Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors
In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been proposed and investigated numerically and experimentally. Compared with the single meander wire structure, the bandwidth and absorption leve...
Saved in:
Published in | International journal of electronics and communications Vol. 120; p. 153198 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been proposed and investigated numerically and experimentally. Compared with the single meander wire structure, the bandwidth and absorption level of the proposed MMA loaded with lumped resistors can be improved extremely. The retrieved equivalent constitutive parameters and simulated electric and magnetic fields distributions have been demonstrated to illustrate the mechanism underlying observed absorption. The simulated results exhibit that the proposed MMA can keep a good stability in a wide angular range for both transverse electric (TE) and transverse magnetic (TM) waves under normal and oblique incidence. Further simulated results indicate that the performance of the MMA can be adjusted by changing parameters of unit-cell structure and lumped resistors. Finally, we have fabricated a modified MMA sample practically, composing of meander wire structure loaded with lumped resistors, FR-4(loss), foam and continuous metal film. The modified MMA yields absorbance of over 85% from 1.84 GHz to 5.96 GHz in the experiment, and the relative bandwidth is about 105.6%, which is agreement reasonable with simulation. |
---|---|
AbstractList | In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been proposed and investigated numerically and experimentally. Compared with the single meander wire structure, the bandwidth and absorption level of the proposed MMA loaded with lumped resistors can be improved extremely. The retrieved equivalent constitutive parameters and simulated electric and magnetic fields distributions have been demonstrated to illustrate the mechanism underlying observed absorption. The simulated results exhibit that the proposed MMA can keep a good stability in a wide angular range for both transverse electric (TE) and transverse magnetic (TM) waves under normal and oblique incidence. Further simulated results indicate that the performance of the MMA can be adjusted by changing parameters of unit-cell structure and lumped resistors. Finally, we have fabricated a modified MMA sample practically, composing of meander wire structure loaded with lumped resistors, FR-4(loss), foam and continuous metal film. The modified MMA yields absorbance of over 85% from 1.84 GHz to 5.96 GHz in the experiment, and the relative bandwidth is about 105.6%, which is agreement reasonable with simulation. |
ArticleNumber | 153198 |
Author | Wang, Qi Cheng, Yongzhi |
Author_xml | – sequence: 1 givenname: Qi surname: Wang fullname: Wang, Qi – sequence: 2 givenname: Yongzhi surname: Cheng fullname: Cheng, Yongzhi email: chengyz@wust.edu.cn |
BookMark | eNp9kMtqwzAQRUVJoWnaH-hKP-BUshw_oJsS-oJAN-1ajOQxKNhWKskJ-ftOSFddZCE03Ll3mDm3bDb6ERl7kGIphSwft0vACZe5yElYKdnUV2wuS1lnQjXNjOpCFVldSHnDbmPcCjJWeTlnae2HHdjEYWx57w9ZF_BnwtEeuQkeWnPSB2eDP8Ae-YAJBkgYHPQcTPTBYOAGIrbcj9QmOwkHF5DHFCabJqp6GkSGgNHF5EO8Y9cd9BHv__4F-359-Vq_Z5vPt4_18yazSoiUlWA7U-dFqbq2ANM0KESbQ05vVRWmMlAqoBWtEFjZYmXoYFVhI0TTmEoqtWD5eS6tH2PATu-CGyActRT6xE1v9YmbPnHTZ24Uqv-FrEuQnB9TANdfjj6do0hH7R0GHa0jltgSD5t0692l-C9lGo4_ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0291354 crossref_primary_10_1080_09205071_2024_2345680 crossref_primary_10_3389_fmats_2022_980907 crossref_primary_10_1016_j_jmrt_2021_10_007 crossref_primary_10_1515_freq_2023_0352 crossref_primary_10_1016_j_optmat_2023_114389 crossref_primary_10_1016_j_apsusc_2024_159383 crossref_primary_10_1016_j_physb_2021_413030 crossref_primary_10_1017_S1759078721000970 crossref_primary_10_1364_OME_451073 crossref_primary_10_1088_1361_6463_ac90cf crossref_primary_10_1155_2020_8827517 crossref_primary_10_1016_j_compositesb_2024_111484 crossref_primary_10_1109_TAP_2023_3308581 crossref_primary_10_12677_jsta_2024_124066 crossref_primary_10_1007_s11664_023_10225_z crossref_primary_10_1186_s11671_020_03448_0 crossref_primary_10_1002_mmce_22573 crossref_primary_10_3390_nano13020222 crossref_primary_10_1002_mmce_22570 crossref_primary_10_1021_acsaenm_4c00843 crossref_primary_10_1007_s11468_022_01783_9 crossref_primary_10_1109_TEMC_2022_3213941 crossref_primary_10_3390_electronics11131986 crossref_primary_10_3390_polym14081576 crossref_primary_10_1364_OE_469678 crossref_primary_10_1364_OME_498026 crossref_primary_10_1177_14644207211011499 crossref_primary_10_1515_freq_2022_0218 crossref_primary_10_1016_j_rinp_2020_103292 crossref_primary_10_3390_cryst12060836 crossref_primary_10_1088_1361_6463_abdb6a crossref_primary_10_1109_ACCESS_2020_3026358 crossref_primary_10_1016_j_aeue_2021_154033 crossref_primary_10_1109_LEMCPA_2024_3458790 crossref_primary_10_1364_OE_432703 crossref_primary_10_1049_ell2_12879 crossref_primary_10_1016_j_aeue_2022_154413 crossref_primary_10_3390_coatings13081340 crossref_primary_10_1016_j_rinp_2021_104684 crossref_primary_10_1109_JPHOT_2022_3171864 crossref_primary_10_1007_s11664_021_09251_6 crossref_primary_10_1109_JPHOT_2024_3415370 crossref_primary_10_1080_09205071_2021_1965038 crossref_primary_10_1109_TDEI_2023_3332076 crossref_primary_10_1080_17455030_2024_2370021 crossref_primary_10_1117_1_JOM_3_4_041203 crossref_primary_10_1038_s41598_021_93322_5 crossref_primary_10_1364_JOSAB_433122 crossref_primary_10_1364_AO_474350 crossref_primary_10_3389_fphy_2020_595642 crossref_primary_10_1007_s11082_023_04881_y crossref_primary_10_1016_j_jmmm_2022_169874 crossref_primary_10_1039_D0NR08640A crossref_primary_10_35848_1882_0786_ab9877 crossref_primary_10_1038_s41598_022_15221_7 crossref_primary_10_1016_j_cjph_2020_07_020 crossref_primary_10_1016_j_rinp_2020_103260 crossref_primary_10_1007_s11431_022_2256_8 crossref_primary_10_1080_02678292_2024_2339913 crossref_primary_10_1109_ACCESS_2023_3345659 crossref_primary_10_1109_TCPMT_2023_3265706 crossref_primary_10_1007_s11664_023_10598_1 crossref_primary_10_1038_s41598_023_46363_x crossref_primary_10_1016_j_aeue_2022_154123 crossref_primary_10_1142_S0217979224503168 crossref_primary_10_1142_S0217984924500234 crossref_primary_10_1016_j_aeue_2022_154329 crossref_primary_10_1002_pssa_202200795 crossref_primary_10_1063_5_0056887 crossref_primary_10_1038_s41598_021_98703_4 crossref_primary_10_1017_S1759078720001300 crossref_primary_10_1142_S0217979224504022 crossref_primary_10_1016_j_aeue_2025_155747 crossref_primary_10_1088_1361_6463_acb4a6 crossref_primary_10_1155_2022_7674970 crossref_primary_10_1016_j_matpr_2020_12_730 crossref_primary_10_3390_ma16175916 crossref_primary_10_3390_ma17153730 crossref_primary_10_1016_j_aeue_2021_153606 crossref_primary_10_1080_09205071_2021_1960643 |
Cites_doi | 10.1016/j.matdes.2016.07.118 10.1007/s00340-013-5361-1 10.1007/s11664-016-4693-0 10.1088/1674-1056/21/12/127801 10.1063/1.5040067 10.1007/s00339-019-2422-2 10.1063/1.4862262 10.1088/0022-3727/49/43/435102 10.1007/s00339-014-8637-3 10.1038/s41598-017-14792-0 10.1364/OE.23.003523 10.1109/LAWP.2016.2614703 10.1051/epjam/2018011 10.3390/mi11030309 10.1364/OSAC.2.002113 10.1016/j.rinp.2020.102951 10.1016/j.optcom.2020.125265 10.1063/1.4826911 10.1109/TAP.2012.2194659 10.1016/j.optmat.2019.01.002 10.1103/PhysRevB.65.195104 10.1364/OME.8.003104 10.1007/s00339-015-9415-6 10.1063/1.3692178 10.1038/srep15367 10.1007/s00339-018-1686-2 10.1051/epjap/2011110206 10.1016/j.matlet.2018.02.078 10.1142/S0217984917502311 10.1007/s11664-019-07156-z 10.1103/PhysRevB.86.205104 10.1109/TAP.2012.2207686 10.3390/nano10020257 10.1007/s11664-017-5770-8 10.1038/srep13956 10.1007/s11664-016-5115-z 10.1002/lpor.201400026 10.1007/s11664-015-3951-x 10.1364/OL.43.002764 10.1088/2040-8978/17/4/045105 10.3390/mi11020189 10.1007/s00339-018-2310-1 10.1364/OME.8.002103 10.1186/s11671-018-2810-0 10.1002/mop.29020 10.1103/PhysRevE.70.016608 10.1007/s00339-013-7996-5 10.1364/OE.26.016769 10.3390/ma13040860 10.1109/TAP.2015.2462128 10.1088/0022-3727/49/32/325101 10.1063/1.5004211 10.1103/PhysRevLett.100.207402 |
ContentType | Journal Article |
Copyright | 2020 Elsevier GmbH |
Copyright_xml | – notice: 2020 Elsevier GmbH |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aeue.2020.153198 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1618-0399 |
ExternalDocumentID | 10_1016_j_aeue_2020_153198 S1434841120303757 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 8FE 8FG 8FW 8P~ 8R4 8R5 AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABLJU ABMAC ABUWG ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARAPS ARUGR ASPBG AVWKF AXJTR AZFZN BENPR BGLVJ BJAXD BKOJK BLXMC BPHCQ CAG CCPQU COF CS3 DWQXO EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HCIFZ HVGLF HZ~ IHE J1W JJJVA KOM M1Q M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P62 PC. PQQKQ PROAC Q2X Q38 R2- RIG ROL RPZ S0X SDF SDG SES SEW SPC SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION PHGZM PHGZT SSH |
ID | FETCH-LOGICAL-c300t-6acfb82463fd4ab99e00d2a2d2a574b7ba63aadbc00e7c45b16137e90099b7133 |
IEDL.DBID | .~1 |
ISSN | 1434-8411 |
IngestDate | Thu Apr 24 22:58:38 EDT 2025 Tue Jul 01 01:32:13 EDT 2025 Fri Feb 23 02:48:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metamaterial absorber Microwave Meander wire structure Lumped resistor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-6acfb82463fd4ab99e00d2a2d2a574b7ba63aadbc00e7c45b16137e90099b7133 |
ParticipantIDs | crossref_primary_10_1016_j_aeue_2020_153198 crossref_citationtrail_10_1016_j_aeue_2020_153198 elsevier_sciencedirect_doi_10_1016_j_aeue_2020_153198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | International journal of electronics and communications |
PublicationYear | 2020 |
Publisher | Elsevier GmbH |
Publisher_xml | – name: Elsevier GmbH |
References | Landy, Sajuyigbe, Mock, Smith, Padilla (b0015) 2008; 100 Li, Wu, Xu, Zhou, Cao, Han (b0250) 2018; 13 Bai, Feng, Liu, Fan, Shen, Sun (b0275) 2017; 99 Cheng, Gong, Nie, Wang (b0210) 2012; 21 Xu, Wang, Qi, Liang, Gong, Xu (b0030) 2012; 86 Fan, Liu, Zhang, Zhao, Wei, Fu (b0065) 2015; 5 Cheng, Zou, Luo, Chen, Mao (b0285) 2019; 48 Kundu, Mohan, Chakraborty (b0155) 2015; 57 Wang, Chen, Xu, Yi, Chen, Chen (b0050) 2020; 16 Nguyen, Lim (b0255) 2018; 112 Zou, Cheng (b0045) 2019; 88 He, Deng, Li, Luo, He, Huang (b0205) 2019; 125 Cheng, Zhang, Mao, Gong (b0040) 2018; 219 Zhang, Zhou, Chen, Lu, Xie, Deng (b0195) 2015; 121 Fei, Shen, Wen, Nian (b0270) 2015; 63 Li, Wu, Wang, Guan, Zhai (b0125) 2014; 104 Li, Wei, Wang, Hu, Li, Guan (b0200) 2016; 110 Smith, Schultz, Markos, Soukoulis (b0290) 2002; 65 Huang, Yang, Wang, Yu, Lou, Guo (b0225) 2016; 49 Wu, Jile, Chen, Xu, Yi, Chen (b0115) 2020; 11 Watts, Liu, Padilla (b0020) 2012; 24 Li, Chen, Yang, Yi, Chen, Yao (b0085) 2020; 10 Zuo, Yang, He, Mao, Liu (b0240) 2016; 16 Yin, Long, Li, Zhu, Chen, Guan (b0175) 2015; 5 Zhang, Yang, Zhang, Liu (b0245) 2018; 8 Ye, Wang, Wang, Xu, Zhang, Huangfu (b0120) 2012; 60 Joyal, Laurin (b0265) 2012; 60 Nguyen, Lim (b0165) 2017; 7 Huang, Yuan, Wang, Chen, Tang, Fang (b0180) 2018; 43 Li, Chen, Yi, Yang, Tang, Yi (b0110) 2020; 16 Chen, Grzegorczyk, Wu, Pacheco, Kong (b0295) 2004; 70 Shen, Zhang, Meng, Wang, Pang, Wang (b0150) 2018; 112 Gu, Su, Zhao (b0160) 2013; 114 Chen, Huang, Zerihun, Hu, Wang, Wang (b0220) 2015; 44 Cui, He, Jin, Ding, Yang, Ye (b0035) 2014; 8 Li, Gan, Guo, Liu, Xu, Yi (b0070) 2018; 26 Li, Cao, Gao, Zhang, Zheng, Zhang (b0055) 2015; 23 Dung, Tuong, Yoo, Kim, Tung, Lam (b0130) 2015; 17 Cui, Smith, Metamaterials (b0010) 2010 Huan, Jile, Tang, Li, Yi, Gao (b0090) 2020; 11 Luo, Cheng (b0060) 2017; 31 Cheng, He, Zhao, Gong (b0140) 2017; 46 Ruck, Barrick, Stuart, Krichbaum (b0005) 1970 Cheng, Nie, Gong (b0170) 2013; 111 Cheng, Nie, Gong, Yang (b0025) 2011; 56 Zhao, Cheng (b0230) 2016; 45 Yuan, Cheng (b0215) 2014; 117 Chen, Cheng, Luo (b0100) 2020; 13 Cao, Cheng (b0080) 2019; 125 Chen, Luo, Ding, Zhao, Feng, Jiang (b0260) 2019; 6 Cheng, Zou, Yang, Mao, Gong (b0280) 2018; 8 Ding, Cui, Chen, Zhang, Jin, He (b0135) 2012; 100 Cheng, Luo, Chen, Gong (b0105) 2019; 2 Kim, Yoo, Hwang, Lee (b0235) 2016; 49 Cong, Cao, Song, Han (b0185) 2018; 124 Luo, Cheng (b0145) 2018; 47 Li, Qiao, Luo, Qin, Peng (b0190) 2014; 115 Li, Cheng (b0095) 2020; 462 Cheng, Zuo, Huang, Wang, Gong (b0075) 2019; 38 Cheng (10.1016/j.aeue.2020.153198_b0285) 2019; 48 Li (10.1016/j.aeue.2020.153198_b0095) 2020; 462 He (10.1016/j.aeue.2020.153198_b0205) 2019; 125 Li (10.1016/j.aeue.2020.153198_b0085) 2020; 10 Luo (10.1016/j.aeue.2020.153198_b0145) 2018; 47 Cheng (10.1016/j.aeue.2020.153198_b0210) 2012; 21 Yin (10.1016/j.aeue.2020.153198_b0175) 2015; 5 Kim (10.1016/j.aeue.2020.153198_b0235) 2016; 49 Dung (10.1016/j.aeue.2020.153198_b0130) 2015; 17 Ding (10.1016/j.aeue.2020.153198_b0135) 2012; 100 Li (10.1016/j.aeue.2020.153198_b0055) 2015; 23 Bai (10.1016/j.aeue.2020.153198_b0275) 2017; 99 Luo (10.1016/j.aeue.2020.153198_b0060) 2017; 31 Li (10.1016/j.aeue.2020.153198_b0200) 2016; 110 Cheng (10.1016/j.aeue.2020.153198_b0140) 2017; 46 Chen (10.1016/j.aeue.2020.153198_b0260) 2019; 6 Xu (10.1016/j.aeue.2020.153198_b0030) 2012; 86 Huang (10.1016/j.aeue.2020.153198_b0180) 2018; 43 Yuan (10.1016/j.aeue.2020.153198_b0215) 2014; 117 Cheng (10.1016/j.aeue.2020.153198_b0040) 2018; 219 Li (10.1016/j.aeue.2020.153198_b0125) 2014; 104 Gu (10.1016/j.aeue.2020.153198_b0160) 2013; 114 Cui (10.1016/j.aeue.2020.153198_b0035) 2014; 8 Cheng (10.1016/j.aeue.2020.153198_b0105) 2019; 2 Li (10.1016/j.aeue.2020.153198_b0250) 2018; 13 Landy (10.1016/j.aeue.2020.153198_b0015) 2008; 100 Cui (10.1016/j.aeue.2020.153198_b0010) 2010 Zou (10.1016/j.aeue.2020.153198_b0045) 2019; 88 Wang (10.1016/j.aeue.2020.153198_b0050) 2020; 16 Cao (10.1016/j.aeue.2020.153198_b0080) 2019; 125 Watts (10.1016/j.aeue.2020.153198_b0020) 2012; 24 Li (10.1016/j.aeue.2020.153198_b0110) 2020; 16 Zhang (10.1016/j.aeue.2020.153198_b0195) 2015; 121 Fan (10.1016/j.aeue.2020.153198_b0065) 2015; 5 Nguyen (10.1016/j.aeue.2020.153198_b0165) 2017; 7 Cheng (10.1016/j.aeue.2020.153198_b0170) 2013; 111 Kundu (10.1016/j.aeue.2020.153198_b0155) 2015; 57 Smith (10.1016/j.aeue.2020.153198_b0290) 2002; 65 Ye (10.1016/j.aeue.2020.153198_b0120) 2012; 60 Li (10.1016/j.aeue.2020.153198_b0190) 2014; 115 Zuo (10.1016/j.aeue.2020.153198_b0240) 2016; 16 Fei (10.1016/j.aeue.2020.153198_b0270) 2015; 63 Cheng (10.1016/j.aeue.2020.153198_b0075) 2019; 38 Cheng (10.1016/j.aeue.2020.153198_b0280) 2018; 8 Chen (10.1016/j.aeue.2020.153198_b0295) 2004; 70 Li (10.1016/j.aeue.2020.153198_b0070) 2018; 26 Nguyen (10.1016/j.aeue.2020.153198_b0255) 2018; 112 Huang (10.1016/j.aeue.2020.153198_b0225) 2016; 49 Zhang (10.1016/j.aeue.2020.153198_b0245) 2018; 8 Huan (10.1016/j.aeue.2020.153198_b0090) 2020; 11 Ruck (10.1016/j.aeue.2020.153198_b0005) 1970 Chen (10.1016/j.aeue.2020.153198_b0100) 2020; 13 Zhao (10.1016/j.aeue.2020.153198_b0230) 2016; 45 Cong (10.1016/j.aeue.2020.153198_b0185) 2018; 124 Chen (10.1016/j.aeue.2020.153198_b0220) 2015; 44 Joyal (10.1016/j.aeue.2020.153198_b0265) 2012; 60 Wu (10.1016/j.aeue.2020.153198_b0115) 2020; 11 Shen (10.1016/j.aeue.2020.153198_b0150) 2018; 112 Cheng (10.1016/j.aeue.2020.153198_b0025) 2011; 56 |
References_xml | – volume: 115 start-page: 229 year: 2014 end-page: 234 ident: b0190 article-title: Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism publication-title: Appl Phys A – volume: 49 year: 2016 ident: b0235 article-title: Ultrathin microwave absorber based on metamaterial publication-title: J Phys D: Appl Phys – volume: 88 start-page: 674 year: 2019 end-page: 679 ident: b0045 article-title: Design of a six-band terahertz metamaterial absorber for temperature sensing application publication-title: Opt Mater – volume: 10 start-page: 257 year: 2020 ident: b0085 article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes publication-title: Nanomaterials – volume: 57 start-page: 1072 year: 2015 end-page: 1078 ident: b0155 article-title: Ultrathin polarization independent absorber with enhanced bandwidth by incorporating Giusepe Peano fractal in square ring publication-title: Microwave Opt Technol Lett – volume: 48 start-page: 3939 year: 2019 end-page: 3946 ident: b0285 article-title: Compact Ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure publication-title: J Electron Mater – volume: 16 start-page: 928 year: 2016 end-page: 931 ident: b0240 article-title: An ultra-wideband miniaturized metamaterial absorber in the ultrahigh-frequency range publication-title: IEEE Antennas Wirel Propag Lett – volume: 70 year: 2004 ident: b0295 article-title: Retrieval of the effective constitutive parameters of bianisotropic metamaterials publication-title: Phys Rev E – volume: 44 start-page: 4269 year: 2015 end-page: 4274 ident: b0220 article-title: Polarization-Independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances publication-title: J Electron Mater – volume: 125 start-page: 130 year: 2019 ident: b0205 article-title: Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial publication-title: Appl Phys A – volume: 124 start-page: 452 year: 2018 ident: b0185 article-title: Polarization-independent wide-angle ultrathin double-layered metamaterial absorber for broadband application publication-title: Appl Phys A – volume: 5 start-page: 15367 year: 2015 ident: b0175 article-title: Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays publication-title: Sci Rep – volume: 8 start-page: 3104 year: 2018 end-page: 3114 ident: b0280 article-title: Dual and broadband terahertz metamaterial absorber based on a compact resonator structure publication-title: Opt Mater Exp – volume: 8 start-page: 2103 year: 2018 end-page: 2113 ident: b0245 article-title: Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors publication-title: Opt Mater Exp – volume: 8 start-page: 495 year: 2014 ident: b0035 article-title: Plasmonic and metamaterial structures as electromagnetic absorbers publication-title: Laser Photon Rev – volume: 99 start-page: 1 year: 2017 end-page: 6 ident: b0275 article-title: Integrated microstrip meander line traveling wave tube based on metamaterial absorber publication-title: IEEE Trans Electron Dev – volume: 31 start-page: 1750231 year: 2017 ident: b0060 article-title: Design of an ultrabroadband visible metamaterial absorber based on threedimensional metallic nanostructures publication-title: Mod Phys Lett B – volume: 65 year: 2002 ident: b0290 article-title: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients publication-title: Phys Rev B – volume: 21 year: 2012 ident: b0210 article-title: A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors publication-title: Chin Phys B – volume: 104 start-page: 22903 year: 2014 ident: b0125 article-title: Integrating nonplanar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers publication-title: Appl Phys Lett – volume: 43 start-page: 2764 year: 2018 end-page: 2767 ident: b0180 article-title: Flexible thin broadband microwave absorber based on pyramidal periodic structure of lossy composite publication-title: Opt Lett – volume: 16 year: 2020 ident: b0110 article-title: Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays publication-title: Mater Today Energy – volume: 100 year: 2012 ident: b0135 article-title: Ultra-broadband microwave metamaterial absorber publication-title: Appl Phys Lett – volume: 13 start-page: 386 year: 2018 ident: b0250 article-title: Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects publication-title: Nanoscale Res Lett – volume: 121 start-page: 233 year: 2015 end-page: 238 ident: b0195 article-title: Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies publication-title: Appl Phys A – volume: 11 start-page: 309 year: 2020 ident: b0090 article-title: Fabrication of ZnO@Ag@Ag publication-title: Micromachines – volume: 6 start-page: 1 year: 2019 ident: b0260 article-title: Broadband microwave metamaterial absorber with lumped resistor loading publication-title: EPJ Appl Metamat – volume: 7 start-page: 4814 year: 2017 ident: b0165 article-title: Bandwidth-enhanced and wide-angle of-incidence metamaterial absorber using a hybrid unit cell publication-title: Sci Rep – volume: 125 start-page: 15 year: 2019 ident: b0080 article-title: A broadband plasmonic light absorber based on a tungsten meander ring-resonator in visible region publication-title: Appl Phys A – volume: 46 start-page: 1293 year: 2017 end-page: 1299 ident: b0140 article-title: Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial publication-title: J Electron Mater – volume: 114 year: 2013 ident: b0160 article-title: Planar isotropic broadband metamaterial absorber publication-title: J Appl Phys – volume: 63 start-page: 4609 year: 2015 end-page: 4614 ident: b0270 article-title: A single-layer circular polarizer based on hybrid meander-line and loop configuration publication-title: IEEE Trans Antenn Propag – volume: 11 start-page: 189 year: 2020 ident: b0115 article-title: Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties publication-title: Micromachines – volume: 17 start-page: 45105 year: 2015 ident: b0130 article-title: Perfect and broad absorption by the active control of electric resonance in metamaterial publication-title: J Opt – volume: 117 start-page: 1915 year: 2014 end-page: 1921 ident: b0215 article-title: Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment publication-title: Appl Phys A – volume: 23 start-page: 3523 year: 2015 end-page: 3533 ident: b0055 article-title: Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial publication-title: Opt Exp – volume: 112 year: 2018 ident: b0255 article-title: Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators publication-title: Appl Phys Lett – volume: 112 year: 2018 ident: b0150 article-title: Merging absorption bands of plasmonic structures via dispersion engineering publication-title: Appl Phys Lett – volume: 5 start-page: 13956 year: 2015 ident: b0065 article-title: Tunable mid-infrared coherent perfect absorption in a graphene meta-surface publication-title: Sci Rep – volume: 60 start-page: 5164 year: 2012 end-page: 5172 ident: b0120 article-title: Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces publication-title: IEEE Trans Antennas Propag – volume: 2 start-page: 2113 year: 2019 end-page: 2122 ident: b0105 article-title: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency publication-title: OSA Continuum – volume: 38 start-page: 97 year: 2019 end-page: 102 ident: b0075 article-title: Design of a photo-excited broadband tunable terahertz absorber publication-title: J Infrared Millim Waves – volume: 49 year: 2016 ident: b0225 article-title: Calculations of a wideband metamaterial absorber using equivalent medium theory publication-title: J Phys D: Appl Phys – volume: 110 start-page: 27 year: 2016 end-page: 34 ident: b0200 article-title: Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range publication-title: Mater Des – volume: 100 year: 2008 ident: b0015 article-title: Perfect metamaterial absorber publication-title: Phys Rev Lett – volume: 47 start-page: 323 year: 2018 end-page: 328 ident: b0145 article-title: Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure publication-title: J Electron Mater – volume: 56 start-page: 31301 year: 2011 ident: b0025 article-title: Multi-band metamaterial absorber using cave-cross resonator publication-title: Europ Phys J Appl Phys – volume: 26 start-page: 16769 year: 2018 end-page: 16781 ident: b0070 article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons publication-title: Opt Express – volume: 219 start-page: 123 year: 2018 end-page: 126 ident: b0040 article-title: Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application publication-title: Mater Lett – volume: 13 start-page: 860 year: 2020 ident: b0100 article-title: A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene publication-title: Materials – volume: 24 start-page: 98 year: 2012 end-page: 120 ident: b0020 article-title: Metamaterial electromagnetic wave absorbers publication-title: Adv Mater – volume: 86 year: 2012 ident: b0030 article-title: Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber publication-title: Phys Rev B – volume: 45 start-page: 5033 year: 2016 end-page: 5039 ident: b0230 article-title: Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors publication-title: J Electron Mater – volume: 111 start-page: 483 year: 2013 end-page: 488 ident: b0170 article-title: Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators publication-title: Appl Phys B – year: 2010 ident: b0010 article-title: Theory, design and applications – volume: 16 year: 2020 ident: b0050 article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays publication-title: Results Phys – volume: 462 year: 2020 ident: b0095 article-title: Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure publication-title: Opt Commun – year: 1970 ident: b0005 article-title: Radar cross section handbook – volume: 60 start-page: 3007 year: 2012 end-page: 3011 ident: b0265 article-title: Analysis and design of thin circular polarizers based on meander lines publication-title: IEEE Trans Antenn Propag – year: 1970 ident: 10.1016/j.aeue.2020.153198_b0005 – volume: 16 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0110 article-title: Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays publication-title: Mater Today Energy – volume: 110 start-page: 27 year: 2016 ident: 10.1016/j.aeue.2020.153198_b0200 article-title: Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range publication-title: Mater Des doi: 10.1016/j.matdes.2016.07.118 – volume: 111 start-page: 483 issue: 3 year: 2013 ident: 10.1016/j.aeue.2020.153198_b0170 article-title: Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators publication-title: Appl Phys B doi: 10.1007/s00340-013-5361-1 – volume: 45 start-page: 5033 issue: 10 year: 2016 ident: 10.1016/j.aeue.2020.153198_b0230 article-title: Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors publication-title: J Electron Mater doi: 10.1007/s11664-016-4693-0 – volume: 21 issue: 12 year: 2012 ident: 10.1016/j.aeue.2020.153198_b0210 article-title: A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors publication-title: Chin Phys B doi: 10.1088/1674-1056/21/12/127801 – volume: 112 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0150 article-title: Merging absorption bands of plasmonic structures via dispersion engineering publication-title: Appl Phys Lett doi: 10.1063/1.5040067 – volume: 125 start-page: 130 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0205 article-title: Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial publication-title: Appl Phys A doi: 10.1007/s00339-019-2422-2 – volume: 104 start-page: 22903 year: 2014 ident: 10.1016/j.aeue.2020.153198_b0125 article-title: Integrating nonplanar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers publication-title: Appl Phys Lett doi: 10.1063/1.4862262 – volume: 49 year: 2016 ident: 10.1016/j.aeue.2020.153198_b0235 article-title: Ultrathin microwave absorber based on metamaterial publication-title: J Phys D: Appl Phys doi: 10.1088/0022-3727/49/43/435102 – volume: 117 start-page: 1915 issue: 4 year: 2014 ident: 10.1016/j.aeue.2020.153198_b0215 article-title: Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment publication-title: Appl Phys A doi: 10.1007/s00339-014-8637-3 – volume: 7 start-page: 4814 year: 2017 ident: 10.1016/j.aeue.2020.153198_b0165 article-title: Bandwidth-enhanced and wide-angle of-incidence metamaterial absorber using a hybrid unit cell publication-title: Sci Rep doi: 10.1038/s41598-017-14792-0 – volume: 38 start-page: 97 issue: 1 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0075 article-title: Design of a photo-excited broadband tunable terahertz absorber publication-title: J Infrared Millim Waves – volume: 23 start-page: 3523 issue: 3 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0055 article-title: Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial publication-title: Opt Exp doi: 10.1364/OE.23.003523 – volume: 16 start-page: 928 year: 2016 ident: 10.1016/j.aeue.2020.153198_b0240 article-title: An ultra-wideband miniaturized metamaterial absorber in the ultrahigh-frequency range publication-title: IEEE Antennas Wirel Propag Lett doi: 10.1109/LAWP.2016.2614703 – volume: 6 start-page: 1 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0260 article-title: Broadband microwave metamaterial absorber with lumped resistor loading publication-title: EPJ Appl Metamat doi: 10.1051/epjam/2018011 – volume: 11 start-page: 309 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0090 article-title: Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties publication-title: Micromachines doi: 10.3390/mi11030309 – volume: 2 start-page: 2113 issue: 7 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0105 article-title: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency publication-title: OSA Continuum doi: 10.1364/OSAC.2.002113 – volume: 16 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0050 article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays publication-title: Results Phys doi: 10.1016/j.rinp.2020.102951 – volume: 462 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0095 article-title: Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure publication-title: Opt Commun doi: 10.1016/j.optcom.2020.125265 – volume: 114 issue: 16 year: 2013 ident: 10.1016/j.aeue.2020.153198_b0160 article-title: Planar isotropic broadband metamaterial absorber publication-title: J Appl Phys doi: 10.1063/1.4826911 – volume: 99 start-page: 1 year: 2017 ident: 10.1016/j.aeue.2020.153198_b0275 article-title: Integrated microstrip meander line traveling wave tube based on metamaterial absorber publication-title: IEEE Trans Electron Dev – volume: 60 start-page: 3007 issue: 6 year: 2012 ident: 10.1016/j.aeue.2020.153198_b0265 article-title: Analysis and design of thin circular polarizers based on meander lines publication-title: IEEE Trans Antenn Propag doi: 10.1109/TAP.2012.2194659 – volume: 88 start-page: 674 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0045 article-title: Design of a six-band terahertz metamaterial absorber for temperature sensing application publication-title: Opt Mater doi: 10.1016/j.optmat.2019.01.002 – year: 2010 ident: 10.1016/j.aeue.2020.153198_b0010 – volume: 65 year: 2002 ident: 10.1016/j.aeue.2020.153198_b0290 article-title: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients publication-title: Phys Rev B doi: 10.1103/PhysRevB.65.195104 – volume: 8 start-page: 3104 issue: 10 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0280 article-title: Dual and broadband terahertz metamaterial absorber based on a compact resonator structure publication-title: Opt Mater Exp doi: 10.1364/OME.8.003104 – volume: 121 start-page: 233 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0195 article-title: Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies publication-title: Appl Phys A doi: 10.1007/s00339-015-9415-6 – volume: 100 year: 2012 ident: 10.1016/j.aeue.2020.153198_b0135 article-title: Ultra-broadband microwave metamaterial absorber publication-title: Appl Phys Lett doi: 10.1063/1.3692178 – volume: 5 start-page: 15367 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0175 article-title: Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays publication-title: Sci Rep doi: 10.1038/srep15367 – volume: 124 start-page: 452 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0185 article-title: Polarization-independent wide-angle ultrathin double-layered metamaterial absorber for broadband application publication-title: Appl Phys A doi: 10.1007/s00339-018-1686-2 – volume: 56 start-page: 31301 issue: 3 year: 2011 ident: 10.1016/j.aeue.2020.153198_b0025 article-title: Multi-band metamaterial absorber using cave-cross resonator publication-title: Europ Phys J Appl Phys doi: 10.1051/epjap/2011110206 – volume: 219 start-page: 123 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0040 article-title: Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application publication-title: Mater Lett doi: 10.1016/j.matlet.2018.02.078 – volume: 31 start-page: 1750231 issue: 25 year: 2017 ident: 10.1016/j.aeue.2020.153198_b0060 article-title: Design of an ultrabroadband visible metamaterial absorber based on threedimensional metallic nanostructures publication-title: Mod Phys Lett B doi: 10.1142/S0217984917502311 – volume: 48 start-page: 3939 issue: 6 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0285 article-title: Compact Ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure publication-title: J Electron Mater doi: 10.1007/s11664-019-07156-z – volume: 86 year: 2012 ident: 10.1016/j.aeue.2020.153198_b0030 article-title: Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber publication-title: Phys Rev B doi: 10.1103/PhysRevB.86.205104 – volume: 60 start-page: 5164 issue: 11 year: 2012 ident: 10.1016/j.aeue.2020.153198_b0120 article-title: Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces publication-title: IEEE Trans Antennas Propag doi: 10.1109/TAP.2012.2207686 – volume: 10 start-page: 257 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0085 article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes publication-title: Nanomaterials doi: 10.3390/nano10020257 – volume: 47 start-page: 323 issue: 1 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0145 article-title: Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure publication-title: J Electron Mater doi: 10.1007/s11664-017-5770-8 – volume: 24 start-page: 98 issue: 23 year: 2012 ident: 10.1016/j.aeue.2020.153198_b0020 article-title: Metamaterial electromagnetic wave absorbers publication-title: Adv Mater – volume: 5 start-page: 13956 issue: 1 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0065 article-title: Tunable mid-infrared coherent perfect absorption in a graphene meta-surface publication-title: Sci Rep doi: 10.1038/srep13956 – volume: 46 start-page: 1293 issue: 2 year: 2017 ident: 10.1016/j.aeue.2020.153198_b0140 article-title: Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial publication-title: J Electron Mater doi: 10.1007/s11664-016-5115-z – volume: 8 start-page: 495 year: 2014 ident: 10.1016/j.aeue.2020.153198_b0035 article-title: Plasmonic and metamaterial structures as electromagnetic absorbers publication-title: Laser Photon Rev doi: 10.1002/lpor.201400026 – volume: 44 start-page: 4269 issue: 11 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0220 article-title: Polarization-Independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances publication-title: J Electron Mater doi: 10.1007/s11664-015-3951-x – volume: 43 start-page: 2764 issue: 12 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0180 article-title: Flexible thin broadband microwave absorber based on pyramidal periodic structure of lossy composite publication-title: Opt Lett doi: 10.1364/OL.43.002764 – volume: 17 start-page: 45105 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0130 article-title: Perfect and broad absorption by the active control of electric resonance in metamaterial publication-title: J Opt doi: 10.1088/2040-8978/17/4/045105 – volume: 11 start-page: 189 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0115 article-title: Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties publication-title: Micromachines doi: 10.3390/mi11020189 – volume: 125 start-page: 15 year: 2019 ident: 10.1016/j.aeue.2020.153198_b0080 article-title: A broadband plasmonic light absorber based on a tungsten meander ring-resonator in visible region publication-title: Appl Phys A doi: 10.1007/s00339-018-2310-1 – volume: 8 start-page: 2103 issue: 8 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0245 article-title: Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors publication-title: Opt Mater Exp doi: 10.1364/OME.8.002103 – volume: 13 start-page: 386 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0250 article-title: Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects publication-title: Nanoscale Res Lett doi: 10.1186/s11671-018-2810-0 – volume: 57 start-page: 1072 issue: 5 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0155 article-title: Ultrathin polarization independent absorber with enhanced bandwidth by incorporating Giusepe Peano fractal in square ring publication-title: Microwave Opt Technol Lett doi: 10.1002/mop.29020 – volume: 70 year: 2004 ident: 10.1016/j.aeue.2020.153198_b0295 article-title: Retrieval of the effective constitutive parameters of bianisotropic metamaterials publication-title: Phys Rev E doi: 10.1103/PhysRevE.70.016608 – volume: 115 start-page: 229 year: 2014 ident: 10.1016/j.aeue.2020.153198_b0190 article-title: Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism publication-title: Appl Phys A doi: 10.1007/s00339-013-7996-5 – volume: 26 start-page: 16769 issue: 13 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0070 article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons publication-title: Opt Express doi: 10.1364/OE.26.016769 – volume: 13 start-page: 860 year: 2020 ident: 10.1016/j.aeue.2020.153198_b0100 article-title: A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene publication-title: Materials doi: 10.3390/ma13040860 – volume: 63 start-page: 4609 issue: 10 year: 2015 ident: 10.1016/j.aeue.2020.153198_b0270 article-title: A single-layer circular polarizer based on hybrid meander-line and loop configuration publication-title: IEEE Trans Antenn Propag doi: 10.1109/TAP.2015.2462128 – volume: 49 year: 2016 ident: 10.1016/j.aeue.2020.153198_b0225 article-title: Calculations of a wideband metamaterial absorber using equivalent medium theory publication-title: J Phys D: Appl Phys doi: 10.1088/0022-3727/49/32/325101 – volume: 112 year: 2018 ident: 10.1016/j.aeue.2020.153198_b0255 article-title: Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators publication-title: Appl Phys Lett doi: 10.1063/1.5004211 – volume: 100 issue: 20 year: 2008 ident: 10.1016/j.aeue.2020.153198_b0015 article-title: Perfect metamaterial absorber publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.207402 |
SSID | ssj0020726 |
Score | 2.5140882 |
Snippet | In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 153198 |
SubjectTerms | Lumped resistor Meander wire structure Metamaterial absorber Microwave |
Title | Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors |
URI | https://dx.doi.org/10.1016/j.aeue.2020.153198 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuOXiTuLVNmva4LC6rwl5U8FYmTQorayu7XRcv_nZnmu6iIB48FNp0UsJkOvMlzHxh7MJCDglII4LQpUIWTgnQcSHSnAK8dUleNGyfo3j4JO-e1fMa6y9rYSitsvX93qc33rpt6bba7L6Nx90HjPQykYgX0E4jraiiXEpNVn71uUrzCAMd-gqjSAqSbgtnfI4XuDlRZYa0wYK2mPwenL4FnMEO226RIu_5weyyNVfusa1v_IH7rG7-5rzmUFo-qRaimPrM6A9uphVYQ-2vlHK3gHfHX10NCFAbm-NgZtXUuCmnOGZ5VeLrptKFE3sx97yyc7yb4IdQAJflDaPI7IA9DW4e-0PRHqMg8igIahFDXpgklHFUWAkmTV0Q2BBCvJSWRhuII8Ah4ew4nUtlEARG2qUEHg2tYQ_ZelmV7ojxBF1joRVOqXVS2QIc7WOpFHETOk6wx-x6qb8sbznG6aiLSbZMJnvJSOcZ6TzzOj9ml6s-b55h409ptZyW7IedZBgC_uh38s9-p2yTnnxy2BlbR-W7c4Qhtek0dtZhG73b--HoC-fK3uA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB90Peg7iD6fPL9zeDcJ29cmTXsUUdavvajgrUyaFJS1lbUq_vfONF1REA8eCiXJlDAznY8w8wvAP4clZqisjGKfS1V5LdGklcxLdvDOZ2XVoX2O09G1Or3RN3NwOOuF4bLK3vYHm95Z635k2HNz-HB7O7wkT68yRfEC6WlitJmHBUan0gNYODg5G43f867IxKHJKFGSCfremVDmhf6J0TJjPmMhdcy-9k8ffM7xCiz3waI4CPtZhTlf_4ZfHyAE16DtfuiyFVg7MWleZDUNxdGvwk4bdJbH77nq7gWfvbj3LVKM2qmdQPvYTK2fCnZlTjQ1TXfNLoIBjEWAln2itwl9iBZQZt6Bijz-gevjo6vDkexvUpBlEkWtTLGsbBarNKmcQpvnPopcjDE92ihrLKYJ0pZIQN6USluKAxPjc44fLaex6zCom9r_BZGRdayMJqk6r7Sr0PNRls4pdCLbiW4D_s_4V5Q9zDjfdjEpZvVkdwXzvGCeF4HnG7D_TvMQQDa-Xa1nYik-qUpBXuAbus0f0u3B4ujq4rw4PxmfbcESz4RasW0YkCD8DkUlrd3tte4NkhPhkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+and+low-frequency+broadband+microwave+metamaterial+absorber+based+on+meander+wire+structure+loaded+resistors&rft.jtitle=International+journal+of+electronics+and+communications&rft.au=Wang%2C+Qi&rft.au=Cheng%2C+Yongzhi&rft.date=2020-06-01&rft.pub=Elsevier+GmbH&rft.issn=1434-8411&rft.eissn=1618-0399&rft.volume=120&rft_id=info:doi/10.1016%2Fj.aeue.2020.153198&rft.externalDocID=S1434841120303757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-8411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-8411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-8411&client=summon |