Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works hav...
Saved in:
Published in | Biomedical signal processing and control Vol. 86; p. 105138 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 ± 07.72% and 74.99 ± 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results.
•We proposed the MFA-LR framework for cross-subject EEG-based emotion recognition.•MFA-LR performs a fine-grained alignment and an inter-class coarse-grain separation.•We performed an extensive evaluation to demonstrate the robustness of MFA-LR.•Our proposal outperforms state-of-the-art results on two public emotion datasets.•MFA-LR is able to build more effective classifiers on new subjects than existing methods. |
---|---|
AbstractList | Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 ± 07.72% and 74.99 ± 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results.
•We proposed the MFA-LR framework for cross-subject EEG-based emotion recognition.•MFA-LR performs a fine-grained alignment and an inter-class coarse-grain separation.•We performed an extensive evaluation to demonstrate the robustness of MFA-LR.•Our proposal outperforms state-of-the-art results on two public emotion datasets.•MFA-LR is able to build more effective classifiers on new subjects than existing methods. |
ArticleNumber | 105138 |
Author | Fuentes-Pineda, Gibran Jiménez-Guarneros, Magdiel |
Author_xml | – sequence: 1 givenname: Magdiel orcidid: 0000-0001-9675-7494 surname: Jiménez-Guarneros fullname: Jiménez-Guarneros, Magdiel email: mjmnzg@gmail.com – sequence: 2 givenname: Gibran orcidid: 0000-0002-1964-8208 surname: Fuentes-Pineda fullname: Fuentes-Pineda, Gibran |
BookMark | eNp9kE1OwzAQhS1UJNrCBVj5Ail2_uxIbFBVClIlNrC2Js64cmjsyk5B3J6kgQ0LVjOamW_03luQmfMOCbnlbMUZL-_aVR2PepWyNBsGBc_kBZlzkZeJ5EzOfntW5VdkEWPLWC4Fz-cEdwjBWbenQIOvT7GnJ2eNxYY2vgPrKDRw7KG33lEToMNPH96p8YHq4GNM4qluUfd0s9kmNcSBw86frwNqv3d27K_JpYFDxJufuiRvj5vX9VOye9k-rx92ic4Y6xNRFtiYVJY8TVE0g3QDYIoChNRVBo0RkKOsmChQ1BUIzrQBLYqa5ThseLYk6fT3rC2gUcdgOwhfijM1BqVaNQalxqDUFNQAyT-QtpPhPoA9_I_eTygOpj4sBhW1RaexsYP7XjXe_od_A1moiFI |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109394 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_1007_s11571_024_10160_7 crossref_primary_10_1016_j_bspc_2024_106953 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1016_j_bspc_2024_107337 crossref_primary_10_1016_j_jvcir_2025_104415 crossref_primary_10_1016_j_bspc_2025_107511 crossref_primary_10_1016_j_bspc_2024_106323 crossref_primary_10_1109_TAFFC_2024_3357656 crossref_primary_10_1016_j_bspc_2024_106957 crossref_primary_10_1016_j_jneumeth_2024_110276 crossref_primary_10_1109_TCSS_2023_3314508 crossref_primary_10_1016_j_eswa_2023_121986 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_knosys_2023_111011 |
Cites_doi | 10.1109/TAFFC.2017.2714671 10.1109/NER.2013.6695876 10.1109/CVPR42600.2020.00912 10.1609/aaai.v34i03.5656 10.1016/j.neucom.2018.05.083 10.1016/j.ins.2019.01.025 10.1109/JSEN.2018.2883497 10.1109/THMS.2016.2608931 10.3389/fnins.2021.677106 10.1109/ICCV.2017.301 10.1016/j.patcog.2011.06.019 10.1016/j.bspc.2022.103687 10.3389/fnins.2021.778488 10.1016/j.neucom.2021.02.048 10.1007/s00521-020-05670-4 10.1016/j.eswa.2020.114088 10.1109/ICCV.2019.00814 10.1109/TAFFC.2018.2885474 10.1109/TAMD.2015.2431497 10.1109/TBME.2020.3020381 10.1109/TCDS.2020.2999337 10.1109/MCI.2015.2501545 10.1162/neco.1996.8.3.643 10.3390/s17051014 10.1016/j.compbiomed.2016.10.019 10.1109/IJCNN.2014.6889525 10.1016/j.patcog.2020.107626 10.1109/EMBC46164.2021.9630777 10.1109/TAFFC.2022.3189222 10.1109/ICASSP.2019.8682330 10.1109/ACCESS.2020.2971600 10.3389/fnhum.2021.643386 10.1109/TCDS.2019.2949306 10.1109/JBHI.2020.3025865 10.1109/JPROC.2015.2404941 10.1109/DDCLS.2019.8908839 10.1088/1741-2552/aab2f2 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.105138 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2023_105138 S1746809423005712 |
GrantInformation_xml | – fundername: National Council of Science and Technology in Mexico (CONACYT) funderid: http://dx.doi.org/10.13039/501100003141 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-765edf286122e7d810faaf55a78c93adf7a4e89075e7b9a710cfac75b04ea4e13 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 01:34:18 EDT 2025 Fri Feb 23 02:37:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Unsupervised domain adaptation Emotion recognition Electroencephalogram |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-765edf286122e7d810faaf55a78c93adf7a4e89075e7b9a710cfac75b04ea4e13 |
ORCID | 0000-0001-9675-7494 0000-0002-1964-8208 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2023_105138 crossref_citationtrail_10_1016_j_bspc_2023_105138 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhu, Ding, Zhu, Xu, Liu, Yan, Zhang (b21) 2022; 76 Luo, Zhang, Zheng, Lu (b22) 2018 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b49) 2016; 17 Dutta, Tripp, Taylor (b53) 2018 Nguyen, Nguyen, Le, Tran, Phung (b31) 2021 Peng, Liu, Kong, Nie, Lu, Cichocki (b46) 2022 Tarvainen, Valpola (b55) 2017 Wang, Deng (b11) 2018; 312 Jeng, Wei, Jung, Wang (b16) 2021; 25 Jiménez-Guarneros, Gómez-Gil (b54) 2021; 167 Liu, Guo, Hu (b24) 2021 Li, Jin, Zheng, Lu (b48) 2018 T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for eeg emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708. Wang, Qiu, Ma, He (b45) 2021; 110 Li, Zheng, Cui, Zhang, Zong (b27) 2018 X. Gu, J. Sun, Z. Xu, Spherical space domain adaptation with robust pseudo-label loss, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9101–9110. Gupta, Chopda, Pachori (b2) 2019; 19 Zheng, Liu, Lu, Lu, Cichocki (b56) 2018 P. Haeusser, T. Frerix, A. Mordvintsev, D. Cremers, Associative Domain Adaptation, in: 2017 IEEE International Conference on Computer Vision, ICCV, (ISSN: 2380-7504) 2017, pp. 2784–2792. Li, Zheng, Wang, Zong, Cui (b64) 2019 P. Saha, S. Fels, M. Abdul-Mageed, Deep Learning the EEG Manifold for Phonological Categorization from Active Thoughts, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 2762–2766. S. Sun, J. Zhou, A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces, in: 2014 International Joint Conference on Neural Networks, IJCNN, (ISSN: 2161-4407) 2014, pp. 1746–1753. R. Shu, H. Bui, H. Narui, S. Ermon, A DIRT-T Approach to Unsupervised Domain Adaptation, in: International Conference on Learning Representations 2018, 2018. Ioffe, Szegedy (b40) 2015 Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b30) 2020; 13 Zellinger, Moser, Grubinger, Lughofer, Natschlager, Saminger-Platz (b37) 2019; 483 Gu, Sun, Xu (b43) 2022 Ding, Kimura, Fukui, Numao (b26) 2021 Tao, Dan (b34) 2021; 15 Li, Qiu, Shen, Liu, He (b32) 2020; 50 Chai, Wang, Zhao, Liu, Bai, Li (b4) 2016; 79 Peng, Wang, Kong, Nie, Lu, Cichocki (b47) 2022; 13 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b61) 2014; 15 An (b52) 1996; 8 Zhang, Yao, Chen, Wang, Chang, Liu (b3) 2019 Wu (b9) 2017; 47 Ko, Jeon, Jeong, Phyo, Suk (b17) 2021; 15 R. Duan, J. Zhu, B. Lu, Differential entropy feature for EEG-based emotion classification, in: 2013 6th International IEEE/EMBS Conference on Neural Engineering, NER, (ISSN: 1948-3546) 2013, pp. 81–84. Wang, Nie, Lu (b58) 2011 Özdenizci, Wang, Koike-Akino, Erdoğmuš (b23) 2020; 8 Alarcão, Fonseca (b1) 2019; 10 Chai, Wang, Zhao, Li, Liu, Liu, Bai (b62) 2017; 17 Chen, Li, Jin, Li (b36) 2021 L. Yang, J. Liu, EEG-Based Emotion Recognition Using Temporal Convolutional Network, in: 2019 IEEE 8th Data Driven Control and Learning Systems Conference, DDCLS, 2019, pp. 437–442. Lotte (b5) 2015; 103 An, Kim, Chikontwe, Park (b15) 2020 Goodfellow, Bengio, Courville (b51) 2016 Li, Zheng, Zong, Cui, Zhang, Zhou (b63) 2018; 12 Phan, Chén, Koch, Lu, McLoughlin, Mertins, De Vos (b14) 2020; 68 Li, Qiu, Du, Wang, He (b25) 2020; 12 S. Xie, Z. Zheng, L. Chen, C. Chen, Learning semantic representations for unsupervised domain adaptation, in: International Conference on Machine Learning, 2018, pp. 5419–5428. Moreno-Torres, Raeder, Alaiz-Rodríguez, Chawla, Herrera (b10) 2012; 45 Li, Fu, Li, Shi, Zheng (b19) 2021; 447 Jayaram, Alamgir, Altun, Scholkopf, Grosse-Wentrup (b8) 2016; 11 Bethge, Hallgarten, Grosse-Puppendahl, Kari, Mikut, Schmidt, Özdenizci (b13) 2022 P. Bashivan, I. Rish, M. Yeasin, N. Codella, Learning representations from EEG with deep recurrent-convolutional neural networks, in: International Conference on Learning Representations (2016), 2016. Zhong, Wang, Miao (b18) 2020 Lew, Wang, Shylouskaya, Zhang, Lim, Ang, Tan (b28) 2020 K. Saito, D. Kim, S. Sclaroff, T. Darrell, K. Saenko, Semi-supervised domain adaptation via minimax entropy, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8050–8058. Wang, Zhang, Xu, Ping, Chu (b33) 2021; 33 Y. Ye, X. Zhu, Y. Li, T. Pan, W. He, Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society, EMBC, 2021, pp. 1140–1144. Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b6) 2018; 15 Zheng, Lu (b44) 2015; 7 Chen, Jin, Li, Fan, Li, He (b35) 2021; 15 Chen (10.1016/j.bspc.2023.105138_b35) 2021; 15 Wang (10.1016/j.bspc.2023.105138_b33) 2021; 33 Alarcão (10.1016/j.bspc.2023.105138_b1) 2019; 10 Zheng (10.1016/j.bspc.2023.105138_b56) 2018 Lotte (10.1016/j.bspc.2023.105138_b6) 2018; 15 Wang (10.1016/j.bspc.2023.105138_b58) 2011 Özdenizci (10.1016/j.bspc.2023.105138_b23) 2020; 8 Wang (10.1016/j.bspc.2023.105138_b45) 2021; 110 10.1016/j.bspc.2023.105138_b57 10.1016/j.bspc.2023.105138_b12 Li (10.1016/j.bspc.2023.105138_b63) 2018; 12 Li (10.1016/j.bspc.2023.105138_b19) 2021; 447 10.1016/j.bspc.2023.105138_b59 10.1016/j.bspc.2023.105138_b50 Tao (10.1016/j.bspc.2023.105138_b34) 2021; 15 Chen (10.1016/j.bspc.2023.105138_b36) 2021 Zhang (10.1016/j.bspc.2023.105138_b3) 2019 Tarvainen (10.1016/j.bspc.2023.105138_b55) 2017 Jeng (10.1016/j.bspc.2023.105138_b16) 2021; 25 Liu (10.1016/j.bspc.2023.105138_b24) 2021 Li (10.1016/j.bspc.2023.105138_b64) 2019 Dutta (10.1016/j.bspc.2023.105138_b53) 2018 Wang (10.1016/j.bspc.2023.105138_b11) 2018; 312 Jiménez-Guarneros (10.1016/j.bspc.2023.105138_b54) 2021; 167 Bethge (10.1016/j.bspc.2023.105138_b13) 2022 Zellinger (10.1016/j.bspc.2023.105138_b37) 2019; 483 Li (10.1016/j.bspc.2023.105138_b48) 2018 Chai (10.1016/j.bspc.2023.105138_b62) 2017; 17 Luo (10.1016/j.bspc.2023.105138_b22) 2018 10.1016/j.bspc.2023.105138_b42 Gu (10.1016/j.bspc.2023.105138_b43) 2022 10.1016/j.bspc.2023.105138_b41 Nguyen (10.1016/j.bspc.2023.105138_b31) 2021 Peng (10.1016/j.bspc.2023.105138_b47) 2022; 13 An (10.1016/j.bspc.2023.105138_b52) 1996; 8 Zheng (10.1016/j.bspc.2023.105138_b44) 2015; 7 Goodfellow (10.1016/j.bspc.2023.105138_b51) 2016 Zhu (10.1016/j.bspc.2023.105138_b21) 2022; 76 Li (10.1016/j.bspc.2023.105138_b25) 2020; 12 Ding (10.1016/j.bspc.2023.105138_b26) 2021 Jayaram (10.1016/j.bspc.2023.105138_b8) 2016; 11 Gupta (10.1016/j.bspc.2023.105138_b2) 2019; 19 10.1016/j.bspc.2023.105138_b39 Li (10.1016/j.bspc.2023.105138_b32) 2020; 50 10.1016/j.bspc.2023.105138_b38 Zhong (10.1016/j.bspc.2023.105138_b18) 2020 Moreno-Torres (10.1016/j.bspc.2023.105138_b10) 2012; 45 10.1016/j.bspc.2023.105138_b7 Li (10.1016/j.bspc.2023.105138_b27) 2018 Ko (10.1016/j.bspc.2023.105138_b17) 2021; 15 Ganin (10.1016/j.bspc.2023.105138_b49) 2016; 17 Peng (10.1016/j.bspc.2023.105138_b46) 2022 Li (10.1016/j.bspc.2023.105138_b30) 2020; 13 Srivastava (10.1016/j.bspc.2023.105138_b61) 2014; 15 An (10.1016/j.bspc.2023.105138_b15) 2020 Ioffe (10.1016/j.bspc.2023.105138_b40) 2015 Wu (10.1016/j.bspc.2023.105138_b9) 2017; 47 10.1016/j.bspc.2023.105138_b29 Phan (10.1016/j.bspc.2023.105138_b14) 2020; 68 Lotte (10.1016/j.bspc.2023.105138_b5) 2015; 103 10.1016/j.bspc.2023.105138_b60 Lew (10.1016/j.bspc.2023.105138_b28) 2020 Chai (10.1016/j.bspc.2023.105138_b4) 2016; 79 10.1016/j.bspc.2023.105138_b20 |
References_xml | – reference: X. Gu, J. Sun, Z. Xu, Spherical space domain adaptation with robust pseudo-label loss, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9101–9110. – start-page: 6094 year: 2021 end-page: 6097 ident: b36 article-title: MEERNet: Multi-source EEG-based emotion recognition network for generalization across subjects and sessions publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society – start-page: 9332 year: 2021 end-page: 9343 ident: b31 article-title: STEM: An approach to multi-source domain adaptation with guarantees publication-title: 2021 IEEE/CVF International Conference on Computer Vision – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b44 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Autonomous Mental Dev. – reference: P. Haeusser, T. Frerix, A. Mordvintsev, D. Cremers, Associative Domain Adaptation, in: 2017 IEEE International Conference on Computer Vision, ICCV, (ISSN: 2380-7504) 2017, pp. 2784–2792. – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: b11 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – volume: 13 start-page: 1941 year: 2022 end-page: 1958 ident: b47 article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. – start-page: 1 year: 2019 ident: b64 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 483 start-page: 174 year: 2019 end-page: 191 ident: b37 article-title: Robust unsupervised domain adaptation for neural networks via moment alignment publication-title: Inform. Sci. – start-page: 1195 year: 2017 end-page: 1204 ident: b55 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Advances in Neural Information Processing Systems, Vol. 30 – volume: 25 start-page: 1915 year: 2021 end-page: 1925 ident: b16 article-title: Low-dimensional subject representation-based transfer learning in EEG decoding publication-title: IEEE J. Biomed. Health Inf. – start-page: 1 year: 2021 end-page: 5 ident: b24 article-title: EEG-based emotion classification using joint adaptation networks publication-title: 2021 IEEE International Symposium on Circuits and Systems – start-page: 1561 year: 2018 end-page: 1567 ident: b27 article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18 – volume: 50 start-page: 3281 year: 2020 end-page: 3293 ident: b32 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 167 year: 2021 ident: b54 article-title: A study of the effects of negative transfer on deep unsupervised domain adaptation methods publication-title: Expert Syst. Appl. – volume: 47 start-page: 550 year: 2017 end-page: 563 ident: b9 article-title: Online and offline domain adaptation for reducing BCI calibration effort publication-title: IEEE Trans. Hum.-Mach. Syst. – volume: 17 year: 2017 ident: b62 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition publication-title: Sensors – start-page: 1 year: 2018 end-page: 13 ident: b56 article-title: EmotionMeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 643 year: 1996 end-page: 674 ident: b52 article-title: The effects of adding noise during backpropagation training on a generalization performance publication-title: Neural Comput. – reference: R. Shu, H. Bui, H. Narui, S. Ermon, A DIRT-T Approach to Unsupervised Domain Adaptation, in: International Conference on Learning Representations 2018, 2018. – volume: 17 year: 2016 ident: b49 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: 800 year: 2016 ident: b51 article-title: Deep Learning Book, Vol. 521 – volume: 76 year: 2022 ident: b21 article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 27074 year: 2020 end-page: 27085 ident: b23 article-title: Learning invariant representations from EEG via adversarial inference publication-title: IEEE Access – volume: 11 start-page: 20 year: 2016 end-page: 31 ident: b8 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Mag. – volume: 447 start-page: 92 year: 2021 end-page: 101 ident: b19 article-title: A novel transferability attention neural network model for EEG emotion recognition publication-title: Neurocomputing – start-page: 375 year: 2018 end-page: 382 ident: b53 article-title: Convolutional neural networks regularized by correlated noise publication-title: 2018 15th Conference on Computer and Robot Vision – volume: 12 start-page: 494 year: 2018 end-page: 504 ident: b63 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – reference: L. Yang, J. Liu, EEG-Based Emotion Recognition Using Temporal Convolutional Network, in: 2019 IEEE 8th Data Driven Control and Learning Systems Conference, DDCLS, 2019, pp. 437–442. – reference: T. Song, S. Liu, W. Zheng, Y. Zong, Z. Cui, Instance-adaptive graph for eeg emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 2701–2708. – reference: R. Duan, J. Zhu, B. Lu, Differential entropy feature for EEG-based emotion classification, in: 2013 6th International IEEE/EMBS Conference on Neural Engineering, NER, (ISSN: 1948-3546) 2013, pp. 81–84. – reference: Y. Ye, X. Zhu, Y. Li, T. Pan, W. He, Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society, EMBC, 2021, pp. 1140–1144. – reference: K. Saito, D. Kim, S. Sclaroff, T. Darrell, K. Saenko, Semi-supervised domain adaptation via minimax entropy, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8050–8058. – start-page: 1 year: 2021 end-page: 8 ident: b26 article-title: EEG emotion enhancement using task-specific domain adversarial neural network publication-title: 2021 International Joint Conference on Neural Networks – start-page: 116 year: 2020 end-page: 119 ident: b28 article-title: EEG-based emotion recognition using spatial-temporal representation via bi-GRU publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society – start-page: 1 year: 2020 end-page: 12 ident: b18 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 45 start-page: 521 year: 2012 end-page: 530 ident: b10 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recognit. – reference: S. Sun, J. Zhou, A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces, in: 2014 International Joint Conference on Neural Networks, IJCNN, (ISSN: 2161-4407) 2014, pp. 1746–1753. – volume: 12 start-page: 344 year: 2020 end-page: 353 ident: b25 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 10 start-page: 374 year: 2019 end-page: 393 ident: b1 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. – volume: 15 year: 2018 ident: b6 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b61 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 448 year: 2015 end-page: 456 ident: b40 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Vol. 37 – start-page: 1 year: 2022 ident: b43 article-title: Unsupervised and semi-supervised robust spherical space domain adaptation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2022 end-page: 12 ident: b46 article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inform. – reference: P. Bashivan, I. Rish, M. Yeasin, N. Codella, Learning representations from EEG with deep recurrent-convolutional neural networks, in: International Conference on Learning Representations (2016), 2016. – volume: 13 start-page: 354 year: 2020 end-page: 367 ident: b30 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 275 year: 2018 end-page: 286 ident: b22 article-title: WGAN domain adaptation for EEG-based emotion recognition publication-title: Neural Information Processing – volume: 19 start-page: 2266 year: 2019 end-page: 2274 ident: b2 article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals publication-title: IEEE Sens. J. – start-page: 403 year: 2018 end-page: 413 ident: b48 article-title: Cross-subject emotion recognition using deep adaptation networks publication-title: Neural Information Processing – volume: 79 start-page: 205 year: 2016 end-page: 214 ident: b4 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. – volume: 68 start-page: 1787 year: 2020 end-page: 1798 ident: b14 article-title: Towards more accurate automatic sleep staging via deep transfer learning publication-title: IEEE Trans. Biomed. Eng. – volume: 15 year: 2021 ident: b35 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. – volume: 103 start-page: 871 year: 2015 end-page: 890 ident: b5 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain x2013;computer interfaces publication-title: Proc. IEEE – reference: S. Xie, Z. Zheng, L. Chen, C. Chen, Learning semantic representations for unsupervised domain adaptation, in: International Conference on Machine Learning, 2018, pp. 5419–5428. – start-page: 734 year: 2011 end-page: 743 ident: b58 article-title: EEG-based emotion recognition using frequency domain features and support vector machines publication-title: International Conference on Neural Information Processing – start-page: 10933 year: 2020 end-page: 10938 ident: b15 article-title: Few-shot relation learning with attention for EEG-based motor imagery classification publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 110 year: 2021 ident: b45 article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition publication-title: Pattern Recognit. – volume: 15 start-page: 401 year: 2021 ident: b34 article-title: Multi-source co-adaptation for EEG-based emotion recognition by mining correlation information publication-title: Front. Neurosci. – reference: P. Saha, S. Fels, M. Abdul-Mageed, Deep Learning the EEG Manifold for Phonological Categorization from Active Thoughts, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 2762–2766. – volume: 33 start-page: 9061 year: 2021 end-page: 9073 ident: b33 article-title: A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition publication-title: Neural Comput. Appl. – start-page: 1 year: 2019 end-page: 12 ident: b3 article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition publication-title: IEEE Trans. Cybern. – start-page: 1236 year: 2022 end-page: 1240 ident: b13 article-title: Domain-invariant representation learning from EEG with private encoders publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 15 year: 2021 ident: b17 article-title: A survey on deep learning-based short/zero-calibration approaches for EEG-based brain–computer interfaces publication-title: Front. Hum. Neurosci. – volume: 10 start-page: 374 issue: 3 year: 2019 ident: 10.1016/j.bspc.2023.105138_b1 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2714671 – ident: 10.1016/j.bspc.2023.105138_b57 doi: 10.1109/NER.2013.6695876 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105138_b24 article-title: EEG-based emotion classification using joint adaptation networks – volume: 15 start-page: 1929 issue: 56 year: 2014 ident: 10.1016/j.bspc.2023.105138_b61 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105138_b26 article-title: EEG emotion enhancement using task-specific domain adversarial neural network – start-page: 275 year: 2018 ident: 10.1016/j.bspc.2023.105138_b22 article-title: WGAN domain adaptation for EEG-based emotion recognition – ident: 10.1016/j.bspc.2023.105138_b42 doi: 10.1109/CVPR42600.2020.00912 – start-page: 1195 year: 2017 ident: 10.1016/j.bspc.2023.105138_b55 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: 10.1016/j.bspc.2023.105138_b29 doi: 10.1609/aaai.v34i03.5656 – start-page: 734 year: 2011 ident: 10.1016/j.bspc.2023.105138_b58 article-title: EEG-based emotion recognition using frequency domain features and support vector machines – start-page: 10933 year: 2020 ident: 10.1016/j.bspc.2023.105138_b15 article-title: Few-shot relation learning with attention for EEG-based motor imagery classification – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.bspc.2023.105138_b11 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.105138_b46 article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inform. – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2023.105138_b3 article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition publication-title: IEEE Trans. Cybern. – volume: 483 start-page: 174 year: 2019 ident: 10.1016/j.bspc.2023.105138_b37 article-title: Robust unsupervised domain adaptation for neural networks via moment alignment publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.01.025 – ident: 10.1016/j.bspc.2023.105138_b39 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2023.105138_b64 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 19 start-page: 2266 issue: 6 year: 2019 ident: 10.1016/j.bspc.2023.105138_b2 article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2883497 – volume: 47 start-page: 550 issue: 4 year: 2017 ident: 10.1016/j.bspc.2023.105138_b9 article-title: Online and offline domain adaptation for reducing BCI calibration effort publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2016.2608931 – volume: 15 start-page: 401 year: 2021 ident: 10.1016/j.bspc.2023.105138_b34 article-title: Multi-source co-adaptation for EEG-based emotion recognition by mining correlation information publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.677106 – start-page: 116 year: 2020 ident: 10.1016/j.bspc.2023.105138_b28 article-title: EEG-based emotion recognition using spatial-temporal representation via bi-GRU – start-page: 1561 year: 2018 ident: 10.1016/j.bspc.2023.105138_b27 article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition – ident: 10.1016/j.bspc.2023.105138_b50 doi: 10.1109/ICCV.2017.301 – volume: 45 start-page: 521 issue: 1 year: 2012 ident: 10.1016/j.bspc.2023.105138_b10 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.06.019 – volume: 76 year: 2022 ident: 10.1016/j.bspc.2023.105138_b21 article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103687 – volume: 15 year: 2021 ident: 10.1016/j.bspc.2023.105138_b35 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.778488 – volume: 447 start-page: 92 year: 2021 ident: 10.1016/j.bspc.2023.105138_b19 article-title: A novel transferability attention neural network model for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.048 – start-page: 448 year: 2015 ident: 10.1016/j.bspc.2023.105138_b40 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 33 start-page: 9061 issue: 15 year: 2021 ident: 10.1016/j.bspc.2023.105138_b33 article-title: A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05670-4 – start-page: 800 year: 2016 ident: 10.1016/j.bspc.2023.105138_b51 – volume: 167 year: 2021 ident: 10.1016/j.bspc.2023.105138_b54 article-title: A study of the effects of negative transfer on deep unsupervised domain adaptation methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114088 – ident: 10.1016/j.bspc.2023.105138_b41 doi: 10.1109/ICCV.2019.00814 – volume: 12 start-page: 494 issue: 2 year: 2018 ident: 10.1016/j.bspc.2023.105138_b63 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2885474 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.bspc.2023.105138_b44 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Autonomous Mental Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 68 start-page: 1787 issue: 6 year: 2020 ident: 10.1016/j.bspc.2023.105138_b14 article-title: Towards more accurate automatic sleep staging via deep transfer learning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3020381 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2023.105138_b18 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 13 start-page: 354 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.105138_b30 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2999337 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.105138_b43 article-title: Unsupervised and semi-supervised robust spherical space domain adaptation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 20 issue: 1 year: 2016 ident: 10.1016/j.bspc.2023.105138_b8 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2015.2501545 – volume: 8 start-page: 643 issue: 3 year: 1996 ident: 10.1016/j.bspc.2023.105138_b52 article-title: The effects of adding noise during backpropagation training on a generalization performance publication-title: Neural Comput. doi: 10.1162/neco.1996.8.3.643 – ident: 10.1016/j.bspc.2023.105138_b60 – volume: 17 issue: 5 year: 2017 ident: 10.1016/j.bspc.2023.105138_b62 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition publication-title: Sensors doi: 10.3390/s17051014 – start-page: 403 year: 2018 ident: 10.1016/j.bspc.2023.105138_b48 article-title: Cross-subject emotion recognition using deep adaptation networks – volume: 79 start-page: 205 year: 2016 ident: 10.1016/j.bspc.2023.105138_b4 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.019 – ident: 10.1016/j.bspc.2023.105138_b12 doi: 10.1109/IJCNN.2014.6889525 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2023.105138_b56 article-title: EmotionMeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – start-page: 6094 year: 2021 ident: 10.1016/j.bspc.2023.105138_b36 article-title: MEERNet: Multi-source EEG-based emotion recognition network for generalization across subjects and sessions – volume: 110 year: 2021 ident: 10.1016/j.bspc.2023.105138_b45 article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107626 – volume: 17 issue: 1 year: 2016 ident: 10.1016/j.bspc.2023.105138_b49 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: 375 year: 2018 ident: 10.1016/j.bspc.2023.105138_b53 article-title: Convolutional neural networks regularized by correlated noise – ident: 10.1016/j.bspc.2023.105138_b20 doi: 10.1109/EMBC46164.2021.9630777 – volume: 13 start-page: 1941 issue: 4 year: 2022 ident: 10.1016/j.bspc.2023.105138_b47 article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3189222 – ident: 10.1016/j.bspc.2023.105138_b38 – ident: 10.1016/j.bspc.2023.105138_b7 doi: 10.1109/ICASSP.2019.8682330 – volume: 8 start-page: 27074 year: 2020 ident: 10.1016/j.bspc.2023.105138_b23 article-title: Learning invariant representations from EEG via adversarial inference publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971600 – volume: 15 year: 2021 ident: 10.1016/j.bspc.2023.105138_b17 article-title: A survey on deep learning-based short/zero-calibration approaches for EEG-based brain–computer interfaces publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.643386 – volume: 12 start-page: 344 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.105138_b25 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2949306 – volume: 25 start-page: 1915 issue: 6 year: 2021 ident: 10.1016/j.bspc.2023.105138_b16 article-title: Low-dimensional subject representation-based transfer learning in EEG decoding publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.3025865 – start-page: 1236 year: 2022 ident: 10.1016/j.bspc.2023.105138_b13 article-title: Domain-invariant representation learning from EEG with private encoders – volume: 50 start-page: 3281 issue: 7 year: 2020 ident: 10.1016/j.bspc.2023.105138_b32 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – start-page: 9332 year: 2021 ident: 10.1016/j.bspc.2023.105138_b31 article-title: STEM: An approach to multi-source domain adaptation with guarantees – volume: 103 start-page: 871 issue: 6 year: 2015 ident: 10.1016/j.bspc.2023.105138_b5 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain x2013;computer interfaces publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2404941 – ident: 10.1016/j.bspc.2023.105138_b59 doi: 10.1109/DDCLS.2019.8908839 – volume: 15 issue: 3 year: 2018 ident: 10.1016/j.bspc.2023.105138_b6 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 |
SSID | ssj0048714 |
Score | 2.4825134 |
Snippet | Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105138 |
SubjectTerms | Deep learning Electroencephalogram Emotion recognition Unsupervised domain adaptation |
Title | Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition |
URI | https://dx.doi.org/10.1016/j.bspc.2023.105138 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdM8nDgZq6qlgOgClbpFduygIkiiNln57ZxjpyoS6sAY5yxZZ-vuu-Tzdwjd-jotCiqIk0pGqAxdEgsWE64UZGsBpU8jPP8yC6dz-rQIFh00au_CaFqljf0mpjfR2o4MrDcH5XI5eAUsHUZQnXhacZ01nYYpZfqU339vaB6Axxt9b21MtLW9OGM4XmJdahlDz9ftbl19R-Wv5LSVcCZH6NAiRTw0izlGHZWfoIMt_cBTpKw66jvmeFWIel3hOl9mgCqxLL6g5sdc8tL8bMdZS8PCgFNxswCyroX-DoPH4wei85nEyrT1wRtiUZGfoflk_DaaEts3gaTgioqwMFAy8yIAL55iMnKdjPMsCDiL0tjnMmOcqgiq4kAxEXPAGGnGUxYIhyp44_rnqJsXubpA2INh5YeQ6XxGY0fwmCmoyKAK8VUYCreH3NZhSWpFxXVvi8-kZY99JNrJiXZyYpzcQ3ebOaWR1NhpHbT7kPw6GAnE_B3zLv857wrt6ydDI7tG3WpVqxvAHZXoNwerj_aGj8_T2Q9dINcL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbMs3byYiqlgJtF1qpm2XHDiqCJGqTld_OOXGqIqEOrH5I1sW5-y757juE7lwdFoUniBVLSjwZ2CQSNCJcKYjWAlKfSnh-PAmGM-9l7s9bqNfUwmhapfH9tU-vvLUZ6RprdvPFovsGWDoIITtxtOI61Z2Gdzx4fXUbg4fvNc8DAHkl8K1XE73cVM7UJC-xyrWOoePqfre2LlL5KzptRJzBITowUBE_1qc5Qi2VHqP9DQHBE6SMPOo75niZiXJV4DJdJAArscy-IOnHXPK8_tuOk4aHhQGo4uoAZFUK_SEG9_tPRAc0iVXd1wevmUVZeopmg_60NySmcQKJwRYFoYGvZOKEgF4cRWVoWwnnie9zGsaRy2VCuadCSIt9RUXEAWTECY-pLyxPwYztnqF2mqXqHGEHhpUbQKhzqRdZgkdUQUoGaYirgkDYHWQ3BmOxURXXzS0-WUMf-2DayEwbmdVG7qD79Z681tTYutpvngP7dTMYOP0t-y7-ue8W7Q6n4xEbPU9eL9Genqk5ZVeoXSxLdQ0gpBA31SX7AWuK2Jk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+robust+unified+domain+adaptation+framework+for+cross-subject+EEG-based+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Jim%C3%A9nez-Guarneros%2C+Magdiel&rft.au=Fuentes-Pineda%2C+Gibran&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.105138&rft.externalDocID=S1746809423005712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |