Deep BiLSTM neural network model for emotion detection using cross-dataset approach
•EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own IDEA dataset.•A deep recurrent neural network (D-RNN) based on bidirectional long short-term memory (BiLSTM) used to develop network models...
Saved in:
Published in | Biomedical signal processing and control Vol. 73; p. 103407 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own IDEA dataset.•A deep recurrent neural network (D-RNN) based on bidirectional long short-term memory (BiLSTM) used to develop network models for emotion classification.•The experimental results with deep learning outperform the classical methods.
The purpose of this research is to use a cross-dataset approach to construct an EEG-based emotion recognition system. So far, numerous modeling strategies for emotion recognition have been revealed using the same dataset and subject-dependent and independent criteria. We propose EEG-based cross-dataset emotion classification in this study, where the datasets for training and testing are completely distinct. The research is carried out using two benchmark datasets, DEAP and SEED, as well as our own IDEA dataset. The three datasets differ in a variety of technical factors, including electroencephalography (EEG) devices, stimuli, methodology, subject, country, culture, and so on. Multilayer perceptron (MLP), support vector machine (SVM), k-nearest neighbors (k-NN), and deep RNNs model based on bidirectional long short-term memory (BiLSTM) network were trained in this study using features namely PSD, Hjorth parameters, DE, and LF-DE. When the DEAP dataset is used to train the model and the SEED dataset is used to test it, the recognition accuracy improves by 8.2 %, and when the model is the SEED dataset-trained and the DEAP dataset-tested, the recognition accuracy improves by 1.5 % when compared to the previous result. It has been revealed that LF-DE with BiLSTM outperforms other features and classifiers for the same input data. A deep neural network-BiLSTM gives deep features from the lowest level to the highest level from large datasets. The results of the experiments reveal that the optimization of deep neural network parameters can improve the performance of the emotion recognition system to a positive extent. |
---|---|
AbstractList | •EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own IDEA dataset.•A deep recurrent neural network (D-RNN) based on bidirectional long short-term memory (BiLSTM) used to develop network models for emotion classification.•The experimental results with deep learning outperform the classical methods.
The purpose of this research is to use a cross-dataset approach to construct an EEG-based emotion recognition system. So far, numerous modeling strategies for emotion recognition have been revealed using the same dataset and subject-dependent and independent criteria. We propose EEG-based cross-dataset emotion classification in this study, where the datasets for training and testing are completely distinct. The research is carried out using two benchmark datasets, DEAP and SEED, as well as our own IDEA dataset. The three datasets differ in a variety of technical factors, including electroencephalography (EEG) devices, stimuli, methodology, subject, country, culture, and so on. Multilayer perceptron (MLP), support vector machine (SVM), k-nearest neighbors (k-NN), and deep RNNs model based on bidirectional long short-term memory (BiLSTM) network were trained in this study using features namely PSD, Hjorth parameters, DE, and LF-DE. When the DEAP dataset is used to train the model and the SEED dataset is used to test it, the recognition accuracy improves by 8.2 %, and when the model is the SEED dataset-trained and the DEAP dataset-tested, the recognition accuracy improves by 1.5 % when compared to the previous result. It has been revealed that LF-DE with BiLSTM outperforms other features and classifiers for the same input data. A deep neural network-BiLSTM gives deep features from the lowest level to the highest level from large datasets. The results of the experiments reveal that the optimization of deep neural network parameters can improve the performance of the emotion recognition system to a positive extent. |
ArticleNumber | 103407 |
Author | Ghongade, Rajesh B. Kulkarni, Rushikesh V. Joshi, Vaishali M. Joshi, Aditi M. |
Author_xml | – sequence: 1 givenname: Vaishali M. surname: Joshi fullname: Joshi, Vaishali M. email: joshivaishali7@gmail.com organization: Electronics Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune 411043, Maharashtra, India – sequence: 2 givenname: Rajesh B. surname: Ghongade fullname: Ghongade, Rajesh B. organization: Electronics Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune 411043, Maharashtra, India – sequence: 3 givenname: Aditi M. surname: Joshi fullname: Joshi, Aditi M. organization: E&TC Engineering, Vishwakarma Institute of Technology, Pune 411037, Maharashtra, India – sequence: 4 givenname: Rushikesh V. surname: Kulkarni fullname: Kulkarni, Rushikesh V. organization: E&TC Engineering, Vishwakarma Institute of Technology, Pune 411037, Maharashtra, India |
BookMark | eNp9kMtOwzAQRS0EEm3hB1j5B1L8SuJIbKA8pSIWLWvLscfg0saRnYL4e5IWNiy6mquRzujOGaPjJjSA0AUlU0pocbma1qk1U0YY7RdckPIIjWgpikxSIo__MqnEKRqntCJEyJKKEVrcArT4xs8Xy2fcwDbqdT-6rxA_8CZYWGMXIoZN6HxosIUOzC5tk2_esIkhpczqTifosG7bGLR5P0MnTq8TnP_OCXq9v1vOHrP5y8PT7HqeGU5Il5XcgpRVXdWMgbG8qjkRYGTFc5uzIpfGSaYLaeu8rEuXi76-LETJHXMgneQTJPd3dzUiOGV8p4d6XdR-rShRgxy1UoMcNchRezk9yv6hbfQbHb8PQ1d7CPqnPj1ElYyHxoD1sdeibPCH8B95n4Bk |
CitedBy_id | crossref_primary_10_3390_app12168265 crossref_primary_10_1007_s11571_023_10034_4 crossref_primary_10_1007_s00521_024_10925_5 crossref_primary_10_1080_10255842_2024_2369257 crossref_primary_10_1016_j_bspc_2024_106877 crossref_primary_10_1016_j_compbiomed_2024_107954 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1088_1361_6501_ad8672 crossref_primary_10_1038_s41598_024_60996_6 crossref_primary_10_1155_2022_6546357 crossref_primary_10_1142_S0219749923500041 crossref_primary_10_1109_ACCESS_2024_3460393 crossref_primary_10_1145_3712259 crossref_primary_10_32604_csse_2023_035753 crossref_primary_10_1109_LSENS_2023_3265682 crossref_primary_10_3390_signals5020013 crossref_primary_10_3390_electronics12132900 crossref_primary_10_1109_ACCESS_2022_3216890 crossref_primary_10_1007_s10586_024_04590_5 crossref_primary_10_1088_1361_6501_ada78a crossref_primary_10_1145_3654664 crossref_primary_10_3390_app14010300 crossref_primary_10_3390_app122010216 crossref_primary_10_1016_j_engappai_2024_108339 crossref_primary_10_3390_app14093701 crossref_primary_10_3934_mbe_2024290 crossref_primary_10_1007_s11760_024_03360_5 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1109_ACCESS_2024_3474553 crossref_primary_10_1109_JBHI_2024_3415163 crossref_primary_10_3390_app15052328 crossref_primary_10_3390_s25041222 crossref_primary_10_3390_app12073641 |
Cites_doi | 10.1016/j.bspc.2021.102743 10.1109/TAFFC.2017.2712143 10.1007/s10044-019-00860-w 10.1155/2021/9967592 10.1109/TNNLS.2013.2280271 10.3390/s19071659 10.3390/s20072034 10.1109/T-AFFC.2011.15 10.1155/2014/627892 10.1007/978-981-16-0171-2_7 10.1162/neco.1997.9.8.1735 10.1016/j.jksuci.2021.03.009 10.1109/ACCESS.2019.2927768 10.1109/TCDS.2018.2826840 10.1007/s12652-020-02338-8 10.1016/j.eij.2019.10.002 10.1016/j.bspc.2019.101756 10.1109/TAMD.2015.2431497 10.37394/232014.2021.17.4 10.1049/el.2020.2460 10.3390/s19235218 10.1016/0013-4694(73)90260-5 10.1155/2020/6816502 10.3390/s19214736 10.1109/ACCESS.2021.3091487 10.3390/math9060593 10.1109/ACCESS.2019.2891579 10.1016/j.bspc.2021.102755 10.14257/ijbsbt.2015.7.3.03 10.1016/j.bspc.2020.101845 10.1016/0013-4694(70)90143-4 10.1109/TNSRE.2017.2733220 10.3390/app10051619 10.13005/bpj/1928 10.1016/j.eij.2020.07.005 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2021.103407 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2021_103407 S1746809421010041 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-73de889b9b22ecd39b304ec8935d52658cf82a68db57b7f5480986473f2fe8f83 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 01:34:13 EDT 2025 Fri Feb 23 02:40:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroencephalography Cross-dataset Emotions Deep RNN-BiLSTM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-73de889b9b22ecd39b304ec8935d52658cf82a68db57b7f5480986473f2fe8f83 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_103407 crossref_primary_10_1016_j_bspc_2021_103407 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | “Deep Learning Based on CNN for Emotion Recognition Using EEG Signal,” WSEAS Trans. Signal Process. Hochreiter, Schmidhuber (b0235) 1997; 9 2021. Lan, Sourina, Wang, Scherer, Müller-Putz (b0085) 2018; 11 Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques M. R. Islam, M. A. Moni, M. M. Islam, M. Rashed-Al-Mahfuz, M. S. Islam, M. K. Hasan Ngai, Xie, Zou, Chou (b0015) 2021 Wang, Huang, Yang, Zhang (b0240) 2020; 58 Asghar, Khan, Amin, Rizwan, Rahman, Badnava (b0075) 2019; 19 Zheng, Lu (b0170) 2015; 7 Kim, Choi (b0215) 2021; 26 V. M. Joshi, R. B. Ghongade, “Subject Noncontingent EEG-Based Emotion Detection Using Deep Learning Algorithm,” in vol. 17, pp. 28-40, 2021. Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b0065) 2017 Al Machot, Elmachot, Ali, Al Machot, Kyamakya (b0025) 2019; 19 Rahman, Hossain, Hossain, Ahmmed (b0050) 2020; 21 Salama, El-Khoribi, Shoman, Shalaby (b0010) 2021; 22 Pandey, Seeja (b0080) 2021; 12 Song, Zheng, Lu, Zong, Zhang, Cui (b0185) 2019; 7 V. M. Joshi, R. B. Ghongade, “IDEA: Intellect database for emotion analysis using EEG signal,” J. King Saud University-Computer and Information Sciences, 2020. Mehmood, Lee (b0175) 2015; 7 Chao, Dong, Liu, Lu (b0115) 2020; 2020 Dong, Supratak, Pan, Wu, Matthews, Guo (b0245) 2017; 26 An, Xu, Qu (b0060) 2021; 69 vol. 9, pp. 94601-94624, 2021. Hjorth (b0200) 1973; 34 ed: Springer, 2021, pp. 67-75. Li, Li, Pan, Wang (b0045) 2021; 15 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi (b0145) 2011; 3 D. Dadebayev, G. W. Wei, T. E. Xion, “EEG-based Emotion Recognition: Review of Commercial EEG Devices and Machine Learning Techniques,” J. King Saud Univers.-Comput. Informat. Sci. Duan, Zhu, Lu (b0195) 2013 Alakus, Turkoglu (b0055) 2020; 56 Nguyen, Duong, Nguyen, Duong (b0225) 2018; 4 Khosrowabadi, Quek, Ang, Wahab (b0035) 2013; 25 P. Pandey and K. Seeja, “Subject independent emotion recognition from EEG using VMD and deep learning,” J. King Saud Univers.-Comput. Informat. Sci. Wu, Zheng, Lu (b0165) 2020 Chen, Hu, Wang, Moore, Dai, Feng (b0030) 2017; 17 Bhise, Kulkarni, Aldhaheri (b0180) 2020 Cimtay, Ekmekcioglu (b0090) 2020; 20 Jirayucharoensak, Pan-Ngum, Israsena (b0160) 2014; 2014 2019. Du, Ma, Zhang, Li, Lai, Zhao (b0125) 2020 Wei, Chen, Song, Lou, Li (b0120) 2020; 58 A. S. Rajpoot and M. R. Panicker, “Subject Independent Emotion Recognition using EEG Signals Employing Attention Driven Neural Networks,” Hjorth (b0190) 1970; 29 Wang, Tong, Heng (b0070) 2019; 7 Zheng, Zhu, Lu (b0150) 2017; 10 Nath, Singh, Sethia, Kalra, Indu (b0130) 2020 Joshi, Ghongade (b0135) 2020; 13 Zhao, Chen (b0210) 2021; 2021 Pan, Shi, Mu, Li, Gao (b0220) 2020; 10 I. S. Ahmad, S. Zhang, S. Saminu, L. Wang, A. E. K. ISSELMOU, Z. CAI Joshi, Ghongade (b0205) 2021; 68 Hwang, Hong, Son, Byun (b0100) 2020; 23 Yang, Han, Min (b0095) 2019; 19 Li, Zheng (b0110) 2021; 9 Wu (10.1016/j.bspc.2021.103407_b0165) 2020 Nguyen (10.1016/j.bspc.2021.103407_b0225) 2018; 4 Dong (10.1016/j.bspc.2021.103407_b0245) 2017; 26 Li (10.1016/j.bspc.2021.103407_b0045) 2021; 15 Yang (10.1016/j.bspc.2021.103407_b0095) 2019; 19 Lan (10.1016/j.bspc.2021.103407_b0085) 2018; 11 Li (10.1016/j.bspc.2021.103407_b0110) 2021; 9 Zheng (10.1016/j.bspc.2021.103407_b0170) 2015; 7 Hochreiter (10.1016/j.bspc.2021.103407_b0235) 1997; 9 Zhao (10.1016/j.bspc.2021.103407_b0210) 2021; 2021 10.1016/j.bspc.2021.103407_b0020 10.1016/j.bspc.2021.103407_b0140 Jirayucharoensak (10.1016/j.bspc.2021.103407_b0160) 2014; 2014 Chen (10.1016/j.bspc.2021.103407_b0030) 2017; 17 Chao (10.1016/j.bspc.2021.103407_b0115) 2020; 2020 Khosrowabadi (10.1016/j.bspc.2021.103407_b0035) 2013; 25 Cimtay (10.1016/j.bspc.2021.103407_b0090) 2020; 20 Pandey (10.1016/j.bspc.2021.103407_b0080) 2021; 12 Wang (10.1016/j.bspc.2021.103407_b0240) 2020; 58 Joshi (10.1016/j.bspc.2021.103407_b0135) 2020; 13 Salama (10.1016/j.bspc.2021.103407_b0010) 2021; 22 Pan (10.1016/j.bspc.2021.103407_b0220) 2020; 10 10.1016/j.bspc.2021.103407_b0105 Joshi (10.1016/j.bspc.2021.103407_b0205) 2021; 68 Zheng (10.1016/j.bspc.2021.103407_b0150) 2017; 10 Hwang (10.1016/j.bspc.2021.103407_b0100) 2020; 23 Hjorth (10.1016/j.bspc.2021.103407_b0190) 1970; 29 Nath (10.1016/j.bspc.2021.103407_b0130) 2020 Alakus (10.1016/j.bspc.2021.103407_b0055) 2020; 56 Du (10.1016/j.bspc.2021.103407_b0125) 2020 Wei (10.1016/j.bspc.2021.103407_b0120) 2020; 58 Asghar (10.1016/j.bspc.2021.103407_b0075) 2019; 19 Kim (10.1016/j.bspc.2021.103407_b0215) 2021; 26 Al Machot (10.1016/j.bspc.2021.103407_b0025) 2019; 19 An (10.1016/j.bspc.2021.103407_b0060) 2021; 69 Tripathi (10.1016/j.bspc.2021.103407_b0065) 2017 Ngai (10.1016/j.bspc.2021.103407_b0015) 2021 10.1016/j.bspc.2021.103407_b0155 Duan (10.1016/j.bspc.2021.103407_b0195) 2013 10.1016/j.bspc.2021.103407_b0230 Rahman (10.1016/j.bspc.2021.103407_b0050) 2020; 21 10.1016/j.bspc.2021.103407_b0040 Song (10.1016/j.bspc.2021.103407_b0185) 2019; 7 Wang (10.1016/j.bspc.2021.103407_b0070) 2019; 7 Bhise (10.1016/j.bspc.2021.103407_b0180) 2020 Mehmood (10.1016/j.bspc.2021.103407_b0175) 2015; 7 Hjorth (10.1016/j.bspc.2021.103407_b0200) 1973; 34 10.1016/j.bspc.2021.103407_b0005 Koelstra (10.1016/j.bspc.2021.103407_b0145) 2011; 3 |
References_xml | – reference: V. M. Joshi, R. B. Ghongade, “Subject Noncontingent EEG-Based Emotion Detection Using Deep Learning Algorithm,” in – volume: 69 year: 2021 ident: b0060 article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition publication-title: Biomed. Signal Process. Control – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: b0145 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. – reference: 2019. – volume: 58 year: 2020 ident: b0240 article-title: Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks publication-title: Biomed. Signal Process. Control – volume: 7 start-page: 93711 year: 2019 end-page: 93722 ident: b0070 article-title: Phase-locking value based graph convolutional neural networks for emotion recognition publication-title: IEEE Access – volume: 2020 year: 2020 ident: b0115 article-title: Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition publication-title: Complexity – volume: 10 start-page: 1619 year: 2020 ident: b0220 article-title: EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands publication-title: Appl. Sci. – volume: 19 start-page: 5218 year: 2019 ident: b0075 article-title: EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach publication-title: Sensors – reference: D. Dadebayev, G. W. Wei, T. E. Xion, “EEG-based Emotion Recognition: Review of Commercial EEG Devices and Machine Learning Techniques,” J. King Saud Univers.-Comput. Informat. Sci. – volume: 26 start-page: 1 year: 2021 end-page: 10 ident: b0215 article-title: Emotion Classification based on EEG signals with LSTM deep learning method publication-title: J. Korea Industr. Informat. Syst. Res. – volume: 19 start-page: 1659 year: 2019 ident: b0025 article-title: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors publication-title: Sensors – year: 2017 ident: b0065 article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset publication-title: in – year: 2020 ident: b0165 article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition publication-title: arXiv preprint arXiv:2004.01973 – volume: 12 start-page: 2311 year: 2021 end-page: 2320 ident: b0080 article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach publication-title: J. Ambient Intell. Hum. Comput. – volume: 10 start-page: 417 year: 2017 end-page: 429 ident: b0150 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affective Comput. – volume: 2021 year: 2021 ident: b0210 article-title: Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism publication-title: Comput. Math. Methods Med. – reference: , “Deep Learning Based on CNN for Emotion Recognition Using EEG Signal,” WSEAS Trans. Signal Process. – reference: M. R. Islam, M. A. Moni, M. M. Islam, M. Rashed-Al-Mahfuz, M. S. Islam, M. K. Hasan – reference: vol. 9, pp. 94601-94624, 2021. – reference: I. S. Ahmad, S. Zhang, S. Saminu, L. Wang, A. E. K. ISSELMOU, Z. CAI – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0235 article-title: Long short-term memory publication-title: Neural Comput. – reference: P. Pandey and K. Seeja, “Subject independent emotion recognition from EEG using VMD and deep learning,” J. King Saud Univers.-Comput. Informat. Sci. – reference: , ed: Springer, 2021, pp. 67-75. – reference: V. M. Joshi, R. B. Ghongade, “IDEA: Intellect database for emotion analysis using EEG signal,” J. King Saud University-Computer and Information Sciences, 2020. – volume: 17 start-page: 45 year: 2017 end-page: 57 ident: b0030 article-title: Subject-independent emotion recognition based on physiological signals: a three-stage decision method publication-title: BMC Med. Inf. Decis. Making – start-page: 327 year: 2020 end-page: 334 ident: b0180 article-title: Brain computer interface based EEG for emotion recognition system: A systematic review – volume: 56 start-page: 1364 year: 2020 end-page: 1367 ident: b0055 article-title: Emotion recognition with deep learning using GAMEEMO data set publication-title: Electron. Lett. – reference: , “Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques,” – reference: vol. 17, pp. 28-40, 2021. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b0170 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 21 start-page: 23 year: 2020 end-page: 35 ident: b0050 article-title: Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal publication-title: Egypt. Informat. J. – volume: 20 start-page: 2034 year: 2020 ident: b0090 article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition publication-title: Sensors – reference: A. S. Rajpoot and M. R. Panicker, “Subject Independent Emotion Recognition using EEG Signals Employing Attention Driven Neural Networks,” – volume: 68 year: 2021 ident: b0205 article-title: EEG based emotion detection using fourth order spectral moment and deep learning publication-title: Biomed. Signal Process. Control – start-page: 81 year: 2013 end-page: 84 ident: b0195 article-title: Differential entropy feature for EEG-based emotion classification – volume: 7 start-page: 23 year: 2015 end-page: 32 ident: b0175 article-title: EEG based emotion recognition from human brain using Hjorth parameters and SVM publication-title: Int. J. Bio-Sci. Bio-Technol. – volume: 23 start-page: 1323 year: 2020 end-page: 1335 ident: b0100 article-title: Learning CNN features from DE features for EEG-based emotion recognition publication-title: Pattern Anal. Appl. – volume: 9 start-page: 593 year: 2021 ident: b0110 article-title: Emotion Recognition and Regulation Based on Stacked Sparse Auto-Encoder Network and Personalized Reconfigurable Music publication-title: Mathematics – reference: 2021. – volume: 2014 year: 2014 ident: b0160 article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Scient. World J. – year: 2021 ident: b0015 article-title: Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources publication-title: Informat. Fusion – volume: 4 start-page: 105 year: 2018 end-page: 109 ident: b0225 article-title: Combination of wavelet and mlp neural network for emotion recognition system publication-title: Int. J. Fut. Revolut. Compt. Sci. Commun. Eng. – volume: 7 start-page: 12177 year: 2019 end-page: 12191 ident: b0185 article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access – volume: 11 start-page: 85 year: 2018 end-page: 94 ident: b0085 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cognit. Dev. Syst. – volume: 13 start-page: 645 year: 2020 end-page: 653 ident: b0135 article-title: Optimal number of electrode selection for EEG based emotion recognition using linear formulation of differential entropy publication-title: Biomed. Pharmacol. J. – volume: 22 start-page: 167 year: 2021 end-page: 176 ident: b0010 article-title: A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition publication-title: Egypt. Informat. J. – volume: 15 start-page: 689 year: 2021 ident: b0045 article-title: Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network publication-title: Front. Neurosci. – volume: 25 start-page: 609 year: 2013 end-page: 620 ident: b0035 article-title: ERNN: A biologically inspired feedforward neural network to discriminate emotion from EEG signal publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2020 ident: b0125 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affective Comput. – start-page: 142 year: 2020 end-page: 147 ident: b0130 article-title: A comparative study of subject-dependent and subject-independent strategies for EEG-based emotion recognition using LSTM network – volume: 29 start-page: 306 year: 1970 end-page: 310 ident: b0190 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 58 year: 2020 ident: b0120 article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning publication-title: Biomed. Signal Process. Control – volume: 34 start-page: 321 year: 1973 end-page: 325 ident: b0200 article-title: The physical significance of time domain descriptors in EEG analysis publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 26 start-page: 324 year: 2017 end-page: 333 ident: b0245 article-title: Mixed neural network approach for temporal sleep stage classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 19 start-page: 4736 year: 2019 ident: b0095 article-title: A multi-column CNN model for emotion recognition from EEG signals publication-title: Sensors – volume: 69 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0060 article-title: Leveraging spatial-temporal convolutional features for EEG-based emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102743 – volume: 10 start-page: 417 year: 2017 ident: 10.1016/j.bspc.2021.103407_b0150 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2017.2712143 – volume: 23 start-page: 1323 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0100 article-title: Learning CNN features from DE features for EEG-based emotion recognition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00860-w – volume: 2021 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0210 article-title: Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/9967592 – year: 2017 ident: 10.1016/j.bspc.2021.103407_b0065 article-title: Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset – volume: 25 start-page: 609 year: 2013 ident: 10.1016/j.bspc.2021.103407_b0035 article-title: ERNN: A biologically inspired feedforward neural network to discriminate emotion from EEG signal publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2013.2280271 – volume: 19 start-page: 1659 year: 2019 ident: 10.1016/j.bspc.2021.103407_b0025 article-title: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors publication-title: Sensors doi: 10.3390/s19071659 – volume: 20 start-page: 2034 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0090 article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition publication-title: Sensors doi: 10.3390/s20072034 – year: 2020 ident: 10.1016/j.bspc.2021.103407_b0125 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affective Comput. – volume: 3 start-page: 18 year: 2011 ident: 10.1016/j.bspc.2021.103407_b0145 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 2014 year: 2014 ident: 10.1016/j.bspc.2021.103407_b0160 article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Scient. World J. doi: 10.1155/2014/627892 – start-page: 142 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0130 article-title: A comparative study of subject-dependent and subject-independent strategies for EEG-based emotion recognition using LSTM network – ident: 10.1016/j.bspc.2021.103407_b0140 doi: 10.1007/978-981-16-0171-2_7 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.bspc.2021.103407_b0235 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.bspc.2021.103407_b0155 – ident: 10.1016/j.bspc.2021.103407_b0230 doi: 10.1016/j.jksuci.2021.03.009 – start-page: 81 year: 2013 ident: 10.1016/j.bspc.2021.103407_b0195 article-title: Differential entropy feature for EEG-based emotion classification – volume: 7 start-page: 93711 year: 2019 ident: 10.1016/j.bspc.2021.103407_b0070 article-title: Phase-locking value based graph convolutional neural networks for emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927768 – volume: 11 start-page: 85 year: 2018 ident: 10.1016/j.bspc.2021.103407_b0085 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – year: 2021 ident: 10.1016/j.bspc.2021.103407_b0015 article-title: Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources publication-title: Informat. Fusion – volume: 12 start-page: 2311 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0080 article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02338-8 – volume: 21 start-page: 23 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0050 article-title: Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal publication-title: Egypt. Informat. J. doi: 10.1016/j.eij.2019.10.002 – volume: 26 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0215 article-title: Emotion Classification based on EEG signals with LSTM deep learning method publication-title: J. Korea Industr. Informat. Syst. Res. – volume: 58 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0120 article-title: EEG-based emotion recognition using simple recurrent units network and ensemble learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101756 – year: 2020 ident: 10.1016/j.bspc.2021.103407_b0165 article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition – volume: 7 start-page: 162 year: 2015 ident: 10.1016/j.bspc.2021.103407_b0170 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – ident: 10.1016/j.bspc.2021.103407_b0105 doi: 10.37394/232014.2021.17.4 – volume: 4 start-page: 105 year: 2018 ident: 10.1016/j.bspc.2021.103407_b0225 article-title: Combination of wavelet and mlp neural network for emotion recognition system publication-title: Int. J. Fut. Revolut. Compt. Sci. Commun. Eng. – ident: 10.1016/j.bspc.2021.103407_b0040 – volume: 56 start-page: 1364 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0055 article-title: Emotion recognition with deep learning using GAMEEMO data set publication-title: Electron. Lett. doi: 10.1049/el.2020.2460 – volume: 19 start-page: 5218 year: 2019 ident: 10.1016/j.bspc.2021.103407_b0075 article-title: EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach publication-title: Sensors doi: 10.3390/s19235218 – ident: 10.1016/j.bspc.2021.103407_b0020 – volume: 15 start-page: 689 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0045 article-title: Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network publication-title: Front. Neurosci. – volume: 34 start-page: 321 year: 1973 ident: 10.1016/j.bspc.2021.103407_b0200 article-title: The physical significance of time domain descriptors in EEG analysis publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(73)90260-5 – volume: 2020 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0115 article-title: Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition publication-title: Complexity doi: 10.1155/2020/6816502 – volume: 19 start-page: 4736 year: 2019 ident: 10.1016/j.bspc.2021.103407_b0095 article-title: A multi-column CNN model for emotion recognition from EEG signals publication-title: Sensors doi: 10.3390/s19214736 – ident: 10.1016/j.bspc.2021.103407_b0005 doi: 10.1109/ACCESS.2021.3091487 – volume: 9 start-page: 593 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0110 article-title: Emotion Recognition and Regulation Based on Stacked Sparse Auto-Encoder Network and Personalized Reconfigurable Music publication-title: Mathematics doi: 10.3390/math9060593 – volume: 7 start-page: 12177 year: 2019 ident: 10.1016/j.bspc.2021.103407_b0185 article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – volume: 17 start-page: 45 year: 2017 ident: 10.1016/j.bspc.2021.103407_b0030 article-title: Subject-independent emotion recognition based on physiological signals: a three-stage decision method publication-title: BMC Med. Inf. Decis. Making – volume: 68 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0205 article-title: EEG based emotion detection using fourth order spectral moment and deep learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102755 – volume: 7 start-page: 23 year: 2015 ident: 10.1016/j.bspc.2021.103407_b0175 article-title: EEG based emotion recognition from human brain using Hjorth parameters and SVM publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2015.7.3.03 – volume: 58 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0240 article-title: Temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101845 – volume: 29 start-page: 306 year: 1970 ident: 10.1016/j.bspc.2021.103407_b0190 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – volume: 26 start-page: 324 year: 2017 ident: 10.1016/j.bspc.2021.103407_b0245 article-title: Mixed neural network approach for temporal sleep stage classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2733220 – start-page: 327 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0180 article-title: Brain computer interface based EEG for emotion recognition system: A systematic review – volume: 10 start-page: 1619 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0220 article-title: EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands publication-title: Appl. Sci. doi: 10.3390/app10051619 – volume: 13 start-page: 645 year: 2020 ident: 10.1016/j.bspc.2021.103407_b0135 article-title: Optimal number of electrode selection for EEG based emotion recognition using linear formulation of differential entropy publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1928 – volume: 22 start-page: 167 year: 2021 ident: 10.1016/j.bspc.2021.103407_b0010 article-title: A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition publication-title: Egypt. Informat. J. doi: 10.1016/j.eij.2020.07.005 |
SSID | ssj0048714 |
Score | 2.4436812 |
Snippet | •EEG-based cross-dataset emotion classification approach is used.•The research is carried out using two publicly available datasets, DEAP and SEED, and our own... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103407 |
SubjectTerms | Cross-dataset Deep RNN-BiLSTM Electroencephalography Emotions |
Title | Deep BiLSTM neural network model for emotion detection using cross-dataset approach |
URI | https://dx.doi.org/10.1016/j.bspc.2021.103407 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJDabfSR7rNVSH-2lLfS2bLKJVGRd7Hr1t5vJ7pYK0oPXZQbCMMx8w37zDULXnhaKh4yT1PY_Ehgak5j6KdGKihT-HBkJu8PjSTSaB0-LcNFCg2YXBmiVde2varqr1vWXXh3NXrFc9qYWS0fCTid2aAHZM7fBHnDI8tvvNc3D4nGn7w3GBKzrxZmK4yVXBcgYMg92zwM4KftXc9poOMMDtF8jRdyvHnOIWjo_Qnsb-oHHaHqvdYHvli_T2RiDMqW1zyteN3YnbrCFpFhXl3pwpkvHu8oxkN1fsXsDAYroSpe4ERc_QfPhw2wwIvWVBKJ8SkvC_UwLEctYMqZV5sfSp4FWFoeEGWjfC2UESyORyZBLbkDfDSTZuW-Y0cII_xS1849cnyEcG9CKocZjkQnAnEXKGJramS420kQd5DXhSVQtIQ6XLN6Thiv2lkBIEwhpUoW0g27WPkUloLHVOmyinvxKg8RW-C1-5__0u0C7DPYZHKnsErXLzy99ZVFGKbsujbpop__4PJr8ANLT0Ck |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCp2fIATMk2czTlwAApq6XJpK3ELcWKjIhQiGoS48FP8IJ4sVZFQD0i9RuPIebZmUd68ATg1JY88h3k01PGP2srwqW9YIZWRwUP8c6QE9g53e25zaN8_OA81-K56YZBWWfr-wqfn3rp8Ui_RrKejUb2vc2mX6-pEFy0oe2aWzMq2_PzQddv4stXQh3zG2N3t4KZJy9ECNLIMI6OeFUvOfeELxmQUW77QZb2MdPB2YhSM55HiLHR5LBxPeApF0VDH3LMUU5Irbun3LsCSrd0Fjk24-JrwSnQBkAuK4-4obq_s1ClIZWKcom4iM7HZ3cYZtn9Fw6kId7cOa2VqSq6Kr9-Amkw2YXVKsHAL-g0pU3I96vQHXYJSmNo-KYjkJJ-pQ3QOTGQxGojEMsuJXglBdv0TyfdAkZM6lhmp1My3YTgX7HZgMXlN5C4QX6E4jaFM5iobzZkbKWWEuoj0lVDuHpgVPEFUapbj6IyXoCKnPQcIaYCQBgWke3A-WZMWih0zrZ0K9eDXvQt0SJmxbv-f605guTnodoJOq9c-gBWGzRQ5o-0QFrO3d3mkU5xMHOdXisDjvO_wD9D9C0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+BiLSTM+neural+network+model+for+emotion+detection+using+cross-dataset+approach&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Joshi%2C+Vaishali+M.&rft.au=Ghongade%2C+Rajesh+B.&rft.au=Joshi%2C+Aditi+M.&rft.au=Kulkarni%2C+Rushikesh+V.&rft.date=2022-03-01&rft.issn=1746-8094&rft.volume=73&rft.spage=103407&rft_id=info:doi/10.1016%2Fj.bspc.2021.103407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |