Safe-level SMOTE method for handling the class imbalanced problem in electroencephalography dataset of adult anxious state

•An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent work employs the Safe-level Synthetic Minority Oversampling Technique to mitigate the class imbalance issue of the Database for Anxious States...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 83; p. 104649
Main Authors Syakiylla Sayed Daud, Syarifah Noor, Sudirman, Rubita, Wee Shing, Tee
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent work employs the Safe-level Synthetic Minority Oversampling Technique to mitigate the class imbalance issue of the Database for Anxious States based on Psychological stimulation with superior classification performance.•The synthesized Database for Anxious States based on Psychological stimulation achieved a maximum accuracy of 89.5% and the highest precision of 89.7% using a K-Nearest Neighbor classifier. Anxiety disorder is a mental state in which a person experiences excessive worry, fear, nervousness, and apprehension. Measuring brain signals using the electroencephalography (EEG) modality is one of the ways to detect anxiety. However, an imbalanced EEG dataset class distribution among the existing issues with this method degrades the classification performance of the anxiety state. Therefore, the goal of this research is to improve classification performance by balancing the EEG dataset using a Safe-level Synthetic Minority Oversampling Technique (Safe-level SMOTE). In this work, a freely accessible Database for Anxious States based on Psychological stimulation (DASPS) with 14 EEG channels recorded via headset Emotiv Epoc was employed. The raw EEG signals contaminated with noises were filtered with multiple filtration methods before being further processed. The EEG features were extracted in the time domain, frequency domain, and time–frequency domain for model classification. The features model with the most optimal classification performance was then processed using a sampling technique, and a Safe-level SMOTE based nearest neighbor value of 5 before being classified using k-Nearest Neighbor (k-NN), support vector machine (SVM), and decision tree. Finally, the performance of the dataset was validated using k-fold cross-validation and confusion matrix performance metrics as well as recognition of the subject’s anxiety state. The proposed model indicated that the k-NN achieved the maximum accuracy of 89.5% and the highest precision of 89.7% for the dataset with the enhanced class distribution. The performance of the suggested method with Safe-level SMOTE demonstrates its superiority in recognizing anxiety states compared to existing methods without Safe-level SMOTE.
AbstractList •An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent work employs the Safe-level Synthetic Minority Oversampling Technique to mitigate the class imbalance issue of the Database for Anxious States based on Psychological stimulation with superior classification performance.•The synthesized Database for Anxious States based on Psychological stimulation achieved a maximum accuracy of 89.5% and the highest precision of 89.7% using a K-Nearest Neighbor classifier. Anxiety disorder is a mental state in which a person experiences excessive worry, fear, nervousness, and apprehension. Measuring brain signals using the electroencephalography (EEG) modality is one of the ways to detect anxiety. However, an imbalanced EEG dataset class distribution among the existing issues with this method degrades the classification performance of the anxiety state. Therefore, the goal of this research is to improve classification performance by balancing the EEG dataset using a Safe-level Synthetic Minority Oversampling Technique (Safe-level SMOTE). In this work, a freely accessible Database for Anxious States based on Psychological stimulation (DASPS) with 14 EEG channels recorded via headset Emotiv Epoc was employed. The raw EEG signals contaminated with noises were filtered with multiple filtration methods before being further processed. The EEG features were extracted in the time domain, frequency domain, and time–frequency domain for model classification. The features model with the most optimal classification performance was then processed using a sampling technique, and a Safe-level SMOTE based nearest neighbor value of 5 before being classified using k-Nearest Neighbor (k-NN), support vector machine (SVM), and decision tree. Finally, the performance of the dataset was validated using k-fold cross-validation and confusion matrix performance metrics as well as recognition of the subject’s anxiety state. The proposed model indicated that the k-NN achieved the maximum accuracy of 89.5% and the highest precision of 89.7% for the dataset with the enhanced class distribution. The performance of the suggested method with Safe-level SMOTE demonstrates its superiority in recognizing anxiety states compared to existing methods without Safe-level SMOTE.
ArticleNumber 104649
Author Wee Shing, Tee
Syakiylla Sayed Daud, Syarifah Noor
Sudirman, Rubita
Author_xml – sequence: 1
  givenname: Syarifah Noor
  surname: Syakiylla Sayed Daud
  fullname: Syakiylla Sayed Daud, Syarifah Noor
– sequence: 2
  givenname: Rubita
  orcidid: 0000-0002-9399-8097
  surname: Sudirman
  fullname: Sudirman, Rubita
  email: rubita@fke.utm.my
– sequence: 3
  givenname: Tee
  surname: Wee Shing
  fullname: Wee Shing, Tee
BookMark eNp9kMtuwjAQRb2gUqHtD3TlHwh1EscEqZsK0YdExQK6tib2hBiZOLINKv36JqKrLliNdKVzZ-ZMyKh1LRLymLJpylLxtJ9WoVPTjGV5H3DB5yMyTmdcJCWb81syCWHPGC9nKR-Tnw3UmFg8oaWbz_V2SQ8YG6dp7TxtoNXWtDsaG6TKQgjUHCqw0CrUtPOusnigpqVoUUXvsM-7BqzbeeiaM9UQIWCkrqagjzZSaL-NOwYaIkS8Jzc12IAPf_OOfL0ut4v3ZLV--1i8rBKVMxYToZnSs1IgVlxzXlWZFljk_fVpUTBdCM6YgFQUeVVWiLwsEABzJeqeKbM6vyPlpVd5F4LHWirT7zeujR6MlSmTgze5l4M3OXiTF289mv1DO28O4M_XoecLhP1TJ4NeBmUGNdr4XpPUzlzDfwFY4o20
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108195
crossref_primary_10_3390_mi16030340
crossref_primary_10_1109_ACCESS_2024_3365544
crossref_primary_10_1111_exsy_13338
crossref_primary_10_3390_math12243915
crossref_primary_10_2478_amns_2024_2139
crossref_primary_10_7717_peerj_cs_1829
crossref_primary_10_1109_TNSRE_2024_3447274
crossref_primary_10_1016_j_autcon_2024_105300
crossref_primary_10_1016_j_eswa_2024_125497
crossref_primary_10_1016_j_icte_2024_04_007
Cites_doi 10.1016/S2215-0366(20)30203-0
10.1016/0165-0327(88)90072-9
10.1016/j.cub.2018.11.052
10.3390/sym13020194
10.1007/s10489-021-02426-y
10.1016/j.jad.2021.08.136
10.1080/07481756.1985.12022795
10.1007/s12652-020-02586-8
10.1109/ACCESS.2020.3021092
10.1037/0022-006X.56.6.893
10.1016/j.ypsc.2021.05.010
10.1016/B978-1-55860-335-6.50034-9
10.1007/s13246-015-0333-x
10.1109/LSP.2020.3006417
10.2147/NDT.S295912
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.104649
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_104649
S1746809423000824
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-6d0cd786eeb4d44bb2d6e537141550d564006a1653b8bee485eaae3c6f86e82f3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:16 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Sat Oct 05 15:36:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords TAR
Features model
Classifier
Support vector machine
FNR
SVM
Decision tree
COVID
ɑ
ABR
k-NN
SMOTE
TPR
Anxiety
DWT
PSD
RFECV
DASPS
EEG
ICA
K-Nearest Neighbor
RGB
FIR
DEAP
β
Hz
Performance metric
SampEn
θ
RMS
Safe-level Synthetic Minority Oversampling Technique
db
SAM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-6d0cd786eeb4d44bb2d6e537141550d564006a1653b8bee485eaae3c6f86e82f3
ORCID 0000-0002-9399-8097
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_104649
crossref_primary_10_1016_j_bspc_2023_104649
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chaitanya, Jayakkumar, Chong, Yeow (b0085) 2017
Daud, Sudirman (b0145) 2022; 76
Beck, Epstein, Brown, Steer (b0055) 1988; 56
Saini, Satija, Upadhayay (b0150) 2020; 27
M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, C. Brunk. Reducing misclassification Costs Mach Learn Proc 1994:217-225. https://doi.org/10.1016/b978-1-55860-335-6.50034-9.
Meidianingsih, Erfiani (b0165) 2017; 8
Rogers, Chesney, Oliver, Pollak, McGuire, Fusar-Poli (b0020) 2020; 7
Renzi (b0070) 1985; 18
Ogutcu, Inal, Celikhasi, Yildiz, Dogan, Pekdemir (b0025) 2022; 25
Organization WH. Health for the world’s adolescents: a second chance in the second decade: summary. World Heal Organ 2014.
Aydemir, Tuncer, Dogan, Gururajan, Acharya (b0080) 2021; 51
Arsalan, Majid (b0035) 2021
Jiang, Pan, Zhang, Yang (b0140) 2021; 13
Bunkhumpornpat, Sinapiromsaran, Lursinsap (b0105) 2009
W. Fan, S. Stolfo, J. Zhang, P. Chan. AdaCost: Misclassification cost-sensitive boosting. ICML ’99 Proc Sixt Int Conf Mach Learn 1999: 1-9.
Kubat, Matwin (b0115) 1997
Reardon, Gorczynski, Hainline, Hitchec, Al (b0030) 2021; 1
Baker, Simon, Keshaviah, Farabaugh, Deckersbach, Worthington (b0060) 2019; 32
Organization WH. COVID-19 Disrupting mental health services in most countries WHO survey (2020). World Heal Organ 2020.
M.C. Hamilton. Hamilton anxiety scale [HAMA]. Psychiatr Univ Hosp Zurich, Div. Clin. Psychiatry 2011.
Manzar, Alghadir, Anwer, Alqahtani, Salahuddin, Addo (b0065) 2021; 17
Giannakakis, Grigoriadis, Tsiknakis (b0075) 2015
N. Japkowicz. The class imbalance problem: Significance and strategies. Proc. 2000 Int. Conf. Artif. Intell. 2000:111-117.
Lewis, Catlett (b0120) 1994
Biasiucci, Franceschiello, Murray (b0155) 2019; 29
Maier, Buller, Philipp, Heuser (b0040) 1988; 14
Meng, Zhang (b0090) 2020; 8
Yang (b0050) 2020
Domingos (b0125) 1999
Fisher, Seidler, King, Oliffe, Rice (b0005) 2021; 1
Baghdadi, Aribi, Fourati, Halouani, Siarry, Alimi (b0095) 2021; 12
Shikha, Agrawal, Anwar, Sethia (b0100) 2021
Amin, Malik, Ahmad, Badruddin, Kamel, Hussain (b0160) 2015; 38
10.1016/j.bspc.2023.104649_b0110
Lewis (10.1016/j.bspc.2023.104649_b0120) 1994
10.1016/j.bspc.2023.104649_b0130
10.1016/j.bspc.2023.104649_b0010
Arsalan (10.1016/j.bspc.2023.104649_b0035) 2021
Saini (10.1016/j.bspc.2023.104649_b0150) 2020; 27
Reardon (10.1016/j.bspc.2023.104649_b0030) 2021; 1
Domingos (10.1016/j.bspc.2023.104649_b0125) 1999
Aydemir (10.1016/j.bspc.2023.104649_b0080) 2021; 51
Beck (10.1016/j.bspc.2023.104649_b0055) 1988; 56
Kubat (10.1016/j.bspc.2023.104649_b0115) 1997
Rogers (10.1016/j.bspc.2023.104649_b0020) 2020; 7
Bunkhumpornpat (10.1016/j.bspc.2023.104649_b0105) 2009
Chaitanya (10.1016/j.bspc.2023.104649_b0085) 2017
10.1016/j.bspc.2023.104649_b0015
Shikha (10.1016/j.bspc.2023.104649_b0100) 2021
Giannakakis (10.1016/j.bspc.2023.104649_b0075) 2015
10.1016/j.bspc.2023.104649_b0135
Daud (10.1016/j.bspc.2023.104649_b0145) 2022; 76
Fisher (10.1016/j.bspc.2023.104649_b0005) 2021; 1
10.1016/j.bspc.2023.104649_b0045
Jiang (10.1016/j.bspc.2023.104649_b0140) 2021; 13
Yang (10.1016/j.bspc.2023.104649_b0050) 2020
Baghdadi (10.1016/j.bspc.2023.104649_b0095) 2021; 12
Ogutcu (10.1016/j.bspc.2023.104649_b0025) 2022; 25
Meng (10.1016/j.bspc.2023.104649_b0090) 2020; 8
Amin (10.1016/j.bspc.2023.104649_b0160) 2015; 38
Maier (10.1016/j.bspc.2023.104649_b0040) 1988; 14
Baker (10.1016/j.bspc.2023.104649_b0060) 2019; 32
Biasiucci (10.1016/j.bspc.2023.104649_b0155) 2019; 29
Manzar (10.1016/j.bspc.2023.104649_b0065) 2021; 17
Renzi (10.1016/j.bspc.2023.104649_b0070) 1985; 18
Meidianingsih (10.1016/j.bspc.2023.104649_b0165) 2017; 8
References_xml – volume: 7
  start-page: 611
  year: 2020
  end-page: 627
  ident: b0020
  article-title: Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic
  publication-title: Lancet Psychiatry
– start-page: 6034
  year: 2015
  end-page: 6037
  ident: b0075
  article-title: Detection of stress/anxiety state from EEG features during video watching
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– volume: 38
  start-page: 139
  year: 2015
  end-page: 149
  ident: b0160
  article-title: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques
  publication-title: Austral. Phys. Eng. Sci. Med.
– reference: N. Japkowicz. The class imbalance problem: Significance and strategies. Proc. 2000 Int. Conf. Artif. Intell. 2000:111-117.
– start-page: 1
  year: 2020
  end-page: 3
  ident: b0050
  article-title: Hamilton anxiety rating scale
  publication-title: Encycl. Gerontol. Popul. Aging
– volume: 56
  start-page: 893
  year: 1988
  end-page: 897
  ident: b0055
  article-title: An inventory for measuring clinical anxiety: psychometric properties
  publication-title: J. Consult. Clin. Psychol.
– volume: 27
  start-page: 1260
  year: 2020
  end-page: 1264
  ident: b0150
  article-title: Wavelet based waveform distortion measures for assessment of denoised EEG quality with reference to noise-free EEG signal
  publication-title: IEEE Signal Process Lett.
– start-page: 148
  year: 1994
  end-page: 156
  ident: b0120
  article-title: Heterogeneous uncertainty sampling for supervised learning
  publication-title: Mach. Learn. Proc.
– reference: M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, C. Brunk. Reducing misclassification Costs Mach Learn Proc 1994:217-225. https://doi.org/10.1016/b978-1-55860-335-6.50034-9.
– start-page: 1
  year: 2021
  end-page: 7
  ident: b0100
  article-title: Stacked sparse autoencoder and machine learning based anxiety classification using EEG signals
  publication-title: ACM Int. Conf. Proc. Ser.
– volume: 51
  start-page: 6449
  year: 2021
  end-page: 6466
  ident: b0080
  article-title: Automated major depressive disorder detection using melamine pattern with EEG signals
  publication-title: Appl. Intell.
– reference: Organization WH. COVID-19 Disrupting mental health services in most countries WHO survey (2020). World Heal Organ 2020.
– volume: 1
  start-page: 149
  year: 2021
  end-page: 160
  ident: b0030
  article-title: Anxiety disorders in athletes: a clinical review
  publication-title: Adv. Psychiatry Behav. Heal.
– reference: Organization WH. Health for the world’s adolescents: a second chance in the second decade: summary. World Heal Organ 2014.
– volume: 17
  start-page: 893
  year: 2021
  end-page: 903
  ident: b0065
  article-title: Psychometric properties of the general anxiety disorders-7 scale using categorical data methods: a study in a sample of university attending Ethiopian young adults
  publication-title: Neuropsychiatr. Dis. Treat.
– reference: M.C. Hamilton. Hamilton anxiety scale [HAMA]. Psychiatr Univ Hosp Zurich, Div. Clin. Psychiatry 2011.
– volume: 18
  start-page: 86
  year: 1985
  end-page: 89
  ident: b0070
  article-title: State-trait anxiety inventory
  publication-title: Meas. Eval. Couns. Dev.
– volume: 25
  start-page: 290
  year: 2022
  end-page: 302
  ident: b0025
  article-title: Early detection of mortality in COVID-19 patients through laboratory findings with factor analysis and artificial neural networks
  publication-title: Rom. J. Inf. Sci. Technol.
– volume: 8
  start-page: 159897
  year: 2020
  end-page: 159905
  ident: b0090
  article-title: Anxiety recognition of college students using a Takagi-Sugeno-Kang Fuzzy System Modeling Method and Deep Features
  publication-title: IEEE Access
– start-page: 475
  year: 2009
  end-page: 482
  ident: b0105
  article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
  publication-title: Pacific-Asia Conf. Know Disc. Data Mining
– volume: 13
  start-page: 194
  year: 2021
  end-page: 207
  ident: b0140
  article-title: A new oversampling method based on the classification contribution degree
  publication-title: Symmetry (Basel)
– start-page: 1
  year: 1999
  end-page: 10
  ident: b0125
  article-title: MetaCost: a general method for making classifiers cost-sensitive
  publication-title: Proc. Fifth ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– volume: 14
  start-page: 61
  year: 1988
  end-page: 68
  ident: b0040
  article-title: The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders
  publication-title: J. Affect. Disord.
– start-page: 1
  year: 2021
  end-page: 11
  ident: b0035
  article-title: A study on multi-class anxiety detection using wearable EEG headband
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 12
  start-page: 8519
  year: 2021
  end-page: 8533
  ident: b0095
  article-title: Psychological stimulation for anxious states detection based on EEG-related features
  publication-title: J. Ambient Intell. Hum. Comput.
– start-page: 1
  year: 1997
  end-page: 8
  ident: b0115
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
  publication-title: Int. Conf. Mach. Learn.
– volume: 8
  start-page: 1167
  year: 2017
  end-page: 1171
  ident: b0165
  article-title: The study of safe-level SMOTE method in unbalanced data classification
  publication-title: Int. J. Sci. Eng. Res.
– reference: W. Fan, S. Stolfo, J. Zhang, P. Chan. AdaCost: Misclassification cost-sensitive boosting. ICML ’99 Proc Sixt Int Conf Mach Learn 1999: 1-9.
– volume: 29
  start-page: 80
  year: 2019
  end-page: 85
  ident: b0155
  article-title: Electroencephalography
  publication-title: Curr. Biol.
– volume: 1
  start-page: 688
  year: 2021
  end-page: 702
  ident: b0005
  article-title: Men’s anxiety: a systematic review
  publication-title: J. Affect. Disord.
– volume: 32
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0060
  article-title: Anxiety symptoms questionnaire (ASQ): development and validation
  publication-title: Gen. Psychiatry
– volume: 76
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0145
  article-title: Effect of audiovisual stimulation on adult memory performance based electroencephalography wavelet analysis
  publication-title: Biomed. Signal Process. Control
– start-page: 3557
  year: 2017
  end-page: 3560
  ident: b0085
  article-title: A wearable, EEG-based massage headband for anxiety alleviation
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– ident: 10.1016/j.bspc.2023.104649_b0010
– volume: 7
  start-page: 611
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2023.104649_b0020
  article-title: Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(20)30203-0
– volume: 14
  start-page: 61
  issue: 1
  year: 1988
  ident: 10.1016/j.bspc.2023.104649_b0040
  article-title: The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders
  publication-title: J. Affect. Disord.
  doi: 10.1016/0165-0327(88)90072-9
– volume: 29
  start-page: 80
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2023.104649_b0155
  article-title: Electroencephalography
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.11.052
– volume: 13
  start-page: 194
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0140
  article-title: A new oversampling method based on the classification contribution degree
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym13020194
– volume: 51
  start-page: 6449
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0080
  article-title: Automated major depressive disorder detection using melamine pattern with EEG signals
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02426-y
– volume: 8
  start-page: 1167
  year: 2017
  ident: 10.1016/j.bspc.2023.104649_b0165
  article-title: The study of safe-level SMOTE method in unbalanced data classification
  publication-title: Int. J. Sci. Eng. Res.
– volume: 1
  start-page: 688
  issue: 295
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0005
  article-title: Men’s anxiety: a systematic review
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2021.08.136
– volume: 18
  start-page: 86
  issue: 2
  year: 1985
  ident: 10.1016/j.bspc.2023.104649_b0070
  article-title: State-trait anxiety inventory
  publication-title: Meas. Eval. Couns. Dev.
  doi: 10.1080/07481756.1985.12022795
– start-page: 475
  year: 2009
  ident: 10.1016/j.bspc.2023.104649_b0105
  article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
  publication-title: Pacific-Asia Conf. Know Disc. Data Mining
– start-page: 1
  year: 1997
  ident: 10.1016/j.bspc.2023.104649_b0115
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
  publication-title: Int. Conf. Mach. Learn.
– volume: 12
  start-page: 8519
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0095
  article-title: Psychological stimulation for anxious states detection based on EEG-related features
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02586-8
– volume: 8
  start-page: 159897
  year: 2020
  ident: 10.1016/j.bspc.2023.104649_b0090
  article-title: Anxiety recognition of college students using a Takagi-Sugeno-Kang Fuzzy System Modeling Method and Deep Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021092
– ident: 10.1016/j.bspc.2023.104649_b0015
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104649_b0050
  article-title: Hamilton anxiety rating scale
  publication-title: Encycl. Gerontol. Popul. Aging
– volume: 56
  start-page: 893
  issue: 6
  year: 1988
  ident: 10.1016/j.bspc.2023.104649_b0055
  article-title: An inventory for measuring clinical anxiety: psychometric properties
  publication-title: J. Consult. Clin. Psychol.
  doi: 10.1037/0022-006X.56.6.893
– start-page: 148
  year: 1994
  ident: 10.1016/j.bspc.2023.104649_b0120
  article-title: Heterogeneous uncertainty sampling for supervised learning
  publication-title: Mach. Learn. Proc.
– volume: 76
  start-page: 1
  issue: 103659
  year: 2022
  ident: 10.1016/j.bspc.2023.104649_b0145
  article-title: Effect of audiovisual stimulation on adult memory performance based electroencephalography wavelet analysis
  publication-title: Biomed. Signal Process. Control
– volume: 1
  start-page: 149
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0030
  article-title: Anxiety disorders in athletes: a clinical review
  publication-title: Adv. Psychiatry Behav. Heal.
  doi: 10.1016/j.ypsc.2021.05.010
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0100
  article-title: Stacked sparse autoencoder and machine learning based anxiety classification using EEG signals
  publication-title: ACM Int. Conf. Proc. Ser.
– volume: 32
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.bspc.2023.104649_b0060
  article-title: Anxiety symptoms questionnaire (ASQ): development and validation
  publication-title: Gen. Psychiatry
– ident: 10.1016/j.bspc.2023.104649_b0110
– start-page: 6034
  year: 2015
  ident: 10.1016/j.bspc.2023.104649_b0075
  article-title: Detection of stress/anxiety state from EEG features during video watching
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– start-page: 3557
  year: 2017
  ident: 10.1016/j.bspc.2023.104649_b0085
  article-title: A wearable, EEG-based massage headband for anxiety alleviation
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– ident: 10.1016/j.bspc.2023.104649_b0130
– volume: 25
  start-page: 290
  year: 2022
  ident: 10.1016/j.bspc.2023.104649_b0025
  article-title: Early detection of mortality in COVID-19 patients through laboratory findings with factor analysis and artificial neural networks
  publication-title: Rom. J. Inf. Sci. Technol.
– ident: 10.1016/j.bspc.2023.104649_b0135
  doi: 10.1016/B978-1-55860-335-6.50034-9
– ident: 10.1016/j.bspc.2023.104649_b0045
– volume: 38
  start-page: 139
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2023.104649_b0160
  article-title: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques
  publication-title: Austral. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-015-0333-x
– volume: 27
  start-page: 1260
  year: 2020
  ident: 10.1016/j.bspc.2023.104649_b0150
  article-title: Wavelet based waveform distortion measures for assessment of denoised EEG quality with reference to noise-free EEG signal
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2020.3006417
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0035
  article-title: A study on multi-class anxiety detection using wearable EEG headband
  publication-title: J. Ambient Intell. Hum. Comput.
– start-page: 1
  year: 1999
  ident: 10.1016/j.bspc.2023.104649_b0125
  article-title: MetaCost: a general method for making classifiers cost-sensitive
  publication-title: Proc. Fifth ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– volume: 17
  start-page: 893
  year: 2021
  ident: 10.1016/j.bspc.2023.104649_b0065
  article-title: Psychometric properties of the general anxiety disorders-7 scale using categorical data methods: a study in a sample of university attending Ethiopian young adults
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S295912
SSID ssj0048714
Score 2.3901308
Snippet •An imbalanced Database for Anxious States based on Psychological stimulation classes led to poor classification performance of the anxious state.•The recent...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104649
SubjectTerms Anxiety
Classifier
Decision tree
Features model
K-Nearest Neighbor
Performance metric
Safe-level Synthetic Minority Oversampling Technique
Support vector machine
Title Safe-level SMOTE method for handling the class imbalanced problem in electroencephalography dataset of adult anxious state
URI https://dx.doi.org/10.1016/j.bspc.2023.104649
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lDl4k9g22WxzLaWlKq2HttBb2N1sMFLTYCOIB3-7M8mmVJAePCbsQHb2Md-Qb75h7NblkfIQFzgxYleHkwxh4Ek87kRljDHl4oZqh8cTMZrzx4W_qLF-VQtDtEp795d3enFb2zct681WliStKWJpEWB2giCaAhlpgnLepV1-_72heSAeL_S9abBDo23hTMnxUuuMZAxdr_jVSXqafwWnrYAzPGKHFilCr_yYY1Yz6Qk72NIPPGVfUxkbZ0m8H5iOn2cDKBtCAyJRKPQTcBggxANNIBmSN0VMRpw02EYykKRgO-HQ1LMXWWlYA3FH1yaHVQyFSAfI9JMIs1DUIJ2x-XAw648c20zB0eif3BFRW0fdQBijeMS5Um4kjE96fZSkRL7AwyxkR_ieCpQxPPCNlMbTIkabwI29c1ZPV6m5YEDi5AqX1o10hNlLW7o69vyYY66mXC1Fg3UqL4baKo1Tw4tlWFHKXkPyfEieD0vPN9jdxiYrdTZ2jvarxQl_7ZYQA8EOu8t_2l2xfXoqiY7XrJ6_f5gbBCO5aha7rcn2eg9Po8kPOpDemw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RRvboAJhVLHMVkYEA-1QMvQIrEFO3FEEYSKFvEY-FP8Qe4SpwIJdUBiTezIOV_uvlM-fwewJWRifMIFXkrY1ZMsQxj6mj53pjKmVHJJy2eHG01Vu5Jn18H1CHyWZ2GYVulifxHT82jtrlScNSvdTqfSIiytQqpOCERzIpOOWXlu316obusd1I9pk7eFOD1pH9U811rAi2l031PJXpzsh8paIxMpjRGJsgGr1zFkTwJFrq10VQW-CY21Mgys1taPVUpzQpH69NxRGJcULrhtwu7HgFdCBUAuKM6r83h57qROQSozvS7rJgo__7fKAp6_ZcNvGe50BqYdNMXD4u1nYcRmczD1TbBwHt5bOrXePRONsNW4bJ9g0YEaCfpiLthAw5AwJcaMyrHzYJg6SVZG17kGOxm61jts6-6tLkWzkcmqPdvHxxRzVRDU2SszdDE_9LQAV_9i4kUYyx4zuwTIauiGfEkkcULl0p4WceoHqaTi0IhYq2WollaMYidtzh027qOSw3YXseUjtnxUWH4ZdgZzuoWwx9DRQbk50Q_3jCjzDJm38sd5mzBRazcuoot683wVJvlOwbJcg7H-07NdJyTUNxu55yHc_LerfwGuNxpi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe-level+SMOTE+method+for+handling+the+class+imbalanced+problem+in+electroencephalography+dataset+of+adult+anxious+state&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Syakiylla+Sayed+Daud%2C+Syarifah+Noor&rft.au=Sudirman%2C+Rubita&rft.au=Wee+Shing%2C+Tee&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=83&rft_id=info:doi/10.1016%2Fj.bspc.2023.104649&rft.externalDocID=S1746809423000824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon