-title: When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism publication-title: Commun. Res. – reference: W. Zhang, L. Gui, Y. He, Supervised Contrastive Learning for Multimodal Unreliable News Detection in COVID-19 Pandemic, in: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, 2021, pp. 3637–3641. – reference: V.-H. Nguyen, K. Sugiyama, P. Nakov, M.-Y. Kan, FANG: Leveraging Social Context for Fake News Detection Using Graph Representation, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 1165–1174. – start-page: 8410 year: 2016 end-page: 8415 ident: b5 article-title: Pizzagate: From rumor, to hashtag, to gunfire in D.C. – reference: V. Qazvinian, E. Rosengren, D. Radev, Q. Mei, Rumor has it: Identifying Misinformation in Microblogs, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, pp. 1589–1599. – reference: Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1746–1751. – reference: Y.-J. Lu, C.-T. Li, GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 505–514. – year: 2015 ident: b32 article-title: Convolutional Neural Network for Sentence Classification – start-page: 1 year: 2022 end-page: 8 ident: b7 article-title: Reproduction numbers of SARS-CoV-2 Omicron subvariants publication-title: J. Travel Med. – reference: J. Ma, W. Gao, P. Mitra, et al., Detecting Rumors from Microblogs with Recurrent Neural Networks, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 3818–3824. – reference: J. Cao, P. Qi, Q. Sheng, et al., Exploring the Role of Visual Content in Fake News Detection, in: Disinformation, Misinformation, and Fake News in Social Media, 2020, pp. 141–161. – start-page: 1 year: 2020 end-page: 22 ident: b36 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 51 start-page: 1 year: 2018 end-page: 36 ident: b9 article-title: Detection and resolution of rumours in social media: A survey publication-title: ACM Comput. Surv. – reference: X. Zhou, J. Wu, R. Zafarani, SAFE: Similarity-Aware Multi-Modal Fake News Detection, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020, pp. 354–367. – start-page: 1 year: 2022 end-page: 14 ident: b23 article-title: A novel representation learning for dynamic graphs based on graph convolutional networks publication-title: IEEE Trans. Cybern. – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110125_b23 article-title: A novel representation learning for dynamic graphs based on graph convolutional networks publication-title: IEEE Trans. Cybern. – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2023.110125_b42 – ident: 10.1016/j.asoc.2023.110125_b12 doi: 10.1145/3292500.3332287 – ident: 10.1016/j.asoc.2023.110125_b21 – ident: 10.1016/j.asoc.2023.110125_b27 doi: 10.1109/BigMM.2019.00-44 – ident: 10.1016/j.asoc.2023.110125_b28 doi: 10.1145/3459637.3482196 – ident: 10.1016/j.asoc.2023.110125_b34 – volume: 9 start-page: 2079 issue: 11 year: 2008 ident: 10.1016/j.asoc.2023.110125_b43 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.asoc.2023.110125_b13 doi: 10.1145/1963405.1963500 – ident: 10.1016/j.asoc.2023.110125_b25 doi: 10.1145/3219819.3219903 – start-page: 8410 year: 2016 ident: 10.1016/j.asoc.2023.110125_b5 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2023.110125_b33 – ident: 10.1016/j.asoc.2023.110125_b22 doi: 10.1007/978-3-030-42699-6_8 – volume: 442 start-page: 12 issue: 1 year: 2023 ident: 10.1016/j.asoc.2023.110125_b1 article-title: Influence maximization through exploring structural information publication-title: Appl. Math. Comput. – volume: 3 start-page: 114 issue: 6 year: 2013 ident: 10.1016/j.asoc.2023.110125_b30 article-title: Decision tree analysis on j48 algorithm for data mining publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – ident: 10.1016/j.asoc.2023.110125_b26 doi: 10.1145/3308558.3313552 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110125_b31 article-title: Decision fusion networks for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2023.110125_b36 – ident: 10.1016/j.asoc.2023.110125_b19 doi: 10.24963/ijcai.2017/545 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2023.110125_b4 – ident: 10.1016/j.asoc.2023.110125_b29 doi: 10.1007/978-3-030-47436-2_27 – volume: 51 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.asoc.2023.110125_b9 article-title: Detection and resolution of rumours in social media: A survey publication-title: ACM Comput. Surv. doi: 10.1145/3161603 – volume: 47 start-page: 171 issue: 1 year: 2016 ident: 10.1016/j.asoc.2023.110125_b2 article-title: Network-based modeling for characterizing human collective behaviors during extreme events publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2608658 – ident: 10.1016/j.asoc.2023.110125_b37 doi: 10.1016/B978-0-444-63685-0.00014-0 – ident: 10.1016/j.asoc.2023.110125_b24 doi: 10.1145/3123266.3123454 – year: 2015 ident: 10.1016/j.asoc.2023.110125_b32 – ident: 10.1016/j.asoc.2023.110125_b38 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.asoc.2023.110125_b18 – ident: 10.1016/j.asoc.2023.110125_b39 doi: 10.1145/3340531.3412880 – ident: 10.1016/j.asoc.2023.110125_b16 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110125_b7 article-title: Reproduction numbers of SARS-CoV-2 Omicron subvariants publication-title: J. Travel Med. – ident: 10.1016/j.asoc.2023.110125_b14 – ident: 10.1016/j.asoc.2023.110125_b35 – ident: 10.1016/j.asoc.2023.110125_b41 doi: 10.18653/v1/D15-1280 – volume: 19 start-page: 22 issue: 1 year: 2017 ident: 10.1016/j.asoc.2023.110125_b11 article-title: Fake news detection on social media: A data mining perspective publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/3137597.3137600 – volume: 53 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.asoc.2023.110125_b10 article-title: The future of false information detection on social media: New perspectives and trends publication-title: ACM Comput. Surv. – volume: 41 start-page: 430 issue: 3 year: 2014 ident: 10.1016/j.asoc.2023.110125_b3 article-title: When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism publication-title: Commun. Res. doi: 10.1177/0093650212453600 – ident: 10.1016/j.asoc.2023.110125_b6 doi: 10.1145/3485447.3512184 – volume: 10 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.asoc.2023.110125_b15 article-title: Combating fake news: A survey on identification and mitigation techniques publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3305260 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2023.110125_b8 – ident: 10.1016/j.asoc.2023.110125_b40 doi: 10.3115/v1/D14-1181 – ident: 10.1016/j.asoc.2023.110125_b17 doi: 10.1007/978-3-030-04503-6_4 – ident: 10.1016/j.asoc.2023.110125_b20 doi: 10.1145/3340531.3412046 |
SSID | ssj0016928 |
Score | 2.594154 |
Snippet | During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110125 |
SubjectTerms | Contrastive learning Fake news detection Machine learning Multimodal framework |
Title | Multimodal fake news detection through data augmentation-based contrastive learning |
URI | https://dx.doi.org/10.1016/j.asoc.2023.110125 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbbJtNNpvkWIqlvopYC72FfaVUbVo0vfrb3Uk2RUF68BQSZiD5dndmNnyzH0JXkUx8HhtDPKFCwjLmE6GZIMIobRdI5kUCfg08DvlgzO4m4aSBenUvDNAqXeyvYnoZrd2TjkOzs5zNOiO784hZwmz-hjo_gGO3GYtglre_1jQPypNSXxWMCVi7xpmK4yUsAm0QEAc2PAW57L-S04-E099Hu65SxN3qZQ5Qw-SHaK9WYcBuUR6hUdlDO19oa5yJN4OhUMbaFCXJKsdOiQcDFxSL1XTuuo1yAhlM45KsLj4h7GGnITE9RuP-zUtvQJxUAlH26wsSqVBqHghPU22oMQHP_FBwzoQxMaPMDpSigYT9DYjtRJKqLFSeHRqqaBTr4ARt5YvcnCKcZEpycAVxXKmZ5AkXnpTSF3EmQtlEtMYoVe4ccZCzeE9rwthrCrimgGta4dpE12ufZXWKxkbrsIY-_TUXUhvmN_id_dPvHO3AXcUsu0BbxcfKXNpSo5Ctci610Ha39_zwBNfb-8HwGy0N1jo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN-KNBzZkGjeOk4wIgQp9LKVSt8ivoAJNKyj_H1_iIJBQB9bEJ1mf7btz8t19AJexSjsisZYGUkeU57xDpeGSSquNOyB5EEv8NDAYiu6YP06iSQNu61oYpFV631_59NJb-ydtj2Z7MZ22R-7mkfCUu_iNeX4o1qCF3amiJrRuHnrd4ffPBJGWEqs4nqKBr52paF7SgXCNGuJIiGeomP1XfPoRc-63YdMni-Smms8ONGyxC1u1EAPx53IPRmUZ7Wxu3OBcvlqCuTIxdlnyrArixXgI0kGJ_Hye-YKjgmIQM6Tkq8sP9HzEy0g878P4_u7ptku9WgLVDoAljXWkjAhlYJixzNpQ5J1ICsGltQln3K2VZqHCKw7q7cSK6TzSgVsdplmcmPAAmsW8sIdA0lwrgaaoj6sMVyIVMlBKdWSSy0gdAasxyrRvJY6KFm9ZzRl7yRDXDHHNKlyP4OrbZlE10lg5Oqqhz35th8x5-hV2x_-0u4D17tOgn_Ufhr0T2MA3FdHsFJrL90975jKPpTr3O-sL2K7XVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+fake+news+detection+through+data+augmentation-based+contrastive+learning&rft.jtitle=Applied+soft+computing&rft.au=Hua%2C+Jiaheng&rft.au=Cui%2C+Xiaodong&rft.au=Li%2C+Xianghua&rft.au=Tang%2C+Keke&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=136&rft_id=info:doi/10.1016%2Fj.asoc.2023.110125&rft.externalDocID=S1568494623001436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |