Safe-level SMOTE method for handling the class imbalanced problem in electroencephalography dataset of adult anxious state
•An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent work employs the Safe-level Synthetic Minority Oversampling Technique to mitigate the class imbalance issue of the Database for Anxious States...
Saved in:
Published in | Biomedical signal processing and control Vol. 83; p. 104649 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent work employs the Safe-level Synthetic Minority Oversampling Technique to mitigate the class imbalance issue of the Database for Anxious States based on Psychological stimulation with superior classification performance.•The synthesized Database for Anxious States based on Psychological stimulation achieved a maximum accuracy of 89.5% and the highest precision of 89.7% using a K-Nearest Neighbor classifier.
Anxiety disorder is a mental state in which a person experiences excessive worry, fear, nervousness, and apprehension. Measuring brain signals using the electroencephalography (EEG) modality is one of the ways to detect anxiety. However, an imbalanced EEG dataset class distribution among the existing issues with this method degrades the classification performance of the anxiety state. Therefore, the goal of this research is to improve classification performance by balancing the EEG dataset using a Safe-level Synthetic Minority Oversampling Technique (Safe-level SMOTE). In this work, a freely accessible Database for Anxious States based on Psychological stimulation (DASPS) with 14 EEG channels recorded via headset Emotiv Epoc was employed. The raw EEG signals contaminated with noises were filtered with multiple filtration methods before being further processed. The EEG features were extracted in the time domain, frequency domain, and time–frequency domain for model classification. The features model with the most optimal classification performance was then processed using a sampling technique, and a Safe-level SMOTE based nearest neighbor value of 5 before being classified using k-Nearest Neighbor (k-NN), support vector machine (SVM), and decision tree. Finally, the performance of the dataset was validated using k-fold cross-validation and confusion matrix performance metrics as well as recognition of the subject’s anxiety state. The proposed model indicated that the k-NN achieved the maximum accuracy of 89.5% and the highest precision of 89.7% for the dataset with the enhanced class distribution. The performance of the suggested method with Safe-level SMOTE demonstrates its superiority in recognizing anxiety states compared to existing methods without Safe-level SMOTE. |
---|---|
AbstractList | •An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent work employs the Safe-level Synthetic Minority Oversampling Technique to mitigate the class imbalance issue of the Database for Anxious States based on Psychological stimulation with superior classification performance.•The synthesized Database for Anxious States based on Psychological stimulation achieved a maximum accuracy of 89.5% and the highest precision of 89.7% using a K-Nearest Neighbor classifier.
Anxiety disorder is a mental state in which a person experiences excessive worry, fear, nervousness, and apprehension. Measuring brain signals using the electroencephalography (EEG) modality is one of the ways to detect anxiety. However, an imbalanced EEG dataset class distribution among the existing issues with this method degrades the classification performance of the anxiety state. Therefore, the goal of this research is to improve classification performance by balancing the EEG dataset using a Safe-level Synthetic Minority Oversampling Technique (Safe-level SMOTE). In this work, a freely accessible Database for Anxious States based on Psychological stimulation (DASPS) with 14 EEG channels recorded via headset Emotiv Epoc was employed. The raw EEG signals contaminated with noises were filtered with multiple filtration methods before being further processed. The EEG features were extracted in the time domain, frequency domain, and time–frequency domain for model classification. The features model with the most optimal classification performance was then processed using a sampling technique, and a Safe-level SMOTE based nearest neighbor value of 5 before being classified using k-Nearest Neighbor (k-NN), support vector machine (SVM), and decision tree. Finally, the performance of the dataset was validated using k-fold cross-validation and confusion matrix performance metrics as well as recognition of the subject’s anxiety state. The proposed model indicated that the k-NN achieved the maximum accuracy of 89.5% and the highest precision of 89.7% for the dataset with the enhanced class distribution. The performance of the suggested method with Safe-level SMOTE demonstrates its superiority in recognizing anxiety states compared to existing methods without Safe-level SMOTE. |
ArticleNumber | 104649 |
Author | Wee Shing, Tee Syakiylla Sayed Daud, Syarifah Noor Sudirman, Rubita |
Author_xml | – sequence: 1 givenname: Syarifah Noor surname: Syakiylla Sayed Daud fullname: Syakiylla Sayed Daud, Syarifah Noor – sequence: 2 givenname: Rubita orcidid: 0000-0002-9399-8097 surname: Sudirman fullname: Sudirman, Rubita email: rubita@fke.utm.my – sequence: 3 givenname: Tee surname: Wee Shing fullname: Wee Shing, Tee |
BookMark | eNp9kMtuwjAQRb2gUqHtD3TlHwh1EscEqZsK0YdExQK6tib2hBiZOLINKv36JqKrLliNdKVzZ-ZMyKh1LRLymLJpylLxtJ9WoVPTjGV5H3DB5yMyTmdcJCWb81syCWHPGC9nKR-Tnw3UmFg8oaWbz_V2SQ8YG6dp7TxtoNXWtDsaG6TKQgjUHCqw0CrUtPOusnigpqVoUUXvsM-7BqzbeeiaM9UQIWCkrqagjzZSaL-NOwYaIkS8Jzc12IAPf_OOfL0ut4v3ZLV--1i8rBKVMxYToZnSs1IgVlxzXlWZFljk_fVpUTBdCM6YgFQUeVVWiLwsEABzJeqeKbM6vyPlpVd5F4LHWirT7zeujR6MlSmTgze5l4M3OXiTF289mv1DO28O4M_XoecLhP1TJ4NeBmUGNdr4XpPUzlzDfwFY4o20 |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108195 crossref_primary_10_3390_mi16030340 crossref_primary_10_1109_ACCESS_2024_3365544 crossref_primary_10_1111_exsy_13338 crossref_primary_10_3390_math12243915 crossref_primary_10_2478_amns_2024_2139 crossref_primary_10_7717_peerj_cs_1829 crossref_primary_10_1109_TNSRE_2024_3447274 crossref_primary_10_1016_j_autcon_2024_105300 crossref_primary_10_1016_j_eswa_2024_125497 crossref_primary_10_1016_j_icte_2024_04_007 |
Cites_doi | 10.1016/S2215-0366(20)30203-0 10.1016/0165-0327(88)90072-9 10.1016/j.cub.2018.11.052 10.3390/sym13020194 10.1007/s10489-021-02426-y 10.1016/j.jad.2021.08.136 10.1080/07481756.1985.12022795 10.1007/s12652-020-02586-8 10.1109/ACCESS.2020.3021092 10.1037/0022-006X.56.6.893 10.1016/j.ypsc.2021.05.010 10.1016/B978-1-55860-335-6.50034-9 10.1007/s13246-015-0333-x 10.1109/LSP.2020.3006417 10.2147/NDT.S295912 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.104649 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2023_104649 S1746809423000824 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-6d0cd786eeb4d44bb2d6e537141550d564006a1653b8bee485eaae3c6f86e82f3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:16 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Sat Oct 05 15:36:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TAR Features model Classifier Support vector machine FNR SVM Decision tree COVID ɑ ABR k-NN SMOTE TPR Anxiety DWT PSD RFECV DASPS EEG ICA K-Nearest Neighbor RGB FIR DEAP β Hz Performance metric SampEn θ RMS Safe-level Synthetic Minority Oversampling Technique db SAM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-6d0cd786eeb4d44bb2d6e537141550d564006a1653b8bee485eaae3c6f86e82f3 |
ORCID | 0000-0002-9399-8097 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_104649 crossref_primary_10_1016_j_bspc_2023_104649 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chaitanya, Jayakkumar, Chong, Yeow (b0085) 2017 Daud, Sudirman (b0145) 2022; 76 Beck, Epstein, Brown, Steer (b0055) 1988; 56 Saini, Satija, Upadhayay (b0150) 2020; 27 M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, C. Brunk. Reducing misclassification Costs Mach Learn Proc 1994:217-225. https://doi.org/10.1016/b978-1-55860-335-6.50034-9. Meidianingsih, Erfiani (b0165) 2017; 8 Rogers, Chesney, Oliver, Pollak, McGuire, Fusar-Poli (b0020) 2020; 7 Renzi (b0070) 1985; 18 Ogutcu, Inal, Celikhasi, Yildiz, Dogan, Pekdemir (b0025) 2022; 25 Organization WH. Health for the world’s adolescents: a second chance in the second decade: summary. World Heal Organ 2014. Aydemir, Tuncer, Dogan, Gururajan, Acharya (b0080) 2021; 51 Arsalan, Majid (b0035) 2021 Jiang, Pan, Zhang, Yang (b0140) 2021; 13 Bunkhumpornpat, Sinapiromsaran, Lursinsap (b0105) 2009 W. Fan, S. Stolfo, J. Zhang, P. Chan. AdaCost: Misclassification cost-sensitive boosting. ICML ’99 Proc Sixt Int Conf Mach Learn 1999: 1-9. Kubat, Matwin (b0115) 1997 Reardon, Gorczynski, Hainline, Hitchec, Al (b0030) 2021; 1 Baker, Simon, Keshaviah, Farabaugh, Deckersbach, Worthington (b0060) 2019; 32 Organization WH. COVID-19 Disrupting mental health services in most countries WHO survey (2020). World Heal Organ 2020. M.C. Hamilton. Hamilton anxiety scale [HAMA]. Psychiatr Univ Hosp Zurich, Div. Clin. Psychiatry 2011. Manzar, Alghadir, Anwer, Alqahtani, Salahuddin, Addo (b0065) 2021; 17 Giannakakis, Grigoriadis, Tsiknakis (b0075) 2015 N. Japkowicz. The class imbalance problem: Significance and strategies. Proc. 2000 Int. Conf. Artif. Intell. 2000:111-117. Lewis, Catlett (b0120) 1994 Biasiucci, Franceschiello, Murray (b0155) 2019; 29 Maier, Buller, Philipp, Heuser (b0040) 1988; 14 Meng, Zhang (b0090) 2020; 8 Yang (b0050) 2020 Domingos (b0125) 1999 Fisher, Seidler, King, Oliffe, Rice (b0005) 2021; 1 Baghdadi, Aribi, Fourati, Halouani, Siarry, Alimi (b0095) 2021; 12 Shikha, Agrawal, Anwar, Sethia (b0100) 2021 Amin, Malik, Ahmad, Badruddin, Kamel, Hussain (b0160) 2015; 38 10.1016/j.bspc.2023.104649_b0110 Lewis (10.1016/j.bspc.2023.104649_b0120) 1994 10.1016/j.bspc.2023.104649_b0130 10.1016/j.bspc.2023.104649_b0010 Arsalan (10.1016/j.bspc.2023.104649_b0035) 2021 Saini (10.1016/j.bspc.2023.104649_b0150) 2020; 27 Reardon (10.1016/j.bspc.2023.104649_b0030) 2021; 1 Domingos (10.1016/j.bspc.2023.104649_b0125) 1999 Aydemir (10.1016/j.bspc.2023.104649_b0080) 2021; 51 Beck (10.1016/j.bspc.2023.104649_b0055) 1988; 56 Kubat (10.1016/j.bspc.2023.104649_b0115) 1997 Rogers (10.1016/j.bspc.2023.104649_b0020) 2020; 7 Bunkhumpornpat (10.1016/j.bspc.2023.104649_b0105) 2009 Chaitanya (10.1016/j.bspc.2023.104649_b0085) 2017 10.1016/j.bspc.2023.104649_b0015 Shikha (10.1016/j.bspc.2023.104649_b0100) 2021 Giannakakis (10.1016/j.bspc.2023.104649_b0075) 2015 10.1016/j.bspc.2023.104649_b0135 Daud (10.1016/j.bspc.2023.104649_b0145) 2022; 76 Fisher (10.1016/j.bspc.2023.104649_b0005) 2021; 1 10.1016/j.bspc.2023.104649_b0045 Jiang (10.1016/j.bspc.2023.104649_b0140) 2021; 13 Yang (10.1016/j.bspc.2023.104649_b0050) 2020 Baghdadi (10.1016/j.bspc.2023.104649_b0095) 2021; 12 Ogutcu (10.1016/j.bspc.2023.104649_b0025) 2022; 25 Meng (10.1016/j.bspc.2023.104649_b0090) 2020; 8 Amin (10.1016/j.bspc.2023.104649_b0160) 2015; 38 Maier (10.1016/j.bspc.2023.104649_b0040) 1988; 14 Baker (10.1016/j.bspc.2023.104649_b0060) 2019; 32 Biasiucci (10.1016/j.bspc.2023.104649_b0155) 2019; 29 Manzar (10.1016/j.bspc.2023.104649_b0065) 2021; 17 Renzi (10.1016/j.bspc.2023.104649_b0070) 1985; 18 Meidianingsih (10.1016/j.bspc.2023.104649_b0165) 2017; 8 |
References_xml | – volume: 7 start-page: 611 year: 2020 end-page: 627 ident: b0020 article-title: Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic publication-title: Lancet Psychiatry – start-page: 6034 year: 2015 end-page: 6037 ident: b0075 article-title: Detection of stress/anxiety state from EEG features during video watching publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – volume: 38 start-page: 139 year: 2015 end-page: 149 ident: b0160 article-title: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques publication-title: Austral. Phys. Eng. Sci. Med. – reference: N. Japkowicz. The class imbalance problem: Significance and strategies. Proc. 2000 Int. Conf. Artif. Intell. 2000:111-117. – start-page: 1 year: 2020 end-page: 3 ident: b0050 article-title: Hamilton anxiety rating scale publication-title: Encycl. Gerontol. Popul. Aging – volume: 56 start-page: 893 year: 1988 end-page: 897 ident: b0055 article-title: An inventory for measuring clinical anxiety: psychometric properties publication-title: J. Consult. Clin. Psychol. – volume: 27 start-page: 1260 year: 2020 end-page: 1264 ident: b0150 article-title: Wavelet based waveform distortion measures for assessment of denoised EEG quality with reference to noise-free EEG signal publication-title: IEEE Signal Process Lett. – start-page: 148 year: 1994 end-page: 156 ident: b0120 article-title: Heterogeneous uncertainty sampling for supervised learning publication-title: Mach. Learn. Proc. – reference: M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, C. Brunk. Reducing misclassification Costs Mach Learn Proc 1994:217-225. https://doi.org/10.1016/b978-1-55860-335-6.50034-9. – start-page: 1 year: 2021 end-page: 7 ident: b0100 article-title: Stacked sparse autoencoder and machine learning based anxiety classification using EEG signals publication-title: ACM Int. Conf. Proc. Ser. – volume: 51 start-page: 6449 year: 2021 end-page: 6466 ident: b0080 article-title: Automated major depressive disorder detection using melamine pattern with EEG signals publication-title: Appl. Intell. – reference: Organization WH. COVID-19 Disrupting mental health services in most countries WHO survey (2020). World Heal Organ 2020. – volume: 1 start-page: 149 year: 2021 end-page: 160 ident: b0030 article-title: Anxiety disorders in athletes: a clinical review publication-title: Adv. Psychiatry Behav. Heal. – reference: Organization WH. Health for the world’s adolescents: a second chance in the second decade: summary. World Heal Organ 2014. – volume: 17 start-page: 893 year: 2021 end-page: 903 ident: b0065 article-title: Psychometric properties of the general anxiety disorders-7 scale using categorical data methods: a study in a sample of university attending Ethiopian young adults publication-title: Neuropsychiatr. Dis. Treat. – reference: M.C. Hamilton. Hamilton anxiety scale [HAMA]. Psychiatr Univ Hosp Zurich, Div. Clin. Psychiatry 2011. – volume: 18 start-page: 86 year: 1985 end-page: 89 ident: b0070 article-title: State-trait anxiety inventory publication-title: Meas. Eval. Couns. Dev. – volume: 25 start-page: 290 year: 2022 end-page: 302 ident: b0025 article-title: Early detection of mortality in COVID-19 patients through laboratory findings with factor analysis and artificial neural networks publication-title: Rom. J. Inf. Sci. Technol. – volume: 8 start-page: 159897 year: 2020 end-page: 159905 ident: b0090 article-title: Anxiety recognition of college students using a Takagi-Sugeno-Kang Fuzzy System Modeling Method and Deep Features publication-title: IEEE Access – start-page: 475 year: 2009 end-page: 482 ident: b0105 article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem publication-title: Pacific-Asia Conf. Know Disc. Data Mining – volume: 13 start-page: 194 year: 2021 end-page: 207 ident: b0140 article-title: A new oversampling method based on the classification contribution degree publication-title: Symmetry (Basel) – start-page: 1 year: 1999 end-page: 10 ident: b0125 article-title: MetaCost: a general method for making classifiers cost-sensitive publication-title: Proc. Fifth ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – volume: 14 start-page: 61 year: 1988 end-page: 68 ident: b0040 article-title: The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders publication-title: J. Affect. Disord. – start-page: 1 year: 2021 end-page: 11 ident: b0035 article-title: A study on multi-class anxiety detection using wearable EEG headband publication-title: J. Ambient Intell. Hum. Comput. – volume: 12 start-page: 8519 year: 2021 end-page: 8533 ident: b0095 article-title: Psychological stimulation for anxious states detection based on EEG-related features publication-title: J. Ambient Intell. Hum. Comput. – start-page: 1 year: 1997 end-page: 8 ident: b0115 article-title: Addressing the curse of imbalanced training sets: One-sided selection publication-title: Int. Conf. Mach. Learn. – volume: 8 start-page: 1167 year: 2017 end-page: 1171 ident: b0165 article-title: The study of safe-level SMOTE method in unbalanced data classification publication-title: Int. J. Sci. Eng. Res. – reference: W. Fan, S. Stolfo, J. Zhang, P. Chan. AdaCost: Misclassification cost-sensitive boosting. ICML ’99 Proc Sixt Int Conf Mach Learn 1999: 1-9. – volume: 29 start-page: 80 year: 2019 end-page: 85 ident: b0155 article-title: Electroencephalography publication-title: Curr. Biol. – volume: 1 start-page: 688 year: 2021 end-page: 702 ident: b0005 article-title: Men’s anxiety: a systematic review publication-title: J. Affect. Disord. – volume: 32 start-page: 1 year: 2019 end-page: 12 ident: b0060 article-title: Anxiety symptoms questionnaire (ASQ): development and validation publication-title: Gen. Psychiatry – volume: 76 start-page: 1 year: 2022 end-page: 14 ident: b0145 article-title: Effect of audiovisual stimulation on adult memory performance based electroencephalography wavelet analysis publication-title: Biomed. Signal Process. Control – start-page: 3557 year: 2017 end-page: 3560 ident: b0085 article-title: A wearable, EEG-based massage headband for anxiety alleviation publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – ident: 10.1016/j.bspc.2023.104649_b0010 – volume: 7 start-page: 611 issue: 7 year: 2020 ident: 10.1016/j.bspc.2023.104649_b0020 article-title: Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(20)30203-0 – volume: 14 start-page: 61 issue: 1 year: 1988 ident: 10.1016/j.bspc.2023.104649_b0040 article-title: The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders publication-title: J. Affect. Disord. doi: 10.1016/0165-0327(88)90072-9 – volume: 29 start-page: 80 issue: 3 year: 2019 ident: 10.1016/j.bspc.2023.104649_b0155 article-title: Electroencephalography publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.11.052 – volume: 13 start-page: 194 issue: 2 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0140 article-title: A new oversampling method based on the classification contribution degree publication-title: Symmetry (Basel) doi: 10.3390/sym13020194 – volume: 51 start-page: 6449 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0080 article-title: Automated major depressive disorder detection using melamine pattern with EEG signals publication-title: Appl. Intell. doi: 10.1007/s10489-021-02426-y – volume: 8 start-page: 1167 year: 2017 ident: 10.1016/j.bspc.2023.104649_b0165 article-title: The study of safe-level SMOTE method in unbalanced data classification publication-title: Int. J. Sci. Eng. Res. – volume: 1 start-page: 688 issue: 295 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0005 article-title: Men’s anxiety: a systematic review publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2021.08.136 – volume: 18 start-page: 86 issue: 2 year: 1985 ident: 10.1016/j.bspc.2023.104649_b0070 article-title: State-trait anxiety inventory publication-title: Meas. Eval. Couns. Dev. doi: 10.1080/07481756.1985.12022795 – start-page: 475 year: 2009 ident: 10.1016/j.bspc.2023.104649_b0105 article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem publication-title: Pacific-Asia Conf. Know Disc. Data Mining – start-page: 1 year: 1997 ident: 10.1016/j.bspc.2023.104649_b0115 article-title: Addressing the curse of imbalanced training sets: One-sided selection publication-title: Int. Conf. Mach. Learn. – volume: 12 start-page: 8519 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0095 article-title: Psychological stimulation for anxious states detection based on EEG-related features publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02586-8 – volume: 8 start-page: 159897 year: 2020 ident: 10.1016/j.bspc.2023.104649_b0090 article-title: Anxiety recognition of college students using a Takagi-Sugeno-Kang Fuzzy System Modeling Method and Deep Features publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021092 – ident: 10.1016/j.bspc.2023.104649_b0015 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2023.104649_b0050 article-title: Hamilton anxiety rating scale publication-title: Encycl. Gerontol. Popul. Aging – volume: 56 start-page: 893 issue: 6 year: 1988 ident: 10.1016/j.bspc.2023.104649_b0055 article-title: An inventory for measuring clinical anxiety: psychometric properties publication-title: J. Consult. Clin. Psychol. doi: 10.1037/0022-006X.56.6.893 – start-page: 148 year: 1994 ident: 10.1016/j.bspc.2023.104649_b0120 article-title: Heterogeneous uncertainty sampling for supervised learning publication-title: Mach. Learn. Proc. – volume: 76 start-page: 1 issue: 103659 year: 2022 ident: 10.1016/j.bspc.2023.104649_b0145 article-title: Effect of audiovisual stimulation on adult memory performance based electroencephalography wavelet analysis publication-title: Biomed. Signal Process. Control – volume: 1 start-page: 149 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0030 article-title: Anxiety disorders in athletes: a clinical review publication-title: Adv. Psychiatry Behav. Heal. doi: 10.1016/j.ypsc.2021.05.010 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0100 article-title: Stacked sparse autoencoder and machine learning based anxiety classification using EEG signals publication-title: ACM Int. Conf. Proc. Ser. – volume: 32 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.bspc.2023.104649_b0060 article-title: Anxiety symptoms questionnaire (ASQ): development and validation publication-title: Gen. Psychiatry – ident: 10.1016/j.bspc.2023.104649_b0110 – start-page: 6034 year: 2015 ident: 10.1016/j.bspc.2023.104649_b0075 article-title: Detection of stress/anxiety state from EEG features during video watching publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – start-page: 3557 year: 2017 ident: 10.1016/j.bspc.2023.104649_b0085 article-title: A wearable, EEG-based massage headband for anxiety alleviation publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – ident: 10.1016/j.bspc.2023.104649_b0130 – volume: 25 start-page: 290 year: 2022 ident: 10.1016/j.bspc.2023.104649_b0025 article-title: Early detection of mortality in COVID-19 patients through laboratory findings with factor analysis and artificial neural networks publication-title: Rom. J. Inf. Sci. Technol. – ident: 10.1016/j.bspc.2023.104649_b0135 doi: 10.1016/B978-1-55860-335-6.50034-9 – ident: 10.1016/j.bspc.2023.104649_b0045 – volume: 38 start-page: 139 issue: 1 year: 2015 ident: 10.1016/j.bspc.2023.104649_b0160 article-title: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques publication-title: Austral. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0333-x – volume: 27 start-page: 1260 year: 2020 ident: 10.1016/j.bspc.2023.104649_b0150 article-title: Wavelet based waveform distortion measures for assessment of denoised EEG quality with reference to noise-free EEG signal publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2020.3006417 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0035 article-title: A study on multi-class anxiety detection using wearable EEG headband publication-title: J. Ambient Intell. Hum. Comput. – start-page: 1 year: 1999 ident: 10.1016/j.bspc.2023.104649_b0125 article-title: MetaCost: a general method for making classifiers cost-sensitive publication-title: Proc. Fifth ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – volume: 17 start-page: 893 year: 2021 ident: 10.1016/j.bspc.2023.104649_b0065 article-title: Psychometric properties of the general anxiety disorders-7 scale using categorical data methods: a study in a sample of university attending Ethiopian young adults publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S295912 |
SSID | ssj0048714 |
Score | 2.3901308 |
Snippet | •An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104649 |
SubjectTerms | Anxiety Classifier Decision tree Features model K-Nearest Neighbor Performance metric Safe-level Synthetic Minority Oversampling Technique Support vector machine |
Title | Safe-level SMOTE method for handling the class imbalanced problem in electroencephalography dataset of adult anxious state |
URI | https://dx.doi.org/10.1016/j.bspc.2023.104649 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lDl4k9g22WxzLaWlKq2HttBb2N1sMFLTYCOIB3-7M8mmVJAePCbsQHb2Md-Qb75h7NblkfIQFzgxYleHkwxh4Ek87kRljDHl4oZqh8cTMZrzx4W_qLF-VQtDtEp795d3enFb2zct681WliStKWJpEWB2giCaAhlpgnLepV1-_72heSAeL_S9abBDo23hTMnxUuuMZAxdr_jVSXqafwWnrYAzPGKHFilCr_yYY1Yz6Qk72NIPPGVfUxkbZ0m8H5iOn2cDKBtCAyJRKPQTcBggxANNIBmSN0VMRpw02EYykKRgO-HQ1LMXWWlYA3FH1yaHVQyFSAfI9JMIs1DUIJ2x-XAw648c20zB0eif3BFRW0fdQBijeMS5Um4kjE96fZSkRL7AwyxkR_ieCpQxPPCNlMbTIkabwI29c1ZPV6m5YEDi5AqX1o10hNlLW7o69vyYY66mXC1Fg3UqL4baKo1Tw4tlWFHKXkPyfEieD0vPN9jdxiYrdTZ2jvarxQl_7ZYQA8EOu8t_2l2xfXoqiY7XrJ6_f5gbBCO5aha7rcn2eg9Po8kPOpDemw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RRvboAJhVLHMVkYEA-1QMvQIrEFO3FEEYSKFvEY-FP8Qe4SpwIJdUBiTezIOV_uvlM-fwewJWRifMIFXkrY1ZMsQxj6mj53pjKmVHJJy2eHG01Vu5Jn18H1CHyWZ2GYVulifxHT82jtrlScNSvdTqfSIiytQqpOCERzIpOOWXlu316obusd1I9pk7eFOD1pH9U811rAi2l031PJXpzsh8paIxMpjRGJsgGr1zFkTwJFrq10VQW-CY21Mgys1taPVUpzQpH69NxRGJcULrhtwu7HgFdCBUAuKM6r83h57qROQSozvS7rJgo__7fKAp6_ZcNvGe50BqYdNMXD4u1nYcRmczD1TbBwHt5bOrXePRONsNW4bJ9g0YEaCfpiLthAw5AwJcaMyrHzYJg6SVZG17kGOxm61jts6-6tLkWzkcmqPdvHxxRzVRDU2SszdDE_9LQAV_9i4kUYyx4zuwTIauiGfEkkcULl0p4WceoHqaTi0IhYq2WollaMYidtzh027qOSw3YXseUjtnxUWH4ZdgZzuoWwx9DRQbk50Q_3jCjzDJm38sd5mzBRazcuoot683wVJvlOwbJcg7H-07NdJyTUNxu55yHc_LerfwGuNxpi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe-level+SMOTE+method+for+handling+the+class+imbalanced+problem+in+electroencephalography+dataset+of+adult+anxious+state&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Syakiylla+Sayed+Daud%2C+Syarifah+Noor&rft.au=Sudirman%2C+Rubita&rft.au=Wee+Shing%2C+Tee&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=83&rft_id=info:doi/10.1016%2Fj.bspc.2023.104649&rft.externalDocID=S1746809423000824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |