Deep BiLSTM neural network model for emotion detection using cross-dataset approach

•EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own IDEA dataset.•A deep recurrent neural network (D-RNN) based on bidirectional long short-term memory (BiLSTM) used to develop network models...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 73; p. 103407
Main Authors Joshi, Vaishali M., Ghongade, Rajesh B., Joshi, Aditi M., Kulkarni, Rushikesh V.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own IDEA dataset.•A deep recurrent neural network (D-RNN) based on bidirectional long short-term memory (BiLSTM) used to develop network models for emotion classification.•The experimental results with deep learning outperform the classical methods. The purpose of this research is to use a cross-dataset approach to construct an EEG-based emotion recognition system. So far, numerous modeling strategies for emotion recognition have been revealed using the same dataset and subject-dependent and independent criteria. We propose EEG-based cross-dataset emotion classification in this study, where the datasets for training and testing are completely distinct. The research is carried out using two benchmark datasets, DEAP and SEED, as well as our own IDEA dataset. The three datasets differ in a variety of technical factors, including electroencephalography (EEG) devices, stimuli, methodology, subject, country, culture, and so on. Multilayer perceptron (MLP), support vector machine (SVM), k-nearest neighbors (k-NN), and deep RNNs model based on bidirectional long short-term memory (BiLSTM) network were trained in this study using features namely PSD, Hjorth parameters, DE, and LF-DE. When the DEAP dataset is used to train the model and the SEED dataset is used to test it, the recognition accuracy improves by 8.2 %, and when the model is the SEED dataset-trained and the DEAP dataset-tested, the recognition accuracy improves by 1.5 % when compared to the previous result. It has been revealed that LF-DE with BiLSTM outperforms other features and classifiers for the same input data. A deep neural network-BiLSTM gives deep features from the lowest level to the highest level from large datasets. The results of the experiments reveal that the optimization of deep neural network parameters can improve the performance of the emotion recognition system to a positive extent.
AbstractList •EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own IDEA dataset.•A deep recurrent neural network (D-RNN) based on bidirectional long short-term memory (BiLSTM) used to develop network models for emotion classification.•The experimental results with deep learning outperform the classical methods. The purpose of this research is to use a cross-dataset approach to construct an EEG-based emotion recognition system. So far, numerous modeling strategies for emotion recognition have been revealed using the same dataset and subject-dependent and independent criteria. We propose EEG-based cross-dataset emotion classification in this study, where the datasets for training and testing are completely distinct. The research is carried out using two benchmark datasets, DEAP and SEED, as well as our own IDEA dataset. The three datasets differ in a variety of technical factors, including electroencephalography (EEG) devices, stimuli, methodology, subject, country, culture, and so on. Multilayer perceptron (MLP), support vector machine (SVM), k-nearest neighbors (k-NN), and deep RNNs model based on bidirectional long short-term memory (BiLSTM) network were trained in this study using features namely PSD, Hjorth parameters, DE, and LF-DE. When the DEAP dataset is used to train the model and the SEED dataset is used to test it, the recognition accuracy improves by 8.2 %, and when the model is the SEED dataset-trained and the DEAP dataset-tested, the recognition accuracy improves by 1.5 % when compared to the previous result. It has been revealed that LF-DE with BiLSTM outperforms other features and classifiers for the same input data. A deep neural network-BiLSTM gives deep features from the lowest level to the highest level from large datasets. The results of the experiments reveal that the optimization of deep neural network parameters can improve the performance of the emotion recognition system to a positive extent.
ArticleNumber 103407
Author Ghongade, Rajesh B.
Kulkarni, Rushikesh V.
Joshi, Vaishali M.
Joshi, Aditi M.
Author_xml – sequence: 1
  givenname: Vaishali M.
  surname: Joshi
  fullname: Joshi, Vaishali M.
  email: joshivaishali7@gmail.com
  organization: Electronics Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune 411043, Maharashtra, India
– sequence: 2
  givenname: Rajesh B.
  surname: Ghongade
  fullname: Ghongade, Rajesh B.
  organization: Electronics Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune 411043, Maharashtra, India
– sequence: 3
  givenname: Aditi M.
  surname: Joshi
  fullname: Joshi, Aditi M.
  organization: E&TC Engineering, Vishwakarma Institute of Technology, Pune 411037, Maharashtra, India
– sequence: 4
  givenname: Rushikesh V.
  surname: Kulkarni
  fullname: Kulkarni, Rushikesh V.
  organization: E&TC Engineering, Vishwakarma Institute of Technology, Pune 411037, Maharashtra, India
BookMark eNp9kMtOwzAQRS0EEm3hB1j5B1L8SuJIbKA8pSIWLWvLscfg0saRnYL4e5IWNiy6mquRzujOGaPjJjSA0AUlU0pocbma1qk1U0YY7RdckPIIjWgpikxSIo__MqnEKRqntCJEyJKKEVrcArT4xs8Xy2fcwDbqdT-6rxA_8CZYWGMXIoZN6HxosIUOzC5tk2_esIkhpczqTifosG7bGLR5P0MnTq8TnP_OCXq9v1vOHrP5y8PT7HqeGU5Il5XcgpRVXdWMgbG8qjkRYGTFc5uzIpfGSaYLaeu8rEuXi76-LETJHXMgneQTJPd3dzUiOGV8p4d6XdR-rShRgxy1UoMcNchRezk9yv6hbfQbHb8PQ1d7CPqnPj1ElYyHxoD1sdeibPCH8B95n4Bk
CitedBy_id crossref_primary_10_3390_app12168265
crossref_primary_10_1007_s11571_023_10034_4
crossref_primary_10_1007_s00521_024_10925_5
crossref_primary_10_1080_10255842_2024_2369257
crossref_primary_10_1016_j_bspc_2024_106877
crossref_primary_10_1016_j_compbiomed_2024_107954
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1088_1361_6501_ad8672
crossref_primary_10_1038_s41598_024_60996_6
crossref_primary_10_1155_2022_6546357
crossref_primary_10_1142_S0219749923500041
crossref_primary_10_1109_ACCESS_2024_3460393
crossref_primary_10_1145_3712259
crossref_primary_10_32604_csse_2023_035753
crossref_primary_10_1109_LSENS_2023_3265682
crossref_primary_10_3390_signals5020013
crossref_primary_10_3390_electronics12132900
crossref_primary_10_1109_ACCESS_2022_3216890
crossref_primary_10_1007_s10586_024_04590_5
crossref_primary_10_1088_1361_6501_ada78a
crossref_primary_10_1145_3654664
crossref_primary_10_3390_app14010300
crossref_primary_10_3390_app122010216
crossref_primary_10_1016_j_engappai_2024_108339
crossref_primary_10_3390_app14093701
crossref_primary_10_3934_mbe_2024290
crossref_primary_10_1007_s11760_024_03360_5
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1109_ACCESS_2024_3474553
crossref_primary_10_1109_JBHI_2024_3415163
crossref_primary_10_3390_app15052328
crossref_primary_10_3390_s25041222
crossref_primary_10_3390_app12073641
Cites_doi 10.1016/j.bspc.2021.102743
10.1109/TAFFC.2017.2712143
10.1007/s10044-019-00860-w
10.1155/2021/9967592
10.1109/TNNLS.2013.2280271
10.3390/s19071659
10.3390/s20072034
10.1109/T-AFFC.2011.15
10.1155/2014/627892
10.1007/978-981-16-0171-2_7
10.1162/neco.1997.9.8.1735
10.1016/j.jksuci.2021.03.009
10.1109/ACCESS.2019.2927768
10.1109/TCDS.2018.2826840
10.1007/s12652-020-02338-8
10.1016/j.eij.2019.10.002
10.1016/j.bspc.2019.101756
10.1109/TAMD.2015.2431497
10.37394/232014.2021.17.4
10.1049/el.2020.2460
10.3390/s19235218
10.1016/0013-4694(73)90260-5
10.1155/2020/6816502
10.3390/s19214736
10.1109/ACCESS.2021.3091487
10.3390/math9060593
10.1109/ACCESS.2019.2891579
10.1016/j.bspc.2021.102755
10.14257/ijbsbt.2015.7.3.03
10.1016/j.bspc.2020.101845
10.1016/0013-4694(70)90143-4
10.1109/TNSRE.2017.2733220
10.3390/app10051619
10.13005/bpj/1928
10.1016/j.eij.2020.07.005
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.103407
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_103407
S1746809421010041
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-73de889b9b22ecd39b304ec8935d52658cf82a68db57b7f5480986473f2fe8f83
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:04:11 EDT 2025
Tue Jul 01 01:34:13 EDT 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalography
Cross-dataset
Emotions
Deep RNN-BiLSTM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-73de889b9b22ecd39b304ec8935d52658cf82a68db57b7f5480986473f2fe8f83
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_103407
crossref_primary_10_1016_j_bspc_2021_103407
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References “Deep Learning Based on CNN for Emotion Recognition Using EEG Signal,” WSEAS Trans. Signal Process.
Hochreiter, Schmidhuber (b0235) 1997; 9
2021.
Lan, Sourina, Wang, Scherer, Müller-Putz (b0085) 2018; 11
Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques
M. R. Islam, M. A. Moni, M. M. Islam, M. Rashed-Al-Mahfuz, M. S. Islam, M. K. Hasan
Ngai, Xie, Zou, Chou (b0015) 2021
Wang, Huang, Yang, Zhang (b0240) 2020; 58
Asghar, Khan, Amin, Rizwan, Rahman, Badnava (b0075) 2019; 19
Zheng, Lu (b0170) 2015; 7
Kim, Choi (b0215) 2021; 26
V. M. Joshi, R. B. Ghongade, “Subject Noncontingent EEG-Based Emotion Detection Using Deep Learning Algorithm,” in
vol. 17, pp. 28-40, 2021.
Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b0065) 2017
Al Machot, Elmachot, Ali, Al Machot, Kyamakya (b0025) 2019; 19
Rahman, Hossain, Hossain, Ahmmed (b0050) 2020; 21
Salama, El-Khoribi, Shoman, Shalaby (b0010) 2021; 22
Pandey, Seeja (b0080) 2021; 12
Song, Zheng, Lu, Zong, Zhang, Cui (b0185) 2019; 7
V. M. Joshi, R. B. Ghongade, “IDEA: Intellect database for emotion analysis using EEG signal,” J. King Saud University-Computer and Information Sciences, 2020.
Mehmood, Lee (b0175) 2015; 7
Chao, Dong, Liu, Lu (b0115) 2020; 2020
Dong, Supratak, Pan, Wu, Matthews, Guo (b0245) 2017; 26
An, Xu, Qu (b0060) 2021; 69
vol. 9, pp. 94601-94624, 2021.
Hjorth (b0200) 1973; 34
ed: Springer, 2021, pp. 67-75.
Li, Li, Pan, Wang (b0045) 2021; 15
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi (b0145) 2011; 3
D. Dadebayev, G. W. Wei, T. E. Xion, “EEG-based Emotion Recognition: Review of Commercial EEG Devices and Machine Learning Techniques,” J. King Saud Univers.-Comput. Informat. Sci.
Duan, Zhu, Lu (b0195) 2013
Alakus, Turkoglu (b0055) 2020; 56
Nguyen, Duong, Nguyen, Duong (b0225) 2018; 4
Khosrowabadi, Quek, Ang, Wahab (b0035) 2013; 25
P. Pandey and K. Seeja, “Subject independent emotion recognition from EEG using VMD and deep learning,” J. King Saud Univers.-Comput. Informat. Sci.
Wu, Zheng, Lu (b0165) 2020
Chen, Hu, Wang, Moore, Dai, Feng (b0030) 2017; 17
Bhise, Kulkarni, Aldhaheri (b0180) 2020
Cimtay, Ekmekcioglu (b0090) 2020; 20
Jirayucharoensak, Pan-Ngum, Israsena (b0160) 2014; 2014
2019.
Du, Ma, Zhang, Li, Lai, Zhao (b0125) 2020
Wei, Chen, Song, Lou, Li (b0120) 2020; 58
A. S. Rajpoot and M. R. Panicker, “Subject Independent Emotion Recognition using EEG Signals Employing Attention Driven Neural Networks,”
Hjorth (b0190) 1970; 29
Wang, Tong, Heng (b0070) 2019; 7
Zheng, Zhu, Lu (b0150) 2017; 10
Nath, Singh, Sethia, Kalra, Indu (b0130) 2020
Joshi, Ghongade (b0135) 2020; 13
Zhao, Chen (b0210) 2021; 2021
Pan, Shi, Mu, Li, Gao (b0220) 2020; 10
I. S. Ahmad, S. Zhang, S. Saminu, L. Wang, A. E. K. ISSELMOU, Z. CAI
Joshi, Ghongade (b0205) 2021; 68
Hwang, Hong, Son, Byun (b0100) 2020; 23
Yang, Han, Min (b0095) 2019; 19
Li, Zheng (b0110) 2021; 9
Wu (10.1016/j.bspc.2021.103407_b0165) 2020
Nguyen (10.1016/j.bspc.2021.103407_b0225) 2018; 4
Dong (10.1016/j.bspc.2021.103407_b0245) 2017; 26
Li (10.1016/j.bspc.2021.103407_b0045) 2021; 15
Yang (10.1016/j.bspc.2021.103407_b0095) 2019; 19
Lan (10.1016/j.bspc.2021.103407_b0085) 2018; 11
Li (10.1016/j.bspc.2021.103407_b0110) 2021; 9
Zheng (10.1016/j.bspc.2021.103407_b0170) 2015; 7
Hochreiter (10.1016/j.bspc.2021.103407_b0235) 1997; 9
Zhao (10.1016/j.bspc.2021.103407_b0210) 2021; 2021
10.1016/j.bspc.2021.103407_b0020
10.1016/j.bspc.2021.103407_b0140
Jirayucharoensak (10.1016/j.bspc.2021.103407_b0160) 2014; 2014
Chen (10.1016/j.bspc.2021.103407_b0030) 2017; 17
Chao (10.1016/j.bspc.2021.103407_b0115) 2020; 2020
Khosrowabadi (10.1016/j.bspc.2021.103407_b0035) 2013; 25
Cimtay (10.1016/j.bspc.2021.103407_b0090) 2020; 20
Pandey (10.1016/j.bspc.2021.103407_b0080) 2021; 12
Wang (10.1016/j.bspc.2021.103407_b0240) 2020; 58
Joshi (10.1016/j.bspc.2021.103407_b0135) 2020; 13
Salama (10.1016/j.bspc.2021.103407_b0010) 2021; 22
Pan (10.1016/j.bspc.2021.103407_b0220) 2020; 10
10.1016/j.bspc.2021.103407_b0105
Joshi (10.1016/j.bspc.2021.103407_b0205) 2021; 68
Zheng (10.1016/j.bspc.2021.103407_b0150) 2017; 10
Hwang (10.1016/j.bspc.2021.103407_b0100) 2020; 23
Hjorth (10.1016/j.bspc.2021.103407_b0190) 1970; 29
Nath (10.1016/j.bspc.2021.103407_b0130) 2020
Alakus (10.1016/j.bspc.2021.103407_b0055) 2020; 56
Du (10.1016/j.bspc.2021.103407_b0125) 2020
Wei (10.1016/j.bspc.2021.103407_b0120) 2020; 58
Asghar (10.1016/j.bspc.2021.103407_b0075) 2019; 19
Kim (10.1016/j.bspc.2021.103407_b0215) 2021; 26
Al Machot (10.1016/j.bspc.2021.103407_b0025) 2019; 19
An (10.1016/j.bspc.2021.103407_b0060) 2021; 69
Tripathi (10.1016/j.bspc.2021.103407_b0065) 2017
Ngai (10.1016/j.bspc.2021.103407_b0015) 2021
10.1016/j.bspc.2021.103407_b0155
Duan (10.1016/j.bspc.2021.103407_b0195) 2013
10.1016/j.bspc.2021.103407_b0230
Rahman (10.1016/j.bspc.2021.103407_b0050) 2020; 21
10.1016/j.bspc.2021.103407_b0040
Song (10.1016/j.bspc.2021.103407_b0185) 2019; 7
Wang (10.1016/j.bspc.2021.103407_b0070) 2019; 7
Bhise (10.1016/j.bspc.2021.103407_b0180) 2020
Mehmood (10.1016/j.bspc.2021.103407_b0175) 2015; 7
Hjorth (10.1016/j.bspc.2021.103407_b0200) 1973; 34
10.1016/j.bspc.2021.103407_b0005
Koelstra (10.1016/j.bspc.2021.103407_b0145) 2011; 3
References_xml – reference: V. M. Joshi, R. B. Ghongade, “Subject Noncontingent EEG-Based Emotion Detection Using Deep Learning Algorithm,” in
– volume: 69
  year: 2021
  ident: b0060
  article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition
  publication-title: Biomed. Signal Process. Control
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b0145
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
– reference: 2019.
– volume: 58
  year: 2020
  ident: b0240
  article-title: Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks
  publication-title: Biomed. Signal Process. Control
– volume: 7
  start-page: 93711
  year: 2019
  end-page: 93722
  ident: b0070
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: IEEE Access
– volume: 2020
  year: 2020
  ident: b0115
  article-title: Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition
  publication-title: Complexity
– volume: 10
  start-page: 1619
  year: 2020
  ident: b0220
  article-title: EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands
  publication-title: Appl. Sci.
– volume: 19
  start-page: 5218
  year: 2019
  ident: b0075
  article-title: EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach
  publication-title: Sensors
– reference: D. Dadebayev, G. W. Wei, T. E. Xion, “EEG-based Emotion Recognition: Review of Commercial EEG Devices and Machine Learning Techniques,” J. King Saud Univers.-Comput. Informat. Sci.
– volume: 26
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0215
  article-title: Emotion Classification based on EEG signals with LSTM deep learning method
  publication-title: J. Korea Industr. Informat. Syst. Res.
– volume: 19
  start-page: 1659
  year: 2019
  ident: b0025
  article-title: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors
  publication-title: Sensors
– year: 2017
  ident: b0065
  article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset
  publication-title: in
– year: 2020
  ident: b0165
  article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition
  publication-title: arXiv preprint arXiv:2004.01973
– volume: 12
  start-page: 2311
  year: 2021
  end-page: 2320
  ident: b0080
  article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 10
  start-page: 417
  year: 2017
  end-page: 429
  ident: b0150
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
– volume: 2021
  year: 2021
  ident: b0210
  article-title: Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism
  publication-title: Comput. Math. Methods Med.
– reference: , “Deep Learning Based on CNN for Emotion Recognition Using EEG Signal,” WSEAS Trans. Signal Process.
– reference: M. R. Islam, M. A. Moni, M. M. Islam, M. Rashed-Al-Mahfuz, M. S. Islam, M. K. Hasan
– reference: vol. 9, pp. 94601-94624, 2021.
– reference: I. S. Ahmad, S. Zhang, S. Saminu, L. Wang, A. E. K. ISSELMOU, Z. CAI
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0235
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: P. Pandey and K. Seeja, “Subject independent emotion recognition from EEG using VMD and deep learning,” J. King Saud Univers.-Comput. Informat. Sci.
– reference: , ed: Springer, 2021, pp. 67-75.
– reference: V. M. Joshi, R. B. Ghongade, “IDEA: Intellect database for emotion analysis using EEG signal,” J. King Saud University-Computer and Information Sciences, 2020.
– volume: 17
  start-page: 45
  year: 2017
  end-page: 57
  ident: b0030
  article-title: Subject-independent emotion recognition based on physiological signals: a three-stage decision method
  publication-title: BMC Med. Inf. Decis. Making
– start-page: 327
  year: 2020
  end-page: 334
  ident: b0180
  article-title: Brain computer interface based EEG for emotion recognition system: A systematic review
– volume: 56
  start-page: 1364
  year: 2020
  end-page: 1367
  ident: b0055
  article-title: Emotion recognition with deep learning using GAMEEMO data set
  publication-title: Electron. Lett.
– reference: , “Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques,”
– reference: vol. 17, pp. 28-40, 2021.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b0170
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 21
  start-page: 23
  year: 2020
  end-page: 35
  ident: b0050
  article-title: Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
  publication-title: Egypt. Informat. J.
– volume: 20
  start-page: 2034
  year: 2020
  ident: b0090
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
– reference: A. S. Rajpoot and M. R. Panicker, “Subject Independent Emotion Recognition using EEG Signals Employing Attention Driven Neural Networks,”
– volume: 68
  year: 2021
  ident: b0205
  article-title: EEG based emotion detection using fourth order spectral moment and deep learning
  publication-title: Biomed. Signal Process. Control
– start-page: 81
  year: 2013
  end-page: 84
  ident: b0195
  article-title: Differential entropy feature for EEG-based emotion classification
– volume: 7
  start-page: 23
  year: 2015
  end-page: 32
  ident: b0175
  article-title: EEG based emotion recognition from human brain using Hjorth parameters and SVM
  publication-title: Int. J. Bio-Sci. Bio-Technol.
– volume: 23
  start-page: 1323
  year: 2020
  end-page: 1335
  ident: b0100
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Anal. Appl.
– volume: 9
  start-page: 593
  year: 2021
  ident: b0110
  article-title: Emotion Recognition and Regulation Based on Stacked Sparse Auto-Encoder Network and Personalized Reconfigurable Music
  publication-title: Mathematics
– reference: 2021.
– volume: 2014
  year: 2014
  ident: b0160
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Scient. World J.
– year: 2021
  ident: b0015
  article-title: Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources
  publication-title: Informat. Fusion
– volume: 4
  start-page: 105
  year: 2018
  end-page: 109
  ident: b0225
  article-title: Combination of wavelet and mlp neural network for emotion recognition system
  publication-title: Int. J. Fut. Revolut. Compt. Sci. Commun. Eng.
– volume: 7
  start-page: 12177
  year: 2019
  end-page: 12191
  ident: b0185
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
– volume: 11
  start-page: 85
  year: 2018
  end-page: 94
  ident: b0085
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cognit. Dev. Syst.
– volume: 13
  start-page: 645
  year: 2020
  end-page: 653
  ident: b0135
  article-title: Optimal number of electrode selection for EEG based emotion recognition using linear formulation of differential entropy
  publication-title: Biomed. Pharmacol. J.
– volume: 22
  start-page: 167
  year: 2021
  end-page: 176
  ident: b0010
  article-title: A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition
  publication-title: Egypt. Informat. J.
– volume: 15
  start-page: 689
  year: 2021
  ident: b0045
  article-title: Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
  publication-title: Front. Neurosci.
– volume: 25
  start-page: 609
  year: 2013
  end-page: 620
  ident: b0035
  article-title: ERNN: A biologically inspired feedforward neural network to discriminate emotion from EEG signal
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– year: 2020
  ident: b0125
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affective Comput.
– start-page: 142
  year: 2020
  end-page: 147
  ident: b0130
  article-title: A comparative study of subject-dependent and subject-independent strategies for EEG-based emotion recognition using LSTM network
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: b0190
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 58
  year: 2020
  ident: b0120
  article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning
  publication-title: Biomed. Signal Process. Control
– volume: 34
  start-page: 321
  year: 1973
  end-page: 325
  ident: b0200
  article-title: The physical significance of time domain descriptors in EEG analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 26
  start-page: 324
  year: 2017
  end-page: 333
  ident: b0245
  article-title: Mixed neural network approach for temporal sleep stage classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 19
  start-page: 4736
  year: 2019
  ident: b0095
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0060
  article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102743
– volume: 10
  start-page: 417
  year: 2017
  ident: 10.1016/j.bspc.2021.103407_b0150
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 23
  start-page: 1323
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0100
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00860-w
– volume: 2021
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0210
  article-title: Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/9967592
– year: 2017
  ident: 10.1016/j.bspc.2021.103407_b0065
  article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset
– volume: 25
  start-page: 609
  year: 2013
  ident: 10.1016/j.bspc.2021.103407_b0035
  article-title: ERNN: A biologically inspired feedforward neural network to discriminate emotion from EEG signal
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2013.2280271
– volume: 19
  start-page: 1659
  year: 2019
  ident: 10.1016/j.bspc.2021.103407_b0025
  article-title: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors
  publication-title: Sensors
  doi: 10.3390/s19071659
– volume: 20
  start-page: 2034
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0090
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0125
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affective Comput.
– volume: 3
  start-page: 18
  year: 2011
  ident: 10.1016/j.bspc.2021.103407_b0145
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 2014
  year: 2014
  ident: 10.1016/j.bspc.2021.103407_b0160
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Scient. World J.
  doi: 10.1155/2014/627892
– start-page: 142
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0130
  article-title: A comparative study of subject-dependent and subject-independent strategies for EEG-based emotion recognition using LSTM network
– ident: 10.1016/j.bspc.2021.103407_b0140
  doi: 10.1007/978-981-16-0171-2_7
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.bspc.2021.103407_b0235
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.bspc.2021.103407_b0155
– ident: 10.1016/j.bspc.2021.103407_b0230
  doi: 10.1016/j.jksuci.2021.03.009
– start-page: 81
  year: 2013
  ident: 10.1016/j.bspc.2021.103407_b0195
  article-title: Differential entropy feature for EEG-based emotion classification
– volume: 7
  start-page: 93711
  year: 2019
  ident: 10.1016/j.bspc.2021.103407_b0070
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927768
– volume: 11
  start-page: 85
  year: 2018
  ident: 10.1016/j.bspc.2021.103407_b0085
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0015
  article-title: Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources
  publication-title: Informat. Fusion
– volume: 12
  start-page: 2311
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0080
  article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02338-8
– volume: 21
  start-page: 23
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0050
  article-title: Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
  publication-title: Egypt. Informat. J.
  doi: 10.1016/j.eij.2019.10.002
– volume: 26
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0215
  article-title: Emotion Classification based on EEG signals with LSTM deep learning method
  publication-title: J. Korea Industr. Informat. Syst. Res.
– volume: 58
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0120
  article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101756
– year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0165
  article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition
– volume: 7
  start-page: 162
  year: 2015
  ident: 10.1016/j.bspc.2021.103407_b0170
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– ident: 10.1016/j.bspc.2021.103407_b0105
  doi: 10.37394/232014.2021.17.4
– volume: 4
  start-page: 105
  year: 2018
  ident: 10.1016/j.bspc.2021.103407_b0225
  article-title: Combination of wavelet and mlp neural network for emotion recognition system
  publication-title: Int. J. Fut. Revolut. Compt. Sci. Commun. Eng.
– ident: 10.1016/j.bspc.2021.103407_b0040
– volume: 56
  start-page: 1364
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0055
  article-title: Emotion recognition with deep learning using GAMEEMO data set
  publication-title: Electron. Lett.
  doi: 10.1049/el.2020.2460
– volume: 19
  start-page: 5218
  year: 2019
  ident: 10.1016/j.bspc.2021.103407_b0075
  article-title: EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach
  publication-title: Sensors
  doi: 10.3390/s19235218
– ident: 10.1016/j.bspc.2021.103407_b0020
– volume: 15
  start-page: 689
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0045
  article-title: Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
  publication-title: Front. Neurosci.
– volume: 34
  start-page: 321
  year: 1973
  ident: 10.1016/j.bspc.2021.103407_b0200
  article-title: The physical significance of time domain descriptors in EEG analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(73)90260-5
– volume: 2020
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0115
  article-title: Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition
  publication-title: Complexity
  doi: 10.1155/2020/6816502
– volume: 19
  start-page: 4736
  year: 2019
  ident: 10.1016/j.bspc.2021.103407_b0095
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
  doi: 10.3390/s19214736
– ident: 10.1016/j.bspc.2021.103407_b0005
  doi: 10.1109/ACCESS.2021.3091487
– volume: 9
  start-page: 593
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0110
  article-title: Emotion Recognition and Regulation Based on Stacked Sparse Auto-Encoder Network and Personalized Reconfigurable Music
  publication-title: Mathematics
  doi: 10.3390/math9060593
– volume: 7
  start-page: 12177
  year: 2019
  ident: 10.1016/j.bspc.2021.103407_b0185
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– volume: 17
  start-page: 45
  year: 2017
  ident: 10.1016/j.bspc.2021.103407_b0030
  article-title: Subject-independent emotion recognition based on physiological signals: a three-stage decision method
  publication-title: BMC Med. Inf. Decis. Making
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0205
  article-title: EEG based emotion detection using fourth order spectral moment and deep learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102755
– volume: 7
  start-page: 23
  year: 2015
  ident: 10.1016/j.bspc.2021.103407_b0175
  article-title: EEG based emotion recognition from human brain using Hjorth parameters and SVM
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2015.7.3.03
– volume: 58
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0240
  article-title: Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101845
– volume: 29
  start-page: 306
  year: 1970
  ident: 10.1016/j.bspc.2021.103407_b0190
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– volume: 26
  start-page: 324
  year: 2017
  ident: 10.1016/j.bspc.2021.103407_b0245
  article-title: Mixed neural network approach for temporal sleep stage classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2733220
– start-page: 327
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0180
  article-title: Brain computer interface based EEG for emotion recognition system: A systematic review
– volume: 10
  start-page: 1619
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0220
  article-title: EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands
  publication-title: Appl. Sci.
  doi: 10.3390/app10051619
– volume: 13
  start-page: 645
  year: 2020
  ident: 10.1016/j.bspc.2021.103407_b0135
  article-title: Optimal number of electrode selection for EEG based emotion recognition using linear formulation of differential entropy
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1928
– volume: 22
  start-page: 167
  year: 2021
  ident: 10.1016/j.bspc.2021.103407_b0010
  article-title: A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition
  publication-title: Egypt. Informat. J.
  doi: 10.1016/j.eij.2020.07.005
SSID ssj0048714
Score 2.4436812
Snippet •EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103407
SubjectTerms Cross-dataset
Deep RNN-BiLSTM
Electroencephalography
Emotions
Title Deep BiLSTM neural network model for emotion detection using cross-dataset approach
URI https://dx.doi.org/10.1016/j.bspc.2021.103407
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJDabfSR7rNVSH-2lLfS2bLKJVGRd7Hr1t5vJ7pYK0oPXZQbCMMx8w37zDULXnhaKh4yT1PY_Ehgak5j6KdGKihT-HBkJu8PjSTSaB0-LcNFCg2YXBmiVde2varqr1vWXXh3NXrFc9qYWS0fCTid2aAHZM7fBHnDI8tvvNc3D4nGn7w3GBKzrxZmK4yVXBcgYMg92zwM4KftXc9poOMMDtF8jRdyvHnOIWjo_Qnsb-oHHaHqvdYHvli_T2RiDMqW1zyteN3YnbrCFpFhXl3pwpkvHu8oxkN1fsXsDAYroSpe4ERc_QfPhw2wwIvWVBKJ8SkvC_UwLEctYMqZV5sfSp4FWFoeEGWjfC2UESyORyZBLbkDfDSTZuW-Y0cII_xS1849cnyEcG9CKocZjkQnAnEXKGJramS420kQd5DXhSVQtIQ6XLN6Thiv2lkBIEwhpUoW0g27WPkUloLHVOmyinvxKg8RW-C1-5__0u0C7DPYZHKnsErXLzy99ZVFGKbsujbpop__4PJr8ANLT0Ck
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCp2fIATMk2czTlwAApq6XJpK3ELcWKjIhQiGoS48FP8IJ4sVZFQD0i9RuPIebZmUd68ATg1JY88h3k01PGP2srwqW9YIZWRwUP8c6QE9g53e25zaN8_OA81-K56YZBWWfr-wqfn3rp8Ui_RrKejUb2vc2mX6-pEFy0oe2aWzMq2_PzQddv4stXQh3zG2N3t4KZJy9ECNLIMI6OeFUvOfeELxmQUW77QZb2MdPB2YhSM55HiLHR5LBxPeApF0VDH3LMUU5Irbun3LsCSrd0Fjk24-JrwSnQBkAuK4-4obq_s1ClIZWKcom4iM7HZ3cYZtn9Fw6kId7cOa2VqSq6Kr9-Amkw2YXVKsHAL-g0pU3I96vQHXYJSmNo-KYjkJJ-pQ3QOTGQxGojEMsuJXglBdv0TyfdAkZM6lhmp1My3YTgX7HZgMXlN5C4QX6E4jaFM5iobzZkbKWWEuoj0lVDuHpgVPEFUapbj6IyXoCKnPQcIaYCQBgWke3A-WZMWih0zrZ0K9eDXvQt0SJmxbv-f605guTnodoJOq9c-gBWGzRQ5o-0QFrO3d3mkU5xMHOdXisDjvO_wD9D9C0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+BiLSTM+neural+network+model+for+emotion+detection+using+cross-dataset+approach&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Joshi%2C+Vaishali+M.&rft.au=Ghongade%2C+Rajesh+B.&rft.au=Joshi%2C+Aditi+M.&rft.au=Kulkarni%2C+Rushikesh+V.&rft.date=2022-03-01&rft.issn=1746-8094&rft.volume=73&rft.spage=103407&rft_id=info:doi/10.1016%2Fj.bspc.2021.103407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon