Graph based novel features for detection of Alzheimer’s disease using EEG signals

Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the rise, prompting extensive research into automated detection methods using brain signals. This research integrates graph-based features with trad...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 103; p. 107380
Main Authors Sharma, Ramnivas, Meena, Hemant Kumar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2024.107380

Cover

Loading…
Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the rise, prompting extensive research into automated detection methods using brain signals. This research integrates graph-based features with traditional methods to increase the precision of EEG signal-based early Alzheimer’s disease (AD) detection. Conventional techniques frequently neglect the complex functional connections within the brain during different activities by analyzing EEG channels separately. To address these shortcomings, this study introduces an innovative method based on graph signal representations of EEG signals that take into account the interrelationship within the brain. It leverages graph spectral features, including the graph Fourier transform (GFT) and the graph wavelet transform (GWT), and incorporates statistical features such as mean, maximum, minimum, median, standard deviation, and kurtosis. Following preprocessing and feature extraction from the EEG signals of 24 healthy individuals, 24 AD patients (Dataset-I), and 12 healthy subjects, along with 80 AD patients (Dataset-II), different machine learning classifiers are applied. Comparative analysis reveals that random forest (RF) and convolutional neural networks (CNN) achieve the highest performance, with accuracies of 99.75% and 99.48% on the datasets, respectively, demonstrating their effectiveness in constructing an AD diagnostic system. This study combines graph-based and statistical features with the GWT method for EEG signal representation and the RF classifier for classification, with comparative accuracy in AD detection. These findings demonstrate how graph-based features may be used to enhance early disease detection and treatment. •Comparative analysis of Alzheimer’s disease (AD) classification using ML classifiers and deep learning.•Graph signal processing concepts are used to analyze EEG data for AD detection.•GFT and GWT graph-based features are evaluated for classification purposes.•Proposed graph signal features capture brain connectivity and temporal dynamics.•Graph-based features enhance AD detection accuracy from EEG signals.•RF and CNN classifiers achieved 99.75% and 99.48% accuracy, respectively.
AbstractList Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the rise, prompting extensive research into automated detection methods using brain signals. This research integrates graph-based features with traditional methods to increase the precision of EEG signal-based early Alzheimer’s disease (AD) detection. Conventional techniques frequently neglect the complex functional connections within the brain during different activities by analyzing EEG channels separately. To address these shortcomings, this study introduces an innovative method based on graph signal representations of EEG signals that take into account the interrelationship within the brain. It leverages graph spectral features, including the graph Fourier transform (GFT) and the graph wavelet transform (GWT), and incorporates statistical features such as mean, maximum, minimum, median, standard deviation, and kurtosis. Following preprocessing and feature extraction from the EEG signals of 24 healthy individuals, 24 AD patients (Dataset-I), and 12 healthy subjects, along with 80 AD patients (Dataset-II), different machine learning classifiers are applied. Comparative analysis reveals that random forest (RF) and convolutional neural networks (CNN) achieve the highest performance, with accuracies of 99.75% and 99.48% on the datasets, respectively, demonstrating their effectiveness in constructing an AD diagnostic system. This study combines graph-based and statistical features with the GWT method for EEG signal representation and the RF classifier for classification, with comparative accuracy in AD detection. These findings demonstrate how graph-based features may be used to enhance early disease detection and treatment. •Comparative analysis of Alzheimer’s disease (AD) classification using ML classifiers and deep learning.•Graph signal processing concepts are used to analyze EEG data for AD detection.•GFT and GWT graph-based features are evaluated for classification purposes.•Proposed graph signal features capture brain connectivity and temporal dynamics.•Graph-based features enhance AD detection accuracy from EEG signals.•RF and CNN classifiers achieved 99.75% and 99.48% accuracy, respectively.
ArticleNumber 107380
Author Sharma, Ramnivas
Meena, Hemant Kumar
Author_xml – sequence: 1
  givenname: Ramnivas
  orcidid: 0000-0002-3411-6197
  surname: Sharma
  fullname: Sharma, Ramnivas
  email: 2020ree9534@mnit.ac.in
– sequence: 2
  givenname: Hemant Kumar
  surname: Meena
  fullname: Meena, Hemant Kumar
  email: hmeena.ee@mnit.ac.in
BookMark eNp9kM1KAzEUhbOoYFt9AVd5gan5GZsMuCmlVqHgQl2H_Ny0KdOZkkwLuvI1fD2fpBnqykVXBy58l3O-ERo0bQMI3VEyoYRO77cTk_Z2wggr80FwSQZoSEU5LSSpyms0SmlLSCkFLYfobRn1foONTuBw0x6hxh50d4iQsG8jdtCB7ULb4NbjWf21gbCD-Pv9k7ALCTKGDyk0a7xYLHEK60bX6QZd-Rxw-5dj9PG0eJ8_F6vX5ct8tiosJ6Qrps5TYQSTYKTxmuWizJiKsAfuBGd5igPg2krLqtIJYngF3OqSCM8k4ZyPkTz_tbFNKYJXNnS6L9tFHWpFieqFqK3qhaheiDoLySj7h-5j2On4eRl6PEOQRx0DRJVsgMaCCzFLUq4Nl_ATA8x_Eg
CitedBy_id crossref_primary_10_1016_j_cmpb_2025_108652
Cites_doi 10.1109/TFUZZ.2019.2903753
10.1109/TNSRE.2024.3421648
10.1109/TNSRE.2019.2939655
10.1080/03772063.2016.1241164
10.1016/j.bspc.2023.105751
10.1109/TETCI.2022.3186180
10.1007/s11633-019-1197-4
10.3390/e20010035
10.1371/journal.pone.0231169
10.1109/MSP.2012.2235192
10.1016/j.bspc.2023.105266
10.1016/j.bspc.2020.102338
10.1016/j.acha.2010.04.005
10.1016/j.procs.2021.09.084
10.1016/j.bspc.2022.104439
10.1109/TTS.2023.3239526
10.1186/1687-6180-2012-192
10.1016/j.heliyon.2023.e14858
10.2471/BLT.13.118422
10.1016/j.clinph.2017.06.251
10.1038/s41598-023-32664-8
10.1109/JSEN.2023.3330090
10.1016/j.knosys.2022.108815
10.2174/156720510792231720
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.107380
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_107380
S1746809424014381
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
ID FETCH-LOGICAL-c300t-6df17b728eb8bfa23802bb90253d732016dee3ac8c294d70b39e3ca407f280333
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:52:21 EDT 2025
Tue Aug 05 11:58:29 EDT 2025
Sat Jun 07 17:01:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph Fourier transform
Graph wavelet transform
Alzheimer’s disease (AD)
EEG signals
Convolutional neural network (CNN)
Machine learning models
Feature extractions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-6df17b728eb8bfa23802bb90253d732016dee3ac8c294d70b39e3ca407f280333
ORCID 0000-0002-3411-6197
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2024_107380
crossref_primary_10_1016_j_bspc_2024_107380
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_107380
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vicchietti, Ramos, Betting, Campanharo (b21) 2023; 13
Trambaiolli, Spolaôr, Lorena, Anghinah, Sato (b2) 2017; 128
Alvi, Siuly, Wang, Wang, Whittaker (b5) 2022; 248
Falk, Fraga, Trambaiolli, Anghinah (b8) 2012; 2012
Krishna, Das, Meena, Pachori (b22) 2023
Yu, Li, Liu, Liu, Guo, Wang, Li (b10) 2024
Ruiz-Gómez, Gómez, Poza, Gutiérrez-Tobal, Tola-Arribas, Cano, Hornero (b12) 2018; 20
Pineda, Ramos, Betting, Campanharo (b20) 2020; 15
Dauwels, Vialatte, Cichocki (b6) 2010; 7
Kulkarni, Bairagi (b11) 2017; 63
Bairagi (b1) 2018; 10
Puri, Nalbalwar, Nandgaonkar, Gawande, Wagh (b16) 2023; 81
Xia, Zhang, Zhang, Usman (b18) 2023; 9
Hammond, Vandergheynst, Gribonval (b27) 2011; 30
Shuman, Narang, Frossard, Ortega, Vandergheynst (b23) 2013; 30
Alvi, Siuly, Wang (b15) 2022; 7
Göker (b32) 2023; 28
Yin, Cao, Siuly, Wang (b3) 2019; 16
Biagetti, Crippa, Falaschetti, Luzzi, Turchetti (b31) 2021; 192
Jang, Moon, Lee (b26) 2018
Yu, Li, Lei, Wang (b19) 2019; 27
Stanković, Daković, Sejdić (b24) 2019
Nour, Senturk, Polat (b9) 2024; 89
Defferrard, Bresson, Vandergheynst (b25) 2016; 29
Qin, Sheng, Liu, Chai (b28) 2022
Qian, Fan, Ye (b29) 2020
Yu, Lei, Song, Liu, Wang (b7) 2019; 28
Fouad, Labib (b14) 2023; 86
Safi, Safi (b30) 2021; 65
Kulkarni (b13) 2018; 10
Tawhid, Siuly, Wang, Wang (b17) 2023; 4
Mavrodaris, Powell, Thorogood (b4) 2013; 91
Qin (10.1016/j.bspc.2024.107380_b28) 2022
Xia (10.1016/j.bspc.2024.107380_b18) 2023; 9
Fouad (10.1016/j.bspc.2024.107380_b14) 2023; 86
Ruiz-Gómez (10.1016/j.bspc.2024.107380_b12) 2018; 20
Falk (10.1016/j.bspc.2024.107380_b8) 2012; 2012
Jang (10.1016/j.bspc.2024.107380_b26) 2018
Pineda (10.1016/j.bspc.2024.107380_b20) 2020; 15
Göker (10.1016/j.bspc.2024.107380_b32) 2023; 28
Yu (10.1016/j.bspc.2024.107380_b10) 2024
Alvi (10.1016/j.bspc.2024.107380_b5) 2022; 248
Hammond (10.1016/j.bspc.2024.107380_b27) 2011; 30
Qian (10.1016/j.bspc.2024.107380_b29) 2020
Alvi (10.1016/j.bspc.2024.107380_b15) 2022; 7
Stanković (10.1016/j.bspc.2024.107380_b24) 2019
Yin (10.1016/j.bspc.2024.107380_b3) 2019; 16
Yu (10.1016/j.bspc.2024.107380_b7) 2019; 28
Nour (10.1016/j.bspc.2024.107380_b9) 2024; 89
Defferrard (10.1016/j.bspc.2024.107380_b25) 2016; 29
Kulkarni (10.1016/j.bspc.2024.107380_b11) 2017; 63
Trambaiolli (10.1016/j.bspc.2024.107380_b2) 2017; 128
Vicchietti (10.1016/j.bspc.2024.107380_b21) 2023; 13
Krishna (10.1016/j.bspc.2024.107380_b22) 2023
Mavrodaris (10.1016/j.bspc.2024.107380_b4) 2013; 91
Dauwels (10.1016/j.bspc.2024.107380_b6) 2010; 7
Safi (10.1016/j.bspc.2024.107380_b30) 2021; 65
Yu (10.1016/j.bspc.2024.107380_b19) 2019; 27
Kulkarni (10.1016/j.bspc.2024.107380_b13) 2018; 10
Shuman (10.1016/j.bspc.2024.107380_b23) 2013; 30
Bairagi (10.1016/j.bspc.2024.107380_b1) 2018; 10
Tawhid (10.1016/j.bspc.2024.107380_b17) 2023; 4
Puri (10.1016/j.bspc.2024.107380_b16) 2023; 81
Biagetti (10.1016/j.bspc.2024.107380_b31) 2021; 192
References_xml – volume: 86
  year: 2023
  ident: b14
  article-title: Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network
  publication-title: Biomed. Signal Process. Control
– volume: 89
  year: 2024
  ident: b9
  article-title: A novel hybrid model in the diagnosis and classification of Alzheimer’s disease using EEG signals: Deep ensemble learning (DEL) approach
  publication-title: Biomed. Signal Process. Control
– start-page: 2974
  year: 2022
  end-page: 2978
  ident: b28
  article-title: Graph wavelet transform-based denoising for dynamic PET images with multi-feature information
  publication-title: 2022 41st Chinese Control Conference
– start-page: 3
  year: 2019
  end-page: 108
  ident: b24
  article-title: Introduction to graph signal processing
  publication-title: Vertex-Frequency Analysis of Graph Signals
– volume: 128
  start-page: 2058
  year: 2017
  end-page: 2067
  ident: b2
  article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease
  publication-title: Clin. Neurophysiol.
– volume: 29
  year: 2016
  ident: b25
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 91
  start-page: 773
  year: 2013
  end-page: 783
  ident: b4
  article-title: Prevalences of dementia and cognitive impairment among older people in Sub-Saharan Africa: A systematic review
  publication-title: Bull. World Health Organ.
– volume: 4
  start-page: 76
  year: 2023
  end-page: 86
  ident: b17
  article-title: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals
  publication-title: IEEE Trans. Technol. Soc.
– volume: 7
  start-page: 375
  year: 2022
  end-page: 388
  ident: b15
  article-title: A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– start-page: 842
  year: 2020
  end-page: 845
  ident: b29
  article-title: Improving hyperspectral image classification using graph wavelets
  publication-title: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium
– volume: 192
  start-page: 3114
  year: 2021
  end-page: 3122
  ident: b31
  article-title: Classification of Alzheimer’s disease from EEG signal using robust-PCA feature extraction
  publication-title: Procedia Comput. Sci.
– volume: 15
  year: 2020
  ident: b20
  article-title: Quantile graphs for EEG-based diagnosis of Alzheimer’s disease
  publication-title: PLoS One
– volume: 81
  year: 2023
  ident: b16
  article-title: Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks
  publication-title: Biomed. Signal Process. Control
– volume: 9
  year: 2023
  ident: b18
  article-title: A novel method for diagnosing Alzheimer’s disease using deep pyramid CNN based on EEG signals
  publication-title: Heliyon
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: b23
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
– volume: 16
  start-page: 786
  year: 2019
  end-page: 799
  ident: b3
  article-title: An integrated MCI detection framework based on spectral-temporal analysis
  publication-title: Int. J. Autom. Comput.
– year: 2024
  ident: b10
  article-title: Evaluation of acupuncture efficacy in modulating brain activity with periodic-aperiodic EEG measurements
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 65
  year: 2021
  ident: b30
  article-title: Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters
  publication-title: Biomed. Signal Process. Control
– volume: 248
  year: 2022
  ident: b5
  article-title: A deep learning based framework for diagnosis of mild cognitive impairment
  publication-title: Knowl.-Based Syst.
– volume: 20
  start-page: 35
  year: 2018
  ident: b12
  article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment
  publication-title: Entropy
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: b27
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 9
  ident: b8
  article-title: EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer’s disease
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 13
  start-page: 8184
  year: 2023
  ident: b21
  article-title: Computational methods of EEG signals analysis for Alzheimer’s disease classification
  publication-title: Sci. Rep.
– volume: 28
  start-page: 141
  year: 2023
  end-page: 152
  ident: b32
  article-title: Detection of Alzheimer’s disease from electroencephalography EEG signals using multitaper and ensemble learning methods
  publication-title: Uludağ Üniv. Mühendislik Fakültesi Dergisi
– start-page: 3066
  year: 2018
  end-page: 3070
  ident: b26
  article-title: EEG-based video identification using graph signal modeling and graph convolutional neural network
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 10
  start-page: 403
  year: 2018
  end-page: 412
  ident: b1
  article-title: EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features
  publication-title: Int. J. Inf. Technol.
– volume: 27
  start-page: 1973
  year: 2019
  end-page: 1984
  ident: b19
  article-title: Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 63
  start-page: 11
  year: 2017
  end-page: 22
  ident: b11
  article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier
  publication-title: IETE J. Res.
– volume: 10
  start-page: 59
  year: 2018
  end-page: 64
  ident: b13
  article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals
  publication-title: Int. J. Inf. Technol.
– volume: 28
  start-page: 60
  year: 2019
  end-page: 71
  ident: b7
  article-title: Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2023
  ident: b22
  article-title: Spectral graph wavelet transform based feature representation for automated classification of emotions from EEG signal
  publication-title: IEEE Sens. J.
– volume: 7
  start-page: 487
  year: 2010
  end-page: 505
  ident: b6
  article-title: Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing?
  publication-title: Curr. Alzheimer Res.
– volume: 28
  start-page: 60
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2024.107380_b7
  article-title: Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2903753
– volume: 10
  start-page: 59
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2024.107380_b13
  article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals
  publication-title: Int. J. Inf. Technol.
– year: 2024
  ident: 10.1016/j.bspc.2024.107380_b10
  article-title: Evaluation of acupuncture efficacy in modulating brain activity with periodic-aperiodic EEG measurements
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3421648
– volume: 27
  start-page: 1973
  issue: 10
  year: 2019
  ident: 10.1016/j.bspc.2024.107380_b19
  article-title: Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2939655
– start-page: 3066
  year: 2018
  ident: 10.1016/j.bspc.2024.107380_b26
  article-title: EEG-based video identification using graph signal modeling and graph convolutional neural network
– volume: 63
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2024.107380_b11
  article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2016.1241164
– start-page: 3
  year: 2019
  ident: 10.1016/j.bspc.2024.107380_b24
  article-title: Introduction to graph signal processing
– volume: 89
  year: 2024
  ident: 10.1016/j.bspc.2024.107380_b9
  article-title: A novel hybrid model in the diagnosis and classification of Alzheimer’s disease using EEG signals: Deep ensemble learning (DEL) approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105751
– start-page: 2974
  year: 2022
  ident: 10.1016/j.bspc.2024.107380_b28
  article-title: Graph wavelet transform-based denoising for dynamic PET images with multi-feature information
– volume: 7
  start-page: 375
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.107380_b15
  article-title: A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3186180
– volume: 16
  start-page: 786
  year: 2019
  ident: 10.1016/j.bspc.2024.107380_b3
  article-title: An integrated MCI detection framework based on spectral-temporal analysis
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-019-1197-4
– volume: 20
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2024.107380_b12
  article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment
  publication-title: Entropy
  doi: 10.3390/e20010035
– volume: 15
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2024.107380_b20
  article-title: Quantile graphs for EEG-based diagnosis of Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0231169
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.bspc.2024.107380_b23
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– volume: 86
  year: 2023
  ident: 10.1016/j.bspc.2024.107380_b14
  article-title: Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105266
– volume: 65
  year: 2021
  ident: 10.1016/j.bspc.2024.107380_b30
  article-title: Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102338
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.bspc.2024.107380_b27
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– volume: 192
  start-page: 3114
  year: 2021
  ident: 10.1016/j.bspc.2024.107380_b31
  article-title: Classification of Alzheimer’s disease from EEG signal using robust-PCA feature extraction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.09.084
– volume: 28
  start-page: 141
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.107380_b32
  article-title: Detection of Alzheimer’s disease from electroencephalography EEG signals using multitaper and ensemble learning methods
  publication-title: Uludağ Üniv. Mühendislik Fakültesi Dergisi
– volume: 81
  year: 2023
  ident: 10.1016/j.bspc.2024.107380_b16
  article-title: Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104439
– volume: 4
  start-page: 76
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.107380_b17
  article-title: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals
  publication-title: IEEE Trans. Technol. Soc.
  doi: 10.1109/TTS.2023.3239526
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.bspc.2024.107380_b8
  article-title: EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer’s disease
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2012-192
– volume: 9
  issue: 4
  year: 2023
  ident: 10.1016/j.bspc.2024.107380_b18
  article-title: A novel method for diagnosing Alzheimer’s disease using deep pyramid CNN based on EEG signals
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e14858
– volume: 10
  start-page: 403
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2024.107380_b1
  article-title: EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features
  publication-title: Int. J. Inf. Technol.
– volume: 91
  start-page: 773
  year: 2013
  ident: 10.1016/j.bspc.2024.107380_b4
  article-title: Prevalences of dementia and cognitive impairment among older people in Sub-Saharan Africa: A systematic review
  publication-title: Bull. World Health Organ.
  doi: 10.2471/BLT.13.118422
– volume: 128
  start-page: 2058
  issue: 10
  year: 2017
  ident: 10.1016/j.bspc.2024.107380_b2
  article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.06.251
– volume: 13
  start-page: 8184
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.107380_b21
  article-title: Computational methods of EEG signals analysis for Alzheimer’s disease classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32664-8
– volume: 29
  year: 2016
  ident: 10.1016/j.bspc.2024.107380_b25
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: 10.1016/j.bspc.2024.107380_b22
  article-title: Spectral graph wavelet transform based feature representation for automated classification of emotions from EEG signal
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3330090
– start-page: 842
  year: 2020
  ident: 10.1016/j.bspc.2024.107380_b29
  article-title: Improving hyperspectral image classification using graph wavelets
– volume: 248
  year: 2022
  ident: 10.1016/j.bspc.2024.107380_b5
  article-title: A deep learning based framework for diagnosis of mild cognitive impairment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108815
– volume: 7
  start-page: 487
  issue: 6
  year: 2010
  ident: 10.1016/j.bspc.2024.107380_b6
  article-title: Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing?
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720510792231720
SSID ssj0048714
Score 2.396186
Snippet Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107380
SubjectTerms Alzheimer’s disease (AD)
Convolutional neural network (CNN)
EEG signals
Feature extractions
Graph Fourier transform
Graph wavelet transform
Machine learning models
Title Graph based novel features for detection of Alzheimer’s disease using EEG signals
URI https://dx.doi.org/10.1016/j.bspc.2024.107380
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BTlo_LAhkKb2ImTsar6AYgupVK3yE4cKCpp1QYGBsTf4O_xS7hLnKpIqAOrdZasJ-vuWX73jpBL5UnB3ERbni-YBfw_slQEydBWQOekLbSjsBv5fuD1R_x27I4rpF32wqCs0uT-Iqfn2dqsNAyajflk0hgCl_Z8eJ1ATcIZ3nkHOxco67v-WMk8gI_n_t4YbGG0aZwpNF5qOUcbQ4fDgmBoDflXcVorON09smuYIm0Vh9knFZ0ekJ01_8BDMuyh3TTFShTTdPampzTRuVPnkgIZpbHOcqVVSmcJbU3fn_TkRS--P7-W1HzMUNS9P9JOp0dRyQF38YiMup2Hdt8yUxKsiDWbmeXFiS2UcHytfJVIKMFNwBd_D1ksGNR3L9aayciPnIDHoqlYoFkk4SGX4GQqxo5JNZ2l-oTQhEs7DpCSOZJzLRV3leM6MkiARAjh1ohdwhNGxkIcJ1lMw1Ir9hwipCFCGhaQ1sjVas-8MNDYGO2WqIe_rkEIGX7DvtN_7jsj2w4O9M0VjOekmi1e9QWwjEzV82tUJ1utm7v-4AcsFtCP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAcEKsoqw_cUNQkTuL0WFXd6HJpK_UW2YkDRSWt2sCBE7_B7_ElzCQOKhLiwNXySNaTNfNGfn5DyK30BGdurAzP58wA_h8aMoRkaEmgc8Liypb4G3k48rpT537mzkqkWfyFQVmlzv15Ts-ytV6paTRrq_m8NgYu7fnQnUBNwhne0AJV0J3KKZNKo9fvjoqEDJQ8s_jG_QYG6L8zucxLblboZGg7sMAZukP-Vp-2ak77gOxrskgb-XkOSUklR2Rvy0LwmIw76DhNsRhFNFm-qgWNVWbWuaHAR2mk0kxsldBlTBuLt0c1f1brz_ePDdVvMxSl7w-01epQFHPAdTwh03Zr0uwaelCCETLTTA0vii0uue0r6ctYQBU2AWJ8QGQRZ1DivUgpJkI_tOtOxE3J6oqFAnq5GIdTMXZKyskyUWeExo6wojqyMls4jhLScaXt2qIeA4_g3K0Sq4AnCLWLOA6zWASFXOwpQEgDhDTIIa2Su--YVe6h8edut0A9-HETAkjyf8Sd_zPuhux0J8NBMOiN-hdk18b5vpmg8ZKU0_WLugLSkcprfam-AGSf00A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+based+novel+features+for+detection+of+Alzheimer%E2%80%99s+disease+using+EEG+signals&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Sharma%2C+Ramnivas&rft.au=Meena%2C+Hemant+Kumar&rft.date=2025-05-01&rft.issn=1746-8094&rft.volume=103&rft.spage=107380&rft_id=info:doi/10.1016%2Fj.bspc.2024.107380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_107380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon