BPNet: A multi-modal fusion neural network for blood pressure estimation using ECG and PPG
Saved in:
Published in | Biomedical signal processing and control Vol. 86; p. 105287 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.09.2023
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 105287 |
---|---|
Author | Wang, Xingjun Long, Weicai |
Author_xml | – sequence: 1 givenname: Weicai surname: Long fullname: Long, Weicai – sequence: 2 givenname: Xingjun surname: Wang fullname: Wang, Xingjun |
BookMark | eNp9kLFOwzAQhj0UiRZ4ASa_QMrZTuOYrVSlIFXQARYWy45tlJLale0I8fYklImB6XSn_zvdfTM08cFbhK4JzAmQ6mY_1-nYzClQNgwWtOYTNCW8rIoaRHmOZintAcqak3KK3u52Tzbf4iU-9F1ui0MwqsOuT23w2Ns-Dp23-TPED-xCxLoLweBjtCn10WKbcntQeQwPiH_H69UGK2_wbre5RGdOdcle_dYL9Hq_flk9FNvnzeNquS0aBpCLqjGwAG2Jc6ainIkStKFac80UgHaCl9RQUXGnhKkZqxphiHGMMGtrIjS7QPS0t4khpWidPMbhqPglCcjRiNzL0YgcjciTkQGq_0BNm38eyVG13X_oNyWpbIg |
CitedBy_id | crossref_primary_10_1186_s12938_025_01349_w crossref_primary_10_3390_asi6050095 crossref_primary_10_1109_JSEN_2024_3468316 crossref_primary_10_1016_j_neunet_2024_106760 crossref_primary_10_1016_j_bspc_2024_106860 crossref_primary_10_1016_j_bspc_2025_107820 crossref_primary_10_1016_j_compbiomed_2024_108207 crossref_primary_10_1016_j_bspc_2024_106104 |
Cites_doi | 10.1007/s13246-021-00989-1 10.1109/CVPR.2017.106 10.1016/j.artmed.2018.12.005 10.3390/s19153420 10.1161/01.CIR.101.23.e215 10.1109/ACCESS.2019.2960844 10.1016/j.artmed.2020.101919 10.1109/ICBBT.2010.5479013 10.3390/ma16062133 10.1109/ICNN.1994.374138 10.1109/SMARTCOMP.2016.7501681 10.1038/s41598-022-10244-6 10.3390/s21051867 10.1016/j.bspc.2021.102972 10.1038/s41598-021-92997-0 10.1007/s13534-019-00096-x 10.1038/s41598-021-94913-y 10.1201/9780203753736 10.3390/machines10080649 10.1016/j.ress.2021.108120 10.1016/j.bspc.2018.08.022 10.1111/psyp.14173 10.1007/s10994-021-06023-5 10.1016/j.compeleceng.2020.106616 10.1007/978-3-642-40669-0_33 10.1038/s41440-022-01137-2 10.3390/s20195668 10.1109/TBME.2016.2580904 10.1161/HYPERTENSIONAHA.117.10237 10.1097/00004872-199007000-00004 10.1016/j.ajem.2023.02.022 10.1109/JBHI.2017.2714674 10.3390/s21134273 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.105287 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2023_105287 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- |
ID | FETCH-LOGICAL-c300t-6cd050be1ffd6273940bd2bb7b3a00bf9742d2967fa9d8336c9d1df313ee819b3 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:19 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-6cd050be1ffd6273940bd2bb7b3a00bf9742d2967fa9d8336c9d1df313ee819b3 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2023_105287 crossref_citationtrail_10_1016_j_bspc_2023_105287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
References | 10.1016/j.bspc.2023.105287_b0160 Yao (10.1016/j.bspc.2023.105287_b0125) 2021; 44 Kachuee (10.1016/j.bspc.2023.105287_b0175) 2017; 64 Athaya (10.1016/j.bspc.2023.105287_b0030) 2021; 21 Hsu (10.1016/j.bspc.2023.105287_b0115) 2020; 20 Yan (10.1016/j.bspc.2023.105287_b0200) 2019 Baek (10.1016/j.bspc.2023.105287_b0235) 2019; 7 Goldberger (10.1016/j.bspc.2023.105287_b0170) 2000; 101 Slapničar (10.1016/j.bspc.2023.105287_b0025) 2019; 19 Mehrabadi (10.1016/j.bspc.2023.105287_b0035) 2022 O??Brien (10.1016/j.bspc.2023.105287_b0220) 1990; 8 Branco (10.1016/j.bspc.2023.105287_b0060) 2018 Hill (10.1016/j.bspc.2023.105287_b0140) 2021; 11 Bote (10.1016/j.bspc.2023.105287_b0110) 2020; 84 Branco (10.1016/j.bspc.2023.105287_b0050) 2017 10.1016/j.bspc.2023.105287_b0135 10.1016/j.bspc.2023.105287_b0155 10.1016/j.bspc.2023.105287_b0055 Shin (10.1016/j.bspc.2023.105287_b0080) 2023; 60 10.1016/j.bspc.2023.105287_b0195 Hu (10.1016/j.bspc.2023.105287_b0180) 2022; 10 10.1016/j.bspc.2023.105287_b0090 10.1016/j.bspc.2023.105287_b0190 He (10.1016/j.bspc.2023.105287_b0210) 2021 Jeong (10.1016/j.bspc.2023.105287_b0215) 2021; 11 Steininger (10.1016/j.bspc.2023.105287_b0070) 2021; 110 Miao (10.1016/j.bspc.2023.105287_b0130) 2020; 108 Stergiou (10.1016/j.bspc.2023.105287_b0225) 2018; 71 Quan (10.1016/j.bspc.2023.105287_b0095) 2021; 21 Si (10.1016/j.bspc.2023.105287_b0045) 2022; 217 Sharifi (10.1016/j.bspc.2023.105287_b0230) 2019; 97 Malayeri (10.1016/j.bspc.2023.105287_b0145) 2022; 12 TaheriNejad (10.1016/j.bspc.2023.105287_b0120) 2020 Qin (10.1016/j.bspc.2023.105287_b0040) 2021; 70 Zong (10.1016/j.bspc.2023.105287_b0185) 2003 10.1016/j.bspc.2023.105287_b0005 Vardhan (10.1016/j.bspc.2023.105287_b0015) 2021 Mousavi (10.1016/j.bspc.2023.105287_b0205) 2019; 47 Ren (10.1016/j.bspc.2023.105287_b0075) 2022 10.1016/j.bspc.2023.105287_b0100 Ding (10.1016/j.bspc.2023.105287_b0105) 2019; 9 Cepeda (10.1016/j.bspc.2023.105287_b0010) 2023; 46 10.1016/j.bspc.2023.105287_b0065 10.1016/j.bspc.2023.105287_b0165 10.1016/j.bspc.2023.105287_b0085 Tatliparmak (10.1016/j.bspc.2023.105287_b0150) 2023; 67 Yoon (10.1016/j.bspc.2023.105287_b0240) 2018; 22 10.1016/j.bspc.2023.105287_b0020 |
References_xml | – volume: 44 start-page: 397 issue: 2 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0125 article-title: Cuff-less blood pressure estimation from photoplethysmography signal and electrocardiogram publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-021-00989-1 – ident: 10.1016/j.bspc.2023.105287_b0190 doi: 10.1109/CVPR.2017.106 – start-page: 1917 year: 2019 ident: 10.1016/j.bspc.2023.105287_b0200 article-title: Novel deep convolutional neural network for cuff-less blood pressure measurement using ECG and PPG signals – volume: 97 start-page: 143 year: 2019 ident: 10.1016/j.bspc.2023.105287_b0230 article-title: A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.12.005 – volume: 19 start-page: 3420 issue: 15 year: 2019 ident: 10.1016/j.bspc.2023.105287_b0025 article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network publication-title: Sensors doi: 10.3390/s19153420 – volume: 101 issue: 23 year: 2000 ident: 10.1016/j.bspc.2023.105287_b0170 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 7 start-page: 185458 year: 2019 ident: 10.1016/j.bspc.2023.105287_b0235 article-title: End-to-end blood pressure prediction via fully convolutional networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960844 – ident: 10.1016/j.bspc.2023.105287_b0020 – volume: 108 start-page: 101919 year: 2020 ident: 10.1016/j.bspc.2023.105287_b0130 article-title: Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101919 – start-page: 67 year: 2018 ident: 10.1016/j.bspc.2023.105287_b0060 article-title: Rebagg: Resampled bagging for imbalanced regression – ident: 10.1016/j.bspc.2023.105287_b0100 doi: 10.1109/ICBBT.2010.5479013 – ident: 10.1016/j.bspc.2023.105287_b0085 doi: 10.3390/ma16062133 – start-page: 1495 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0015 article-title: BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure Estimation using Photoplethysmogram – start-page: 36 year: 2017 ident: 10.1016/j.bspc.2023.105287_b0050 article-title: SMOGN: a pre-processing approach for imbalanced regression[C]//First international workshop on learning with imbalanced domains: Theory and applications publication-title: PMLR – ident: 10.1016/j.bspc.2023.105287_b0160 doi: 10.1109/ICNN.1994.374138 – ident: 10.1016/j.bspc.2023.105287_b0135 doi: 10.1109/SMARTCOMP.2016.7501681 – volume: 12 start-page: 6633 issue: 1 year: 2022 ident: 10.1016/j.bspc.2023.105287_b0145 article-title: Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals publication-title: Sci. Rep. doi: 10.1038/s41598-022-10244-6 – volume: 21 start-page: 1867 issue: 5 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0030 article-title: An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net architecture-based approach publication-title: Sensors doi: 10.3390/s21051867 – volume: 70 start-page: 102972 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0040 article-title: Deep generative model with domain adversarial training for predicting arterial blood pressure waveform from photoplethysmogram signal publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102972 – volume: 11 start-page: 13539 issue: 1 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0215 article-title: Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features publication-title: Sci. Rep. doi: 10.1038/s41598-021-92997-0 – ident: 10.1016/j.bspc.2023.105287_b0005 – volume: 9 start-page: 37 issue: 1 year: 2019 ident: 10.1016/j.bspc.2023.105287_b0105 article-title: Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-019-00096-x – start-page: 7926 year: 2022 ident: 10.1016/j.bspc.2023.105287_b0075 article-title: Balanced mse for imbalanced visual regression – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0140 article-title: Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-94913-y – ident: 10.1016/j.bspc.2023.105287_b0155 doi: 10.1201/9780203753736 – volume: 10 start-page: 649 issue: 8 year: 2022 ident: 10.1016/j.bspc.2023.105287_b0180 article-title: Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition and Genetic Algorithm-Optimized Wavelet Threshold Denoising publication-title: Machines doi: 10.3390/machines10080649 – start-page: 3 year: 2020 ident: 10.1016/j.bspc.2023.105287_b0120 article-title: Blood pressure estimation using a single ppg signal – volume: 217 start-page: 108120 year: 2022 ident: 10.1016/j.bspc.2023.105287_b0045 article-title: Nonlinear degradation modeling and prognostics: A Box-Cox transformation perspective publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108120 – volume: 47 start-page: 196 year: 2019 ident: 10.1016/j.bspc.2023.105287_b0205 article-title: Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.022 – start-page: 1906 year: 2022 ident: 10.1016/j.bspc.2023.105287_b0035 article-title: Novel blood pressure waveform reconstruction from photoplethysmography using cycle generative adversarial networks – volume: 60 start-page: e14173 issue: 2 year: 2023 ident: 10.1016/j.bspc.2023.105287_b0080 article-title: A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study publication-title: Psychophysiology doi: 10.1111/psyp.14173 – volume: 110 start-page: 2187 issue: 8 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0070 article-title: Density-based weighting for imbalanced regression publication-title: Mach. Learn. doi: 10.1007/s10994-021-06023-5 – volume: 84 start-page: 106616 year: 2020 ident: 10.1016/j.bspc.2023.105287_b0110 article-title: Evaluation of blood pressure estimation models based on pulse arrival time publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106616 – ident: 10.1016/j.bspc.2023.105287_b0055 doi: 10.1007/978-3-642-40669-0_33 – volume: 46 start-page: 620 issue: 3 year: 2023 ident: 10.1016/j.bspc.2023.105287_b0010 article-title: Status of ambulatory blood pressure monitoring and home blood pressure monitoring for the diagnosis and management of hypertension in the US: an up-to-date review publication-title: Hypertens. Res. doi: 10.1038/s41440-022-01137-2 – volume: 20 start-page: 5668 issue: 19 year: 2020 ident: 10.1016/j.bspc.2023.105287_b0115 article-title: Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only publication-title: Sensors doi: 10.3390/s20195668 – volume: 64 start-page: 859 issue: 4 year: 2017 ident: 10.1016/j.bspc.2023.105287_b0175 article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2580904 – start-page: 898 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0210 article-title: Novel Cuffless Blood Pressure Estimation Method Using a Bayesian Hierarchical Model – volume: 71 start-page: 368 issue: 3 year: 2018 ident: 10.1016/j.bspc.2023.105287_b0225 article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.117.10237 – ident: 10.1016/j.bspc.2023.105287_b0195 – volume: 8 start-page: 607 issue: 7 year: 1990 ident: 10.1016/j.bspc.2023.105287_b0220 article-title: The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems publication-title: J. Hypertens. doi: 10.1097/00004872-199007000-00004 – volume: 67 start-page: 120 year: 2023 ident: 10.1016/j.bspc.2023.105287_b0150 article-title: Agreement of Oscillometric and Auscultatory blood pressure measurement methods: An ambulance noise simulation study publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2023.02.022 – ident: 10.1016/j.bspc.2023.105287_b0065 – ident: 10.1016/j.bspc.2023.105287_b0165 – start-page: 259 year: 2003 ident: 10.1016/j.bspc.2023.105287_b0185 article-title: An open-source algorithm to detect onset of arterial blood pressure pulses – volume: 22 start-page: 1068 issue: 4 year: 2018 ident: 10.1016/j.bspc.2023.105287_b0240 article-title: Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2714674 – volume: 21 start-page: 4273 issue: 13 year: 2021 ident: 10.1016/j.bspc.2023.105287_b0095 article-title: Advances in non-invasive blood pressure monitoring publication-title: Sensors doi: 10.3390/s21134273 – ident: 10.1016/j.bspc.2023.105287_b0090 |
SSID | ssj0048714 |
Score | 2.3863776 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 105287 |
Title | BPNet: A multi-modal fusion neural network for blood pressure estimation using ECG and PPG |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBArGKXD9yqVImdOgk3QFCERNVDERWXKI4dRAWhgvbCgW9n7MnGKuAStZZtRXmR8zx-b4aQA6FZB4i5dpTg2oFVUjpJwiLH50kmlCfc0J7gX_bE-ZV_MewM6yqd1l0yke305UtfyX9QhTbA1bhk_4BsNSk0wG_AF66AMFx_hfFxv6cxtIfCQOfhURlD4tSEwFomVSX8y1HojbpMI1NvWe2rOTgwGTbQutia2pjB6UkX7QP97rvTXuvRRwPl3a3hr2P0F5QOx0LwXql7Cp3vtYYxd3XMHluHMGo0zZvxBsYrQVW5RAa-SWGMpYnLNTRsLoJA2Rh-RT-tzxgqGLXl89jkj2S8XXd-nwz7w0eqkg6WqrRRbOaIzRwxzjFL5hnsFUwZi_ZrpfOBDZlN8F7dduGcQpHfx_tosJMGzRgsk6Vif0CPEOwVMqPzVbLYyBq5Rm4s7If0iDZApwg6RdBpAToF0KkFnZag0xp0akGnADoFECmAvk6uzk4HJ-dOUSLDSbnrThyRKrfjSu1lmRLARCPflYpJGUieuK7MYLfIFItEkCWRCjkXaaQ8lXGPaw1cUPINMpc_5nqT0CgLIz9IBQ-k9tOUwwBgo0BgdMg8megt4pWPJk6L_PGmjMl9_D0kW6RVjRlj9pQfem__qfcOWahfz10yN3ma6j0giBO5b1-AN-xBZTM |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BPNet%3A+A+multi-modal+fusion+neural+network+for+blood+pressure+estimation+using+ECG+and+PPG&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Long%2C+Weicai&rft.au=Wang%2C+Xingjun&rft.date=2023-09-01&rft.issn=1746-8094&rft.volume=86&rft.spage=105287&rft_id=info:doi/10.1016%2Fj.bspc.2023.105287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |