BPNet: A multi-modal fusion neural network for blood pressure estimation using ECG and PPG

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 86; p. 105287
Main Authors Long, Weicai, Wang, Xingjun
Format Journal Article
LanguageEnglish
Published 01.09.2023
Online AccessGet full text

Cover

Loading…
ArticleNumber 105287
Author Wang, Xingjun
Long, Weicai
Author_xml – sequence: 1
  givenname: Weicai
  surname: Long
  fullname: Long, Weicai
– sequence: 2
  givenname: Xingjun
  surname: Wang
  fullname: Wang, Xingjun
BookMark eNp9kLFOwzAQhj0UiRZ4ASa_QMrZTuOYrVSlIFXQARYWy45tlJLale0I8fYklImB6XSn_zvdfTM08cFbhK4JzAmQ6mY_1-nYzClQNgwWtOYTNCW8rIoaRHmOZintAcqak3KK3u52Tzbf4iU-9F1ui0MwqsOuT23w2Ns-Dp23-TPED-xCxLoLweBjtCn10WKbcntQeQwPiH_H69UGK2_wbre5RGdOdcle_dYL9Hq_flk9FNvnzeNquS0aBpCLqjGwAG2Jc6ainIkStKFac80UgHaCl9RQUXGnhKkZqxphiHGMMGtrIjS7QPS0t4khpWidPMbhqPglCcjRiNzL0YgcjciTkQGq_0BNm38eyVG13X_oNyWpbIg
CitedBy_id crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_3390_asi6050095
crossref_primary_10_1109_JSEN_2024_3468316
crossref_primary_10_1016_j_neunet_2024_106760
crossref_primary_10_1016_j_bspc_2024_106860
crossref_primary_10_1016_j_bspc_2025_107820
crossref_primary_10_1016_j_compbiomed_2024_108207
crossref_primary_10_1016_j_bspc_2024_106104
Cites_doi 10.1007/s13246-021-00989-1
10.1109/CVPR.2017.106
10.1016/j.artmed.2018.12.005
10.3390/s19153420
10.1161/01.CIR.101.23.e215
10.1109/ACCESS.2019.2960844
10.1016/j.artmed.2020.101919
10.1109/ICBBT.2010.5479013
10.3390/ma16062133
10.1109/ICNN.1994.374138
10.1109/SMARTCOMP.2016.7501681
10.1038/s41598-022-10244-6
10.3390/s21051867
10.1016/j.bspc.2021.102972
10.1038/s41598-021-92997-0
10.1007/s13534-019-00096-x
10.1038/s41598-021-94913-y
10.1201/9780203753736
10.3390/machines10080649
10.1016/j.ress.2021.108120
10.1016/j.bspc.2018.08.022
10.1111/psyp.14173
10.1007/s10994-021-06023-5
10.1016/j.compeleceng.2020.106616
10.1007/978-3-642-40669-0_33
10.1038/s41440-022-01137-2
10.3390/s20195668
10.1109/TBME.2016.2580904
10.1161/HYPERTENSIONAHA.117.10237
10.1097/00004872-199007000-00004
10.1016/j.ajem.2023.02.022
10.1109/JBHI.2017.2714674
10.3390/s21134273
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105287
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_105287
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
ID FETCH-LOGICAL-c300t-6cd050be1ffd6273940bd2bb7b3a00bf9742d2967fa9d8336c9d1df313ee819b3
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:19 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-6cd050be1ffd6273940bd2bb7b3a00bf9742d2967fa9d8336c9d1df313ee819b3
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_105287
crossref_citationtrail_10_1016_j_bspc_2023_105287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-00
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
References 10.1016/j.bspc.2023.105287_b0160
Yao (10.1016/j.bspc.2023.105287_b0125) 2021; 44
Kachuee (10.1016/j.bspc.2023.105287_b0175) 2017; 64
Athaya (10.1016/j.bspc.2023.105287_b0030) 2021; 21
Hsu (10.1016/j.bspc.2023.105287_b0115) 2020; 20
Yan (10.1016/j.bspc.2023.105287_b0200) 2019
Baek (10.1016/j.bspc.2023.105287_b0235) 2019; 7
Goldberger (10.1016/j.bspc.2023.105287_b0170) 2000; 101
Slapničar (10.1016/j.bspc.2023.105287_b0025) 2019; 19
Mehrabadi (10.1016/j.bspc.2023.105287_b0035) 2022
O??Brien (10.1016/j.bspc.2023.105287_b0220) 1990; 8
Branco (10.1016/j.bspc.2023.105287_b0060) 2018
Hill (10.1016/j.bspc.2023.105287_b0140) 2021; 11
Bote (10.1016/j.bspc.2023.105287_b0110) 2020; 84
Branco (10.1016/j.bspc.2023.105287_b0050) 2017
10.1016/j.bspc.2023.105287_b0135
10.1016/j.bspc.2023.105287_b0155
10.1016/j.bspc.2023.105287_b0055
Shin (10.1016/j.bspc.2023.105287_b0080) 2023; 60
10.1016/j.bspc.2023.105287_b0195
Hu (10.1016/j.bspc.2023.105287_b0180) 2022; 10
10.1016/j.bspc.2023.105287_b0090
10.1016/j.bspc.2023.105287_b0190
He (10.1016/j.bspc.2023.105287_b0210) 2021
Jeong (10.1016/j.bspc.2023.105287_b0215) 2021; 11
Steininger (10.1016/j.bspc.2023.105287_b0070) 2021; 110
Miao (10.1016/j.bspc.2023.105287_b0130) 2020; 108
Stergiou (10.1016/j.bspc.2023.105287_b0225) 2018; 71
Quan (10.1016/j.bspc.2023.105287_b0095) 2021; 21
Si (10.1016/j.bspc.2023.105287_b0045) 2022; 217
Sharifi (10.1016/j.bspc.2023.105287_b0230) 2019; 97
Malayeri (10.1016/j.bspc.2023.105287_b0145) 2022; 12
TaheriNejad (10.1016/j.bspc.2023.105287_b0120) 2020
Qin (10.1016/j.bspc.2023.105287_b0040) 2021; 70
Zong (10.1016/j.bspc.2023.105287_b0185) 2003
10.1016/j.bspc.2023.105287_b0005
Vardhan (10.1016/j.bspc.2023.105287_b0015) 2021
Mousavi (10.1016/j.bspc.2023.105287_b0205) 2019; 47
Ren (10.1016/j.bspc.2023.105287_b0075) 2022
10.1016/j.bspc.2023.105287_b0100
Ding (10.1016/j.bspc.2023.105287_b0105) 2019; 9
Cepeda (10.1016/j.bspc.2023.105287_b0010) 2023; 46
10.1016/j.bspc.2023.105287_b0065
10.1016/j.bspc.2023.105287_b0165
10.1016/j.bspc.2023.105287_b0085
Tatliparmak (10.1016/j.bspc.2023.105287_b0150) 2023; 67
Yoon (10.1016/j.bspc.2023.105287_b0240) 2018; 22
10.1016/j.bspc.2023.105287_b0020
References_xml – volume: 44
  start-page: 397
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0125
  article-title: Cuff-less blood pressure estimation from photoplethysmography signal and electrocardiogram
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-021-00989-1
– ident: 10.1016/j.bspc.2023.105287_b0190
  doi: 10.1109/CVPR.2017.106
– start-page: 1917
  year: 2019
  ident: 10.1016/j.bspc.2023.105287_b0200
  article-title: Novel deep convolutional neural network for cuff-less blood pressure measurement using ECG and PPG signals
– volume: 97
  start-page: 143
  year: 2019
  ident: 10.1016/j.bspc.2023.105287_b0230
  article-title: A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.12.005
– volume: 19
  start-page: 3420
  issue: 15
  year: 2019
  ident: 10.1016/j.bspc.2023.105287_b0025
  article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network
  publication-title: Sensors
  doi: 10.3390/s19153420
– volume: 101
  issue: 23
  year: 2000
  ident: 10.1016/j.bspc.2023.105287_b0170
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 7
  start-page: 185458
  year: 2019
  ident: 10.1016/j.bspc.2023.105287_b0235
  article-title: End-to-end blood pressure prediction via fully convolutional networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960844
– ident: 10.1016/j.bspc.2023.105287_b0020
– volume: 108
  start-page: 101919
  year: 2020
  ident: 10.1016/j.bspc.2023.105287_b0130
  article-title: Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101919
– start-page: 67
  year: 2018
  ident: 10.1016/j.bspc.2023.105287_b0060
  article-title: Rebagg: Resampled bagging for imbalanced regression
– ident: 10.1016/j.bspc.2023.105287_b0100
  doi: 10.1109/ICBBT.2010.5479013
– ident: 10.1016/j.bspc.2023.105287_b0085
  doi: 10.3390/ma16062133
– start-page: 1495
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0015
  article-title: BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure Estimation using Photoplethysmogram
– start-page: 36
  year: 2017
  ident: 10.1016/j.bspc.2023.105287_b0050
  article-title: SMOGN: a pre-processing approach for imbalanced regression[C]//First international workshop on learning with imbalanced domains: Theory and applications
  publication-title: PMLR
– ident: 10.1016/j.bspc.2023.105287_b0160
  doi: 10.1109/ICNN.1994.374138
– ident: 10.1016/j.bspc.2023.105287_b0135
  doi: 10.1109/SMARTCOMP.2016.7501681
– volume: 12
  start-page: 6633
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105287_b0145
  article-title: Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-10244-6
– volume: 21
  start-page: 1867
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0030
  article-title: An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net architecture-based approach
  publication-title: Sensors
  doi: 10.3390/s21051867
– volume: 70
  start-page: 102972
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0040
  article-title: Deep generative model with domain adversarial training for predicting arterial blood pressure waveform from photoplethysmogram signal
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102972
– volume: 11
  start-page: 13539
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0215
  article-title: Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92997-0
– ident: 10.1016/j.bspc.2023.105287_b0005
– volume: 9
  start-page: 37
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.105287_b0105
  article-title: Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-019-00096-x
– start-page: 7926
  year: 2022
  ident: 10.1016/j.bspc.2023.105287_b0075
  article-title: Balanced mse for imbalanced visual regression
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0140
  article-title: Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94913-y
– ident: 10.1016/j.bspc.2023.105287_b0155
  doi: 10.1201/9780203753736
– volume: 10
  start-page: 649
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2023.105287_b0180
  article-title: Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition and Genetic Algorithm-Optimized Wavelet Threshold Denoising
  publication-title: Machines
  doi: 10.3390/machines10080649
– start-page: 3
  year: 2020
  ident: 10.1016/j.bspc.2023.105287_b0120
  article-title: Blood pressure estimation using a single ppg signal
– volume: 217
  start-page: 108120
  year: 2022
  ident: 10.1016/j.bspc.2023.105287_b0045
  article-title: Nonlinear degradation modeling and prognostics: A Box-Cox transformation perspective
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108120
– volume: 47
  start-page: 196
  year: 2019
  ident: 10.1016/j.bspc.2023.105287_b0205
  article-title: Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.022
– start-page: 1906
  year: 2022
  ident: 10.1016/j.bspc.2023.105287_b0035
  article-title: Novel blood pressure waveform reconstruction from photoplethysmography using cycle generative adversarial networks
– volume: 60
  start-page: e14173
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2023.105287_b0080
  article-title: A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14173
– volume: 110
  start-page: 2187
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0070
  article-title: Density-based weighting for imbalanced regression
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-06023-5
– volume: 84
  start-page: 106616
  year: 2020
  ident: 10.1016/j.bspc.2023.105287_b0110
  article-title: Evaluation of blood pressure estimation models based on pulse arrival time
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106616
– ident: 10.1016/j.bspc.2023.105287_b0055
  doi: 10.1007/978-3-642-40669-0_33
– volume: 46
  start-page: 620
  issue: 3
  year: 2023
  ident: 10.1016/j.bspc.2023.105287_b0010
  article-title: Status of ambulatory blood pressure monitoring and home blood pressure monitoring for the diagnosis and management of hypertension in the US: an up-to-date review
  publication-title: Hypertens. Res.
  doi: 10.1038/s41440-022-01137-2
– volume: 20
  start-page: 5668
  issue: 19
  year: 2020
  ident: 10.1016/j.bspc.2023.105287_b0115
  article-title: Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only
  publication-title: Sensors
  doi: 10.3390/s20195668
– volume: 64
  start-page: 859
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2023.105287_b0175
  article-title: Cuffless blood pressure estimation algorithms for continuous health-care monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2580904
– start-page: 898
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0210
  article-title: Novel Cuffless Blood Pressure Estimation Method Using a Bayesian Hierarchical Model
– volume: 71
  start-page: 368
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2023.105287_b0225
  article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.117.10237
– ident: 10.1016/j.bspc.2023.105287_b0195
– volume: 8
  start-page: 607
  issue: 7
  year: 1990
  ident: 10.1016/j.bspc.2023.105287_b0220
  article-title: The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems
  publication-title: J. Hypertens.
  doi: 10.1097/00004872-199007000-00004
– volume: 67
  start-page: 120
  year: 2023
  ident: 10.1016/j.bspc.2023.105287_b0150
  article-title: Agreement of Oscillometric and Auscultatory blood pressure measurement methods: An ambulance noise simulation study
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2023.02.022
– ident: 10.1016/j.bspc.2023.105287_b0065
– ident: 10.1016/j.bspc.2023.105287_b0165
– start-page: 259
  year: 2003
  ident: 10.1016/j.bspc.2023.105287_b0185
  article-title: An open-source algorithm to detect onset of arterial blood pressure pulses
– volume: 22
  start-page: 1068
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2023.105287_b0240
  article-title: Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2714674
– volume: 21
  start-page: 4273
  issue: 13
  year: 2021
  ident: 10.1016/j.bspc.2023.105287_b0095
  article-title: Advances in non-invasive blood pressure monitoring
  publication-title: Sensors
  doi: 10.3390/s21134273
– ident: 10.1016/j.bspc.2023.105287_b0090
SSID ssj0048714
Score 2.3863776
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 105287
Title BPNet: A multi-modal fusion neural network for blood pressure estimation using ECG and PPG
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBArGKXD9yqVImdOgk3QFCERNVDERWXKI4dRAWhgvbCgW9n7MnGKuAStZZtRXmR8zx-b4aQA6FZB4i5dpTg2oFVUjpJwiLH50kmlCfc0J7gX_bE-ZV_MewM6yqd1l0yke305UtfyX9QhTbA1bhk_4BsNSk0wG_AF66AMFx_hfFxv6cxtIfCQOfhURlD4tSEwFomVSX8y1HojbpMI1NvWe2rOTgwGTbQutia2pjB6UkX7QP97rvTXuvRRwPl3a3hr2P0F5QOx0LwXql7Cp3vtYYxd3XMHluHMGo0zZvxBsYrQVW5RAa-SWGMpYnLNTRsLoJA2Rh-RT-tzxgqGLXl89jkj2S8XXd-nwz7w0eqkg6WqrRRbOaIzRwxzjFL5hnsFUwZi_ZrpfOBDZlN8F7dduGcQpHfx_tosJMGzRgsk6Vif0CPEOwVMqPzVbLYyBq5Rm4s7If0iDZApwg6RdBpAToF0KkFnZag0xp0akGnADoFECmAvk6uzk4HJ-dOUSLDSbnrThyRKrfjSu1lmRLARCPflYpJGUieuK7MYLfIFItEkCWRCjkXaaQ8lXGPaw1cUPINMpc_5nqT0CgLIz9IBQ-k9tOUwwBgo0BgdMg8megt4pWPJk6L_PGmjMl9_D0kW6RVjRlj9pQfem__qfcOWahfz10yN3ma6j0giBO5b1-AN-xBZTM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BPNet%3A+A+multi-modal+fusion+neural+network+for+blood+pressure+estimation+using+ECG+and+PPG&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Long%2C+Weicai&rft.au=Wang%2C+Xingjun&rft.date=2023-09-01&rft.issn=1746-8094&rft.volume=86&rft.spage=105287&rft_id=info:doi/10.1016%2Fj.bspc.2023.105287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon