Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition

Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works hav...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 86; p. 105138
Main Authors Jiménez-Guarneros, Magdiel, Fuentes-Pineda, Gibran
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 ± 07.72% and 74.99 ± 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results. •We proposed the MFA-LR framework for cross-subject EEG-based emotion recognition.•MFA-LR performs a fine-grained alignment and an inter-class coarse-grain separation.•We performed an extensive evaluation to demonstrate the robustness of MFA-LR.•Our proposal outperforms state-of-the-art results on two public emotion datasets.•MFA-LR is able to build more effective classifiers on new subjects than existing methods.
AbstractList Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 ± 07.72% and 74.99 ± 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results. •We proposed the MFA-LR framework for cross-subject EEG-based emotion recognition.•MFA-LR performs a fine-grained alignment and an inter-class coarse-grain separation.•We performed an extensive evaluation to demonstrate the robustness of MFA-LR.•Our proposal outperforms state-of-the-art results on two public emotion datasets.•MFA-LR is able to build more effective classifiers on new subjects than existing methods.
ArticleNumber 105138
Author Fuentes-Pineda, Gibran
Jiménez-Guarneros, Magdiel
Author_xml – sequence: 1
  givenname: Magdiel
  orcidid: 0000-0001-9675-7494
  surname: Jiménez-Guarneros
  fullname: Jiménez-Guarneros, Magdiel
  email: mjmnzg@gmail.com
– sequence: 2
  givenname: Gibran
  orcidid: 0000-0002-1964-8208
  surname: Fuentes-Pineda
  fullname: Fuentes-Pineda, Gibran
BookMark eNp9kE1OwzAQhS1UJNrCBVj5Ail2_uxIbFBVClIlNrC2Js64cmjsyk5B3J6kgQ0LVjOamW_03luQmfMOCbnlbMUZL-_aVR2PepWyNBsGBc_kBZlzkZeJ5EzOfntW5VdkEWPLWC4Fz-cEdwjBWbenQIOvT7GnJ2eNxYY2vgPrKDRw7KG33lEToMNPH96p8YHq4GNM4qluUfd0s9kmNcSBw86frwNqv3d27K_JpYFDxJufuiRvj5vX9VOye9k-rx92ic4Y6xNRFtiYVJY8TVE0g3QDYIoChNRVBo0RkKOsmChQ1BUIzrQBLYqa5ThseLYk6fT3rC2gUcdgOwhfijM1BqVaNQalxqDUFNQAyT-QtpPhPoA9_I_eTygOpj4sBhW1RaexsYP7XjXe_od_A1moiFI
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109394
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_1007_s11571_024_10160_7
crossref_primary_10_1016_j_bspc_2024_106953
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_1016_j_bspc_2024_107337
crossref_primary_10_1016_j_jvcir_2025_104415
crossref_primary_10_1016_j_bspc_2025_107511
crossref_primary_10_1016_j_bspc_2024_106323
crossref_primary_10_1109_TAFFC_2024_3357656
crossref_primary_10_1016_j_bspc_2024_106957
crossref_primary_10_1016_j_jneumeth_2024_110276
crossref_primary_10_1109_TCSS_2023_3314508
crossref_primary_10_1016_j_eswa_2023_121986
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1016_j_knosys_2023_111011
Cites_doi 10.1109/TAFFC.2017.2714671
10.1109/NER.2013.6695876
10.1109/CVPR42600.2020.00912
10.1609/aaai.v34i03.5656
10.1016/j.neucom.2018.05.083
10.1016/j.ins.2019.01.025
10.1109/JSEN.2018.2883497
10.1109/THMS.2016.2608931
10.3389/fnins.2021.677106
10.1109/ICCV.2017.301
10.1016/j.patcog.2011.06.019
10.1016/j.bspc.2022.103687
10.3389/fnins.2021.778488
10.1016/j.neucom.2021.02.048
10.1007/s00521-020-05670-4
10.1016/j.eswa.2020.114088
10.1109/ICCV.2019.00814
10.1109/TAFFC.2018.2885474
10.1109/TAMD.2015.2431497
10.1109/TBME.2020.3020381
10.1109/TCDS.2020.2999337
10.1109/MCI.2015.2501545
10.1162/neco.1996.8.3.643
10.3390/s17051014
10.1016/j.compbiomed.2016.10.019
10.1109/IJCNN.2014.6889525
10.1016/j.patcog.2020.107626
10.1109/EMBC46164.2021.9630777
10.1109/TAFFC.2022.3189222
10.1109/ICASSP.2019.8682330
10.1109/ACCESS.2020.2971600
10.3389/fnhum.2021.643386
10.1109/TCDS.2019.2949306
10.1109/JBHI.2020.3025865
10.1109/JPROC.2015.2404941
10.1109/DDCLS.2019.8908839
10.1088/1741-2552/aab2f2
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105138
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105138
S1746809423005712
GrantInformation_xml – fundername: National Council of Science and Technology in Mexico (CONACYT)
  funderid: http://dx.doi.org/10.13039/501100003141
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-765edf286122e7d810faaf55a78c93adf7a4e89075e7b9a710cfac75b04ea4e13
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 01:34:18 EDT 2025
Fri Feb 23 02:37:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Unsupervised domain adaptation
Emotion recognition
Electroencephalogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-765edf286122e7d810faaf55a78c93adf7a4e89075e7b9a710cfac75b04ea4e13
ORCID 0000-0001-9675-7494
0000-0002-1964-8208
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_105138
crossref_citationtrail_10_1016_j_bspc_2023_105138
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Ding, Zhu, Xu, Liu, Yan, Zhang (b21) 2022; 76
Luo, Zhang, Zheng, Lu (b22) 2018
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b49) 2016; 17
Dutta, Tripp, Taylor (b53) 2018
Nguyen, Nguyen, Le, Tran, Phung (b31) 2021
Peng, Liu, Kong, Nie, Lu, Cichocki (b46) 2022
Tarvainen, Valpola (b55) 2017
Wang, Deng (b11) 2018; 312
Jeng, Wei, Jung, Wang (b16) 2021; 25
Jiménez-Guarneros, Gómez-Gil (b54) 2021; 167
Liu, Guo, Hu (b24) 2021
Li, Jin, Zheng, Lu (b48) 2018
T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for eeg emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708.
Wang, Qiu, Ma, He (b45) 2021; 110
Li, Zheng, Cui, Zhang, Zong (b27) 2018
X. Gu, J. Sun, Z. Xu, Spherical space domain adaptation with robust pseudo-label loss, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9101–9110.
Gupta, Chopda, Pachori (b2) 2019; 19
Zheng, Liu, Lu, Lu, Cichocki (b56) 2018
P. Haeusser, T. Frerix, A. Mordvintsev, D. Cremers, Associative Domain Adaptation, in: 2017 IEEE International Conference on Computer Vision, ICCV, (ISSN: 2380-7504) 2017, pp. 2784–2792.
Li, Zheng, Wang, Zong, Cui (b64) 2019
P. Saha, S. Fels, M. Abdul-Mageed, Deep Learning the EEG Manifold for Phonological Categorization from Active Thoughts, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 2762–2766.
S. Sun, J. Zhou, A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces, in: 2014 International Joint Conference on Neural Networks, IJCNN, (ISSN: 2161-4407) 2014, pp. 1746–1753.
R. Shu, H. Bui, H. Narui, S. Ermon, A DIRT-T Approach to Unsupervised Domain Adaptation, in: International Conference on Learning Representations 2018, 2018.
Ioffe, Szegedy (b40) 2015
Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b30) 2020; 13
Zellinger, Moser, Grubinger, Lughofer, Natschlager, Saminger-Platz (b37) 2019; 483
Gu, Sun, Xu (b43) 2022
Ding, Kimura, Fukui, Numao (b26) 2021
Tao, Dan (b34) 2021; 15
Li, Qiu, Shen, Liu, He (b32) 2020; 50
Chai, Wang, Zhao, Liu, Bai, Li (b4) 2016; 79
Peng, Wang, Kong, Nie, Lu, Cichocki (b47) 2022; 13
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b61) 2014; 15
An (b52) 1996; 8
Zhang, Yao, Chen, Wang, Chang, Liu (b3) 2019
Wu (b9) 2017; 47
Ko, Jeon, Jeong, Phyo, Suk (b17) 2021; 15
R. Duan, J. Zhu, B. Lu, Differential entropy feature for EEG-based emotion classification, in: 2013 6th International IEEE/EMBS Conference on Neural Engineering, NER, (ISSN: 1948-3546) 2013, pp. 81–84.
Wang, Nie, Lu (b58) 2011
Özdenizci, Wang, Koike-Akino, Erdoğmuš (b23) 2020; 8
Alarcão, Fonseca (b1) 2019; 10
Chai, Wang, Zhao, Li, Liu, Liu, Bai (b62) 2017; 17
Chen, Li, Jin, Li (b36) 2021
L. Yang, J. Liu, EEG-Based Emotion Recognition Using Temporal Convolutional Network, in: 2019 IEEE 8th Data Driven Control and Learning Systems Conference, DDCLS, 2019, pp. 437–442.
Lotte (b5) 2015; 103
An, Kim, Chikontwe, Park (b15) 2020
Goodfellow, Bengio, Courville (b51) 2016
Li, Zheng, Zong, Cui, Zhang, Zhou (b63) 2018; 12
Phan, Chén, Koch, Lu, McLoughlin, Mertins, De Vos (b14) 2020; 68
Li, Qiu, Du, Wang, He (b25) 2020; 12
S. Xie, Z. Zheng, L. Chen, C. Chen, Learning semantic representations for unsupervised domain adaptation, in: International Conference on Machine Learning, 2018, pp. 5419–5428.
Moreno-Torres, Raeder, Alaiz-Rodríguez, Chawla, Herrera (b10) 2012; 45
Li, Fu, Li, Shi, Zheng (b19) 2021; 447
Jayaram, Alamgir, Altun, Scholkopf, Grosse-Wentrup (b8) 2016; 11
Bethge, Hallgarten, Grosse-Puppendahl, Kari, Mikut, Schmidt, Özdenizci (b13) 2022
P. Bashivan, I. Rish, M. Yeasin, N. Codella, Learning representations from EEG with deep recurrent-convolutional neural networks, in: International Conference on Learning Representations (2016), 2016.
Zhong, Wang, Miao (b18) 2020
Lew, Wang, Shylouskaya, Zhang, Lim, Ang, Tan (b28) 2020
K. Saito, D. Kim, S. Sclaroff, T. Darrell, K. Saenko, Semi-supervised domain adaptation via minimax entropy, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8050–8058.
Wang, Zhang, Xu, Ping, Chu (b33) 2021; 33
Y. Ye, X. Zhu, Y. Li, T. Pan, W. He, Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society, EMBC, 2021, pp. 1140–1144.
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b6) 2018; 15
Zheng, Lu (b44) 2015; 7
Chen, Jin, Li, Fan, Li, He (b35) 2021; 15
Chen (10.1016/j.bspc.2023.105138_b35) 2021; 15
Wang (10.1016/j.bspc.2023.105138_b33) 2021; 33
Alarcão (10.1016/j.bspc.2023.105138_b1) 2019; 10
Zheng (10.1016/j.bspc.2023.105138_b56) 2018
Lotte (10.1016/j.bspc.2023.105138_b6) 2018; 15
Wang (10.1016/j.bspc.2023.105138_b58) 2011
Özdenizci (10.1016/j.bspc.2023.105138_b23) 2020; 8
Wang (10.1016/j.bspc.2023.105138_b45) 2021; 110
10.1016/j.bspc.2023.105138_b57
10.1016/j.bspc.2023.105138_b12
Li (10.1016/j.bspc.2023.105138_b63) 2018; 12
Li (10.1016/j.bspc.2023.105138_b19) 2021; 447
10.1016/j.bspc.2023.105138_b59
10.1016/j.bspc.2023.105138_b50
Tao (10.1016/j.bspc.2023.105138_b34) 2021; 15
Chen (10.1016/j.bspc.2023.105138_b36) 2021
Zhang (10.1016/j.bspc.2023.105138_b3) 2019
Tarvainen (10.1016/j.bspc.2023.105138_b55) 2017
Jeng (10.1016/j.bspc.2023.105138_b16) 2021; 25
Liu (10.1016/j.bspc.2023.105138_b24) 2021
Li (10.1016/j.bspc.2023.105138_b64) 2019
Dutta (10.1016/j.bspc.2023.105138_b53) 2018
Wang (10.1016/j.bspc.2023.105138_b11) 2018; 312
Jiménez-Guarneros (10.1016/j.bspc.2023.105138_b54) 2021; 167
Bethge (10.1016/j.bspc.2023.105138_b13) 2022
Zellinger (10.1016/j.bspc.2023.105138_b37) 2019; 483
Li (10.1016/j.bspc.2023.105138_b48) 2018
Chai (10.1016/j.bspc.2023.105138_b62) 2017; 17
Luo (10.1016/j.bspc.2023.105138_b22) 2018
10.1016/j.bspc.2023.105138_b42
Gu (10.1016/j.bspc.2023.105138_b43) 2022
10.1016/j.bspc.2023.105138_b41
Nguyen (10.1016/j.bspc.2023.105138_b31) 2021
Peng (10.1016/j.bspc.2023.105138_b47) 2022; 13
An (10.1016/j.bspc.2023.105138_b52) 1996; 8
Zheng (10.1016/j.bspc.2023.105138_b44) 2015; 7
Goodfellow (10.1016/j.bspc.2023.105138_b51) 2016
Zhu (10.1016/j.bspc.2023.105138_b21) 2022; 76
Li (10.1016/j.bspc.2023.105138_b25) 2020; 12
Ding (10.1016/j.bspc.2023.105138_b26) 2021
Jayaram (10.1016/j.bspc.2023.105138_b8) 2016; 11
Gupta (10.1016/j.bspc.2023.105138_b2) 2019; 19
10.1016/j.bspc.2023.105138_b39
Li (10.1016/j.bspc.2023.105138_b32) 2020; 50
10.1016/j.bspc.2023.105138_b38
Zhong (10.1016/j.bspc.2023.105138_b18) 2020
Moreno-Torres (10.1016/j.bspc.2023.105138_b10) 2012; 45
10.1016/j.bspc.2023.105138_b7
Li (10.1016/j.bspc.2023.105138_b27) 2018
Ko (10.1016/j.bspc.2023.105138_b17) 2021; 15
Ganin (10.1016/j.bspc.2023.105138_b49) 2016; 17
Peng (10.1016/j.bspc.2023.105138_b46) 2022
Li (10.1016/j.bspc.2023.105138_b30) 2020; 13
Srivastava (10.1016/j.bspc.2023.105138_b61) 2014; 15
An (10.1016/j.bspc.2023.105138_b15) 2020
Ioffe (10.1016/j.bspc.2023.105138_b40) 2015
Wu (10.1016/j.bspc.2023.105138_b9) 2017; 47
10.1016/j.bspc.2023.105138_b29
Phan (10.1016/j.bspc.2023.105138_b14) 2020; 68
Lotte (10.1016/j.bspc.2023.105138_b5) 2015; 103
10.1016/j.bspc.2023.105138_b60
Lew (10.1016/j.bspc.2023.105138_b28) 2020
Chai (10.1016/j.bspc.2023.105138_b4) 2016; 79
10.1016/j.bspc.2023.105138_b20
References_xml – reference: X. Gu, J. Sun, Z. Xu, Spherical space domain adaptation with robust pseudo-label loss, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9101–9110.
– start-page: 6094
  year: 2021
  end-page: 6097
  ident: b36
  article-title: MEERNet: Multi-source EEG-based emotion recognition network for generalization across subjects and sessions
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society
– start-page: 9332
  year: 2021
  end-page: 9343
  ident: b31
  article-title: STEM: An approach to multi-source domain adaptation with guarantees
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b44
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Autonomous Mental Dev.
– reference: P. Haeusser, T. Frerix, A. Mordvintsev, D. Cremers, Associative Domain Adaptation, in: 2017 IEEE International Conference on Computer Vision, ICCV, (ISSN: 2380-7504) 2017, pp. 2784–2792.
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b11
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– volume: 13
  start-page: 1941
  year: 2022
  end-page: 1958
  ident: b47
  article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 1
  year: 2019
  ident: b64
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 483
  start-page: 174
  year: 2019
  end-page: 191
  ident: b37
  article-title: Robust unsupervised domain adaptation for neural networks via moment alignment
  publication-title: Inform. Sci.
– start-page: 1195
  year: 2017
  end-page: 1204
  ident: b55
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– volume: 25
  start-page: 1915
  year: 2021
  end-page: 1925
  ident: b16
  article-title: Low-dimensional subject representation-based transfer learning in EEG decoding
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 1
  year: 2021
  end-page: 5
  ident: b24
  article-title: EEG-based emotion classification using joint adaptation networks
  publication-title: 2021 IEEE International Symposium on Circuits and Systems
– start-page: 1561
  year: 2018
  end-page: 1567
  ident: b27
  article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18
– volume: 50
  start-page: 3281
  year: 2020
  end-page: 3293
  ident: b32
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 167
  year: 2021
  ident: b54
  article-title: A study of the effects of negative transfer on deep unsupervised domain adaptation methods
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 550
  year: 2017
  end-page: 563
  ident: b9
  article-title: Online and offline domain adaptation for reducing BCI calibration effort
  publication-title: IEEE Trans. Hum.-Mach. Syst.
– volume: 17
  year: 2017
  ident: b62
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition
  publication-title: Sensors
– start-page: 1
  year: 2018
  end-page: 13
  ident: b56
  article-title: EmotionMeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 643
  year: 1996
  end-page: 674
  ident: b52
  article-title: The effects of adding noise during backpropagation training on a generalization performance
  publication-title: Neural Comput.
– reference: R. Shu, H. Bui, H. Narui, S. Ermon, A DIRT-T Approach to Unsupervised Domain Adaptation, in: International Conference on Learning Representations 2018, 2018.
– volume: 17
  year: 2016
  ident: b49
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: 800
  year: 2016
  ident: b51
  article-title: Deep Learning Book, Vol. 521
– volume: 76
  year: 2022
  ident: b21
  article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 27074
  year: 2020
  end-page: 27085
  ident: b23
  article-title: Learning invariant representations from EEG via adversarial inference
  publication-title: IEEE Access
– volume: 11
  start-page: 20
  year: 2016
  end-page: 31
  ident: b8
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
– volume: 447
  start-page: 92
  year: 2021
  end-page: 101
  ident: b19
  article-title: A novel transferability attention neural network model for EEG emotion recognition
  publication-title: Neurocomputing
– start-page: 375
  year: 2018
  end-page: 382
  ident: b53
  article-title: Convolutional neural networks regularized by correlated noise
  publication-title: 2018 15th Conference on Computer and Robot Vision
– volume: 12
  start-page: 494
  year: 2018
  end-page: 504
  ident: b63
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– reference: L. Yang, J. Liu, EEG-Based Emotion Recognition Using Temporal Convolutional Network, in: 2019 IEEE 8th Data Driven Control and Learning Systems Conference, DDCLS, 2019, pp. 437–442.
– reference: T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for eeg emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708.
– reference: R. Duan, J. Zhu, B. Lu, Differential entropy feature for EEG-based emotion classification, in: 2013 6th International IEEE/EMBS Conference on Neural Engineering, NER, (ISSN: 1948-3546) 2013, pp. 81–84.
– reference: Y. Ye, X. Zhu, Y. Li, T. Pan, W. He, Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society, EMBC, 2021, pp. 1140–1144.
– reference: K. Saito, D. Kim, S. Sclaroff, T. Darrell, K. Saenko, Semi-supervised domain adaptation via minimax entropy, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8050–8058.
– start-page: 1
  year: 2021
  end-page: 8
  ident: b26
  article-title: EEG emotion enhancement using task-specific domain adversarial neural network
  publication-title: 2021 International Joint Conference on Neural Networks
– start-page: 116
  year: 2020
  end-page: 119
  ident: b28
  article-title: EEG-based emotion recognition using spatial-temporal representation via bi-GRU
  publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society
– start-page: 1
  year: 2020
  end-page: 12
  ident: b18
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 45
  start-page: 521
  year: 2012
  end-page: 530
  ident: b10
  article-title: A unifying view on dataset shift in classification
  publication-title: Pattern Recognit.
– reference: S. Sun, J. Zhou, A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces, in: 2014 International Joint Conference on Neural Networks, IJCNN, (ISSN: 2161-4407) 2014, pp. 1746–1753.
– volume: 12
  start-page: 344
  year: 2020
  end-page: 353
  ident: b25
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 10
  start-page: 374
  year: 2019
  end-page: 393
  ident: b1
  article-title: Emotions recognition using EEG signals: A survey
  publication-title: IEEE Trans. Affect. Comput.
– volume: 15
  year: 2018
  ident: b6
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b61
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 448
  year: 2015
  end-page: 456
  ident: b40
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Vol. 37
– start-page: 1
  year: 2022
  ident: b43
  article-title: Unsupervised and semi-supervised robust spherical space domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2022
  end-page: 12
  ident: b46
  article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inform.
– reference: P. Bashivan, I. Rish, M. Yeasin, N. Codella, Learning representations from EEG with deep recurrent-convolutional neural networks, in: International Conference on Learning Representations (2016), 2016.
– volume: 13
  start-page: 354
  year: 2020
  end-page: 367
  ident: b30
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 275
  year: 2018
  end-page: 286
  ident: b22
  article-title: WGAN domain adaptation for EEG-based emotion recognition
  publication-title: Neural Information Processing
– volume: 19
  start-page: 2266
  year: 2019
  end-page: 2274
  ident: b2
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sens. J.
– start-page: 403
  year: 2018
  end-page: 413
  ident: b48
  article-title: Cross-subject emotion recognition using deep adaptation networks
  publication-title: Neural Information Processing
– volume: 79
  start-page: 205
  year: 2016
  end-page: 214
  ident: b4
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 68
  start-page: 1787
  year: 2020
  end-page: 1798
  ident: b14
  article-title: Towards more accurate automatic sleep staging via deep transfer learning
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  year: 2021
  ident: b35
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 103
  start-page: 871
  year: 2015
  end-page: 890
  ident: b5
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain x2013;computer interfaces
  publication-title: Proc. IEEE
– reference: S. Xie, Z. Zheng, L. Chen, C. Chen, Learning semantic representations for unsupervised domain adaptation, in: International Conference on Machine Learning, 2018, pp. 5419–5428.
– start-page: 734
  year: 2011
  end-page: 743
  ident: b58
  article-title: EEG-based emotion recognition using frequency domain features and support vector machines
  publication-title: International Conference on Neural Information Processing
– start-page: 10933
  year: 2020
  end-page: 10938
  ident: b15
  article-title: Few-shot relation learning with attention for EEG-based motor imagery classification
  publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 110
  year: 2021
  ident: b45
  article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition
  publication-title: Pattern Recognit.
– volume: 15
  start-page: 401
  year: 2021
  ident: b34
  article-title: Multi-source co-adaptation for EEG-based emotion recognition by mining correlation information
  publication-title: Front. Neurosci.
– reference: P. Saha, S. Fels, M. Abdul-Mageed, Deep Learning the EEG Manifold for Phonological Categorization from Active Thoughts, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 2762–2766.
– volume: 33
  start-page: 9061
  year: 2021
  end-page: 9073
  ident: b33
  article-title: A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2019
  end-page: 12
  ident: b3
  article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition
  publication-title: IEEE Trans. Cybern.
– start-page: 1236
  year: 2022
  end-page: 1240
  ident: b13
  article-title: Domain-invariant representation learning from EEG with private encoders
  publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 15
  year: 2021
  ident: b17
  article-title: A survey on deep learning-based short/zero-calibration approaches for EEG-based brain–computer interfaces
  publication-title: Front. Hum. Neurosci.
– volume: 10
  start-page: 374
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2023.105138_b1
  article-title: Emotions recognition using EEG signals: A survey
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2714671
– ident: 10.1016/j.bspc.2023.105138_b57
  doi: 10.1109/NER.2013.6695876
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b24
  article-title: EEG-based emotion classification using joint adaptation networks
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: 10.1016/j.bspc.2023.105138_b61
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b26
  article-title: EEG emotion enhancement using task-specific domain adversarial neural network
– start-page: 275
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b22
  article-title: WGAN domain adaptation for EEG-based emotion recognition
– ident: 10.1016/j.bspc.2023.105138_b42
  doi: 10.1109/CVPR42600.2020.00912
– start-page: 1195
  year: 2017
  ident: 10.1016/j.bspc.2023.105138_b55
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– ident: 10.1016/j.bspc.2023.105138_b29
  doi: 10.1609/aaai.v34i03.5656
– start-page: 734
  year: 2011
  ident: 10.1016/j.bspc.2023.105138_b58
  article-title: EEG-based emotion recognition using frequency domain features and support vector machines
– start-page: 10933
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b15
  article-title: Few-shot relation learning with attention for EEG-based motor imagery classification
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b11
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105138_b46
  article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.105138_b3
  article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition
  publication-title: IEEE Trans. Cybern.
– volume: 483
  start-page: 174
  year: 2019
  ident: 10.1016/j.bspc.2023.105138_b37
  article-title: Robust unsupervised domain adaptation for neural networks via moment alignment
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.01.025
– ident: 10.1016/j.bspc.2023.105138_b39
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.105138_b64
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 19
  start-page: 2266
  issue: 6
  year: 2019
  ident: 10.1016/j.bspc.2023.105138_b2
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2883497
– volume: 47
  start-page: 550
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2023.105138_b9
  article-title: Online and offline domain adaptation for reducing BCI calibration effort
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2016.2608931
– volume: 15
  start-page: 401
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b34
  article-title: Multi-source co-adaptation for EEG-based emotion recognition by mining correlation information
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.677106
– start-page: 116
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b28
  article-title: EEG-based emotion recognition using spatial-temporal representation via bi-GRU
– start-page: 1561
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b27
  article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition
– ident: 10.1016/j.bspc.2023.105138_b50
  doi: 10.1109/ICCV.2017.301
– volume: 45
  start-page: 521
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2023.105138_b10
  article-title: A unifying view on dataset shift in classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.06.019
– volume: 76
  year: 2022
  ident: 10.1016/j.bspc.2023.105138_b21
  article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103687
– volume: 15
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b35
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.778488
– volume: 447
  start-page: 92
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b19
  article-title: A novel transferability attention neural network model for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.048
– start-page: 448
  year: 2015
  ident: 10.1016/j.bspc.2023.105138_b40
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 33
  start-page: 9061
  issue: 15
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b33
  article-title: A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05670-4
– start-page: 800
  year: 2016
  ident: 10.1016/j.bspc.2023.105138_b51
– volume: 167
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b54
  article-title: A study of the effects of negative transfer on deep unsupervised domain adaptation methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114088
– ident: 10.1016/j.bspc.2023.105138_b41
  doi: 10.1109/ICCV.2019.00814
– volume: 12
  start-page: 494
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b63
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2885474
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2023.105138_b44
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Autonomous Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 68
  start-page: 1787
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b14
  article-title: Towards more accurate automatic sleep staging via deep transfer learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3020381
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b18
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 13
  start-page: 354
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b30
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2999337
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105138_b43
  article-title: Unsupervised and semi-supervised robust spherical space domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 20
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.105138_b8
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2501545
– volume: 8
  start-page: 643
  issue: 3
  year: 1996
  ident: 10.1016/j.bspc.2023.105138_b52
  article-title: The effects of adding noise during backpropagation training on a generalization performance
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.3.643
– ident: 10.1016/j.bspc.2023.105138_b60
– volume: 17
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2023.105138_b62
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s17051014
– start-page: 403
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b48
  article-title: Cross-subject emotion recognition using deep adaptation networks
– volume: 79
  start-page: 205
  year: 2016
  ident: 10.1016/j.bspc.2023.105138_b4
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.019
– ident: 10.1016/j.bspc.2023.105138_b12
  doi: 10.1109/IJCNN.2014.6889525
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b56
  article-title: EmotionMeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– start-page: 6094
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b36
  article-title: MEERNet: Multi-source EEG-based emotion recognition network for generalization across subjects and sessions
– volume: 110
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b45
  article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107626
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.105138_b49
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: 375
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b53
  article-title: Convolutional neural networks regularized by correlated noise
– ident: 10.1016/j.bspc.2023.105138_b20
  doi: 10.1109/EMBC46164.2021.9630777
– volume: 13
  start-page: 1941
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2023.105138_b47
  article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3189222
– ident: 10.1016/j.bspc.2023.105138_b38
– ident: 10.1016/j.bspc.2023.105138_b7
  doi: 10.1109/ICASSP.2019.8682330
– volume: 8
  start-page: 27074
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b23
  article-title: Learning invariant representations from EEG via adversarial inference
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971600
– volume: 15
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b17
  article-title: A survey on deep learning-based short/zero-calibration approaches for EEG-based brain–computer interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.643386
– volume: 12
  start-page: 344
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b25
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2949306
– volume: 25
  start-page: 1915
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b16
  article-title: Low-dimensional subject representation-based transfer learning in EEG decoding
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3025865
– start-page: 1236
  year: 2022
  ident: 10.1016/j.bspc.2023.105138_b13
  article-title: Domain-invariant representation learning from EEG with private encoders
– volume: 50
  start-page: 3281
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2023.105138_b32
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– start-page: 9332
  year: 2021
  ident: 10.1016/j.bspc.2023.105138_b31
  article-title: STEM: An approach to multi-source domain adaptation with guarantees
– volume: 103
  start-page: 871
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2023.105138_b5
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain x2013;computer interfaces
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2404941
– ident: 10.1016/j.bspc.2023.105138_b59
  doi: 10.1109/DDCLS.2019.8908839
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2023.105138_b6
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
SSID ssj0048714
Score 2.4825134
Snippet Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105138
SubjectTerms Deep learning
Electroencephalogram
Emotion recognition
Unsupervised domain adaptation
Title Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
URI https://dx.doi.org/10.1016/j.bspc.2023.105138
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdM8nDgZq6qlgOgClbpFduygIkiiNln57ZxjpyoS6sAY5yxZZ-vuu-Tzdwjd-jotCiqIk0pGqAxdEgsWE64UZGsBpU8jPP8yC6dz-rQIFh00au_CaFqljf0mpjfR2o4MrDcH5XI5eAUsHUZQnXhacZ01nYYpZfqU339vaB6Axxt9b21MtLW9OGM4XmJdahlDz9ftbl19R-Wv5LSVcCZH6NAiRTw0izlGHZWfoIMt_cBTpKw66jvmeFWIel3hOl9mgCqxLL6g5sdc8tL8bMdZS8PCgFNxswCyroX-DoPH4wei85nEyrT1wRtiUZGfoflk_DaaEts3gaTgioqwMFAy8yIAL55iMnKdjPMsCDiL0tjnMmOcqgiq4kAxEXPAGGnGUxYIhyp44_rnqJsXubpA2INh5YeQ6XxGY0fwmCmoyKAK8VUYCreH3NZhSWpFxXVvi8-kZY99JNrJiXZyYpzcQ3ebOaWR1NhpHbT7kPw6GAnE_B3zLv857wrt6ydDI7tG3WpVqxvAHZXoNwerj_aGj8_T2Q9dINcL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbMs3byYiqlgJtF1qpm2XHDiqCJGqTld_OOXGqIqEOrH5I1sW5-y757juE7lwdFoUniBVLSjwZ2CQSNCJcKYjWAlKfSnh-PAmGM-9l7s9bqNfUwmhapfH9tU-vvLUZ6RprdvPFovsGWDoIITtxtOI61Z2Gdzx4fXUbg4fvNc8DAHkl8K1XE73cVM7UJC-xyrWOoePqfre2LlL5KzptRJzBITowUBE_1qc5Qi2VHqP9DQHBE6SMPOo75niZiXJV4DJdJAArscy-IOnHXPK8_tuOk4aHhQGo4uoAZFUK_SEG9_tPRAc0iVXd1wevmUVZeopmg_60NySmcQKJwRYFoYGvZOKEgF4cRWVoWwnnie9zGsaRy2VCuadCSIt9RUXEAWTECY-pLyxPwYztnqF2mqXqHGEHhpUbQKhzqRdZgkdUQUoGaYirgkDYHWQ3BmOxURXXzS0-WUMf-2DayEwbmdVG7qD79Z681tTYutpvngP7dTMYOP0t-y7-ue8W7Q6n4xEbPU9eL9Genqk5ZVeoXSxLdQ0gpBA31SX7AWuK2Jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+robust+unified+domain+adaptation+framework+for+cross-subject+EEG-based+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Jim%C3%A9nez-Guarneros%2C+Magdiel&rft.au=Fuentes-Pineda%2C+Gibran&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.105138&rft.externalDocID=S1746809423005712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon