Graph based novel features for detection of Alzheimer’s disease using EEG signals
Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the rise, prompting extensive research into automated detection methods using brain signals. This research integrates graph-based features with trad...
Saved in:
Published in | Biomedical signal processing and control Vol. 103; p. 107380 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2024.107380 |
Cover
Loading…
Abstract | Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the rise, prompting extensive research into automated detection methods using brain signals.
This research integrates graph-based features with traditional methods to increase the precision of EEG signal-based early Alzheimer’s disease (AD) detection. Conventional techniques frequently neglect the complex functional connections within the brain during different activities by analyzing EEG channels separately. To address these shortcomings, this study introduces an innovative method based on graph signal representations of EEG signals that take into account the interrelationship within the brain. It leverages graph spectral features, including the graph Fourier transform (GFT) and the graph wavelet transform (GWT), and incorporates statistical features such as mean, maximum, minimum, median, standard deviation, and kurtosis.
Following preprocessing and feature extraction from the EEG signals of 24 healthy individuals, 24 AD patients (Dataset-I), and 12 healthy subjects, along with 80 AD patients (Dataset-II), different machine learning classifiers are applied. Comparative analysis reveals that random forest (RF) and convolutional neural networks (CNN) achieve the highest performance, with accuracies of 99.75% and 99.48% on the datasets, respectively, demonstrating their effectiveness in constructing an AD diagnostic system.
This study combines graph-based and statistical features with the GWT method for EEG signal representation and the RF classifier for classification, with comparative accuracy in AD detection. These findings demonstrate how graph-based features may be used to enhance early disease detection and treatment.
•Comparative analysis of Alzheimer’s disease (AD) classification using ML classifiers and deep learning.•Graph signal processing concepts are used to analyze EEG data for AD detection.•GFT and GWT graph-based features are evaluated for classification purposes.•Proposed graph signal features capture brain connectivity and temporal dynamics.•Graph-based features enhance AD detection accuracy from EEG signals.•RF and CNN classifiers achieved 99.75% and 99.48% accuracy, respectively. |
---|---|
AbstractList | Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the rise, prompting extensive research into automated detection methods using brain signals.
This research integrates graph-based features with traditional methods to increase the precision of EEG signal-based early Alzheimer’s disease (AD) detection. Conventional techniques frequently neglect the complex functional connections within the brain during different activities by analyzing EEG channels separately. To address these shortcomings, this study introduces an innovative method based on graph signal representations of EEG signals that take into account the interrelationship within the brain. It leverages graph spectral features, including the graph Fourier transform (GFT) and the graph wavelet transform (GWT), and incorporates statistical features such as mean, maximum, minimum, median, standard deviation, and kurtosis.
Following preprocessing and feature extraction from the EEG signals of 24 healthy individuals, 24 AD patients (Dataset-I), and 12 healthy subjects, along with 80 AD patients (Dataset-II), different machine learning classifiers are applied. Comparative analysis reveals that random forest (RF) and convolutional neural networks (CNN) achieve the highest performance, with accuracies of 99.75% and 99.48% on the datasets, respectively, demonstrating their effectiveness in constructing an AD diagnostic system.
This study combines graph-based and statistical features with the GWT method for EEG signal representation and the RF classifier for classification, with comparative accuracy in AD detection. These findings demonstrate how graph-based features may be used to enhance early disease detection and treatment.
•Comparative analysis of Alzheimer’s disease (AD) classification using ML classifiers and deep learning.•Graph signal processing concepts are used to analyze EEG data for AD detection.•GFT and GWT graph-based features are evaluated for classification purposes.•Proposed graph signal features capture brain connectivity and temporal dynamics.•Graph-based features enhance AD detection accuracy from EEG signals.•RF and CNN classifiers achieved 99.75% and 99.48% accuracy, respectively. |
ArticleNumber | 107380 |
Author | Sharma, Ramnivas Meena, Hemant Kumar |
Author_xml | – sequence: 1 givenname: Ramnivas orcidid: 0000-0002-3411-6197 surname: Sharma fullname: Sharma, Ramnivas email: 2020ree9534@mnit.ac.in – sequence: 2 givenname: Hemant Kumar surname: Meena fullname: Meena, Hemant Kumar email: hmeena.ee@mnit.ac.in |
BookMark | eNp9kM1KAzEUhbOoYFt9AVd5gan5GZsMuCmlVqHgQl2H_Ny0KdOZkkwLuvI1fD2fpBnqykVXBy58l3O-ERo0bQMI3VEyoYRO77cTk_Z2wggr80FwSQZoSEU5LSSpyms0SmlLSCkFLYfobRn1foONTuBw0x6hxh50d4iQsG8jdtCB7ULb4NbjWf21gbCD-Pv9k7ALCTKGDyk0a7xYLHEK60bX6QZd-Rxw-5dj9PG0eJ8_F6vX5ct8tiosJ6Qrps5TYQSTYKTxmuWizJiKsAfuBGd5igPg2krLqtIJYngF3OqSCM8k4ZyPkTz_tbFNKYJXNnS6L9tFHWpFieqFqK3qhaheiDoLySj7h-5j2On4eRl6PEOQRx0DRJVsgMaCCzFLUq4Nl_ATA8x_Eg |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2025_108652 |
Cites_doi | 10.1109/TFUZZ.2019.2903753 10.1109/TNSRE.2024.3421648 10.1109/TNSRE.2019.2939655 10.1080/03772063.2016.1241164 10.1016/j.bspc.2023.105751 10.1109/TETCI.2022.3186180 10.1007/s11633-019-1197-4 10.3390/e20010035 10.1371/journal.pone.0231169 10.1109/MSP.2012.2235192 10.1016/j.bspc.2023.105266 10.1016/j.bspc.2020.102338 10.1016/j.acha.2010.04.005 10.1016/j.procs.2021.09.084 10.1016/j.bspc.2022.104439 10.1109/TTS.2023.3239526 10.1186/1687-6180-2012-192 10.1016/j.heliyon.2023.e14858 10.2471/BLT.13.118422 10.1016/j.clinph.2017.06.251 10.1038/s41598-023-32664-8 10.1109/JSEN.2023.3330090 10.1016/j.knosys.2022.108815 10.2174/156720510792231720 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2024.107380 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2024_107380 S1746809424014381 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EFKBS |
ID | FETCH-LOGICAL-c300t-6df17b728eb8bfa23802bb90253d732016dee3ac8c294d70b39e3ca407f280333 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 22:52:21 EDT 2025 Tue Aug 05 11:58:29 EDT 2025 Sat Jun 07 17:01:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph Fourier transform Graph wavelet transform Alzheimer’s disease (AD) EEG signals Convolutional neural network (CNN) Machine learning models Feature extractions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-6df17b728eb8bfa23802bb90253d732016dee3ac8c294d70b39e3ca407f280333 |
ORCID | 0000-0002-3411-6197 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2024_107380 crossref_primary_10_1016_j_bspc_2024_107380 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_107380 |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vicchietti, Ramos, Betting, Campanharo (b21) 2023; 13 Trambaiolli, Spolaôr, Lorena, Anghinah, Sato (b2) 2017; 128 Alvi, Siuly, Wang, Wang, Whittaker (b5) 2022; 248 Falk, Fraga, Trambaiolli, Anghinah (b8) 2012; 2012 Krishna, Das, Meena, Pachori (b22) 2023 Yu, Li, Liu, Liu, Guo, Wang, Li (b10) 2024 Ruiz-Gómez, Gómez, Poza, Gutiérrez-Tobal, Tola-Arribas, Cano, Hornero (b12) 2018; 20 Pineda, Ramos, Betting, Campanharo (b20) 2020; 15 Dauwels, Vialatte, Cichocki (b6) 2010; 7 Kulkarni, Bairagi (b11) 2017; 63 Bairagi (b1) 2018; 10 Puri, Nalbalwar, Nandgaonkar, Gawande, Wagh (b16) 2023; 81 Xia, Zhang, Zhang, Usman (b18) 2023; 9 Hammond, Vandergheynst, Gribonval (b27) 2011; 30 Shuman, Narang, Frossard, Ortega, Vandergheynst (b23) 2013; 30 Alvi, Siuly, Wang (b15) 2022; 7 Göker (b32) 2023; 28 Yin, Cao, Siuly, Wang (b3) 2019; 16 Biagetti, Crippa, Falaschetti, Luzzi, Turchetti (b31) 2021; 192 Jang, Moon, Lee (b26) 2018 Yu, Li, Lei, Wang (b19) 2019; 27 Stanković, Daković, Sejdić (b24) 2019 Nour, Senturk, Polat (b9) 2024; 89 Defferrard, Bresson, Vandergheynst (b25) 2016; 29 Qin, Sheng, Liu, Chai (b28) 2022 Qian, Fan, Ye (b29) 2020 Yu, Lei, Song, Liu, Wang (b7) 2019; 28 Fouad, Labib (b14) 2023; 86 Safi, Safi (b30) 2021; 65 Kulkarni (b13) 2018; 10 Tawhid, Siuly, Wang, Wang (b17) 2023; 4 Mavrodaris, Powell, Thorogood (b4) 2013; 91 Qin (10.1016/j.bspc.2024.107380_b28) 2022 Xia (10.1016/j.bspc.2024.107380_b18) 2023; 9 Fouad (10.1016/j.bspc.2024.107380_b14) 2023; 86 Ruiz-Gómez (10.1016/j.bspc.2024.107380_b12) 2018; 20 Falk (10.1016/j.bspc.2024.107380_b8) 2012; 2012 Jang (10.1016/j.bspc.2024.107380_b26) 2018 Pineda (10.1016/j.bspc.2024.107380_b20) 2020; 15 Göker (10.1016/j.bspc.2024.107380_b32) 2023; 28 Yu (10.1016/j.bspc.2024.107380_b10) 2024 Alvi (10.1016/j.bspc.2024.107380_b5) 2022; 248 Hammond (10.1016/j.bspc.2024.107380_b27) 2011; 30 Qian (10.1016/j.bspc.2024.107380_b29) 2020 Alvi (10.1016/j.bspc.2024.107380_b15) 2022; 7 Stanković (10.1016/j.bspc.2024.107380_b24) 2019 Yin (10.1016/j.bspc.2024.107380_b3) 2019; 16 Yu (10.1016/j.bspc.2024.107380_b7) 2019; 28 Nour (10.1016/j.bspc.2024.107380_b9) 2024; 89 Defferrard (10.1016/j.bspc.2024.107380_b25) 2016; 29 Kulkarni (10.1016/j.bspc.2024.107380_b11) 2017; 63 Trambaiolli (10.1016/j.bspc.2024.107380_b2) 2017; 128 Vicchietti (10.1016/j.bspc.2024.107380_b21) 2023; 13 Krishna (10.1016/j.bspc.2024.107380_b22) 2023 Mavrodaris (10.1016/j.bspc.2024.107380_b4) 2013; 91 Dauwels (10.1016/j.bspc.2024.107380_b6) 2010; 7 Safi (10.1016/j.bspc.2024.107380_b30) 2021; 65 Yu (10.1016/j.bspc.2024.107380_b19) 2019; 27 Kulkarni (10.1016/j.bspc.2024.107380_b13) 2018; 10 Shuman (10.1016/j.bspc.2024.107380_b23) 2013; 30 Bairagi (10.1016/j.bspc.2024.107380_b1) 2018; 10 Tawhid (10.1016/j.bspc.2024.107380_b17) 2023; 4 Puri (10.1016/j.bspc.2024.107380_b16) 2023; 81 Biagetti (10.1016/j.bspc.2024.107380_b31) 2021; 192 |
References_xml | – volume: 86 year: 2023 ident: b14 article-title: Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network publication-title: Biomed. Signal Process. Control – volume: 89 year: 2024 ident: b9 article-title: A novel hybrid model in the diagnosis and classification of Alzheimer’s disease using EEG signals: Deep ensemble learning (DEL) approach publication-title: Biomed. Signal Process. Control – start-page: 2974 year: 2022 end-page: 2978 ident: b28 article-title: Graph wavelet transform-based denoising for dynamic PET images with multi-feature information publication-title: 2022 41st Chinese Control Conference – start-page: 3 year: 2019 end-page: 108 ident: b24 article-title: Introduction to graph signal processing publication-title: Vertex-Frequency Analysis of Graph Signals – volume: 128 start-page: 2058 year: 2017 end-page: 2067 ident: b2 article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease publication-title: Clin. Neurophysiol. – volume: 29 year: 2016 ident: b25 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – volume: 91 start-page: 773 year: 2013 end-page: 783 ident: b4 article-title: Prevalences of dementia and cognitive impairment among older people in Sub-Saharan Africa: A systematic review publication-title: Bull. World Health Organ. – volume: 4 start-page: 76 year: 2023 end-page: 86 ident: b17 article-title: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals publication-title: IEEE Trans. Technol. Soc. – volume: 7 start-page: 375 year: 2022 end-page: 388 ident: b15 article-title: A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – start-page: 842 year: 2020 end-page: 845 ident: b29 article-title: Improving hyperspectral image classification using graph wavelets publication-title: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium – volume: 192 start-page: 3114 year: 2021 end-page: 3122 ident: b31 article-title: Classification of Alzheimer’s disease from EEG signal using robust-PCA feature extraction publication-title: Procedia Comput. Sci. – volume: 15 year: 2020 ident: b20 article-title: Quantile graphs for EEG-based diagnosis of Alzheimer’s disease publication-title: PLoS One – volume: 81 year: 2023 ident: b16 article-title: Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks publication-title: Biomed. Signal Process. Control – volume: 9 year: 2023 ident: b18 article-title: A novel method for diagnosing Alzheimer’s disease using deep pyramid CNN based on EEG signals publication-title: Heliyon – volume: 30 start-page: 83 year: 2013 end-page: 98 ident: b23 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. – volume: 16 start-page: 786 year: 2019 end-page: 799 ident: b3 article-title: An integrated MCI detection framework based on spectral-temporal analysis publication-title: Int. J. Autom. Comput. – year: 2024 ident: b10 article-title: Evaluation of acupuncture efficacy in modulating brain activity with periodic-aperiodic EEG measurements publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 65 year: 2021 ident: b30 article-title: Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters publication-title: Biomed. Signal Process. Control – volume: 248 year: 2022 ident: b5 article-title: A deep learning based framework for diagnosis of mild cognitive impairment publication-title: Knowl.-Based Syst. – volume: 20 start-page: 35 year: 2018 ident: b12 article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment publication-title: Entropy – volume: 30 start-page: 129 year: 2011 end-page: 150 ident: b27 article-title: Wavelets on graphs via spectral graph theory publication-title: Appl. Comput. Harmon. Anal. – volume: 2012 start-page: 1 year: 2012 end-page: 9 ident: b8 article-title: EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer’s disease publication-title: EURASIP J. Adv. Signal Process. – volume: 13 start-page: 8184 year: 2023 ident: b21 article-title: Computational methods of EEG signals analysis for Alzheimer’s disease classification publication-title: Sci. Rep. – volume: 28 start-page: 141 year: 2023 end-page: 152 ident: b32 article-title: Detection of Alzheimer’s disease from electroencephalography EEG signals using multitaper and ensemble learning methods publication-title: Uludağ Üniv. Mühendislik Fakültesi Dergisi – start-page: 3066 year: 2018 end-page: 3070 ident: b26 article-title: EEG-based video identification using graph signal modeling and graph convolutional neural network publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 10 start-page: 403 year: 2018 end-page: 412 ident: b1 article-title: EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features publication-title: Int. J. Inf. Technol. – volume: 27 start-page: 1973 year: 2019 end-page: 1984 ident: b19 article-title: Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 63 start-page: 11 year: 2017 end-page: 22 ident: b11 article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier publication-title: IETE J. Res. – volume: 10 start-page: 59 year: 2018 end-page: 64 ident: b13 article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals publication-title: Int. J. Inf. Technol. – volume: 28 start-page: 60 year: 2019 end-page: 71 ident: b7 article-title: Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification publication-title: IEEE Trans. Fuzzy Syst. – year: 2023 ident: b22 article-title: Spectral graph wavelet transform based feature representation for automated classification of emotions from EEG signal publication-title: IEEE Sens. J. – volume: 7 start-page: 487 year: 2010 end-page: 505 ident: b6 article-title: Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? publication-title: Curr. Alzheimer Res. – volume: 28 start-page: 60 issue: 1 year: 2019 ident: 10.1016/j.bspc.2024.107380_b7 article-title: Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2903753 – volume: 10 start-page: 59 issue: 1 year: 2018 ident: 10.1016/j.bspc.2024.107380_b13 article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals publication-title: Int. J. Inf. Technol. – year: 2024 ident: 10.1016/j.bspc.2024.107380_b10 article-title: Evaluation of acupuncture efficacy in modulating brain activity with periodic-aperiodic EEG measurements publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3421648 – volume: 27 start-page: 1973 issue: 10 year: 2019 ident: 10.1016/j.bspc.2024.107380_b19 article-title: Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2939655 – start-page: 3066 year: 2018 ident: 10.1016/j.bspc.2024.107380_b26 article-title: EEG-based video identification using graph signal modeling and graph convolutional neural network – volume: 63 start-page: 11 issue: 1 year: 2017 ident: 10.1016/j.bspc.2024.107380_b11 article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier publication-title: IETE J. Res. doi: 10.1080/03772063.2016.1241164 – start-page: 3 year: 2019 ident: 10.1016/j.bspc.2024.107380_b24 article-title: Introduction to graph signal processing – volume: 89 year: 2024 ident: 10.1016/j.bspc.2024.107380_b9 article-title: A novel hybrid model in the diagnosis and classification of Alzheimer’s disease using EEG signals: Deep ensemble learning (DEL) approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105751 – start-page: 2974 year: 2022 ident: 10.1016/j.bspc.2024.107380_b28 article-title: Graph wavelet transform-based denoising for dynamic PET images with multi-feature information – volume: 7 start-page: 375 issue: 2 year: 2022 ident: 10.1016/j.bspc.2024.107380_b15 article-title: A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2022.3186180 – volume: 16 start-page: 786 year: 2019 ident: 10.1016/j.bspc.2024.107380_b3 article-title: An integrated MCI detection framework based on spectral-temporal analysis publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-019-1197-4 – volume: 20 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.bspc.2024.107380_b12 article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment publication-title: Entropy doi: 10.3390/e20010035 – volume: 15 issue: 6 year: 2020 ident: 10.1016/j.bspc.2024.107380_b20 article-title: Quantile graphs for EEG-based diagnosis of Alzheimer’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0231169 – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 10.1016/j.bspc.2024.107380_b23 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 – volume: 86 year: 2023 ident: 10.1016/j.bspc.2024.107380_b14 article-title: Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105266 – volume: 65 year: 2021 ident: 10.1016/j.bspc.2024.107380_b30 article-title: Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102338 – volume: 30 start-page: 129 issue: 2 year: 2011 ident: 10.1016/j.bspc.2024.107380_b27 article-title: Wavelets on graphs via spectral graph theory publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.04.005 – volume: 192 start-page: 3114 year: 2021 ident: 10.1016/j.bspc.2024.107380_b31 article-title: Classification of Alzheimer’s disease from EEG signal using robust-PCA feature extraction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.09.084 – volume: 28 start-page: 141 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.107380_b32 article-title: Detection of Alzheimer’s disease from electroencephalography EEG signals using multitaper and ensemble learning methods publication-title: Uludağ Üniv. Mühendislik Fakültesi Dergisi – volume: 81 year: 2023 ident: 10.1016/j.bspc.2024.107380_b16 article-title: Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104439 – volume: 4 start-page: 76 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.107380_b17 article-title: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals publication-title: IEEE Trans. Technol. Soc. doi: 10.1109/TTS.2023.3239526 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.bspc.2024.107380_b8 article-title: EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer’s disease publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2012-192 – volume: 9 issue: 4 year: 2023 ident: 10.1016/j.bspc.2024.107380_b18 article-title: A novel method for diagnosing Alzheimer’s disease using deep pyramid CNN based on EEG signals publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e14858 – volume: 10 start-page: 403 issue: 3 year: 2018 ident: 10.1016/j.bspc.2024.107380_b1 article-title: EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features publication-title: Int. J. Inf. Technol. – volume: 91 start-page: 773 year: 2013 ident: 10.1016/j.bspc.2024.107380_b4 article-title: Prevalences of dementia and cognitive impairment among older people in Sub-Saharan Africa: A systematic review publication-title: Bull. World Health Organ. doi: 10.2471/BLT.13.118422 – volume: 128 start-page: 2058 issue: 10 year: 2017 ident: 10.1016/j.bspc.2024.107380_b2 article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.06.251 – volume: 13 start-page: 8184 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.107380_b21 article-title: Computational methods of EEG signals analysis for Alzheimer’s disease classification publication-title: Sci. Rep. doi: 10.1038/s41598-023-32664-8 – volume: 29 year: 2016 ident: 10.1016/j.bspc.2024.107380_b25 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: 10.1016/j.bspc.2024.107380_b22 article-title: Spectral graph wavelet transform based feature representation for automated classification of emotions from EEG signal publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3330090 – start-page: 842 year: 2020 ident: 10.1016/j.bspc.2024.107380_b29 article-title: Improving hyperspectral image classification using graph wavelets – volume: 248 year: 2022 ident: 10.1016/j.bspc.2024.107380_b5 article-title: A deep learning based framework for diagnosis of mild cognitive impairment publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108815 – volume: 7 start-page: 487 issue: 6 year: 2010 ident: 10.1016/j.bspc.2024.107380_b6 article-title: Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? publication-title: Curr. Alzheimer Res. doi: 10.2174/156720510792231720 |
SSID | ssj0048714 |
Score | 2.396186 |
Snippet | Alzheimer’s disease (AD) is a progressive neurodegenerative condition of the brain, leading to neuronal death and dementia. Its global prevalence is on the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107380 |
SubjectTerms | Alzheimer’s disease (AD) Convolutional neural network (CNN) EEG signals Feature extractions Graph Fourier transform Graph wavelet transform Machine learning models |
Title | Graph based novel features for detection of Alzheimer’s disease using EEG signals |
URI | https://dx.doi.org/10.1016/j.bspc.2024.107380 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BTlo_LAhkKb2ImTsar6AYgupVK3yE4cKCpp1QYGBsTf4O_xS7hLnKpIqAOrdZasJ-vuWX73jpBL5UnB3ERbni-YBfw_slQEydBWQOekLbSjsBv5fuD1R_x27I4rpF32wqCs0uT-Iqfn2dqsNAyajflk0hgCl_Z8eJ1ATcIZ3nkHOxco67v-WMk8gI_n_t4YbGG0aZwpNF5qOUcbQ4fDgmBoDflXcVorON09smuYIm0Vh9knFZ0ekJ01_8BDMuyh3TTFShTTdPampzTRuVPnkgIZpbHOcqVVSmcJbU3fn_TkRS--P7-W1HzMUNS9P9JOp0dRyQF38YiMup2Hdt8yUxKsiDWbmeXFiS2UcHytfJVIKMFNwBd_D1ksGNR3L9aayciPnIDHoqlYoFkk4SGX4GQqxo5JNZ2l-oTQhEs7DpCSOZJzLRV3leM6MkiARAjh1ohdwhNGxkIcJ1lMw1Ir9hwipCFCGhaQ1sjVas-8MNDYGO2WqIe_rkEIGX7DvtN_7jsj2w4O9M0VjOekmi1e9QWwjEzV82tUJ1utm7v-4AcsFtCP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWq9gAcEKsoqw_cUNQkTuL0WFXd6HJpK_UW2YkDRSWt2sCBE7_B7_ElzCQOKhLiwNXySNaTNfNGfn5DyK30BGdurAzP58wA_h8aMoRkaEmgc8Liypb4G3k48rpT537mzkqkWfyFQVmlzv15Ts-ytV6paTRrq_m8NgYu7fnQnUBNwhne0AJV0J3KKZNKo9fvjoqEDJQ8s_jG_QYG6L8zucxLblboZGg7sMAZukP-Vp-2ak77gOxrskgb-XkOSUklR2Rvy0LwmIw76DhNsRhFNFm-qgWNVWbWuaHAR2mk0kxsldBlTBuLt0c1f1brz_ePDdVvMxSl7w-01epQFHPAdTwh03Zr0uwaelCCETLTTA0vii0uue0r6ctYQBU2AWJ8QGQRZ1DivUgpJkI_tOtOxE3J6oqFAnq5GIdTMXZKyskyUWeExo6wojqyMls4jhLScaXt2qIeA4_g3K0Sq4AnCLWLOA6zWASFXOwpQEgDhDTIIa2Su--YVe6h8edut0A9-HETAkjyf8Sd_zPuhux0J8NBMOiN-hdk18b5vpmg8ZKU0_WLugLSkcprfam-AGSf00A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+based+novel+features+for+detection+of+Alzheimer%E2%80%99s+disease+using+EEG+signals&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Sharma%2C+Ramnivas&rft.au=Meena%2C+Hemant+Kumar&rft.date=2025-05-01&rft.issn=1746-8094&rft.volume=103&rft.spage=107380&rft_id=info:doi/10.1016%2Fj.bspc.2024.107380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_107380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |