Deep learning for financial applications : A survey
Computational intelligence in finance has been a very popular topic for both academia and financial industry in the last few decades. Numerous studies have been published resulting in various models. Meanwhile, within the Machine Learning (ML) field, Deep Learning (DL) started getting a lot of atten...
Saved in:
Published in | Applied soft computing Vol. 93; p. 106384 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computational intelligence in finance has been a very popular topic for both academia and financial industry in the last few decades. Numerous studies have been published resulting in various models. Meanwhile, within the Machine Learning (ML) field, Deep Learning (DL) started getting a lot of attention recently, mostly due to its outperformance over the classical models. Lots of different implementations of DL exist today, and the broad interest is continuing. Finance is one particular area where DL models started getting traction, however, the playfield is wide open, a lot of research opportunities still exist. In this paper, we tried to provide a state-of-the-art snapshot of the developed DL models for financial applications. We not only categorized the works according to their intended subfield in finance but also analyzed them based on their DL models. In addition, we also aimed at identifying possible future implementations and highlighted the pathway for the ongoing research within the field.
•All searchable articles of deep learning (DL) for financial applications are reviewed.•DL for finance studies based on their application areas were clustered.•DL models according to their performances in different implementation areas were compared.•To best of our knowledge, this is the first comprehensive DL survey for financial applications.•Current status of DL in finance was provided, also the future opportunities were highlighted. |
---|---|
AbstractList | Computational intelligence in finance has been a very popular topic for both academia and financial industry in the last few decades. Numerous studies have been published resulting in various models. Meanwhile, within the Machine Learning (ML) field, Deep Learning (DL) started getting a lot of attention recently, mostly due to its outperformance over the classical models. Lots of different implementations of DL exist today, and the broad interest is continuing. Finance is one particular area where DL models started getting traction, however, the playfield is wide open, a lot of research opportunities still exist. In this paper, we tried to provide a state-of-the-art snapshot of the developed DL models for financial applications. We not only categorized the works according to their intended subfield in finance but also analyzed them based on their DL models. In addition, we also aimed at identifying possible future implementations and highlighted the pathway for the ongoing research within the field.
•All searchable articles of deep learning (DL) for financial applications are reviewed.•DL for finance studies based on their application areas were clustered.•DL models according to their performances in different implementation areas were compared.•To best of our knowledge, this is the first comprehensive DL survey for financial applications.•Current status of DL in finance was provided, also the future opportunities were highlighted. |
ArticleNumber | 106384 |
Author | Gudelek, Mehmet Ugur Sezer, Omer Berat Ozbayoglu, Ahmet Murat |
Author_xml | – sequence: 1 givenname: Ahmet Murat orcidid: 0000-0003-3576-1582 surname: Ozbayoglu fullname: Ozbayoglu, Ahmet Murat email: mozbayoglu@etu.edu.tr – sequence: 2 givenname: Mehmet Ugur surname: Gudelek fullname: Gudelek, Mehmet Ugur – sequence: 3 givenname: Omer Berat surname: Sezer fullname: Sezer, Omer Berat |
BookMark | eNp9z0FLwzAUwPEgE9ymX8BTvkBn0qZNKl7GdCoMvOg5vCYvklHTktTBvr2t8-RhpzwCv8f7L8gsdAEJueVsxRmv7vYrSJ1Z5SyfPqpCiQsy50rmWV0pPhvnslKZqEV1RRYp7dmI6lzNSfGI2NMWIQYfPqnrInU-QDAeWgp933oDg-9Covd0TdN3PODxmlw6aBPe_L1L8rF9et-8ZLu359fNepeZgrEhk2BV3jjgjeOFE8aUNTAn66Jk0iqJjSxFU1jJGw6mAikYohElsyhyKwQUS6JOe03sUorotPHD7zVDBN9qzvQUr_d6itdTvD7FjzT_R_vovyAez6OHE8Ix6uAx6mQ8BoPWRzSDtp0_x38A6c11BQ |
CitedBy_id | crossref_primary_10_18267_j_ocenovani_270 crossref_primary_10_1016_j_irfa_2023_102914 crossref_primary_10_1016_j_scs_2021_102830 crossref_primary_10_1007_s10614_024_10636_y crossref_primary_10_1007_s11280_021_01003_0 crossref_primary_10_1016_j_eswa_2024_124948 crossref_primary_10_1007_s10479_022_04780_7 crossref_primary_10_1142_S0219477524400066 crossref_primary_10_1007_s10614_020_10063_9 crossref_primary_10_1016_j_neucom_2024_127734 crossref_primary_10_1007_s00521_023_08914_1 crossref_primary_10_1007_s10462_022_10226_0 crossref_primary_10_1016_j_ecoinf_2021_101397 crossref_primary_10_2478_amns_2024_2983 crossref_primary_10_3934_DSFE_2021019 crossref_primary_10_1080_01605682_2024_2438333 crossref_primary_10_1016_j_ins_2022_11_136 crossref_primary_10_1111_exsy_13667 crossref_primary_10_1111_eufm_12408 crossref_primary_10_1016_j_eswa_2023_119640 crossref_primary_10_7717_peerj_cs_1700 crossref_primary_10_33399_biibfad_1391666 crossref_primary_10_1016_j_compchemeng_2024_108900 crossref_primary_10_1145_3582560 crossref_primary_10_1145_3704728 crossref_primary_10_1016_j_asoc_2021_107248 crossref_primary_10_3390_electronics11193181 crossref_primary_10_1016_j_patcog_2023_109920 crossref_primary_10_1007_s10489_021_02979_y crossref_primary_10_5937_JEMC2401033D crossref_primary_10_1016_j_procs_2025_02_269 crossref_primary_10_1016_j_future_2021_06_047 crossref_primary_10_1016_j_asoc_2021_107495 crossref_primary_10_1007_s11042_022_14043_z crossref_primary_10_1002_aisy_202400898 crossref_primary_10_1016_j_eswa_2023_121012 crossref_primary_10_1155_2021_2446543 crossref_primary_10_1016_j_heliyon_2023_e19431 crossref_primary_10_1016_j_eswa_2022_119440 crossref_primary_10_1016_j_eswa_2022_116970 crossref_primary_10_1111_exsy_13563 crossref_primary_10_1108_REGE_05_2022_0079 crossref_primary_10_2139_ssrn_4781472 crossref_primary_10_4018_JOEUC_354411 crossref_primary_10_4018_IRMJ_358747 crossref_primary_10_3389_frai_2024_1371502 crossref_primary_10_1155_2021_4824613 crossref_primary_10_1016_j_jhazmat_2022_128732 crossref_primary_10_4018_JOEUC_355709 crossref_primary_10_1016_j_techfore_2024_123746 crossref_primary_10_3390_app14072984 crossref_primary_10_1016_j_rsase_2024_101351 crossref_primary_10_1002_mp_15936 crossref_primary_10_1016_j_ribaf_2023_101912 crossref_primary_10_12720_jait_15_6_723_734 crossref_primary_10_7717_peerj_cs_1076 crossref_primary_10_1016_j_ijforecast_2025_02_007 crossref_primary_10_1016_j_jjimei_2021_100012 crossref_primary_10_1145_3704807 crossref_primary_10_1145_3680470 crossref_primary_10_1016_j_jjimei_2022_100094 crossref_primary_10_1007_s41060_021_00278_w crossref_primary_10_3390_math9080800 crossref_primary_10_3390_s24103166 crossref_primary_10_1007_s13748_020_00225_z crossref_primary_10_1016_j_asoc_2023_111213 crossref_primary_10_1016_j_asoc_2024_111557 crossref_primary_10_1002_for_3149 crossref_primary_10_1016_j_asoc_2023_110802 crossref_primary_10_1007_s10479_022_04692_6 crossref_primary_10_1142_S2424786322500141 crossref_primary_10_1016_j_cose_2022_102791 crossref_primary_10_1155_2022_5904707 crossref_primary_10_1155_2021_5511396 crossref_primary_10_1109_TNNLS_2023_3293131 crossref_primary_10_3390_e22111203 crossref_primary_10_1016_j_physa_2020_125728 crossref_primary_10_3390_a15110428 crossref_primary_10_1016_j_aei_2023_102139 crossref_primary_10_1016_j_eswa_2022_119259 crossref_primary_10_1007_s10462_024_11066_w crossref_primary_10_1016_j_asoc_2023_111224 crossref_primary_10_1016_j_eswa_2023_122027 crossref_primary_10_6339_25_JDS1165 crossref_primary_10_1007_s10614_023_10403_5 crossref_primary_10_1016_j_irfa_2024_103474 crossref_primary_10_1016_j_eswa_2024_125299 crossref_primary_10_1016_j_bir_2024_01_011 crossref_primary_10_1109_ACCESS_2022_3204752 crossref_primary_10_17714_gumusfenbil_707088 crossref_primary_10_1016_j_asoc_2021_107977 crossref_primary_10_1007_s00521_024_10418_5 crossref_primary_10_31590_ejosat_1083255 crossref_primary_10_1007_s10614_024_10567_8 crossref_primary_10_3390_systems11090470 crossref_primary_10_1145_3711118 crossref_primary_10_1016_j_jma_2024_05_019 crossref_primary_10_1631_FITEE_2200039 crossref_primary_10_54187_jnrs_979836 crossref_primary_10_2139_ssrn_4199363 crossref_primary_10_1016_j_oceaneng_2024_116796 crossref_primary_10_1109_ACCESS_2022_3160797 crossref_primary_10_35741_issn_0258_2724_59_2_14 crossref_primary_10_1007_s10614_022_10283_1 crossref_primary_10_36548_jaicn_2021_2_003 crossref_primary_10_1016_j_asoc_2023_111132 crossref_primary_10_1016_j_eswa_2022_117335 crossref_primary_10_1007_s00500_023_08973_5 crossref_primary_10_4018_JOEUC_350224 crossref_primary_10_1016_j_compeleceng_2024_109510 crossref_primary_10_1007_s11063_022_11087_y crossref_primary_10_1145_3627820 crossref_primary_10_1007_s10614_024_10629_x crossref_primary_10_1111_eufm_12365 crossref_primary_10_2139_ssrn_3890556 crossref_primary_10_1186_s40854_024_00681_9 crossref_primary_10_3390_math10193632 crossref_primary_10_1109_ACCESS_2021_3134076 crossref_primary_10_3390_agriculture13112044 crossref_primary_10_1016_j_eswa_2023_121204 crossref_primary_10_1186_s40854_024_00629_z crossref_primary_10_1016_j_bir_2023_12_010 crossref_primary_10_1007_s00477_022_02378_w crossref_primary_10_1109_MGRS_2024_3379108 crossref_primary_10_1007_s11227_024_06485_z crossref_primary_10_1109_TSE_2024_3385378 crossref_primary_10_3934_QFE_2021032 crossref_primary_10_1016_j_inffus_2025_103102 crossref_primary_10_1016_j_mlwa_2021_100060 crossref_primary_10_1109_ACCESS_2023_3333389 crossref_primary_10_2139_ssrn_3834385 crossref_primary_10_3390_jrfm17070295 crossref_primary_10_1007_s10614_020_10070_w crossref_primary_10_37394_23203_2023_18_2 crossref_primary_10_1371_journal_pone_0252404 crossref_primary_10_1016_j_eswa_2022_118645 crossref_primary_10_1080_09540091_2024_2306970 crossref_primary_10_1109_ACCESS_2024_3462295 crossref_primary_10_1155_2022_8052957 crossref_primary_10_1111_mafi_12413 crossref_primary_10_1016_j_inffus_2024_102606 crossref_primary_10_3390_appliedmath3030027 crossref_primary_10_1007_s10489_022_03321_w crossref_primary_10_1002_isaf_1532 crossref_primary_10_1007_s10479_024_05929_2 crossref_primary_10_1080_03081079_2023_2294132 crossref_primary_10_1108_JAL_07_2023_0119 crossref_primary_10_2139_ssrn_3915224 crossref_primary_10_1007_s00500_023_08296_5 crossref_primary_10_3390_su151813725 crossref_primary_10_1002_cpe_7637 crossref_primary_10_1007_s11071_025_10916_8 crossref_primary_10_1016_j_asoc_2020_106898 crossref_primary_10_3390_jrfm16030201 crossref_primary_10_1007_s11633_022_1407_3 crossref_primary_10_1007_s10614_022_10281_3 crossref_primary_10_1145_3502289 crossref_primary_10_1016_j_eswa_2023_119836 crossref_primary_10_15869_itobiad_1329889 crossref_primary_10_1007_s44163_022_00046_0 crossref_primary_10_3390_make6020035 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_1371_journal_pone_0282234 crossref_primary_10_3390_info15020077 crossref_primary_10_1016_j_procs_2022_11_242 crossref_primary_10_1016_j_mlwa_2022_100310 crossref_primary_10_1007_s10479_022_04857_3 crossref_primary_10_1016_j_engappai_2022_105466 crossref_primary_10_3233_IDT_230478 crossref_primary_10_1109_TPAMI_2022_3224754 crossref_primary_10_1007_s40745_021_00344_x crossref_primary_10_1016_j_frl_2024_105718 crossref_primary_10_12677_CSA_2023_133033 crossref_primary_10_1007_s10614_024_10668_4 crossref_primary_10_1080_08839514_2022_2111134 crossref_primary_10_3390_math10142537 crossref_primary_10_3390_ijfs11020057 crossref_primary_10_3390_ai5040101 crossref_primary_10_1007_s11633_023_1425_9 crossref_primary_10_1016_j_heliyon_2024_e37571 crossref_primary_10_1007_s00466_021_02069_3 crossref_primary_10_1007_s10614_024_10760_9 crossref_primary_10_1155_2021_6503029 crossref_primary_10_1007_s42521_021_00046_2 crossref_primary_10_29130_dubited_1096767 crossref_primary_10_32604_cmc_2023_033162 crossref_primary_10_7717_peerj_cs_2661 crossref_primary_10_1016_j_ins_2020_12_068 crossref_primary_10_1007_s10462_024_10715_4 crossref_primary_10_3390_math10203888 crossref_primary_10_3390_app142310776 crossref_primary_10_3390_risks10040084 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_1016_j_asoc_2025_112771 crossref_primary_10_1109_ACCESS_2024_3358452 crossref_primary_10_1016_j_knosys_2021_106935 crossref_primary_10_1109_ACCESS_2022_3184453 crossref_primary_10_1016_j_asoc_2021_107101 crossref_primary_10_3390_math10142437 crossref_primary_10_1016_j_compag_2025_109922 crossref_primary_10_1016_j_sasc_2024_200117 |
Cites_doi | 10.1016/j.asoc.2018.04.049 10.1016/j.future.2017.09.077 10.1016/j.eswa.2018.01.039 10.2139/ssrn.2756331 10.1371/journal.pone.0180944 10.1016/j.asoc.2015.07.008 10.2139/ssrn.3002814 10.1007/s00500-009-0490-5 10.1145/2512962 10.1016/j.dss.2018.06.002 10.1016/S1574-0021(05)02024-1 10.2139/ssrn.2838013 10.1016/j.dss.2017.11.001 10.1002/asmb.2228 10.3844/jcssp.2013.1252.1259 10.1016/j.knosys.2017.09.023 10.1016/j.knosys.2017.12.025 10.1038/nature14539 10.1016/j.procs.2018.07.288 10.1016/j.ejor.2006.08.043 10.1111/1475-679X.12123 10.1016/j.sbspro.2013.12.962 10.2139/ssrn.3228485 10.1016/j.ejor.2009.08.003 10.1109/TEVC.2012.2196800 10.1007/978-3-319-13560-1_60 10.1016/j.neucom.2018.02.095 10.1016/j.eswa.2012.04.053 10.1016/j.elerap.2018.02.006 10.1016/j.knosys.2013.12.006 10.1007/BF02551274 10.1016/j.eswa.2006.02.016 10.1016/j.eswa.2018.06.032 10.1016/j.eswa.2018.02.029 10.1007/978-981-10-6463-0_31 10.1016/j.eswa.2018.09.036 10.1016/j.cose.2015.09.005 10.1109/TNNLS.2016.2522401 10.1016/j.eswa.2014.06.009 10.1109/TSMCC.2004.829279 10.1016/j.neucom.2016.12.110 10.1007/s10462-015-9434-x 10.1016/S0378-7206(98)00050-0 10.1016/j.engappai.2016.12.002 10.1016/j.dss.2010.08.006 10.1186/s40537-017-0111-6 10.1016/j.datak.2018.08.003 10.1016/j.patrec.2017.08.024 10.1587/transinf.2016IIP0016 10.1109/72.935096 10.1007/s10489-007-0051-5 10.1016/j.procs.2018.05.111 10.1257/jep.31.2.87 10.1016/j.eswa.2015.06.001 10.1109/TII.2018.2811377 10.3390/su9060899 10.1016/j.knosys.2016.10.003 10.1016/j.irfa.2014.02.006 10.1007/s11227-018-2577-1 10.1016/j.dss.2017.10.001 10.1016/j.ejor.2017.11.054 10.1016/j.asoc.2007.02.001 10.1016/j.asoc.2018.04.024 10.4236/jmf.2018.81005 10.1162/neco.2006.18.7.1527 10.1109/TSMCC.2011.2170420 10.1007/978-3-319-60438-1_69 10.1016/j.asoc.2020.106181 10.1515/jisys-2017-0567 10.2139/ssrn.3141294 10.18201/ijisae.2017SpecialIssue31421 10.1016/j.jnca.2017.10.011 10.1016/j.eswa.2018.01.037 10.1007/s00521-010-0362-z 10.1162/neco.1997.9.8.1735 10.2139/ssrn.2799443 10.1109/72.728395 10.1016/j.ejor.2016.10.031 10.1016/j.procs.2017.09.031 10.1057/jors.2012.145 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106384 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106384 S1568494620303240 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-7ad82bfa1bf13f4cc59a0f793507d87eb754b3d71b1ac6a740eec450de42d44a3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:06 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Thu Jun 13 14:30:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Algorithmic trading Finance Financial applications Risk assessment Machine learning Portfolio management Fraud detection Computational intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-7ad82bfa1bf13f4cc59a0f793507d87eb754b3d71b1ac6a740eec450de42d44a3 |
ORCID | 0000-0003-3576-1582 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106384 crossref_primary_10_1016_j_asoc_2020_106384 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Prosky, Song, Tan, Zhao (b156) 2017 Ding, Zhang, Liu, Duan (b169) 2015 Niimi (b83) 2015 Jeong, Kim (b47) 2019; 117 Shi, Teng, Wang, Zhang, Binder (b151) 2018 Sokolov (b197) 2017; 33 Dixon, Klabjan, Bang (b199) 2015 Tran, Magris, Kanniainen, Gabbouj, Iosifidis (b37) 2017 Kumar, Ravi (b162) 2016; 114 McNally, Roche, Caton (b148) 2018 Pulakkazhy (b5) 2013; 9 Yeh, Wang, Tsai (b91) 2015 Li (b160) 2011; 29 Feng, Polson, Xu (b144) 2018 Kirkos, Spathis, Manolopoulos (b107) 2007; 32 Gai, Qiu, Sun (b7) 2018; 103 Takeuchi (b127) 2013 Zhu, Yang, Wang, Yuan (b82) 2018 Doering, Fairbank, Markose (b64) 2017 Lee, Yoo (b136) 2018 Lee, Soo (b177) 2017 Dixon (b69) 2017 Chen, Chen, Huang (b67) 2018 Nair, Hinton (b24) 2010 Fischer, Krauss (b39) 2018; 270 Chen, Wu, Tindall (b139) 2016 Kvamme, Sellereite, Aas, Sjursen (b94) 2018; 102 Aggarwal, Aggarwal (b130) 2017; 162 de Souza Costa, Silva (b123) 2016 Li, Hoi (b125) 2014; 46 Culkin, Das (b142) 2017 Karaoglu, Arpaci (b33) 2017; SpecialIssue Han, Hao, Huang (b166) 2018; 28 and (b95) 2017; 1 Ronnqvist, Sarlin (b87) 2017; 264 Kraus, Feuerriegel (b167) 2017; 104 Das, Behera, Kumar, Rath (b155) 2018; 132 Liu, Zeng, Yang, Carrio (b182) 2018 Matsubara, Akita, Uehara (b183) 2018; E101.D Hosaka (b92) 2018 Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b55) 2017 Mittermayer, F. Knolmayer (b163) 2006 Ramachandran, Zoph, Le (b26) 2017 Qiu, Zhang, Ren, Suganthan, Amaratunga (b29) 2014 Neagoe, Ciotec, Cucu (b81) 2018 Liang, Chen, Zhu, Jiang, Li (b138) 2018 Krauss, Do, Huck (b48) 2017; 259 Gomes, Carvalho, Carvalho (b120) 2017 Heryadi, Warnars (b114) 2017 Jiang, Xu, Liang (b65) 2017 Zhongsheng (b154) 2018 (b12) 2002 Zhang, Zhou (b3) 2004; 34 Kim, Lee, Jo, Cho (b201) 2015 Peng, Jiang (b152) 2016 E., Yang, Zhang, Xiang (b188) 2018 Paula, Ladeira, Carvalho, Marzagao (b119) 2016 Zhang, Zhang, Wang, Yao, Fang, Yu (b173) 2018; 143 Kovalerchuk, Vityaev (b8) 2000 Nascimento, Cristo (b184) 2015 Chang, Zhang, Teng, Bozanic, Ke (b186) 2016 Bao, Yue, Rao (b34) 2017; 12 Moore, Rayson (b194) 2017 Loughran, McDonald (b161) 2016; 54 Marques, García, Sánchez (b102) 2013; 64 Korczak, Hernes (b45) 2017 Li, Cao, Pan (b176) 2018 Mitra, Mitra (b159) 2012 Gunduz, Yaslan, Cataltepe (b60) 2017; 137 Elmsili, Outtaj (b18) 2018 Day, Lee (b72) 2016 Li, Bu, Wu (b157) 2017 Tino, Schittenkopf, Dorffner (b66) 2001; 12 Goodfellow, Bengio, Courville (b27) 2016 Spilak (b46) 2018 (b10) 2008 Tran, Duong, Ho (b80) 2016 Liu, Zhang, Ma (b35) 2017 Deng, Bao, Kong, Ren, Dai (b38) 2017; 28 Huynh, Dang, Duong (b165) 2017 Gómez, Arévalo, Paredes, Nin (b116) 2018; 105 Metaxiotis, Liagkouras (b126) 2012; 39 Chen, Yeo, Lau, Lee (b174) 2018 Gudelek, Boluk, Ozbayoglu (b56) 2017 Buczkowski (b180) 2017 Lin, Hu, Tsai (b106) 2012; 42 Ribeiro, Lopes (b90) 2011 Malik, Singh, Khan (b89) 2018 West, Bhattacharya (b113) 2016; 57 Kumar, Ravi (b103) 2007; 180 Luo, Wu, Wu (b77) 2017; 65 Maknickien (b133) 2014; 110 Sharma, Panigrahi (b112) 2012; 39 LeCun, Bengio, Hinton (b21) 2015; 521 Hu, Hu, Yang, Yu, Sung, Zhang, Xie, Liu, Robertson, Hospedales, Miemie (b58) 2018 Li, Lin, Wang, Shen, Gong (b79) 2017 Lahsasna, Ainon, Teh (b100) 2010; 7 Li, Ma (b17) 2010 Fethi, Pasiouras (b99) 2010; 204 Lin, Huang, Gen, Tzeng (b132) 2006; 175 Sirignano, Cont (b54) 2018 Grace (b128) 2017 Lu (b43) 2017 Ravi, Kurniawan, Thai, Kumar (b98) 2008; 8 Sohangir, Wang, Pomeranets, Khoshgoftaar (b189) 2018; 5 Sohangir, Wang (b196) 2018 Maknickiene, Rutkauskas, Maknickas (b141) 2014 Zhuge, Xu, Zhang (b153) 2017 Rawte, Gupta, Zaki (b85) 2018 Vargas, de Lima, Evsukoff (b170) 2017 Ponsich, Jaimes, Coello (b14) 2013; 17 Lanbouri, Achchab (b84) 2015 Hu, Liu, Zhang, Su, Ngai, Liu (b75) 2015; 36 Verma, Dey, Meisheri (b172) 2017 Jangid, Singhal, Shah, Zimmermann (b187) 2018 Dymowa (b11) 2011 Alberg, Lipton (b200) 2017 Dang, Sadeghi-Niaraki, Huynh, Min, Moon (b168) 2018 Baily, Litan, S. (b76) 2008 Sirignano, Sadhwani, Giesecke (b93) 2018 Saad, Prokhorov, Wunsch (b63) 1998; 9 Hu, Liu, Bian, Liu, Liu (b175) 2018 Chalup, Mitschele (b20) 2008 Chatzis, Siakoulis, Petropoulos, Stavroulakis, Vlachogiannakis (b96) 2018; 112 Troiano, Villa, Loia (b53) 2018; 14 Wong, Selvi (b16) 1998; 34 Sezer, Ozbayoglu (b57) 2018; 70 Wang (b109) 2010 Vincent, Larochelle, Bengio, Manzagol (b32) 2008 Chen, Chen, Huang (b70) 2018 Tapia, Coello (b13) 2007 Sezer, Ozbayoglu, Dogdu (b51) 2017; 114 Navon, Keller (b52) 2017 Mourelatos, Alexakos, Amorgianiotis, Likothanassis (b40) 2018 System and Method for Computer Managed Funds to Outperform Benchmarks. Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. Icml, Vol. 30, 2013, pp. 3. Mochón, Quintana, Sáez, Viñuela (b4) 2007; 29 Chen (b145) 2018; 80 Akhtar, Kumar, Ghosal, Ekbal, Bhattacharyya (b185) 2017 Wang, Xu, Zheng (b150) 2018; 299 Sezer, Ozbayoglu (b61) 2019 Kitamori, Sakai, Sakaji (b191) 2017 Aguilar-Rivera, Valenzuela-Rendon, Rodriguez-Ortiz (b15) 2015; 42 Gao (b74) 2018 Meng, Catchpoole, Skillicom, Kennedy (b50) 2017 Zhang, Aggarwal, Qi (b36) 2017 Hsu, Chou, Huang, Chen (b143) 2018 Huang, Huang, Wang, Zhang, Guan, Zhou (b158) 2016 Iwasaki, Chen (b137) 2018 Phua, Lee, Smith-Miles, Gayler (b110) 2010 Dixon, Klabjan, Bang (b44) 2016 Mahmoudi, Docherty, Moscato (b190) 2018; 112 Si, Li, Ding, Rao (b41) 2017 Nan, Tao (b146) 2018 Aliev, Fazlollahi, Aliev (b9) 2004 Hinton, Osindero, Teh (b31) 2006; 18 Bari, Agah (b68) 2018 Kalman, Kwasny (b23) 1992 Roy, Sun, Mahoney, Alonzi, Adams, Beling (b115) 2018 Leonardo dos Santos Pinheiro, Mark Dras, Stock market prediction with deep learning: a character-based neural language model for event-based trading, in: Proceedings of the Australasian Language Technology Association Workshop 2017, 2017, pp. 6–15. Li, Zhou, Li, Chen (b122) 2017 Jiang, Liang (b140) 2017 Ronnqvist, Sarlin (b86) 2015 Kearney, Liu (b149) 2014; 33 Yoshua Bengio, Deep learning of representations for unsupervised and transfer learning, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–36. Nassirtoussi, Aghabozorgi, Wah, Ngo (b164) 2014; 41 LeBaron (b19) 2006; vol. 2 Ngai, Hu, Wong, Chen, Sun (b111) 2011; 50 Bouchti, Chakroun, Abbar, Okar (b198) 2017 Cybenko (b22) 1989; 2 Li, Chen (b193) 2014 Verikas, Kalsyte, Bacauskiene, Gelzinis (b104) 2009; 14 Bahrammirzaee (b2) 2010; 19 Sohony, Pratap, Nambiar (b117) 2018 Minami (b178) 2018; 08 Mullainathan, Spiess (b6) 2017; 31 Lopes (b147) 2018 Sirignano (b73) 2016 Jurgovsky, Granitzer, Ziegler, Calabretto, Portier, He-Guelton, Caelen (b118) 2018; 100 Wang, Xu (b121) 2018; 105 Heaton, Polson (b131) 2016 Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b59) 2017 Batres-Estrada (b135) 2015 Efstathios Kirkos, Yannis Manolopoulos, Data mining in finance and accounting: A review of current research trends, in: Proceedings of the 1 St International Conference on Enterprise Systems and Accounting ICESAcc, 2004, pp. 63–78. Piao, Breslin (b192) 2018 Akita, Yoshihara, Matsubara, Uehara (b171) 2016 Yong, Rahim, Abdullah (b42) 2017 Ying, Huang, Chang, Yang (b195) 2017 Zhou (b134) 2018 Sezer, Gudelek, Ozbayoglu (b1) 2020; 90 Fu, Du, Guo, Liu, Dong, Duan (b129) 2018 Hochreiter, Schmidhuber (b28) 1997; 9 Lee, Jang, Park (b202) 2017; 9 Yu, Zhou, Tang, Chen (b78) 2018; 69 Serrano (b62) 2018; 126 Goumagias, Hristu-Varsakelis, Assael (b124) 2018; 101 Sun, Li, Huang, He (b105) 2014; 57 Chen, Ribeiro, Chen (b101) 2015; 45 Yue, Wu, Wang, Li, Chu (b108) 2007 Yoshihara, Fujikawa, Seki, Uehara (b179) 2014 Wang, Zhang, Wang, Yu, Bai, Cui (b71) 2018 Cerchiello, Nicola, Rönnqvist, Sarlin (b88) 2017 Roy (10.1016/j.asoc.2020.106384_b115) 2018 Ramachandran (10.1016/j.asoc.2020.106384_b26) 2017 Ding (10.1016/j.asoc.2020.106384_b169) 2015 Lee (10.1016/j.asoc.2020.106384_b202) 2017; 9 Wang (10.1016/j.asoc.2020.106384_b71) 2018 Yong (10.1016/j.asoc.2020.106384_b42) 2017 Metaxiotis (10.1016/j.asoc.2020.106384_b126) 2012; 39 Ponsich (10.1016/j.asoc.2020.106384_b14) 2013; 17 Hochreiter (10.1016/j.asoc.2020.106384_b28) 1997; 9 Li (10.1016/j.asoc.2020.106384_b17) 2010 Jangid (10.1016/j.asoc.2020.106384_b187) 2018 Sezer (10.1016/j.asoc.2020.106384_b61) 2019 LeBaron (10.1016/j.asoc.2020.106384_b19) 2006; vol. 2 Li (10.1016/j.asoc.2020.106384_b157) 2017 Troiano (10.1016/j.asoc.2020.106384_b53) 2018; 14 Nan (10.1016/j.asoc.2020.106384_b146) 2018 Gao (10.1016/j.asoc.2020.106384_b74) 2018 Das (10.1016/j.asoc.2020.106384_b155) 2018; 132 Dang (10.1016/j.asoc.2020.106384_b168) 2018 Zhang (10.1016/j.asoc.2020.106384_b36) 2017 Aguilar-Rivera (10.1016/j.asoc.2020.106384_b15) 2015; 42 Sohangir (10.1016/j.asoc.2020.106384_b189) 2018; 5 Liu (10.1016/j.asoc.2020.106384_b182) 2018 Kraus (10.1016/j.asoc.2020.106384_b167) 2017; 104 Doering (10.1016/j.asoc.2020.106384_b64) 2017 Kumar (10.1016/j.asoc.2020.106384_b103) 2007; 180 Tran (10.1016/j.asoc.2020.106384_b37) 2017 Chalup (10.1016/j.asoc.2020.106384_b20) 2008 Vargas (10.1016/j.asoc.2020.106384_b170) 2017 Bouchti (10.1016/j.asoc.2020.106384_b198) 2017 Wong (10.1016/j.asoc.2020.106384_b16) 1998; 34 Ravi (10.1016/j.asoc.2020.106384_b98) 2008; 8 McNally (10.1016/j.asoc.2020.106384_b148) 2018 Lahsasna (10.1016/j.asoc.2020.106384_b100) 2010; 7 Wang (10.1016/j.asoc.2020.106384_b121) 2018; 105 Korczak (10.1016/j.asoc.2020.106384_b45) 2017 Jeong (10.1016/j.asoc.2020.106384_b47) 2019; 117 10.1016/j.asoc.2020.106384_b97 Sirignano (10.1016/j.asoc.2020.106384_b73) 2016 Neagoe (10.1016/j.asoc.2020.106384_b81) 2018 Liu (10.1016/j.asoc.2020.106384_b35) 2017 Qiu (10.1016/j.asoc.2020.106384_b29) 2014 Baily (10.1016/j.asoc.2020.106384_b76) 2008 Mittermayer (10.1016/j.asoc.2020.106384_b163) 2006 10.1016/j.asoc.2020.106384_b181 Huang (10.1016/j.asoc.2020.106384_b158) 2016 Heaton (10.1016/j.asoc.2020.106384_b131) 2016 West (10.1016/j.asoc.2020.106384_b113) 2016; 57 10.1016/j.asoc.2020.106384_b49 Nassirtoussi (10.1016/j.asoc.2020.106384_b164) 2014; 41 Huynh (10.1016/j.asoc.2020.106384_b165) 2017 Sirignano (10.1016/j.asoc.2020.106384_b54) 2018 Maknickiene (10.1016/j.asoc.2020.106384_b141) 2014 Fu (10.1016/j.asoc.2020.106384_b129) 2018 Minami (10.1016/j.asoc.2020.106384_b178) 2018; 08 Gudelek (10.1016/j.asoc.2020.106384_b56) 2017 Karaoglu (10.1016/j.asoc.2020.106384_b33) 2017; SpecialIssue Jiang (10.1016/j.asoc.2020.106384_b140) 2017 Akhtar (10.1016/j.asoc.2020.106384_b185) 2017 10.1016/j.asoc.2020.106384_b30 Jiang (10.1016/j.asoc.2020.106384_b65) 2017 Hu (10.1016/j.asoc.2020.106384_b175) 2018 Sun (10.1016/j.asoc.2020.106384_b105) 2014; 57 Zhongsheng (10.1016/j.asoc.2020.106384_b154) 2018 Marques (10.1016/j.asoc.2020.106384_b102) 2013; 64 Batres-Estrada (10.1016/j.asoc.2020.106384_b135) 2015 and (10.1016/j.asoc.2020.106384_b95) 2017; 1 Ngai (10.1016/j.asoc.2020.106384_b111) 2011; 50 Si (10.1016/j.asoc.2020.106384_b41) 2017 Yu (10.1016/j.asoc.2020.106384_b78) 2018; 69 Sharma (10.1016/j.asoc.2020.106384_b112) 2012; 39 Kvamme (10.1016/j.asoc.2020.106384_b94) 2018; 102 Paula (10.1016/j.asoc.2020.106384_b119) 2016 Bao (10.1016/j.asoc.2020.106384_b34) 2017; 12 Cybenko (10.1016/j.asoc.2020.106384_b22) 1989; 2 Jurgovsky (10.1016/j.asoc.2020.106384_b118) 2018; 100 Elmsili (10.1016/j.asoc.2020.106384_b18) 2018 Chatzis (10.1016/j.asoc.2020.106384_b96) 2018; 112 Culkin (10.1016/j.asoc.2020.106384_b142) 2017 Lee (10.1016/j.asoc.2020.106384_b136) 2018 Akita (10.1016/j.asoc.2020.106384_b171) 2016 Tino (10.1016/j.asoc.2020.106384_b66) 2001; 12 Meng (10.1016/j.asoc.2020.106384_b50) 2017 Li (10.1016/j.asoc.2020.106384_b193) 2014 Dixon (10.1016/j.asoc.2020.106384_b69) 2017 Deng (10.1016/j.asoc.2020.106384_b38) 2017; 28 Chang (10.1016/j.asoc.2020.106384_b186) 2016 Loughran (10.1016/j.asoc.2020.106384_b161) 2016; 54 Kitamori (10.1016/j.asoc.2020.106384_b191) 2017 Krauss (10.1016/j.asoc.2020.106384_b48) 2017; 259 Verikas (10.1016/j.asoc.2020.106384_b104) 2009; 14 Luo (10.1016/j.asoc.2020.106384_b77) 2017; 65 Nascimento (10.1016/j.asoc.2020.106384_b184) 2015 Buczkowski (10.1016/j.asoc.2020.106384_b180) 2017 Ronnqvist (10.1016/j.asoc.2020.106384_b86) 2015 Aliev (10.1016/j.asoc.2020.106384_b9) 2004 Gai (10.1016/j.asoc.2020.106384_b7) 2018; 103 Zhang (10.1016/j.asoc.2020.106384_b173) 2018; 143 E. (10.1016/j.asoc.2020.106384_b188) 2018 Ying (10.1016/j.asoc.2020.106384_b195) 2017 Saad (10.1016/j.asoc.2020.106384_b63) 1998; 9 Spilak (10.1016/j.asoc.2020.106384_b46) 2018 Sohangir (10.1016/j.asoc.2020.106384_b196) 2018 Wang (10.1016/j.asoc.2020.106384_b150) 2018; 299 Li (10.1016/j.asoc.2020.106384_b122) 2017 Grace (10.1016/j.asoc.2020.106384_b128) 2017 Maknickien (10.1016/j.asoc.2020.106384_b133) 2014; 110 Aggarwal (10.1016/j.asoc.2020.106384_b130) 2017; 162 Dixon (10.1016/j.asoc.2020.106384_b44) 2016 Vincent (10.1016/j.asoc.2020.106384_b32) 2008 Yue (10.1016/j.asoc.2020.106384_b108) 2007 Kim (10.1016/j.asoc.2020.106384_b201) 2015 Malik (10.1016/j.asoc.2020.106384_b89) 2018 Tsantekidis (10.1016/j.asoc.2020.106384_b59) 2017 Yeh (10.1016/j.asoc.2020.106384_b91) 2015 Chen (10.1016/j.asoc.2020.106384_b174) 2018 Li (10.1016/j.asoc.2020.106384_b125) 2014; 46 Dymowa (10.1016/j.asoc.2020.106384_b11) 2011 Sezer (10.1016/j.asoc.2020.106384_b51) 2017; 114 LeCun (10.1016/j.asoc.2020.106384_b21) 2015; 521 Bari (10.1016/j.asoc.2020.106384_b68) 2018 Lu (10.1016/j.asoc.2020.106384_b43) 2017 Goodfellow (10.1016/j.asoc.2020.106384_b27) 2016 Kumar (10.1016/j.asoc.2020.106384_b162) 2016; 114 Fischer (10.1016/j.asoc.2020.106384_b39) 2018; 270 Iwasaki (10.1016/j.asoc.2020.106384_b137) 2018 Kalman (10.1016/j.asoc.2020.106384_b23) 1992 Sezer (10.1016/j.asoc.2020.106384_b57) 2018; 70 10.1016/j.asoc.2020.106384_b25 Cerchiello (10.1016/j.asoc.2020.106384_b88) 2017 Mahmoudi (10.1016/j.asoc.2020.106384_b190) 2018; 112 (10.1016/j.asoc.2020.106384_b12) 2002 Mitra (10.1016/j.asoc.2020.106384_b159) 2012 Alberg (10.1016/j.asoc.2020.106384_b200) 2017 Prosky (10.1016/j.asoc.2020.106384_b156) 2017 Wang (10.1016/j.asoc.2020.106384_b109) 2010 Goumagias (10.1016/j.asoc.2020.106384_b124) 2018; 101 Verma (10.1016/j.asoc.2020.106384_b172) 2017 Mourelatos (10.1016/j.asoc.2020.106384_b40) 2018 Chen (10.1016/j.asoc.2020.106384_b67) 2018 Kirkos (10.1016/j.asoc.2020.106384_b107) 2007; 32 Chen (10.1016/j.asoc.2020.106384_b139) 2016 Yoshihara (10.1016/j.asoc.2020.106384_b179) 2014 Li (10.1016/j.asoc.2020.106384_b79) 2017 Bahrammirzaee (10.1016/j.asoc.2020.106384_b2) 2010; 19 Hsu (10.1016/j.asoc.2020.106384_b143) 2018 Mullainathan (10.1016/j.asoc.2020.106384_b6) 2017; 31 Sezer (10.1016/j.asoc.2020.106384_b1) 2020; 90 Li (10.1016/j.asoc.2020.106384_b176) 2018 Lopes (10.1016/j.asoc.2020.106384_b147) 2018 Matsubara (10.1016/j.asoc.2020.106384_b183) 2018; E101.D Zhang (10.1016/j.asoc.2020.106384_b3) 2004; 34 Gómez (10.1016/j.asoc.2020.106384_b116) 2018; 105 Chen (10.1016/j.asoc.2020.106384_b145) 2018; 80 (10.1016/j.asoc.2020.106384_b10) 2008 Tsantekidis (10.1016/j.asoc.2020.106384_b55) 2017 Zhu (10.1016/j.asoc.2020.106384_b82) 2018 de Souza Costa (10.1016/j.asoc.2020.106384_b123) 2016 Sohony (10.1016/j.asoc.2020.106384_b117) 2018 Ribeiro (10.1016/j.asoc.2020.106384_b90) 2011 Hosaka (10.1016/j.asoc.2020.106384_b92) 2018 Pulakkazhy (10.1016/j.asoc.2020.106384_b5) 2013; 9 Chen (10.1016/j.asoc.2020.106384_b101) 2015; 45 Zhou (10.1016/j.asoc.2020.106384_b134) 2018 Li (10.1016/j.asoc.2020.106384_b160) 2011; 29 Shi (10.1016/j.asoc.2020.106384_b151) 2018 Moore (10.1016/j.asoc.2020.106384_b194) 2017 Chen (10.1016/j.asoc.2020.106384_b70) 2018 Nair (10.1016/j.asoc.2020.106384_b24) 2010 Lee (10.1016/j.asoc.2020.106384_b177) 2017 Gomes (10.1016/j.asoc.2020.106384_b120) 2017 Feng (10.1016/j.asoc.2020.106384_b144) 2018 Peng (10.1016/j.asoc.2020.106384_b152) 2016 Gunduz (10.1016/j.asoc.2020.106384_b60) 2017; 137 Liang (10.1016/j.asoc.2020.106384_b138) 2018 Hinton (10.1016/j.asoc.2020.106384_b31) 2006; 18 Mochón (10.1016/j.asoc.2020.106384_b4) 2007; 29 Takeuchi (10.1016/j.asoc.2020.106384_b127) 2013 Lanbouri (10.1016/j.asoc.2020.106384_b84) 2015 Hu (10.1016/j.asoc.2020.106384_b75) 2015; 36 Tran (10.1016/j.asoc.2020.106384_b80) 2016 Rawte (10.1016/j.asoc.2020.106384_b85) 2018 Heryadi (10.1016/j.asoc.2020.106384_b114) 2017 Kovalerchuk (10.1016/j.asoc.2020.106384_b8) 2000 Serrano (10.1016/j.asoc.2020.106384_b62) 2018; 126 Dixon (10.1016/j.asoc.2020.106384_b199) 2015 Navon (10.1016/j.asoc.2020.106384_b52) 2017 Day (10.1016/j.asoc.2020.106384_b72) 2016 Ronnqvist (10.1016/j.asoc.2020.106384_b87) 2017; 264 Tapia (10.1016/j.asoc.2020.106384_b13) 2007 Lin (10.1016/j.asoc.2020.106384_b132) 2006; 175 Zhuge (10.1016/j.asoc.2020.106384_b153) 2017 Han (10.1016/j.asoc.2020.106384_b166) 2018; 28 Kearney (10.1016/j.asoc.2020.106384_b149) 2014; 33 Piao (10.1016/j.asoc.2020.106384_b192) 2018 Lin (10.1016/j.asoc.2020.106384_b106) 2012; 42 Phua (10.1016/j.asoc.2020.106384_b110) 2010 Sokolov (10.1016/j.asoc.2020.106384_b197) 2017; 33 Sirignano (10.1016/j.asoc.2020.106384_b93) 2018 Fethi (10.1016/j.asoc.2020.106384_b99) 2010; 204 Niimi (10.1016/j.asoc.2020.106384_b83) 2015 Hu (10.1016/j.asoc.2020.106384_b58) 2018 |
References_xml | – year: 2018 ident: b136 article-title: Threshold-based portfolio: the role of the threshold and its applications publication-title: J. Supercomput. – volume: 103 start-page: 262 year: 2018 end-page: 273 ident: b7 article-title: A survey on fintech publication-title: J. Netw. Comput. Appl. – year: 2010 ident: b109 article-title: A comprehensive survey of data mining-based accounting-fraud detection research publication-title: 2010 International Conference on Intelligent Computation Technology and Automation – year: 2018 ident: b187 article-title: Aspect-based financial sentiment analysis using deep learning publication-title: Companion of the the Web Conference 2018 on the Web Conference 2018 - WWW18 – year: 2017 ident: b156 article-title: Sentiment predictability for stocks – year: 2017 ident: b120 article-title: Identifying anomalies in parliamentary expenditures of Brazilian chamber of deputies with deep autoencoders publication-title: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) – year: 2008 ident: b10 publication-title: Natural Computing in Computational Finance – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b28 article-title: Long short-term memory publication-title: Neural Comput. – volume: 14 start-page: 995 year: 2009 end-page: 1010 ident: b104 article-title: Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey publication-title: Soft Comput. – year: 2017 ident: b59 article-title: Forecasting stock prices from the limit order book using convolutional neural networks publication-title: 2017 IEEE 19th Conference on Business Informatics (CBI) – volume: 12 year: 2017 ident: b34 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PLoS One – year: 2011 ident: b11 article-title: Soft Computing in Economics and Finance – year: 2016 ident: b139 article-title: Hedge Fund Return Prediction and Fund Selection: A Machine-Learning Approach – year: 2018 ident: b143 article-title: A market making quotation strategy based on dual deep learning agents for option pricing and bid-ask spread estimation publication-title: 2018 IEEE International Conference on Agents (ICA) – volume: 28 start-page: 244 year: 2018 end-page: 260 ident: b166 article-title: An event-extraction approach for business analysis from online chinese news publication-title: Electron. Commer. Res. Appl. – year: 2018 ident: b192 article-title: Financial aspect and sentiment predictions with deep neural networks publication-title: Companion of the the Web Conference 2018 on the Web Conference 2018 - WWW18 – volume: 143 start-page: 236 year: 2018 end-page: 247 ident: b173 article-title: Improving stock market prediction via heterogeneous information fusion publication-title: Knowl.-Based Syst. – year: 2015 ident: b91 article-title: Deep belief networks for predicting corporate defaults publication-title: 2015 24th Wireless and Optical Communication Conference (WOCC) – year: 2014 ident: b141 article-title: Investigation of financial market prediction by recurrent neural network – year: 2019 ident: b61 article-title: Financial trading model with stock bar chart image time series with deep convolutional neural networks – start-page: 198 year: 2017 end-page: 206 ident: b35 article-title: CNN-LSTM Neural network model for quantitative strategy analysis in stock markets publication-title: Neural Information Processing – year: 2010 ident: b110 article-title: A comprehensive survey of data mining-based fraud detection research – year: 2004 ident: b9 article-title: Soft computing and its applications in business and economics publication-title: Studies in Fuzziness and Soft Computing – year: 2017 ident: b140 article-title: Cryptocurrency portfolio management with deep reinforcement learning publication-title: 2017 Intelligent Systems Conference (IntelliSys) – year: 2017 ident: b26 article-title: Searching for activation functions – year: 2016 ident: b171 article-title: Deep learning for stock prediction using numerical and textual information publication-title: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) – volume: 299 start-page: 51 year: 2018 end-page: 61 ident: b150 article-title: Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles publication-title: Neurocomputing – year: 2015 ident: b199 article-title: Implementing deep neural networks for financial market prediction on the intel xeon phi publication-title: Proceedings of the 8th Workshop on High Performance Computational Finance - WHPCF15 – year: 2006 ident: b163 article-title: Text mining systems for market response to news: A survey – volume: 54 start-page: 1187 year: 2016 end-page: 1230 ident: b161 article-title: Textual analysis in accounting and finance: A survey publication-title: J. Account. Res. – year: 2017 ident: b36 article-title: Stock price prediction via discovering multi-frequency trading patterns publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD17 – year: 2017 ident: b157 article-title: Sentiment-aware stock market prediction: A deep learning method publication-title: 2017 International Conference on Service Systems and Service Management – year: 2018 ident: b147 article-title: Deep learning for market forecasts – volume: 8 start-page: 305 year: 2008 end-page: 315 ident: b98 article-title: Soft computing system for bank performance prediction publication-title: Appl. Soft Comput. – start-page: 578 year: 1992 end-page: 581 ident: b23 article-title: Why tanh: choosing a sigmoidal function publication-title: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, Vol. 4 – year: 2013 ident: b127 article-title: Applying deep learning to enhance momentum trading strategies in stocks – start-page: 581 year: 2017 end-page: 585 ident: b194 article-title: Lancaster a at semeval-2017 task 5: Evaluation metrics matter: predicting sentiment from financial news headlines publication-title: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) – volume: 28 start-page: 653 year: 2017 end-page: 664 ident: b38 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2018 ident: b168 article-title: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network publication-title: IEEE Access – year: 2015 ident: b84 article-title: A hybrid deep belief network approach for financial distress prediction publication-title: 2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA) – year: 2018 ident: b134 article-title: Deep learning and the cross-section of stock returns: Neural networks combining price and fundamental information publication-title: SSRN Electron. J. – start-page: 1 year: 2012 end-page: 39 ident: b159 article-title: Applications of news analytics in finance: A review publication-title: The Handbook of News Analytics in Finance – year: 2016 ident: b73 article-title: Deep learning for limit order books – year: 2017 ident: b114 article-title: Learning temporal representation of transaction amount for fraudulent transaction recognition using cnn, stacked lstm, and CNN-LSTM publication-title: 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom) – volume: 180 start-page: 1 year: 2007 end-page: 28 ident: b103 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review publication-title: European J. Oper. Res. – volume: 50 start-page: 559 year: 2011 end-page: 569 ident: b111 article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature publication-title: Decis. Support Syst. – year: 2018 ident: b81 article-title: Deep convolutional neural networks versus multilayer perceptron for financial prediction publication-title: 2018 International Conference on Communications (COMM) – volume: 57 start-page: 41 year: 2014 end-page: 56 ident: b105 article-title: Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches publication-title: Knowl.-Based Syst. – year: 2018 ident: b196 article-title: Finding expert authors in financial forum using deep learning methods publication-title: 2018 Second IEEE International Conference on Robotic Computing (IRC) – volume: 29 start-page: 111 year: 2007 end-page: 115 ident: b4 article-title: Soft computing techniques applied to finance publication-title: Appl. Intell. – volume: 104 start-page: 38 year: 2017 end-page: 48 ident: b167 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decis. Support Syst. – reference: Leonardo dos Santos Pinheiro, Mark Dras, Stock market prediction with deep learning: a character-based neural language model for event-based trading, in: Proceedings of the Australasian Language Technology Association Workshop 2017, 2017, pp. 6–15. – volume: 34 start-page: 129 year: 1998 end-page: 139 ident: b16 article-title: Neural network applications in finance: A review and analysis of literature (1990–1996) publication-title: Information & Management – year: 2018 ident: b40 article-title: Financial indices modelling and trading utilizing deep learning techniques: The ATHENS SE FTSE/ASE large Cap use Case publication-title: 2018 Innovations in Intelligent Systems and Applications (INISTA) – volume: 112 start-page: 23 year: 2018 end-page: 34 ident: b190 article-title: Deep neural networks understand investors better publication-title: Decis. Support Syst. – start-page: 449 year: 2016 end-page: 460 ident: b158 article-title: Exploiting twitter moods to boost financial trend prediction based on deep network models publication-title: Intelligent Computing Methodologies – volume: 12 start-page: 865 year: 2001 end-page: 874 ident: b66 article-title: Financial volatility trading using recurrent neural networks publication-title: IEEE Trans. Neural Netw. – start-page: 356 year: 2017 end-page: 364 ident: b42 article-title: A stock market trading system using deep neural network publication-title: Communications in Computer and Information Science – volume: vol. 2 start-page: 1187 year: 2006 end-page: 1233 ident: b19 article-title: Chapter 24 agent-based computational finance publication-title: Handbook of Computational Economics – volume: 08 start-page: 58 year: 2018 end-page: 63 ident: b178 article-title: Predicting equity price with corporate action events using LSTM-RNN publication-title: J. Math. Financ. – volume: 5 year: 2018 ident: b189 article-title: Big data: Deep learning for financial sentiment analysis publication-title: J. Big Data – year: 2017 ident: b172 article-title: Detecting, quantifying and accessing impact of news events on Indian stock indices publication-title: Proceedings of the International Conference on Web Intelligence - WI17 – year: 2018 ident: b71 article-title: Deep co-investment network learning for financial assets – start-page: 708 year: 2017 end-page: 717 ident: b180 article-title: Predicting stock trends based on expert recommendations using GRU/lstm neural networks publication-title: Lecture Notes in Computer Science – volume: E101.D start-page: 901 year: 2018 end-page: 908 ident: b183 article-title: Stock price prediction by deep neural generative model of news articles publication-title: IEICE Trans. Inf. Syst. – year: 2016 ident: b80 article-title: Credit scoring model: A combination of genetic programming and deep learning publication-title: 2016 Future Technologies Conference (FTC) – start-page: 261 year: 2018 end-page: 269 ident: b175 article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction publication-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining – volume: 175 start-page: 1139 year: 2006 end-page: 1146 ident: b132 article-title: Recurrent neural network for dynamic portfolio selection publication-title: Appl. Math. Comput. – year: 2015 ident: b201 article-title: Predicting the success of bank telemarketing using deep convolutional neural network publication-title: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR) – volume: SpecialIssue start-page: 31 year: 2017 end-page: 36 ident: b33 article-title: A deep learning approach for optimization of systematic signal detection in financial trading systems with big data publication-title: Int. J. Intell. Syst. Appl. Eng. – start-page: 1 year: 2014 end-page: 6 ident: b29 article-title: Ensemble deep learning for regression and time series forecasting publication-title: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL) – year: 2017 ident: b170 article-title: Deep learning for stock market prediction from financial news articles publication-title: 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b31 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – year: 2000 ident: b8 article-title: Data Mining in Finance: Advances in Relational and Hybrid Methods – start-page: 1096 year: 2008 end-page: 1103 ident: b32 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – start-page: 807 year: 2010 end-page: 814 ident: b24 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – year: 2017 ident: b37 article-title: Tensor representation in high-frequency financial data for price change prediction publication-title: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) – volume: 39 start-page: 37 year: 2012 end-page: 47 ident: b112 article-title: A review of financial accounting fraud detection based on data mining techniques publication-title: Int. J. Comput. Appl. – start-page: 766 year: 2011 end-page: 773 ident: b90 article-title: Deep belief networks for financial prediction publication-title: Neural Information Processing – year: 2017 ident: b69 article-title: Sequence classification of the limit order book using recurrent neural networks publication-title: SSRN Electron. J. – volume: 70 start-page: 525 year: 2018 end-page: 538 ident: b57 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl. Soft Comput. – year: 2017 ident: b142 article-title: Machine learning in finance: The Case of deep learning in option pricing – volume: 100 start-page: 234 year: 2018 end-page: 245 ident: b118 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Syst. Appl. – year: 2008 ident: b76 publication-title: The Origins of the Financial Crisis – volume: 110 start-page: 1158 year: 2014 end-page: 1165 ident: b133 article-title: Selection of orthogonal investment portfolio using evolino RNN trading model publication-title: Procedia - Soc. Behav. Sci. – volume: 259 start-page: 689 year: 2017 end-page: 702 ident: b48 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: European J. Oper. Res. – year: 2017 ident: b195 article-title: A preliminary study on deep learning for predicting social insurance payment behavior publication-title: 2017 IEEE International Conference on Big Data (Big Data) – volume: 264 start-page: 57 year: 2017 end-page: 70 ident: b87 article-title: Bank distress in the news: Describing events through deep learning publication-title: Neurocomputing – year: 2018 ident: b117 article-title: Ensemble learning for credit card fraud detection publication-title: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data - CoDS-COMAD18 – year: 2018 ident: b46 article-title: Deep Neural Networks for Cryptocurrencies Price prediction – year: 2018 ident: b129 article-title: A machine learning framework for stock selection – volume: 204 start-page: 189 year: 2010 end-page: 198 ident: b99 article-title: Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey publication-title: European J. Oper. Res. – volume: 32 start-page: 995 year: 2007 end-page: 1003 ident: b107 article-title: Data mining techniques for the detection of fraudulent financial statements publication-title: Expert Syst. Appl. – volume: 42 start-page: 421 year: 2012 end-page: 436 ident: b106 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) – volume: 42 start-page: 7684 year: 2015 end-page: 7697 ident: b15 article-title: Genetic algorithms and darwinian approaches in financial applications: a survey publication-title: Expert Syst. Appl. – volume: 14 start-page: 3226 year: 2018 end-page: 3234 ident: b53 article-title: Replicating a trading strategy by means of LSTM for financial industry applications publication-title: IEEE Trans. Ind. Inf. – year: 2015 ident: b86 article-title: Detect & describe: Deep learning of bank stress in the news publication-title: 2015 IEEE Symposium Series on Computational Intelligence – year: 2018 ident: b74 article-title: Deep reinforcement learning for time series: playing idealized trading games – year: 2017 ident: b43 article-title: Agent inspired trading using recurrent reinforcement learning and lstm neural networks – volume: 19 start-page: 1165 year: 2010 end-page: 1195 ident: b2 article-title: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems publication-title: Neural Comput. Appl. – year: 2017 ident: b64 article-title: Convolutional neural networks applied to high-frequency market microstructure forecasting publication-title: 2017 9th Computer Science and Electronic Engineering (CEEC) – year: 2018 ident: b92 article-title: Bankruptcy prediction using imaged financial ratios and convolutional neural networks publication-title: Expert Syst. Appl. – volume: 33 start-page: 171 year: 2014 end-page: 185 ident: b149 article-title: Textual sentiment in finance: A survey of methods and models publication-title: Int. Rev. Financ. Anal. – volume: 90 start-page: 106181 year: 2020 ident: b1 article-title: Financial time series forecasting with deep learning : A systematic literature review: 2005-2019 publication-title: Appl. Soft Comput. – volume: 33 start-page: 16 year: 2017 end-page: 18 ident: b197 article-title: Discussion of ’deep learning for finance: deep portfolios’ publication-title: Appl. Stoch. Models Bus. Ind. – year: 2018 ident: b54 article-title: Universal features of price formation in financial markets: perspectives from deep learning publication-title: SSRN Electron. J. – volume: 114 start-page: 128 year: 2016 end-page: 147 ident: b162 article-title: A survey of the applications of text mining in financial domain publication-title: Knowl.-Based Syst. – year: 2017 ident: b200 article-title: Improving factor-based quantitative investing by forecasting company fundamentals – year: 2015 ident: b83 article-title: Deep learning for credit card data analysis publication-title: 2015 World Congress on Internet Security (WorldCIS) – start-page: 364 year: 2017 end-page: 371 ident: b50 article-title: Relational autoencoder for feature extraction publication-title: 2017 International Joint Conference on Neural Networks (IJCNN) – year: 2017 ident: b153 article-title: LSTM neural network with emotional analysis for prediction of stock price – year: 2017 ident: b45 article-title: Deep learning for financial time series forecasting in a-trader system publication-title: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems – year: 2017 ident: b165 article-title: A new model for stock price movements prediction using deep neural network publication-title: Proceedings of the Eighth International Symposium on Information and Communication Technology - SoICT 2017 – year: 2018 ident: b144 article-title: Deep factor alpha – year: 2018 ident: b93 article-title: Deep learning for mortgage risk publication-title: SSRN Electron. J. – volume: 9 year: 2017 ident: b202 article-title: Deep learning-based corporate performance prediction model considering technical capability publication-title: Sustainability – start-page: 759 year: 2014 end-page: 769 ident: b179 article-title: Predicting stock market trends by recurrent deep neural networks publication-title: Lecture Notes in Computer Science – reference: Efstathios Kirkos, Yannis Manolopoulos, Data mining in finance and accounting: A review of current research trends, in: Proceedings of the 1 St International Conference on Enterprise Systems and Accounting ICESAcc, 2004, pp. 63–78. – start-page: 540 year: 2017 end-page: 546 ident: b185 article-title: A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis publication-title: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing – volume: 270 start-page: 654 year: 2018 end-page: 669 ident: b39 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European J. Oper. Res. – volume: 102 start-page: 207 year: 2018 end-page: 217 ident: b94 article-title: Predicting mortgage default using convolutional neural networks publication-title: Expert Syst. Appl. – year: 2017 ident: b122 article-title: POSTER: Practical fraud transaction prediction publication-title: ACM Conference on Computer and Communications Security – year: 2002 ident: b12 article-title: Genetic algorithms and genetic programming in computational finance – year: 2017 ident: b41 article-title: A multi-objective deep reinforcement learning approach for stock index future’s intraday trading publication-title: 2017 10th International Symposium on Computational Intelligence and Design (ISCID) – year: 2018 ident: b174 article-title: Leveraging social media news to predict stock index movement using RNN-boost publication-title: Data Knowl. Eng. – year: 2016 ident: b27 article-title: Deep Learning – year: 2018 ident: b68 article-title: Ensembles of text and time-series models for automatic generation of financial trading signals from social media content publication-title: J. Intell. Syst. – year: 2016 ident: b186 article-title: Measuring the information content of financial news publication-title: COLING – year: 2016 ident: b131 article-title: Deep learning for finance: Deep portfolios publication-title: SSRN Electron. J. – year: 2017 ident: b191 article-title: Extraction of sentences concerning business performance forecast and economic forecast from summaries of financial statements by deep learning publication-title: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) – year: 2016 ident: b152 article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks publication-title: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – volume: 36 start-page: 534 year: 2015 end-page: 551 ident: b75 article-title: Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review publication-title: Appl. Soft Comput. – start-page: 1 year: 2018 ident: b151 article-title: Deepclue: Visual interpretation of text-based deep stock prediction publication-title: IEEE Trans. Knowl. Data Eng. – year: 2010 ident: b17 article-title: Applications of artificial neural networks in financial economics: A survey publication-title: 2010 International Symposium on Computational Intelligence and Design – year: 2007 ident: b108 article-title: A review of data mining-based financial fraud detection research publication-title: 2007 International Conference on Wireless Communications, Networking and Mobile Computing – start-page: 2327 year: 2015 end-page: 2333 ident: b169 article-title: Deep learning for event-driven stock prediction publication-title: Proceedings of the 24th International Conference on Artificial Intelligence – year: 2018 ident: b138 article-title: Adversarial deep reinforcement learning in portfolio management – year: 2017 ident: b56 article-title: A deep learning based stock trading model with 2-d CNN trend detection publication-title: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) – year: 2018 ident: b82 article-title: A hybrid deep learning model for consumer credit scoring publication-title: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD) – year: 2014 ident: b193 article-title: Identifying top sellers in underground economy using deep learning-based sentiment analysis publication-title: 2014 IEEE Joint Intelligence and Security Informatics Conference – volume: 132 start-page: 956 year: 2018 end-page: 964 ident: b155 article-title: Real-time sentiment analysis of twitter streaming data for stock prediction publication-title: Procedia Comput. Sci. – volume: 9 start-page: 1252 year: 2013 end-page: 1259 ident: b5 article-title: Mining in banking and its applications: A review publication-title: J. Comput. Sci. – year: 2017 ident: b177 article-title: Predict stock price with financial news based on recurrent convolutional neural networks publication-title: 2017 Conference on Technologies and Applications of Artificial Intelligence (TAAI) – year: 2018 ident: b154 article-title: Measuring financial crisis index for risk warning through analysis of social network – volume: 9 start-page: 1456 year: 1998 end-page: 1470 ident: b63 article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks publication-title: IEEE Trans. Neural Netw. – year: 2016 ident: b119 article-title: Deep learning anomaly detection as support fraud investigation in Brazilian exports and anti-money laundering publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) – year: 2018 ident: b70 article-title: Cloning strategies from trading records using agent-based reinforcement learning algorithm publication-title: 2018 IEEE International Conference on Agents (ICA) – year: 2016 ident: b72 article-title: Deep learning for financial sentiment analysis on finance news providers publication-title: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) – year: 2018 ident: b188 article-title: Aspect-based financial sentiment analysis with deep neural networks publication-title: Companion of the the Web Conference 2018 on the Web Conference 2018 - WWW18 – reference: Yoshua Bengio, Deep learning of representations for unsupervised and transfer learning, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 17–36. – year: 2018 ident: b89 article-title: Can banks survive the next financial crisis? An adversarial deep learning model for bank stress testing publication-title: An Adversarial Deep Learning Model for Bank Stress Testing (June 30, 2018) – volume: 117 start-page: 125 year: 2019 end-page: 138 ident: b47 article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning publication-title: Expert Syst. Appl. – volume: 101 start-page: 258 year: 2018 end-page: 270 ident: b124 article-title: Using deep q-learning to understand the tax evasion behavior of risk-averse firms publication-title: Expert Syst. Appl. – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b22 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Syst. – year: 2018 ident: b115 article-title: Deep learning detecting fraud in credit card transactions publication-title: 2018 Systems and Information Engineering Design Symposium (SIEDS) – year: 2016 ident: b44 article-title: Classification-based financial markets prediction using deep neural networks publication-title: SSRN Electron. J. – start-page: 655 year: 2008 end-page: 687 ident: b20 article-title: Kernel methods in finance publication-title: Handbook on Information Technology in Finance – volume: 65 start-page: 465 year: 2017 end-page: 470 ident: b77 article-title: A deep learning approach for credit scoring using credit default swaps publication-title: Eng. Appl. Artif. Intell. – year: 2017 ident: b128 article-title: Can deep learning techniques improve the risk adjusted returns from enhanced indexing investment strategies – volume: 46 start-page: 35:1 year: 2014 end-page: 35:36 ident: b125 article-title: Online portfolio selection: A survey publication-title: ACM Comput. Surv. – year: 2017 ident: b55 article-title: Using deep learning to detect price change indications in financial markets publication-title: 2017 25th European Signal Processing Conference (EUSIPCO) – year: 2017 ident: b79 article-title: Credit risk assessment algorithm using deep neural networks with clustering and merging publication-title: 2017 13th International Conference on Computational Intelligence and Security (CIS) – volume: 34 start-page: 513 year: 2004 end-page: 522 ident: b3 article-title: Discovering golden nuggets: Data mining in financial application publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) – reference: Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. Icml, Vol. 30, 2013, pp. 3. – volume: 112 start-page: 353 year: 2018 end-page: 371 ident: b96 article-title: Forecasting stock market crisis events using deep and statistical machine learning techniques publication-title: Expert Syst. Appl. – year: 2017 ident: b88 article-title: Deep learning bank distress from news and numerical financial data – volume: 41 start-page: 7653 year: 2014 end-page: 7670 ident: b164 article-title: Text mining for market prediction: A systematic review publication-title: Expert Syst. Appl. – year: 2017 ident: b198 article-title: Fraud detection in banking using deep reinforcement learning publication-title: 2017 Seventh International Conference on Innovative Computing Technology (INTECH) – volume: 137 start-page: 138 year: 2017 end-page: 148 ident: b60 article-title: Intraday prediction of borsa Istanbul using convolutional neural networks and feature correlations publication-title: Knowl.-Based Syst. – year: 2017 ident: b65 article-title: A deep reinforcement learning framework for the financial portfolio management problem – volume: 105 start-page: 175 year: 2018 end-page: 181 ident: b116 article-title: End-to-end neural network architecture for fraud scoring in card payments publication-title: Pattern Recognit. Lett. – year: 2007 ident: b13 article-title: Applications of multi-objective evolutionary algorithms in economics and finance: A survey publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 39 start-page: 11685 year: 2012 end-page: 11698 ident: b126 article-title: Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review publication-title: Expert Syst. Appl. – reference: System and Method for Computer Managed Funds to Outperform Benchmarks. – year: 2018 ident: b146 article-title: Bitcoin mixing detection using deep autoencoder publication-title: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC) – year: 2018 ident: b176 article-title: Market impact analysis via deep learned architectures publication-title: Neural Comput. Appl. – year: 2015 ident: b184 article-title: The impact of structured event embeddings on scalable stock forecasting models publication-title: Proceedings of the 21st Brazilian Symposium on Multimedia and the Web - WebMedia15 – volume: 80 start-page: 198 year: 2018 end-page: 210 ident: b145 article-title: A traceability chain algorithm for artificial neural networks using t–s fuzzy cognitive maps in blockchain publication-title: Future Gener. Comput. Syst. – volume: 114 start-page: 473 year: 2017 end-page: 480 ident: b51 article-title: A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters publication-title: Procedia Comput. Sci. – volume: 29 year: 2011 ident: b160 article-title: Textual analysis of corporate disclosures: A survey of the literature publication-title: J. Account. Lit. – year: 2018 ident: b148 article-title: Predicting the price of bitcoin using machine learning publication-title: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) – volume: 17 start-page: 321 year: 2013 end-page: 344 ident: b14 article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications publication-title: IEEE Trans. Evol. Comput. – year: 2018 ident: b85 article-title: Analysis of year-over-year changes in risk factors disclosure in 10-k filings publication-title: Proceedings of the Fourth International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets - DSMM18 – start-page: 102 year: 2018 end-page: 113 ident: b182 article-title: Stock price movement prediction from financial news with deep learning and knowledge graph embedding publication-title: Knowledge Management and Acquisition for Intelligent Systems – volume: 126 start-page: 537 year: 2018 end-page: 546 ident: b62 article-title: Fintech model: The random neural network with genetic algorithm publication-title: Procedia Comput. Sci. – volume: 162 start-page: 40 year: 2017 end-page: 43 ident: b130 article-title: Deep investment in financial markets using deep learning models publication-title: Int. J. Comput. Appl. – volume: 57 start-page: 47 year: 2016 end-page: 66 ident: b113 article-title: Intelligent financial fraud detection: A comprehensive review publication-title: Comput. Secur. – year: 2018 ident: b67 article-title: Developing arbitrage strategy in high-frequency pairs trading with filterbank CNN algorithm publication-title: 2018 IEEE International Conference on Agents (ICA) – year: 2017 ident: b52 article-title: Financial time series prediction using deep learning – volume: 31 start-page: 87 year: 2017 end-page: 106 ident: b6 article-title: Machine learning: An applied econometric approach publication-title: J. Econ. Perspect. – volume: 45 start-page: 1 year: 2015 end-page: 23 ident: b101 article-title: Financial credit risk assessment: a recent review publication-title: Artif. Intell. Rev. – volume: 7 start-page: 115 year: 2010 end-page: 123 ident: b100 article-title: Credit scoring models using soft computing methods: A survey publication-title: Int. Arab J. Inf. Technol. – volume: 105 start-page: 87 year: 2018 end-page: 95 ident: b121 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b21 article-title: Deep learning publication-title: Nature – year: 2018 ident: b137 article-title: Topic sentiment asset pricing with DNN supervised learning publication-title: SSRN Electron. J. – year: 2016 ident: b123 article-title: Sequence classification of the limit order book using recurrent neural networks – year: 2015 ident: b135 article-title: Deep Learning for Multivariate Financial Time Series – volume: 69 start-page: 192 year: 2018 end-page: 202 ident: b78 article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data publication-title: Appl. Soft Comput. – year: 2018 ident: b58 article-title: Deep stock representation learning: From Candlestick charts to investment decisions publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 64 start-page: 1384 year: 2013 end-page: 1399 ident: b102 article-title: A literature review on the application of evolutionary computing to credit scoring publication-title: J. Oper. Res. Soc. – volume: 1 year: 2017 ident: b95 article-title: Neural networks for financial market risk classification publication-title: Front. Signal Process. – start-page: 1 year: 2018 end-page: 6 ident: b18 article-title: Artificial neural networks applications in economics and management research: An exploratory literature review publication-title: 2018 4th International Conference on Optimization and Applications (ICOA) – year: 2018 ident: 10.1016/j.asoc.2020.106384_b176 article-title: Market impact analysis via deep learned architectures publication-title: Neural Comput. Appl. – year: 2018 ident: 10.1016/j.asoc.2020.106384_b134 article-title: Deep learning and the cross-section of stock returns: Neural networks combining price and fundamental information publication-title: SSRN Electron. J. – start-page: 578 year: 1992 ident: 10.1016/j.asoc.2020.106384_b23 article-title: Why tanh: choosing a sigmoidal function – volume: 69 start-page: 192 year: 2018 ident: 10.1016/j.asoc.2020.106384_b78 article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.049 – year: 2019 ident: 10.1016/j.asoc.2020.106384_b61 – volume: 80 start-page: 198 year: 2018 ident: 10.1016/j.asoc.2020.106384_b145 article-title: A traceability chain algorithm for artificial neural networks using t–s fuzzy cognitive maps in blockchain publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.09.077 – volume: 101 start-page: 258 year: 2018 ident: 10.1016/j.asoc.2020.106384_b124 article-title: Using deep q-learning to understand the tax evasion behavior of risk-averse firms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.039 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b44 article-title: Classification-based financial markets prediction using deep neural networks publication-title: SSRN Electron. J. doi: 10.2139/ssrn.2756331 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b74 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b143 article-title: A market making quotation strategy based on dual deep learning agents for option pricing and bid-ask spread estimation – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.asoc.2020.106384_b34 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: PLoS One doi: 10.1371/journal.pone.0180944 – volume: 36 start-page: 534 year: 2015 ident: 10.1016/j.asoc.2020.106384_b75 article-title: Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.008 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b85 article-title: Analysis of year-over-year changes in risk factors disclosure in 10-k filings – ident: 10.1016/j.asoc.2020.106384_b181 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b69 article-title: Sequence classification of the limit order book using recurrent neural networks publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3002814 – volume: 14 start-page: 995 issue: 9 year: 2009 ident: 10.1016/j.asoc.2020.106384_b104 article-title: Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey publication-title: Soft Comput. doi: 10.1007/s00500-009-0490-5 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b27 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b192 article-title: Financial aspect and sentiment predictions with deep neural networks – volume: 46 start-page: 35:1 issue: 3 year: 2014 ident: 10.1016/j.asoc.2020.106384_b125 article-title: Online portfolio selection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2512962 – volume: 112 start-page: 23 year: 2018 ident: 10.1016/j.asoc.2020.106384_b190 article-title: Deep neural networks understand investors better publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.06.002 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b64 article-title: Convolutional neural networks applied to high-frequency market microstructure forecasting – volume: vol. 2 start-page: 1187 year: 2006 ident: 10.1016/j.asoc.2020.106384_b19 article-title: Chapter 24 agent-based computational finance doi: 10.1016/S1574-0021(05)02024-1 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b131 article-title: Deep learning for finance: Deep portfolios publication-title: SSRN Electron. J. doi: 10.2139/ssrn.2838013 – volume: 105 start-page: 87 year: 2018 ident: 10.1016/j.asoc.2020.106384_b121 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.11.001 – volume: 33 start-page: 16 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106384_b197 article-title: Discussion of ’deep learning for finance: deep portfolios’ publication-title: Appl. Stoch. Models Bus. Ind. doi: 10.1002/asmb.2228 – volume: 9 start-page: 1252 issue: 10 year: 2013 ident: 10.1016/j.asoc.2020.106384_b5 article-title: Mining in banking and its applications: A review publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2013.1252.1259 – volume: 137 start-page: 138 year: 2017 ident: 10.1016/j.asoc.2020.106384_b60 article-title: Intraday prediction of borsa Istanbul using convolutional neural networks and feature correlations publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.09.023 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b157 article-title: Sentiment-aware stock market prediction: A deep learning method – year: 2010 ident: 10.1016/j.asoc.2020.106384_b110 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b171 article-title: Deep learning for stock prediction using numerical and textual information – volume: 143 start-page: 236 year: 2018 ident: 10.1016/j.asoc.2020.106384_b173 article-title: Improving stock market prediction via heterogeneous information fusion publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.12.025 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b88 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.asoc.2020.106384_b21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2014 ident: 10.1016/j.asoc.2020.106384_b141 – volume: 126 start-page: 537 year: 2018 ident: 10.1016/j.asoc.2020.106384_b62 article-title: Fintech model: The random neural network with genetic algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.288 – start-page: 766 year: 2011 ident: 10.1016/j.asoc.2020.106384_b90 article-title: Deep belief networks for financial prediction – volume: 180 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.asoc.2020.106384_b103 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.08.043 – volume: 54 start-page: 1187 issue: 4 year: 2016 ident: 10.1016/j.asoc.2020.106384_b161 article-title: Textual analysis in accounting and finance: A survey publication-title: J. Account. Res. doi: 10.1111/1475-679X.12123 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b129 – start-page: 198 year: 2017 ident: 10.1016/j.asoc.2020.106384_b35 article-title: CNN-LSTM Neural network model for quantitative strategy analysis in stock markets – volume: 110 start-page: 1158 year: 2014 ident: 10.1016/j.asoc.2020.106384_b133 article-title: Selection of orthogonal investment portfolio using evolino RNN trading model publication-title: Procedia - Soc. Behav. Sci. doi: 10.1016/j.sbspro.2013.12.962 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b137 article-title: Topic sentiment asset pricing with DNN supervised learning publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3228485 – volume: 204 start-page: 189 issue: 2 year: 2010 ident: 10.1016/j.asoc.2020.106384_b99 article-title: Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2009.08.003 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b120 article-title: Identifying anomalies in parliamentary expenditures of Brazilian chamber of deputies with deep autoencoders – volume: 17 start-page: 321 issue: 3 year: 2013 ident: 10.1016/j.asoc.2020.106384_b14 article-title: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2196800 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b119 article-title: Deep learning anomaly detection as support fraud investigation in Brazilian exports and anti-money laundering – start-page: 807 year: 2010 ident: 10.1016/j.asoc.2020.106384_b24 article-title: Rectified linear units improve restricted boltzmann machines – start-page: 759 year: 2014 ident: 10.1016/j.asoc.2020.106384_b179 article-title: Predicting stock market trends by recurrent deep neural networks doi: 10.1007/978-3-319-13560-1_60 – year: 2015 ident: 10.1016/j.asoc.2020.106384_b83 article-title: Deep learning for credit card data analysis – year: 2016 ident: 10.1016/j.asoc.2020.106384_b80 article-title: Credit scoring model: A combination of genetic programming and deep learning – volume: 299 start-page: 51 year: 2018 ident: 10.1016/j.asoc.2020.106384_b150 article-title: Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.095 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b92 article-title: Bankruptcy prediction using imaged financial ratios and convolutional neural networks publication-title: Expert Syst. Appl. – volume: 39 start-page: 11685 issue: 14 year: 2012 ident: 10.1016/j.asoc.2020.106384_b126 article-title: Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.053 – year: 2002 ident: 10.1016/j.asoc.2020.106384_b12 article-title: Genetic algorithms and genetic programming in computational finance – volume: 39 start-page: 37 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106384_b112 article-title: A review of financial accounting fraud detection based on data mining techniques publication-title: Int. J. Comput. Appl. – year: 2000 ident: 10.1016/j.asoc.2020.106384_b8 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b170 article-title: Deep learning for stock market prediction from financial news articles – year: 2018 ident: 10.1016/j.asoc.2020.106384_b58 article-title: Deep stock representation learning: From Candlestick charts to investment decisions – year: 2015 ident: 10.1016/j.asoc.2020.106384_b91 article-title: Deep belief networks for predicting corporate defaults – year: 2015 ident: 10.1016/j.asoc.2020.106384_b135 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b156 – volume: 28 start-page: 244 year: 2018 ident: 10.1016/j.asoc.2020.106384_b166 article-title: An event-extraction approach for business analysis from online chinese news publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2018.02.006 – start-page: 261 year: 2018 ident: 10.1016/j.asoc.2020.106384_b175 article-title: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction – year: 2017 ident: 10.1016/j.asoc.2020.106384_b177 article-title: Predict stock price with financial news based on recurrent convolutional neural networks – year: 2004 ident: 10.1016/j.asoc.2020.106384_b9 article-title: Soft computing and its applications in business and economics – year: 2008 ident: 10.1016/j.asoc.2020.106384_b76 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106384_b151 article-title: Deepclue: Visual interpretation of text-based deep stock prediction publication-title: IEEE Trans. Knowl. Data Eng. – volume: 57 start-page: 41 year: 2014 ident: 10.1016/j.asoc.2020.106384_b105 article-title: Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.12.006 – ident: 10.1016/j.asoc.2020.106384_b25 – start-page: 449 year: 2016 ident: 10.1016/j.asoc.2020.106384_b158 article-title: Exploiting twitter moods to boost financial trend prediction based on deep network models – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.asoc.2020.106384_b22 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551274 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b36 article-title: Stock price prediction via discovering multi-frequency trading patterns – volume: 32 start-page: 995 issue: 4 year: 2007 ident: 10.1016/j.asoc.2020.106384_b107 article-title: Data mining techniques for the detection of fraudulent financial statements publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.016 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b26 – start-page: 1096 year: 2008 ident: 10.1016/j.asoc.2020.106384_b32 article-title: Extracting and composing robust features with denoising autoencoders – year: 2017 ident: 10.1016/j.asoc.2020.106384_b37 article-title: Tensor representation in high-frequency financial data for price change prediction – start-page: 581 year: 2017 ident: 10.1016/j.asoc.2020.106384_b194 article-title: Lancaster a at semeval-2017 task 5: Evaluation metrics matter: predicting sentiment from financial news headlines – volume: 112 start-page: 353 year: 2018 ident: 10.1016/j.asoc.2020.106384_b96 article-title: Forecasting stock market crisis events using deep and statistical machine learning techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.032 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b138 – volume: 102 start-page: 207 year: 2018 ident: 10.1016/j.asoc.2020.106384_b94 article-title: Predicting mortgage default using convolutional neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.02.029 – start-page: 356 year: 2017 ident: 10.1016/j.asoc.2020.106384_b42 article-title: A stock market trading system using deep neural network doi: 10.1007/978-981-10-6463-0_31 – volume: 117 start-page: 125 year: 2019 ident: 10.1016/j.asoc.2020.106384_b47 article-title: Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.036 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b140 article-title: Cryptocurrency portfolio management with deep reinforcement learning – ident: 10.1016/j.asoc.2020.106384_b97 – volume: 57 start-page: 47 year: 2016 ident: 10.1016/j.asoc.2020.106384_b113 article-title: Intelligent financial fraud detection: A comprehensive review publication-title: Comput. Secur. doi: 10.1016/j.cose.2015.09.005 – year: 2007 ident: 10.1016/j.asoc.2020.106384_b108 article-title: A review of data mining-based financial fraud detection research – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2020.106384_b29 article-title: Ensemble deep learning for regression and time series forecasting – volume: 28 start-page: 653 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106384_b38 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2522401 – year: 2015 ident: 10.1016/j.asoc.2020.106384_b201 article-title: Predicting the success of bank telemarketing using deep convolutional neural network – volume: 41 start-page: 7653 issue: 16 year: 2014 ident: 10.1016/j.asoc.2020.106384_b164 article-title: Text mining for market prediction: A systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.06.009 – volume: 34 start-page: 513 issue: 4 year: 2004 ident: 10.1016/j.asoc.2020.106384_b3 article-title: Discovering golden nuggets: Data mining in financial application publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2004.829279 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b187 article-title: Aspect-based financial sentiment analysis using deep learning – year: 2015 ident: 10.1016/j.asoc.2020.106384_b199 article-title: Implementing deep neural networks for financial market prediction on the intel xeon phi – volume: 264 start-page: 57 year: 2017 ident: 10.1016/j.asoc.2020.106384_b87 article-title: Bank distress in the news: Describing events through deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.110 – start-page: 2327 year: 2015 ident: 10.1016/j.asoc.2020.106384_b169 article-title: Deep learning for event-driven stock prediction – year: 2016 ident: 10.1016/j.asoc.2020.106384_b73 – volume: 45 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.asoc.2020.106384_b101 article-title: Financial credit risk assessment: a recent review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-015-9434-x – year: 2018 ident: 10.1016/j.asoc.2020.106384_b82 article-title: A hybrid deep learning model for consumer credit scoring – year: 2016 ident: 10.1016/j.asoc.2020.106384_b123 – volume: 34 start-page: 129 issue: 3 year: 1998 ident: 10.1016/j.asoc.2020.106384_b16 article-title: Neural network applications in finance: A review and analysis of literature (1990–1996) publication-title: Information & Management doi: 10.1016/S0378-7206(98)00050-0 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b65 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b144 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b152 article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks – volume: 65 start-page: 465 year: 2017 ident: 10.1016/j.asoc.2020.106384_b77 article-title: A deep learning approach for credit scoring using credit default swaps publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.12.002 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b70 article-title: Cloning strategies from trading records using agent-based reinforcement learning algorithm – volume: 50 start-page: 559 issue: 3 year: 2011 ident: 10.1016/j.asoc.2020.106384_b111 article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.08.006 – ident: 10.1016/j.asoc.2020.106384_b30 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b142 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b115 article-title: Deep learning detecting fraud in credit card transactions – year: 2018 ident: 10.1016/j.asoc.2020.106384_b46 – volume: 5 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.106384_b189 article-title: Big data: Deep learning for financial sentiment analysis publication-title: J. Big Data doi: 10.1186/s40537-017-0111-6 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b174 article-title: Leveraging social media news to predict stock index movement using RNN-boost publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2018.08.003 – volume: 105 start-page: 175 year: 2018 ident: 10.1016/j.asoc.2020.106384_b116 article-title: End-to-end neural network architecture for fraud scoring in card payments publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.08.024 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b52 – volume: E101.D start-page: 901 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106384_b183 article-title: Stock price prediction by deep neural generative model of news articles publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2016IIP0016 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b148 article-title: Predicting the price of bitcoin using machine learning – volume: 29 year: 2011 ident: 10.1016/j.asoc.2020.106384_b160 article-title: Textual analysis of corporate disclosures: A survey of the literature publication-title: J. Account. Lit. – year: 2017 ident: 10.1016/j.asoc.2020.106384_b165 article-title: A new model for stock price movements prediction using deep neural network – volume: 12 start-page: 865 issue: 4 year: 2001 ident: 10.1016/j.asoc.2020.106384_b66 article-title: Financial volatility trading using recurrent neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.935096 – year: 2015 ident: 10.1016/j.asoc.2020.106384_b84 article-title: A hybrid deep belief network approach for financial distress prediction – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106384_b168 article-title: Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network publication-title: IEEE Access – volume: 29 start-page: 111 year: 2007 ident: 10.1016/j.asoc.2020.106384_b4 article-title: Soft computing techniques applied to finance publication-title: Appl. Intell. doi: 10.1007/s10489-007-0051-5 – year: 2010 ident: 10.1016/j.asoc.2020.106384_b17 article-title: Applications of artificial neural networks in financial economics: A survey – year: 2018 ident: 10.1016/j.asoc.2020.106384_b196 article-title: Finding expert authors in financial forum using deep learning methods – volume: 1 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106384_b95 article-title: Neural networks for financial market risk classification publication-title: Front. Signal Process. – volume: 132 start-page: 956 year: 2018 ident: 10.1016/j.asoc.2020.106384_b155 article-title: Real-time sentiment analysis of twitter streaming data for stock prediction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.111 – volume: 31 start-page: 87 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106384_b6 article-title: Machine learning: An applied econometric approach publication-title: J. Econ. Perspect. doi: 10.1257/jep.31.2.87 – volume: 42 start-page: 7684 issue: 21 year: 2015 ident: 10.1016/j.asoc.2020.106384_b15 article-title: Genetic algorithms and darwinian approaches in financial applications: a survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.06.001 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b79 article-title: Credit risk assessment algorithm using deep neural networks with clustering and merging – year: 2017 ident: 10.1016/j.asoc.2020.106384_b198 article-title: Fraud detection in banking using deep reinforcement learning – volume: 14 start-page: 3226 issue: 7 year: 2018 ident: 10.1016/j.asoc.2020.106384_b53 article-title: Replicating a trading strategy by means of LSTM for financial industry applications publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2811377 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b153 – volume: 9 issue: 6 year: 2017 ident: 10.1016/j.asoc.2020.106384_b202 article-title: Deep learning-based corporate performance prediction model considering technical capability publication-title: Sustainability doi: 10.3390/su9060899 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b72 article-title: Deep learning for financial sentiment analysis on finance news providers – volume: 114 start-page: 128 year: 2016 ident: 10.1016/j.asoc.2020.106384_b162 article-title: A survey of the applications of text mining in financial domain publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.10.003 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b188 article-title: Aspect-based financial sentiment analysis with deep neural networks – volume: 33 start-page: 171 year: 2014 ident: 10.1016/j.asoc.2020.106384_b149 article-title: Textual sentiment in finance: A survey of methods and models publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2014.02.006 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b114 article-title: Learning temporal representation of transaction amount for fraudulent transaction recognition using cnn, stacked lstm, and CNN-LSTM – year: 2018 ident: 10.1016/j.asoc.2020.106384_b40 article-title: Financial indices modelling and trading utilizing deep learning techniques: The ATHENS SE FTSE/ASE large Cap use Case – year: 2018 ident: 10.1016/j.asoc.2020.106384_b136 article-title: Threshold-based portfolio: the role of the threshold and its applications publication-title: J. Supercomput. doi: 10.1007/s11227-018-2577-1 – volume: 104 start-page: 38 year: 2017 ident: 10.1016/j.asoc.2020.106384_b167 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.10.001 – volume: 270 start-page: 654 issue: 2 year: 2018 ident: 10.1016/j.asoc.2020.106384_b39 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 – year: 2016 ident: 10.1016/j.asoc.2020.106384_b186 article-title: Measuring the information content of financial news – year: 2017 ident: 10.1016/j.asoc.2020.106384_b41 article-title: A multi-objective deep reinforcement learning approach for stock index future’s intraday trading – volume: 8 start-page: 305 issue: 1 year: 2008 ident: 10.1016/j.asoc.2020.106384_b98 article-title: Soft computing system for bank performance prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.02.001 – start-page: 102 year: 2018 ident: 10.1016/j.asoc.2020.106384_b182 article-title: Stock price movement prediction from financial news with deep learning and knowledge graph embedding – year: 2017 ident: 10.1016/j.asoc.2020.106384_b59 article-title: Forecasting stock prices from the limit order book using convolutional neural networks – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106384_b18 article-title: Artificial neural networks applications in economics and management research: An exploratory literature review – year: 2018 ident: 10.1016/j.asoc.2020.106384_b71 – volume: 70 start-page: 525 year: 2018 ident: 10.1016/j.asoc.2020.106384_b57 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.024 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b200 – volume: 08 start-page: 58 issue: 01 year: 2018 ident: 10.1016/j.asoc.2020.106384_b178 article-title: Predicting equity price with corporate action events using LSTM-RNN publication-title: J. Math. Financ. doi: 10.4236/jmf.2018.81005 – year: 2015 ident: 10.1016/j.asoc.2020.106384_b184 article-title: The impact of structured event embeddings on scalable stock forecasting models – year: 2008 ident: 10.1016/j.asoc.2020.106384_b10 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.asoc.2020.106384_b31 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – year: 2006 ident: 10.1016/j.asoc.2020.106384_b163 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b43 – volume: 175 start-page: 1139 issue: 2 year: 2006 ident: 10.1016/j.asoc.2020.106384_b132 article-title: Recurrent neural network for dynamic portfolio selection publication-title: Appl. Math. Comput. – volume: 42 start-page: 421 issue: 4 year: 2012 ident: 10.1016/j.asoc.2020.106384_b106 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2011.2170420 – start-page: 540 year: 2017 ident: 10.1016/j.asoc.2020.106384_b185 article-title: A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis – year: 2018 ident: 10.1016/j.asoc.2020.106384_b67 article-title: Developing arbitrage strategy in high-frequency pairs trading with filterbank CNN algorithm – year: 2018 ident: 10.1016/j.asoc.2020.106384_b89 article-title: Can banks survive the next financial crisis? An adversarial deep learning model for bank stress testing – year: 2007 ident: 10.1016/j.asoc.2020.106384_b13 article-title: Applications of multi-objective evolutionary algorithms in economics and finance: A survey – year: 2017 ident: 10.1016/j.asoc.2020.106384_b55 article-title: Using deep learning to detect price change indications in financial markets – start-page: 708 year: 2017 ident: 10.1016/j.asoc.2020.106384_b180 article-title: Predicting stock trends based on expert recommendations using GRU/lstm neural networks doi: 10.1007/978-3-319-60438-1_69 – volume: 90 start-page: 106181 year: 2020 ident: 10.1016/j.asoc.2020.106384_b1 article-title: Financial time series forecasting with deep learning : A systematic literature review: 2005-2019 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106181 – year: 2011 ident: 10.1016/j.asoc.2020.106384_b11 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b68 article-title: Ensembles of text and time-series models for automatic generation of financial trading signals from social media content publication-title: J. Intell. Syst. doi: 10.1515/jisys-2017-0567 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b81 article-title: Deep convolutional neural networks versus multilayer perceptron for financial prediction – year: 2017 ident: 10.1016/j.asoc.2020.106384_b128 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b146 article-title: Bitcoin mixing detection using deep autoencoder – year: 2018 ident: 10.1016/j.asoc.2020.106384_b147 – year: 2018 ident: 10.1016/j.asoc.2020.106384_b117 article-title: Ensemble learning for credit card fraud detection – year: 2017 ident: 10.1016/j.asoc.2020.106384_b122 article-title: POSTER: Practical fraud transaction prediction – year: 2015 ident: 10.1016/j.asoc.2020.106384_b86 article-title: Detect & describe: Deep learning of bank stress in the news – year: 2018 ident: 10.1016/j.asoc.2020.106384_b54 article-title: Universal features of price formation in financial markets: perspectives from deep learning publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3141294 – volume: SpecialIssue start-page: 31 issue: SpecialIssue year: 2017 ident: 10.1016/j.asoc.2020.106384_b33 article-title: A deep learning approach for optimization of systematic signal detection in financial trading systems with big data publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.2017SpecialIssue31421 – start-page: 655 year: 2008 ident: 10.1016/j.asoc.2020.106384_b20 article-title: Kernel methods in finance – year: 2017 ident: 10.1016/j.asoc.2020.106384_b172 article-title: Detecting, quantifying and accessing impact of news events on Indian stock indices – volume: 103 start-page: 262 year: 2018 ident: 10.1016/j.asoc.2020.106384_b7 article-title: A survey on fintech publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.10.011 – year: 2013 ident: 10.1016/j.asoc.2020.106384_b127 – start-page: 364 year: 2017 ident: 10.1016/j.asoc.2020.106384_b50 article-title: Relational autoencoder for feature extraction – ident: 10.1016/j.asoc.2020.106384_b49 – volume: 7 start-page: 115 year: 2010 ident: 10.1016/j.asoc.2020.106384_b100 article-title: Credit scoring models using soft computing methods: A survey publication-title: Int. Arab J. Inf. Technol. – year: 2018 ident: 10.1016/j.asoc.2020.106384_b154 – volume: 100 start-page: 234 year: 2018 ident: 10.1016/j.asoc.2020.106384_b118 article-title: Sequence classification for credit-card fraud detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.037 – start-page: 1 year: 2012 ident: 10.1016/j.asoc.2020.106384_b159 article-title: Applications of news analytics in finance: A review – year: 2016 ident: 10.1016/j.asoc.2020.106384_b139 – volume: 19 start-page: 1165 issue: 8 year: 2010 ident: 10.1016/j.asoc.2020.106384_b2 article-title: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0362-z – volume: 162 start-page: 40 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106384_b130 article-title: Deep investment in financial markets using deep learning models publication-title: Int. J. Comput. Appl. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2020.106384_b28 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: 10.1016/j.asoc.2020.106384_b45 article-title: Deep learning for financial time series forecasting in a-trader system – year: 2018 ident: 10.1016/j.asoc.2020.106384_b93 article-title: Deep learning for mortgage risk publication-title: SSRN Electron. J. doi: 10.2139/ssrn.2799443 – volume: 9 start-page: 1456 issue: 6 year: 1998 ident: 10.1016/j.asoc.2020.106384_b63 article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.728395 – year: 2010 ident: 10.1016/j.asoc.2020.106384_b109 article-title: A comprehensive survey of data mining-based accounting-fraud detection research – volume: 259 start-page: 689 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106384_b48 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2016.10.031 – volume: 114 start-page: 473 year: 2017 ident: 10.1016/j.asoc.2020.106384_b51 article-title: A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.09.031 – volume: 64 start-page: 1384 issue: 9 year: 2013 ident: 10.1016/j.asoc.2020.106384_b102 article-title: A literature review on the application of evolutionary computing to credit scoring publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2012.145 – year: 2014 ident: 10.1016/j.asoc.2020.106384_b193 article-title: Identifying top sellers in underground economy using deep learning-based sentiment analysis – year: 2017 ident: 10.1016/j.asoc.2020.106384_b56 article-title: A deep learning based stock trading model with 2-d CNN trend detection – year: 2017 ident: 10.1016/j.asoc.2020.106384_b191 article-title: Extraction of sentences concerning business performance forecast and economic forecast from summaries of financial statements by deep learning – year: 2017 ident: 10.1016/j.asoc.2020.106384_b195 article-title: A preliminary study on deep learning for predicting social insurance payment behavior |
SSID | ssj0016928 |
Score | 2.6661577 |
SecondaryResourceType | review_article |
Snippet | Computational intelligence in finance has been a very popular topic for both academia and financial industry in the last few decades. Numerous studies have... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106384 |
SubjectTerms | Algorithmic trading Computational intelligence Deep learning Finance Financial applications Fraud detection Machine learning Portfolio management Risk assessment |
Title | Deep learning for financial applications : A survey |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106384 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1mJ9nEW6mW-iqiFnoL-5SK1FJbwYu_3d1kUypID55ClhkIX2ZnZ9iZ-RA6VZJykaY0yNzcWZugQMC5oUFMTGZCRVRW3ODf95PeAG6G8bCGOlUvjCur9L6_9OmFt_YrLY9mazIatZ5s5pFCBklk7dSNlXMd7MCclZ9_L8o8SJIV_KpOOHDSvnGmrPHiFgGbI0ZuwRoi_H04LR043S204SNF3C4_ZhvV9HgHbVYsDNhvyl1EL7WeYM_-8IJtEIpNNUYDL99P4wvcxh_z6af-2kOD7tVzpxd4KoRA0jCcBYyrNBKGE2EINSBlnPHQ2L1lwzmVMi1YDIIqRgThMuEMQq0lxKHSECkATvdRffw-1gcIZzwRRBlFpXbU50yETCfEOkUJoGNpGohUGOTSzwl3dBVveVUQ9po73HKHW17i1kBnC51JOSVjpXRcQZv_-te5deMr9A7_qXeE1t1bWbZ3jOqz6Vyf2FBiJpqFrTTRWrvzePfgnte3vf4PWSTIag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9CLb7E-c_AmSzeb7MtbqZatfVxsobclT6lILbUV_Pcm3WypID14zWYgfDuZzJDJ9wHcSUEYTxLipZZ31hQo1GNMEy_EOtW-xDJd3eD3B1E2os_jcFyBVvkWxrZVuthfxPRVtHYjDYdmYzaZNF5M5ZHQlEaB8VNLK7cDNctOFVah1ux0s8H6MiFKVxKrdr5nDdzbmaLNixkQTJkY2AHji_Tv82njzGkfwr5LFlGzWM8RVNT0GA5KIQbk9uUJkEelZsgJQLwik4ciXTJpoM0ravSAmuhzOf9S36cwaj8NW5nn1BA8QXx_4cVMJgHXDHONiaZChCnztdleJqOTSax4HFJOZIw5ZiJiMfWVEjT0paKBpJSRM6hOP6bqHFDKIo6llkQoq34ecz9WETZxUVCqQqHrgEsMcuGowq1ixXte9oS95Ra33OKWF7jV4X5tMyuIMrbODkto81-_OzeRfIvdxT_tbmE3G_Z7ea8z6F7Cnv1SdPFdQXUxX6prk1ks-I3znB8FoMmG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+financial+applications+%3A+A+survey&rft.jtitle=Applied+soft+computing&rft.au=Ozbayoglu%2C+Ahmet+Murat&rft.au=Gudelek%2C+Mehmet+Ugur&rft.au=Sezer%2C+Omer+Berat&rft.date=2020-08-01&rft.issn=1568-4946&rft.volume=93&rft.spage=106384&rft_id=info:doi/10.1016%2Fj.asoc.2020.106384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |