Multimodal fake news detection through data augmentation-based contrastive learning

During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or fabricated news can also spread unscrupulously, leading to serious consequences, such as poor decisions or even health risk. Thus, in order to discrim...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 136; p. 110125
Main Authors Hua, Jiaheng, Cui, Xiaodong, Li, Xianghua, Tang, Keke, Zhu, Peican
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or fabricated news can also spread unscrupulously, leading to serious consequences, such as poor decisions or even health risk. Thus, in order to discriminate the fake news, several fake news detection approaches have been proposed and the majority of these methods suffer from low efficacy of detection, due to the lack of multimodal information and the small data size. Hence, we develop a novel machine learning based framework, i.e., BERT-based back-Translation Text and Entire-image multimodal model with Contrastive learning (TTEC). In this framework, the text of news is first back-translated encouraging the framework to learn some general characteristics regarding a particular topic. Secondly, both textual and visual features are fed into a BERT-based model in order to produce multimodal features. Thirdly, the contrastive learning is utilized to derive more reasonable multimodal representations through utilizing similar news published in the past. Eventually, to demonstrate the effectiveness of the proposed framework, extensive experiments are conducted and the results show our method outperforms the state of art methods by 3.1% on Mac. F1 scores. •We present a new multimodal fake news detection framework with contrastive learning.•The combination of back-translation and contrastive learning is proved effective.•The specific effects of contrastive learning and different image forms are discussed.•Several SOTA models are compared and extensive experiments are conducted.
AbstractList During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or fabricated news can also spread unscrupulously, leading to serious consequences, such as poor decisions or even health risk. Thus, in order to discriminate the fake news, several fake news detection approaches have been proposed and the majority of these methods suffer from low efficacy of detection, due to the lack of multimodal information and the small data size. Hence, we develop a novel machine learning based framework, i.e., BERT-based back-Translation Text and Entire-image multimodal model with Contrastive learning (TTEC). In this framework, the text of news is first back-translated encouraging the framework to learn some general characteristics regarding a particular topic. Secondly, both textual and visual features are fed into a BERT-based model in order to produce multimodal features. Thirdly, the contrastive learning is utilized to derive more reasonable multimodal representations through utilizing similar news published in the past. Eventually, to demonstrate the effectiveness of the proposed framework, extensive experiments are conducted and the results show our method outperforms the state of art methods by 3.1% on Mac. F1 scores. •We present a new multimodal fake news detection framework with contrastive learning.•The combination of back-translation and contrastive learning is proved effective.•The specific effects of contrastive learning and different image forms are discussed.•Several SOTA models are compared and extensive experiments are conducted.
ArticleNumber 110125
Author Tang, Keke
Hua, Jiaheng
Cui, Xiaodong
Zhu, Peican
Li, Xianghua
Author_xml – sequence: 1
  givenname: Jiaheng
  surname: Hua
  fullname: Hua, Jiaheng
  organization: School of Computer Science, Northwestern Polytechnical University (NWPU), Xi’an 710072, China
– sequence: 2
  givenname: Xiaodong
  surname: Cui
  fullname: Cui, Xiaodong
  email: xiaodong.cui@nwpu.edu.cn
  organization: School of Marine Science and Technology, NWPU, Xi’an 710072, China
– sequence: 3
  givenname: Xianghua
  surname: Li
  fullname: Li, Xianghua
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), NWPU, Xi’an 710072, China
– sequence: 4
  givenname: Keke
  surname: Tang
  fullname: Tang, Keke
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
– sequence: 5
  givenname: Peican
  orcidid: 0000-0002-8389-1093
  surname: Zhu
  fullname: Zhu, Peican
  email: ericcan@nwpu.edu.cn
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), NWPU, Xi’an 710072, China
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyTYjuMkEhtU8ZKKWABry7EnrUtqI9st4u9JFFYsuprRXJ2R7lmgmfMOELqmJKeEiptdrqLXOSOsyOlwYeUZmtO6Ylkjajob9lLUGW-4uECLGHdkgBpWz9Hby6FPdu-N6nGnPgE7-I7YQAKdrHc4bYM_bLbYqKSwOmz24JIak6xVEQzW3qWgYrJHwD2o4KzbXKLzTvURrv7mEn083L-vnrL16-Pz6m6d6YKQlFW6bI0oFDHUAAUoRMdKJQRXADWnHLTWtGgJbxrBKl61VHelJh1nVNOqNsUSsemvDj7GAJ38Cnavwo-kRI5a5E6OWuSoRU5aBqj-B2k7NRp62P40ejuhMJQ6WggyagtOg7Fh0CWNt6fwXyWMgdg
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102160
crossref_primary_10_1007_s13278_023_01104_w
crossref_primary_10_1016_j_elerap_2025_101485
crossref_primary_10_1186_s40537_025_01093_x
crossref_primary_10_3390_electronics13152958
crossref_primary_10_3390_electronics14061113
crossref_primary_10_1007_s40747_024_01473_5
crossref_primary_10_1007_s00607_025_01413_2
crossref_primary_10_1007_s00521_024_10924_6
crossref_primary_10_1016_j_ins_2023_119446
crossref_primary_10_1007_s10844_023_00789_x
crossref_primary_10_1007_s40747_024_01413_3
crossref_primary_10_3389_fcomp_2024_1473457
crossref_primary_10_1016_j_health_2024_100340
crossref_primary_10_1109_ACCESS_2024_3406258
crossref_primary_10_1016_j_ipm_2025_104091
crossref_primary_10_3390_jmse12020264
crossref_primary_10_3390_app14209533
crossref_primary_10_3390_rs16132442
crossref_primary_10_1016_j_asoc_2025_112796
crossref_primary_10_1016_j_neucom_2025_129997
crossref_primary_10_1109_ACCESS_2024_3462151
crossref_primary_10_1177_1088467X251325354
crossref_primary_10_1016_j_nlp_2024_100073
crossref_primary_10_1109_TBDATA_2023_3325746
crossref_primary_10_1007_s10489_024_05460_8
crossref_primary_10_1007_s10489_024_05883_3
crossref_primary_10_1016_j_ins_2023_119897
crossref_primary_10_1177_10591478251319686
crossref_primary_10_1111_exsy_13665
crossref_primary_10_1007_s13278_024_01201_4
crossref_primary_10_1016_j_asoc_2025_112794
crossref_primary_10_1007_s11227_023_05531_6
crossref_primary_10_1016_j_asoc_2024_111553
crossref_primary_10_1109_ACCESS_2024_3369918
crossref_primary_10_5753_jisa_2025_5035
crossref_primary_10_1177_00368504241292685
crossref_primary_10_1016_j_ipm_2024_103807
crossref_primary_10_1016_j_aej_2024_08_103
crossref_primary_10_1016_j_eswa_2023_121588
crossref_primary_10_1007_s13369_024_09354_2
crossref_primary_10_1016_j_datak_2025_102441
crossref_primary_10_1007_s11042_023_16198_9
crossref_primary_10_1016_j_knosys_2023_111342
crossref_primary_10_3934_mbe_2023657
crossref_primary_10_1007_s13278_024_01376_w
Cites_doi 10.1145/3292500.3332287
10.1109/BigMM.2019.00-44
10.1145/3459637.3482196
10.1145/1963405.1963500
10.1145/3219819.3219903
10.1007/978-3-030-42699-6_8
10.1145/3308558.3313552
10.24963/ijcai.2017/545
10.1007/978-3-030-47436-2_27
10.1145/3161603
10.1109/TSMC.2016.2608658
10.1016/B978-0-444-63685-0.00014-0
10.1145/3123266.3123454
10.1109/CVPR.2016.90
10.1145/3340531.3412880
10.18653/v1/D15-1280
10.1145/3137597.3137600
10.1177/0093650212453600
10.1145/3485447.3512184
10.1145/3305260
10.3115/v1/D14-1181
10.1007/978-3-030-04503-6_4
10.1145/3340531.3412046
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110125
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110125
S1568494623001436
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-7c5bd63a0d1de1ee36f25a664aee8414eccc13b049962747b1cf5c0f421c178d3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:11:26 EDT 2025
Tue Jul 01 01:50:19 EDT 2025
Fri Feb 23 02:38:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fake news detection
Multimodal framework
Machine learning
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-7c5bd63a0d1de1ee36f25a664aee8414eccc13b049962747b1cf5c0f421c178d3
ORCID 0000-0002-8389-1093
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_110125
crossref_citationtrail_10_1016_j_asoc_2023_110125
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Liu (b2) 2016; 47
V. Pérez-Rosas, B. Kleinberg, A. Lefevre, R. Mihalcea, Automatic Detection of Fake News, in: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 3391–3401.
Z. Jin, J. Cao, H. Guo, et al., Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 795–816.
Zubiaga, Aker, Bontcheva (b9) 2018; 51
D. Khattar, J.S. Goud, M. Gupta, V. Varma, MVAE: Multimodal Variational Autoencoder for Fake News Detection, in: Proceedings of the 28th International Conference on World Wide Web, 2019, pp. 2915–2921.
Van der Maaten, Hinton (b43) 2008; 9
R. Zafarani, X. Zhou, K. Shu, H. Liu, Fake News Research: Theories, Detection Strategies, and Open Problems, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 3207–3208.
Simonyan, Zisserman (b33) 2014
K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Y. Wang, F. Ma, Z. Jin, et al., EANN: Event Adversarial Neural Networks for Multi-modal Fake News Detection, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 849–857.
Fisher, Cox, Hermann (b5) 2016
P. Liu, X. Qiu, X. Chen, S. Wu, X. Huang, Multi-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and Documents, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 2326–2335.
Wang, Zhang, Wang, Du, Gao (b7) 2022
F. Yu, Q. Liu, S. Wu, et al., A Convolutional Approach for Misinformation Identification, in: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 3901–3907.
Gao, Zhu, Zhang, Wang, Li (b23) 2022
J. Lu, D. Batra, D. Parikh, S. Lee, ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 13–23.
Z. Wang, D. Hou, C. Gao, J. Huang, Q. Xuan, A Rapid Source Localization Method in the Early Stage of Large-scale Network Propagation, in: Proceedings of the ACM Web Conference, 2022, pp. 1372–1380.
J. Cao, P. Qi, Q. Sheng, et al., Exploring the Role of Visual Content in Fake News Detection, in: Disinformation, Misinformation, and Fake News in Social Media, 2020, pp. 141–161.
T. Chen, X. Li, H. Yin, J. Zhang, Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection, in: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2018, pp. 40–52.
Kogan, Moskowitz, Niessner (b4) 2019
V.-H. Nguyen, K. Sugiyama, P. Nakov, M.-Y. Kan, FANG: Leveraging Social Context for Fake News Detection Using Graph Representation, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 1165–1174.
Y.-J. Lu, C.-T. Li, GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 505–514.
J. Ma, W. Gao, P. Mitra, et al., Detecting Rumors from Microblogs with Recurrent Neural Networks, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 3818–3824.
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b36) 2020
Kumar, Shah (b8) 2018
S. Singhal, R.R. Shah, T. Chakraborty, et al., SpotFake: A Multi-modal Framework for Fake News Detection, in: Proceedings of the 5th IEEE International Conference on Multimedia Big Data, 2019, pp. 39–47.
Li, Cheng, Wang, Li, Li, Zhu (b1) 2023; 442
Balmas (b3) 2014; 41
Shu, Sliva, Wang (b11) 2017; 19
M. Gentzkow, J.M. Shapiro, D.F. Stone, Media bias in the marketplace: Theory, in: Handbook of Media Economics, 2015, pp. 623–645.
Chen (b32) 2015
C. Castillo, M. Mendoza, B. Poblete, Information Credibility on Twitter, in: Proceedings of the 20th International Conference on World Wide Web, 2011, pp. 675–684.
Picard (b42) 2021
X. Zhou, A. Mulay, E. Ferrara, R. Zafarani, ReCOVery: A Multimodal Repository for COVID-19 News Credibility Research, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 3205–3212.
X. Zhou, J. Wu, R. Zafarani, SAFE: Similarity-Aware Multi-Modal Fake News Detection, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020, pp. 354–367.
Tang, Ma, Miao, Song, Gu, Tian, Wang (b31) 2022
Guo, Ding, Yao (b10) 2020; 53
Sharma, Qian, Jiang, Ruchansky, Zhang, Liu (b15) 2019; 10
J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171–4186.
W. Zhang, L. Gui, Y. He, Supervised Contrastive Learning for Multimodal Unreliable News Detection in COVID-19 Pandemic, in: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, 2021, pp. 3637–3641.
V. Qazvinian, E. Rosengren, D. Radev, Q. Mei, Rumor has it: Identifying Misinformation in Microblogs, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, pp. 1589–1599.
Bhargava, Sharma, Bhargava, Mathuria (b30) 2013; 3
Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1746–1751.
Chen (10.1016/j.asoc.2023.110125_b32) 2015
Sharma (10.1016/j.asoc.2023.110125_b15) 2019; 10
10.1016/j.asoc.2023.110125_b6
10.1016/j.asoc.2023.110125_b22
10.1016/j.asoc.2023.110125_b21
10.1016/j.asoc.2023.110125_b20
10.1016/j.asoc.2023.110125_b41
10.1016/j.asoc.2023.110125_b40
Balmas (10.1016/j.asoc.2023.110125_b3) 2014; 41
10.1016/j.asoc.2023.110125_b29
10.1016/j.asoc.2023.110125_b28
10.1016/j.asoc.2023.110125_b27
10.1016/j.asoc.2023.110125_b26
10.1016/j.asoc.2023.110125_b25
10.1016/j.asoc.2023.110125_b24
Simonyan (10.1016/j.asoc.2023.110125_b33) 2014
Fisher (10.1016/j.asoc.2023.110125_b5) 2016
Tang (10.1016/j.asoc.2023.110125_b31) 2022
Kumar (10.1016/j.asoc.2023.110125_b8) 2018
Zubiaga (10.1016/j.asoc.2023.110125_b9) 2018; 51
Bhargava (10.1016/j.asoc.2023.110125_b30) 2013; 3
Picard (10.1016/j.asoc.2023.110125_b42) 2021
Dosovitskiy (10.1016/j.asoc.2023.110125_b36) 2020
10.1016/j.asoc.2023.110125_b12
Gao (10.1016/j.asoc.2023.110125_b23) 2022
10.1016/j.asoc.2023.110125_b34
Wang (10.1016/j.asoc.2023.110125_b7) 2022
Guo (10.1016/j.asoc.2023.110125_b10) 2020; 53
Li (10.1016/j.asoc.2023.110125_b1) 2023; 442
Gao (10.1016/j.asoc.2023.110125_b2) 2016; 47
10.1016/j.asoc.2023.110125_b19
Kogan (10.1016/j.asoc.2023.110125_b4) 2019
10.1016/j.asoc.2023.110125_b18
10.1016/j.asoc.2023.110125_b17
10.1016/j.asoc.2023.110125_b39
Shu (10.1016/j.asoc.2023.110125_b11) 2017; 19
10.1016/j.asoc.2023.110125_b16
10.1016/j.asoc.2023.110125_b38
10.1016/j.asoc.2023.110125_b37
10.1016/j.asoc.2023.110125_b14
10.1016/j.asoc.2023.110125_b13
10.1016/j.asoc.2023.110125_b35
Van der Maaten (10.1016/j.asoc.2023.110125_b43) 2008; 9
References_xml – reference: Y. Wang, F. Ma, Z. Jin, et al., EANN: Event Adversarial Neural Networks for Multi-modal Fake News Detection, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 849–857.
– volume: 442
  start-page: 12
  year: 2023
  end-page: 21
  ident: b1
  article-title: Influence maximization through exploring structural information
  publication-title: Appl. Math. Comput.
– start-page: 1
  year: 2021
  end-page: 9
  ident: b42
  article-title: Torch. manual_seed (3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision
– reference: J. Lu, D. Batra, D. Parikh, S. Lee, ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 13–23.
– reference: M. Gentzkow, J.M. Shapiro, D.F. Stone, Media bias in the marketplace: Theory, in: Handbook of Media Economics, 2015, pp. 623–645.
– reference: Z. Wang, D. Hou, C. Gao, J. Huang, Q. Xuan, A Rapid Source Localization Method in the Early Stage of Large-scale Network Propagation, in: Proceedings of the ACM Web Conference, 2022, pp. 1372–1380.
– reference: R. Zafarani, X. Zhou, K. Shu, H. Liu, Fake News Research: Theories, Detection Strategies, and Open Problems, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 3207–3208.
– reference: T. Chen, X. Li, H. Yin, J. Zhang, Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection, in: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2018, pp. 40–52.
– reference: Z. Jin, J. Cao, H. Guo, et al., Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 795–816.
– reference: F. Yu, Q. Liu, S. Wu, et al., A Convolutional Approach for Misinformation Identification, in: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 3901–3907.
– start-page: 1
  year: 2018
  end-page: 35
  ident: b8
  article-title: False information on web and social media: A survey
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: P. Liu, X. Qiu, X. Chen, S. Wu, X. Huang, Multi-Timescale Long Short-Term Memory Neural Network for Modelling Sentences and Documents, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 2326–2335.
– volume: 47
  start-page: 171
  year: 2016
  end-page: 183
  ident: b2
  article-title: Network-based modeling for characterizing human collective behaviors during extreme events
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 3
  start-page: 114
  year: 2013
  end-page: 1119
  ident: b30
  article-title: Decision tree analysis on j48 algorithm for data mining
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– start-page: 1
  year: 2019
  end-page: 71
  ident: b4
  article-title: Fake news: Evidence from financial markets
– reference: C. Castillo, M. Mendoza, B. Poblete, Information Credibility on Twitter, in: Proceedings of the 20th International Conference on World Wide Web, 2011, pp. 675–684.
– reference: X. Zhou, A. Mulay, E. Ferrara, R. Zafarani, ReCOVery: A Multimodal Repository for COVID-19 News Credibility Research, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 3205–3212.
– volume: 19
  start-page: 22
  year: 2017
  end-page: 36
  ident: b11
  article-title: Fake news detection on social media: A data mining perspective
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 9
  start-page: 2079
  year: 2008
  end-page: 2605
  ident: b43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 42
  ident: b15
  article-title: Combating fake news: A survey on identification and mitigation techniques
  publication-title: ACM Trans. Intell. Syst. Technol.
– reference: D. Khattar, J.S. Goud, M. Gupta, V. Varma, MVAE: Multimodal Variational Autoencoder for Fake News Detection, in: Proceedings of the 28th International Conference on World Wide Web, 2019, pp. 2915–2921.
– reference: J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171–4186.
– volume: 53
  start-page: 1
  year: 2020
  end-page: 36
  ident: b10
  article-title: The future of false information detection on social media: New perspectives and trends
  publication-title: ACM Comput. Surv.
– reference: V. Pérez-Rosas, B. Kleinberg, A. Lefevre, R. Mihalcea, Automatic Detection of Fake News, in: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 3391–3401.
– reference: S. Singhal, R.R. Shah, T. Chakraborty, et al., SpotFake: A Multi-modal Framework for Fake News Detection, in: Proceedings of the 5th IEEE International Conference on Multimedia Big Data, 2019, pp. 39–47.
– start-page: 1
  year: 2022
  end-page: 14
  ident: b31
  article-title: Decision fusion networks for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2014
  end-page: 14
  ident: b33
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 41
  start-page: 430
  year: 2014
  end-page: 454
  ident: b3
  article-title: When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism
  publication-title: Commun. Res.
– reference: W. Zhang, L. Gui, Y. He, Supervised Contrastive Learning for Multimodal Unreliable News Detection in COVID-19 Pandemic, in: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, 2021, pp. 3637–3641.
– reference: V.-H. Nguyen, K. Sugiyama, P. Nakov, M.-Y. Kan, FANG: Leveraging Social Context for Fake News Detection Using Graph Representation, in: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 2020, pp. 1165–1174.
– start-page: 8410
  year: 2016
  end-page: 8415
  ident: b5
  article-title: Pizzagate: From rumor, to hashtag, to gunfire in D.C.
– reference: V. Qazvinian, E. Rosengren, D. Radev, Q. Mei, Rumor has it: Identifying Misinformation in Microblogs, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, pp. 1589–1599.
– reference: Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1746–1751.
– reference: Y.-J. Lu, C.-T. Li, GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 505–514.
– year: 2015
  ident: b32
  article-title: Convolutional Neural Network for Sentence Classification
– start-page: 1
  year: 2022
  end-page: 8
  ident: b7
  article-title: Reproduction numbers of SARS-CoV-2 Omicron subvariants
  publication-title: J. Travel Med.
– reference: J. Ma, W. Gao, P. Mitra, et al., Detecting Rumors from Microblogs with Recurrent Neural Networks, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 3818–3824.
– reference: J. Cao, P. Qi, Q. Sheng, et al., Exploring the Role of Visual Content in Fake News Detection, in: Disinformation, Misinformation, and Fake News in Social Media, 2020, pp. 141–161.
– start-page: 1
  year: 2020
  end-page: 22
  ident: b36
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b9
  article-title: Detection and resolution of rumours in social media: A survey
  publication-title: ACM Comput. Surv.
– reference: X. Zhou, J. Wu, R. Zafarani, SAFE: Similarity-Aware Multi-Modal Fake News Detection, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020, pp. 354–367.
– start-page: 1
  year: 2022
  end-page: 14
  ident: b23
  article-title: A novel representation learning for dynamic graphs based on graph convolutional networks
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110125_b23
  article-title: A novel representation learning for dynamic graphs based on graph convolutional networks
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110125_b42
– ident: 10.1016/j.asoc.2023.110125_b12
  doi: 10.1145/3292500.3332287
– ident: 10.1016/j.asoc.2023.110125_b21
– ident: 10.1016/j.asoc.2023.110125_b27
  doi: 10.1109/BigMM.2019.00-44
– ident: 10.1016/j.asoc.2023.110125_b28
  doi: 10.1145/3459637.3482196
– ident: 10.1016/j.asoc.2023.110125_b34
– volume: 9
  start-page: 2079
  issue: 11
  year: 2008
  ident: 10.1016/j.asoc.2023.110125_b43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.asoc.2023.110125_b13
  doi: 10.1145/1963405.1963500
– ident: 10.1016/j.asoc.2023.110125_b25
  doi: 10.1145/3219819.3219903
– start-page: 8410
  year: 2016
  ident: 10.1016/j.asoc.2023.110125_b5
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2023.110125_b33
– ident: 10.1016/j.asoc.2023.110125_b22
  doi: 10.1007/978-3-030-42699-6_8
– volume: 442
  start-page: 12
  issue: 1
  year: 2023
  ident: 10.1016/j.asoc.2023.110125_b1
  article-title: Influence maximization through exploring structural information
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 114
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2023.110125_b30
  article-title: Decision tree analysis on j48 algorithm for data mining
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– ident: 10.1016/j.asoc.2023.110125_b26
  doi: 10.1145/3308558.3313552
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110125_b31
  article-title: Decision fusion networks for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110125_b36
– ident: 10.1016/j.asoc.2023.110125_b19
  doi: 10.24963/ijcai.2017/545
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110125_b4
– ident: 10.1016/j.asoc.2023.110125_b29
  doi: 10.1007/978-3-030-47436-2_27
– volume: 51
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2023.110125_b9
  article-title: Detection and resolution of rumours in social media: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3161603
– volume: 47
  start-page: 171
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110125_b2
  article-title: Network-based modeling for characterizing human collective behaviors during extreme events
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2608658
– ident: 10.1016/j.asoc.2023.110125_b37
  doi: 10.1016/B978-0-444-63685-0.00014-0
– ident: 10.1016/j.asoc.2023.110125_b24
  doi: 10.1145/3123266.3123454
– year: 2015
  ident: 10.1016/j.asoc.2023.110125_b32
– ident: 10.1016/j.asoc.2023.110125_b38
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.asoc.2023.110125_b18
– ident: 10.1016/j.asoc.2023.110125_b39
  doi: 10.1145/3340531.3412880
– ident: 10.1016/j.asoc.2023.110125_b16
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110125_b7
  article-title: Reproduction numbers of SARS-CoV-2 Omicron subvariants
  publication-title: J. Travel Med.
– ident: 10.1016/j.asoc.2023.110125_b14
– ident: 10.1016/j.asoc.2023.110125_b35
– ident: 10.1016/j.asoc.2023.110125_b41
  doi: 10.18653/v1/D15-1280
– volume: 19
  start-page: 22
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2023.110125_b11
  article-title: Fake news detection on social media: A data mining perspective
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/3137597.3137600
– volume: 53
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2023.110125_b10
  article-title: The future of false information detection on social media: New perspectives and trends
  publication-title: ACM Comput. Surv.
– volume: 41
  start-page: 430
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2023.110125_b3
  article-title: When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism
  publication-title: Commun. Res.
  doi: 10.1177/0093650212453600
– ident: 10.1016/j.asoc.2023.110125_b6
  doi: 10.1145/3485447.3512184
– volume: 10
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2023.110125_b15
  article-title: Combating fake news: A survey on identification and mitigation techniques
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3305260
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110125_b8
– ident: 10.1016/j.asoc.2023.110125_b40
  doi: 10.3115/v1/D14-1181
– ident: 10.1016/j.asoc.2023.110125_b17
  doi: 10.1007/978-3-030-04503-6_4
– ident: 10.1016/j.asoc.2023.110125_b20
  doi: 10.1145/3340531.3412046
SSID ssj0016928
Score 2.594154
Snippet During the information exploding era, news can be created or edited purposely for promoting the spreading of social influence. However, unverified or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110125
SubjectTerms Contrastive learning
Fake news detection
Machine learning
Multimodal framework
Title Multimodal fake news detection through data augmentation-based contrastive learning
URI https://dx.doi.org/10.1016/j.asoc.2023.110125
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbbJtNNpvkWIqlvopYC72FfaVUbVo0vfrb3Uk2RUF68BQSZiD5dndmNnyzH0JXkUx8HhtDPKFCwjLmE6GZIMIobRdI5kUCfg08DvlgzO4m4aSBenUvDNAqXeyvYnoZrd2TjkOzs5zNOiO784hZwmz-hjo_gGO3GYtglre_1jQPypNSXxWMCVi7xpmK4yUsAm0QEAc2PAW57L-S04-E099Hu65SxN3qZQ5Qw-SHaK9WYcBuUR6hUdlDO19oa5yJN4OhUMbaFCXJKsdOiQcDFxSL1XTuuo1yAhlM45KsLj4h7GGnITE9RuP-zUtvQJxUAlH26wsSqVBqHghPU22oMQHP_FBwzoQxMaPMDpSigYT9DYjtRJKqLFSeHRqqaBTr4ARt5YvcnCKcZEpycAVxXKmZ5AkXnpTSF3EmQtlEtMYoVe4ccZCzeE9rwthrCrimgGta4dpE12ufZXWKxkbrsIY-_TUXUhvmN_id_dPvHO3AXcUsu0BbxcfKXNpSo5Ctci610Ha39_zwBNfb-8HwGy0N1jo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN-KNBzZkGjeOk4wIgQp9LKVSt8ivoAJNKyj_H1_iIJBQB9bEJ1mf7btz8t19AJexSjsisZYGUkeU57xDpeGSSquNOyB5EEv8NDAYiu6YP06iSQNu61oYpFV631_59NJb-ydtj2Z7MZ22R-7mkfCUu_iNeX4o1qCF3amiJrRuHnrd4ffPBJGWEqs4nqKBr52paF7SgXCNGuJIiGeomP1XfPoRc-63YdMni-Smms8ONGyxC1u1EAPx53IPRmUZ7Wxu3OBcvlqCuTIxdlnyrArixXgI0kGJ_Hye-YKjgmIQM6Tkq8sP9HzEy0g878P4_u7ptku9WgLVDoAljXWkjAhlYJixzNpQ5J1ICsGltQln3K2VZqHCKw7q7cSK6TzSgVsdplmcmPAAmsW8sIdA0lwrgaaoj6sMVyIVMlBKdWSSy0gdAasxyrRvJY6KFm9ZzRl7yRDXDHHNKlyP4OrbZlE10lg5Oqqhz35th8x5-hV2x_-0u4D17tOgn_Ufhr0T2MA3FdHsFJrL90975jKPpTr3O-sL2K7XVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+fake+news+detection+through+data+augmentation-based+contrastive+learning&rft.jtitle=Applied+soft+computing&rft.au=Hua%2C+Jiaheng&rft.au=Cui%2C+Xiaodong&rft.au=Li%2C+Xianghua&rft.au=Tang%2C+Keke&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=136&rft_id=info:doi/10.1016%2Fj.asoc.2023.110125&rft.externalDocID=S1568494623001436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon