Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors

In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been proposed and investigated numerically and experimentally. Compared with the single meander wire structure, the bandwidth and absorption leve...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electronics and communications Vol. 120; p. 153198
Main Authors Wang, Qi, Cheng, Yongzhi
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been proposed and investigated numerically and experimentally. Compared with the single meander wire structure, the bandwidth and absorption level of the proposed MMA loaded with lumped resistors can be improved extremely. The retrieved equivalent constitutive parameters and simulated electric and magnetic fields distributions have been demonstrated to illustrate the mechanism underlying observed absorption. The simulated results exhibit that the proposed MMA can keep a good stability in a wide angular range for both transverse electric (TE) and transverse magnetic (TM) waves under normal and oblique incidence. Further simulated results indicate that the performance of the MMA can be adjusted by changing parameters of unit-cell structure and lumped resistors. Finally, we have fabricated a modified MMA sample practically, composing of meander wire structure loaded with lumped resistors, FR-4(loss), foam and continuous metal film. The modified MMA yields absorbance of over 85% from 1.84 GHz to 5.96 GHz in the experiment, and the relative bandwidth is about 105.6%, which is agreement reasonable with simulation.
AbstractList In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been proposed and investigated numerically and experimentally. Compared with the single meander wire structure, the bandwidth and absorption level of the proposed MMA loaded with lumped resistors can be improved extremely. The retrieved equivalent constitutive parameters and simulated electric and magnetic fields distributions have been demonstrated to illustrate the mechanism underlying observed absorption. The simulated results exhibit that the proposed MMA can keep a good stability in a wide angular range for both transverse electric (TE) and transverse magnetic (TM) waves under normal and oblique incidence. Further simulated results indicate that the performance of the MMA can be adjusted by changing parameters of unit-cell structure and lumped resistors. Finally, we have fabricated a modified MMA sample practically, composing of meander wire structure loaded with lumped resistors, FR-4(loss), foam and continuous metal film. The modified MMA yields absorbance of over 85% from 1.84 GHz to 5.96 GHz in the experiment, and the relative bandwidth is about 105.6%, which is agreement reasonable with simulation.
ArticleNumber 153198
Author Wang, Qi
Cheng, Yongzhi
Author_xml – sequence: 1
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
– sequence: 2
  givenname: Yongzhi
  surname: Cheng
  fullname: Cheng, Yongzhi
  email: chengyz@wust.edu.cn
BookMark eNp9kMtqwzAQRUVJoWnaH-hKP-BUshw_oJsS-oJAN-1ajOQxKNhWKskJ-ftOSFddZCE03Ll3mDm3bDb6ERl7kGIphSwft0vACZe5yElYKdnUV2wuS1lnQjXNjOpCFVldSHnDbmPcCjJWeTlnae2HHdjEYWx57w9ZF_BnwtEeuQkeWnPSB2eDP8Ae-YAJBkgYHPQcTPTBYOAGIrbcj9QmOwkHF5DHFCabJqp6GkSGgNHF5EO8Y9cd9BHv__4F-359-Vq_Z5vPt4_18yazSoiUlWA7U-dFqbq2ANM0KESbQ05vVRWmMlAqoBWtEFjZYmXoYFVhI0TTmEoqtWD5eS6tH2PATu-CGyActRT6xE1v9YmbPnHTZ24Uqv-FrEuQnB9TANdfjj6do0hH7R0GHa0jltgSD5t0692l-C9lGo4_
CitedBy_id crossref_primary_10_1371_journal_pone_0291354
crossref_primary_10_1080_09205071_2024_2345680
crossref_primary_10_3389_fmats_2022_980907
crossref_primary_10_1016_j_jmrt_2021_10_007
crossref_primary_10_1515_freq_2023_0352
crossref_primary_10_1016_j_optmat_2023_114389
crossref_primary_10_1016_j_apsusc_2024_159383
crossref_primary_10_1016_j_physb_2021_413030
crossref_primary_10_1017_S1759078721000970
crossref_primary_10_1364_OME_451073
crossref_primary_10_1088_1361_6463_ac90cf
crossref_primary_10_1155_2020_8827517
crossref_primary_10_1016_j_compositesb_2024_111484
crossref_primary_10_1109_TAP_2023_3308581
crossref_primary_10_12677_jsta_2024_124066
crossref_primary_10_1007_s11664_023_10225_z
crossref_primary_10_1186_s11671_020_03448_0
crossref_primary_10_1002_mmce_22573
crossref_primary_10_3390_nano13020222
crossref_primary_10_1002_mmce_22570
crossref_primary_10_1021_acsaenm_4c00843
crossref_primary_10_1007_s11468_022_01783_9
crossref_primary_10_1109_TEMC_2022_3213941
crossref_primary_10_3390_electronics11131986
crossref_primary_10_3390_polym14081576
crossref_primary_10_1364_OE_469678
crossref_primary_10_1364_OME_498026
crossref_primary_10_1177_14644207211011499
crossref_primary_10_1515_freq_2022_0218
crossref_primary_10_1016_j_rinp_2020_103292
crossref_primary_10_3390_cryst12060836
crossref_primary_10_1088_1361_6463_abdb6a
crossref_primary_10_1109_ACCESS_2020_3026358
crossref_primary_10_1016_j_aeue_2021_154033
crossref_primary_10_1109_LEMCPA_2024_3458790
crossref_primary_10_1364_OE_432703
crossref_primary_10_1049_ell2_12879
crossref_primary_10_1016_j_aeue_2022_154413
crossref_primary_10_3390_coatings13081340
crossref_primary_10_1016_j_rinp_2021_104684
crossref_primary_10_1109_JPHOT_2022_3171864
crossref_primary_10_1007_s11664_021_09251_6
crossref_primary_10_1109_JPHOT_2024_3415370
crossref_primary_10_1080_09205071_2021_1965038
crossref_primary_10_1109_TDEI_2023_3332076
crossref_primary_10_1080_17455030_2024_2370021
crossref_primary_10_1117_1_JOM_3_4_041203
crossref_primary_10_1038_s41598_021_93322_5
crossref_primary_10_1364_JOSAB_433122
crossref_primary_10_1364_AO_474350
crossref_primary_10_3389_fphy_2020_595642
crossref_primary_10_1007_s11082_023_04881_y
crossref_primary_10_1016_j_jmmm_2022_169874
crossref_primary_10_1039_D0NR08640A
crossref_primary_10_35848_1882_0786_ab9877
crossref_primary_10_1038_s41598_022_15221_7
crossref_primary_10_1016_j_cjph_2020_07_020
crossref_primary_10_1016_j_rinp_2020_103260
crossref_primary_10_1007_s11431_022_2256_8
crossref_primary_10_1080_02678292_2024_2339913
crossref_primary_10_1109_ACCESS_2023_3345659
crossref_primary_10_1109_TCPMT_2023_3265706
crossref_primary_10_1007_s11664_023_10598_1
crossref_primary_10_1038_s41598_023_46363_x
crossref_primary_10_1016_j_aeue_2022_154123
crossref_primary_10_1142_S0217979224503168
crossref_primary_10_1142_S0217984924500234
crossref_primary_10_1016_j_aeue_2022_154329
crossref_primary_10_1002_pssa_202200795
crossref_primary_10_1063_5_0056887
crossref_primary_10_1038_s41598_021_98703_4
crossref_primary_10_1017_S1759078720001300
crossref_primary_10_1142_S0217979224504022
crossref_primary_10_1016_j_aeue_2025_155747
crossref_primary_10_1088_1361_6463_acb4a6
crossref_primary_10_1155_2022_7674970
crossref_primary_10_1016_j_matpr_2020_12_730
crossref_primary_10_3390_ma16175916
crossref_primary_10_3390_ma17153730
crossref_primary_10_1016_j_aeue_2021_153606
crossref_primary_10_1080_09205071_2021_1960643
Cites_doi 10.1016/j.matdes.2016.07.118
10.1007/s00340-013-5361-1
10.1007/s11664-016-4693-0
10.1088/1674-1056/21/12/127801
10.1063/1.5040067
10.1007/s00339-019-2422-2
10.1063/1.4862262
10.1088/0022-3727/49/43/435102
10.1007/s00339-014-8637-3
10.1038/s41598-017-14792-0
10.1364/OE.23.003523
10.1109/LAWP.2016.2614703
10.1051/epjam/2018011
10.3390/mi11030309
10.1364/OSAC.2.002113
10.1016/j.rinp.2020.102951
10.1016/j.optcom.2020.125265
10.1063/1.4826911
10.1109/TAP.2012.2194659
10.1016/j.optmat.2019.01.002
10.1103/PhysRevB.65.195104
10.1364/OME.8.003104
10.1007/s00339-015-9415-6
10.1063/1.3692178
10.1038/srep15367
10.1007/s00339-018-1686-2
10.1051/epjap/2011110206
10.1016/j.matlet.2018.02.078
10.1142/S0217984917502311
10.1007/s11664-019-07156-z
10.1103/PhysRevB.86.205104
10.1109/TAP.2012.2207686
10.3390/nano10020257
10.1007/s11664-017-5770-8
10.1038/srep13956
10.1007/s11664-016-5115-z
10.1002/lpor.201400026
10.1007/s11664-015-3951-x
10.1364/OL.43.002764
10.1088/2040-8978/17/4/045105
10.3390/mi11020189
10.1007/s00339-018-2310-1
10.1364/OME.8.002103
10.1186/s11671-018-2810-0
10.1002/mop.29020
10.1103/PhysRevE.70.016608
10.1007/s00339-013-7996-5
10.1364/OE.26.016769
10.3390/ma13040860
10.1109/TAP.2015.2462128
10.1088/0022-3727/49/32/325101
10.1063/1.5004211
10.1103/PhysRevLett.100.207402
ContentType Journal Article
Copyright 2020 Elsevier GmbH
Copyright_xml – notice: 2020 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.aeue.2020.153198
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1618-0399
ExternalDocumentID 10_1016_j_aeue_2020_153198
S1434841120303757
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
8FE
8FG
8FW
8P~
8R4
8R5
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABLJU
ABMAC
ABUWG
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARAPS
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BENPR
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CAG
CCPQU
COF
CS3
DWQXO
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HCIFZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M1Q
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P62
PC.
PQQKQ
PROAC
Q2X
Q38
R2-
RIG
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SPC
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
PHGZM
PHGZT
SSH
ID FETCH-LOGICAL-c300t-6acfb82463fd4ab99e00d2a2d2a574b7ba63aadbc00e7c45b16137e90099b7133
IEDL.DBID .~1
ISSN 1434-8411
IngestDate Thu Apr 24 22:58:38 EDT 2025
Tue Jul 01 01:32:13 EDT 2025
Fri Feb 23 02:48:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metamaterial absorber
Microwave
Meander wire structure
Lumped resistor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-6acfb82463fd4ab99e00d2a2d2a574b7ba63aadbc00e7c45b16137e90099b7133
ParticipantIDs crossref_primary_10_1016_j_aeue_2020_153198
crossref_citationtrail_10_1016_j_aeue_2020_153198
elsevier_sciencedirect_doi_10_1016_j_aeue_2020_153198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle International journal of electronics and communications
PublicationYear 2020
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Landy, Sajuyigbe, Mock, Smith, Padilla (b0015) 2008; 100
Li, Wu, Xu, Zhou, Cao, Han (b0250) 2018; 13
Bai, Feng, Liu, Fan, Shen, Sun (b0275) 2017; 99
Cheng, Gong, Nie, Wang (b0210) 2012; 21
Xu, Wang, Qi, Liang, Gong, Xu (b0030) 2012; 86
Fan, Liu, Zhang, Zhao, Wei, Fu (b0065) 2015; 5
Cheng, Zou, Luo, Chen, Mao (b0285) 2019; 48
Kundu, Mohan, Chakraborty (b0155) 2015; 57
Wang, Chen, Xu, Yi, Chen, Chen (b0050) 2020; 16
Nguyen, Lim (b0255) 2018; 112
Zou, Cheng (b0045) 2019; 88
He, Deng, Li, Luo, He, Huang (b0205) 2019; 125
Cheng, Zhang, Mao, Gong (b0040) 2018; 219
Zhang, Zhou, Chen, Lu, Xie, Deng (b0195) 2015; 121
Fei, Shen, Wen, Nian (b0270) 2015; 63
Li, Wu, Wang, Guan, Zhai (b0125) 2014; 104
Li, Wei, Wang, Hu, Li, Guan (b0200) 2016; 110
Smith, Schultz, Markos, Soukoulis (b0290) 2002; 65
Huang, Yang, Wang, Yu, Lou, Guo (b0225) 2016; 49
Wu, Jile, Chen, Xu, Yi, Chen (b0115) 2020; 11
Watts, Liu, Padilla (b0020) 2012; 24
Li, Chen, Yang, Yi, Chen, Yao (b0085) 2020; 10
Zuo, Yang, He, Mao, Liu (b0240) 2016; 16
Yin, Long, Li, Zhu, Chen, Guan (b0175) 2015; 5
Zhang, Yang, Zhang, Liu (b0245) 2018; 8
Ye, Wang, Wang, Xu, Zhang, Huangfu (b0120) 2012; 60
Joyal, Laurin (b0265) 2012; 60
Nguyen, Lim (b0165) 2017; 7
Huang, Yuan, Wang, Chen, Tang, Fang (b0180) 2018; 43
Li, Chen, Yi, Yang, Tang, Yi (b0110) 2020; 16
Chen, Grzegorczyk, Wu, Pacheco, Kong (b0295) 2004; 70
Shen, Zhang, Meng, Wang, Pang, Wang (b0150) 2018; 112
Gu, Su, Zhao (b0160) 2013; 114
Chen, Huang, Zerihun, Hu, Wang, Wang (b0220) 2015; 44
Cui, He, Jin, Ding, Yang, Ye (b0035) 2014; 8
Li, Gan, Guo, Liu, Xu, Yi (b0070) 2018; 26
Li, Cao, Gao, Zhang, Zheng, Zhang (b0055) 2015; 23
Dung, Tuong, Yoo, Kim, Tung, Lam (b0130) 2015; 17
Cui, Smith, Metamaterials (b0010) 2010
Huan, Jile, Tang, Li, Yi, Gao (b0090) 2020; 11
Luo, Cheng (b0060) 2017; 31
Cheng, He, Zhao, Gong (b0140) 2017; 46
Ruck, Barrick, Stuart, Krichbaum (b0005) 1970
Cheng, Nie, Gong (b0170) 2013; 111
Cheng, Nie, Gong, Yang (b0025) 2011; 56
Zhao, Cheng (b0230) 2016; 45
Yuan, Cheng (b0215) 2014; 117
Chen, Cheng, Luo (b0100) 2020; 13
Cao, Cheng (b0080) 2019; 125
Chen, Luo, Ding, Zhao, Feng, Jiang (b0260) 2019; 6
Cheng, Zou, Yang, Mao, Gong (b0280) 2018; 8
Ding, Cui, Chen, Zhang, Jin, He (b0135) 2012; 100
Cheng, Luo, Chen, Gong (b0105) 2019; 2
Kim, Yoo, Hwang, Lee (b0235) 2016; 49
Cong, Cao, Song, Han (b0185) 2018; 124
Luo, Cheng (b0145) 2018; 47
Li, Qiao, Luo, Qin, Peng (b0190) 2014; 115
Li, Cheng (b0095) 2020; 462
Cheng, Zuo, Huang, Wang, Gong (b0075) 2019; 38
Cheng (10.1016/j.aeue.2020.153198_b0285) 2019; 48
Li (10.1016/j.aeue.2020.153198_b0095) 2020; 462
He (10.1016/j.aeue.2020.153198_b0205) 2019; 125
Li (10.1016/j.aeue.2020.153198_b0085) 2020; 10
Luo (10.1016/j.aeue.2020.153198_b0145) 2018; 47
Cheng (10.1016/j.aeue.2020.153198_b0210) 2012; 21
Yin (10.1016/j.aeue.2020.153198_b0175) 2015; 5
Kim (10.1016/j.aeue.2020.153198_b0235) 2016; 49
Dung (10.1016/j.aeue.2020.153198_b0130) 2015; 17
Ding (10.1016/j.aeue.2020.153198_b0135) 2012; 100
Li (10.1016/j.aeue.2020.153198_b0055) 2015; 23
Bai (10.1016/j.aeue.2020.153198_b0275) 2017; 99
Luo (10.1016/j.aeue.2020.153198_b0060) 2017; 31
Li (10.1016/j.aeue.2020.153198_b0200) 2016; 110
Cheng (10.1016/j.aeue.2020.153198_b0140) 2017; 46
Chen (10.1016/j.aeue.2020.153198_b0260) 2019; 6
Xu (10.1016/j.aeue.2020.153198_b0030) 2012; 86
Huang (10.1016/j.aeue.2020.153198_b0180) 2018; 43
Yuan (10.1016/j.aeue.2020.153198_b0215) 2014; 117
Cheng (10.1016/j.aeue.2020.153198_b0040) 2018; 219
Li (10.1016/j.aeue.2020.153198_b0125) 2014; 104
Gu (10.1016/j.aeue.2020.153198_b0160) 2013; 114
Cui (10.1016/j.aeue.2020.153198_b0035) 2014; 8
Cheng (10.1016/j.aeue.2020.153198_b0105) 2019; 2
Li (10.1016/j.aeue.2020.153198_b0250) 2018; 13
Landy (10.1016/j.aeue.2020.153198_b0015) 2008; 100
Cui (10.1016/j.aeue.2020.153198_b0010) 2010
Zou (10.1016/j.aeue.2020.153198_b0045) 2019; 88
Wang (10.1016/j.aeue.2020.153198_b0050) 2020; 16
Cao (10.1016/j.aeue.2020.153198_b0080) 2019; 125
Watts (10.1016/j.aeue.2020.153198_b0020) 2012; 24
Li (10.1016/j.aeue.2020.153198_b0110) 2020; 16
Zhang (10.1016/j.aeue.2020.153198_b0195) 2015; 121
Fan (10.1016/j.aeue.2020.153198_b0065) 2015; 5
Nguyen (10.1016/j.aeue.2020.153198_b0165) 2017; 7
Cheng (10.1016/j.aeue.2020.153198_b0170) 2013; 111
Kundu (10.1016/j.aeue.2020.153198_b0155) 2015; 57
Smith (10.1016/j.aeue.2020.153198_b0290) 2002; 65
Ye (10.1016/j.aeue.2020.153198_b0120) 2012; 60
Li (10.1016/j.aeue.2020.153198_b0190) 2014; 115
Zuo (10.1016/j.aeue.2020.153198_b0240) 2016; 16
Fei (10.1016/j.aeue.2020.153198_b0270) 2015; 63
Cheng (10.1016/j.aeue.2020.153198_b0075) 2019; 38
Cheng (10.1016/j.aeue.2020.153198_b0280) 2018; 8
Chen (10.1016/j.aeue.2020.153198_b0295) 2004; 70
Li (10.1016/j.aeue.2020.153198_b0070) 2018; 26
Nguyen (10.1016/j.aeue.2020.153198_b0255) 2018; 112
Huang (10.1016/j.aeue.2020.153198_b0225) 2016; 49
Zhang (10.1016/j.aeue.2020.153198_b0245) 2018; 8
Huan (10.1016/j.aeue.2020.153198_b0090) 2020; 11
Ruck (10.1016/j.aeue.2020.153198_b0005) 1970
Chen (10.1016/j.aeue.2020.153198_b0100) 2020; 13
Zhao (10.1016/j.aeue.2020.153198_b0230) 2016; 45
Cong (10.1016/j.aeue.2020.153198_b0185) 2018; 124
Chen (10.1016/j.aeue.2020.153198_b0220) 2015; 44
Joyal (10.1016/j.aeue.2020.153198_b0265) 2012; 60
Wu (10.1016/j.aeue.2020.153198_b0115) 2020; 11
Shen (10.1016/j.aeue.2020.153198_b0150) 2018; 112
Cheng (10.1016/j.aeue.2020.153198_b0025) 2011; 56
References_xml – volume: 115
  start-page: 229
  year: 2014
  end-page: 234
  ident: b0190
  article-title: Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism
  publication-title: Appl Phys A
– volume: 49
  year: 2016
  ident: b0235
  article-title: Ultrathin microwave absorber based on metamaterial
  publication-title: J Phys D: Appl Phys
– volume: 88
  start-page: 674
  year: 2019
  end-page: 679
  ident: b0045
  article-title: Design of a six-band terahertz metamaterial absorber for temperature sensing application
  publication-title: Opt Mater
– volume: 10
  start-page: 257
  year: 2020
  ident: b0085
  article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes
  publication-title: Nanomaterials
– volume: 57
  start-page: 1072
  year: 2015
  end-page: 1078
  ident: b0155
  article-title: Ultrathin polarization independent absorber with enhanced bandwidth by incorporating Giusepe Peano fractal in square ring
  publication-title: Microwave Opt Technol Lett
– volume: 48
  start-page: 3939
  year: 2019
  end-page: 3946
  ident: b0285
  article-title: Compact Ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure
  publication-title: J Electron Mater
– volume: 16
  start-page: 928
  year: 2016
  end-page: 931
  ident: b0240
  article-title: An ultra-wideband miniaturized metamaterial absorber in the ultrahigh-frequency range
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 70
  year: 2004
  ident: b0295
  article-title: Retrieval of the effective constitutive parameters of bianisotropic metamaterials
  publication-title: Phys Rev E
– volume: 44
  start-page: 4269
  year: 2015
  end-page: 4274
  ident: b0220
  article-title: Polarization-Independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances
  publication-title: J Electron Mater
– volume: 125
  start-page: 130
  year: 2019
  ident: b0205
  article-title: Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial
  publication-title: Appl Phys A
– volume: 124
  start-page: 452
  year: 2018
  ident: b0185
  article-title: Polarization-independent wide-angle ultrathin double-layered metamaterial absorber for broadband application
  publication-title: Appl Phys A
– volume: 5
  start-page: 15367
  year: 2015
  ident: b0175
  article-title: Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays
  publication-title: Sci Rep
– volume: 8
  start-page: 3104
  year: 2018
  end-page: 3114
  ident: b0280
  article-title: Dual and broadband terahertz metamaterial absorber based on a compact resonator structure
  publication-title: Opt Mater Exp
– volume: 8
  start-page: 2103
  year: 2018
  end-page: 2113
  ident: b0245
  article-title: Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors
  publication-title: Opt Mater Exp
– volume: 8
  start-page: 495
  year: 2014
  ident: b0035
  article-title: Plasmonic and metamaterial structures as electromagnetic absorbers
  publication-title: Laser Photon Rev
– volume: 99
  start-page: 1
  year: 2017
  end-page: 6
  ident: b0275
  article-title: Integrated microstrip meander line traveling wave tube based on metamaterial absorber
  publication-title: IEEE Trans Electron Dev
– volume: 31
  start-page: 1750231
  year: 2017
  ident: b0060
  article-title: Design of an ultrabroadband visible metamaterial absorber based on threedimensional metallic nanostructures
  publication-title: Mod Phys Lett B
– volume: 65
  year: 2002
  ident: b0290
  article-title: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients
  publication-title: Phys Rev B
– volume: 21
  year: 2012
  ident: b0210
  article-title: A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors
  publication-title: Chin Phys B
– volume: 104
  start-page: 22903
  year: 2014
  ident: b0125
  article-title: Integrating nonplanar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers
  publication-title: Appl Phys Lett
– volume: 43
  start-page: 2764
  year: 2018
  end-page: 2767
  ident: b0180
  article-title: Flexible thin broadband microwave absorber based on pyramidal periodic structure of lossy composite
  publication-title: Opt Lett
– volume: 16
  year: 2020
  ident: b0110
  article-title: Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays
  publication-title: Mater Today Energy
– volume: 100
  year: 2012
  ident: b0135
  article-title: Ultra-broadband microwave metamaterial absorber
  publication-title: Appl Phys Lett
– volume: 13
  start-page: 386
  year: 2018
  ident: b0250
  article-title: Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects
  publication-title: Nanoscale Res Lett
– volume: 121
  start-page: 233
  year: 2015
  end-page: 238
  ident: b0195
  article-title: Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies
  publication-title: Appl Phys A
– volume: 11
  start-page: 309
  year: 2020
  ident: b0090
  article-title: Fabrication of ZnO@Ag@Ag
  publication-title: Micromachines
– volume: 6
  start-page: 1
  year: 2019
  ident: b0260
  article-title: Broadband microwave metamaterial absorber with lumped resistor loading
  publication-title: EPJ Appl Metamat
– volume: 7
  start-page: 4814
  year: 2017
  ident: b0165
  article-title: Bandwidth-enhanced and wide-angle of-incidence metamaterial absorber using a hybrid unit cell
  publication-title: Sci Rep
– volume: 125
  start-page: 15
  year: 2019
  ident: b0080
  article-title: A broadband plasmonic light absorber based on a tungsten meander ring-resonator in visible region
  publication-title: Appl Phys A
– volume: 46
  start-page: 1293
  year: 2017
  end-page: 1299
  ident: b0140
  article-title: Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial
  publication-title: J Electron Mater
– volume: 114
  year: 2013
  ident: b0160
  article-title: Planar isotropic broadband metamaterial absorber
  publication-title: J Appl Phys
– volume: 63
  start-page: 4609
  year: 2015
  end-page: 4614
  ident: b0270
  article-title: A single-layer circular polarizer based on hybrid meander-line and loop configuration
  publication-title: IEEE Trans Antenn Propag
– volume: 11
  start-page: 189
  year: 2020
  ident: b0115
  article-title: Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties
  publication-title: Micromachines
– volume: 17
  start-page: 45105
  year: 2015
  ident: b0130
  article-title: Perfect and broad absorption by the active control of electric resonance in metamaterial
  publication-title: J Opt
– volume: 117
  start-page: 1915
  year: 2014
  end-page: 1921
  ident: b0215
  article-title: Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment
  publication-title: Appl Phys A
– volume: 23
  start-page: 3523
  year: 2015
  end-page: 3533
  ident: b0055
  article-title: Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial
  publication-title: Opt Exp
– volume: 112
  year: 2018
  ident: b0255
  article-title: Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators
  publication-title: Appl Phys Lett
– volume: 112
  year: 2018
  ident: b0150
  article-title: Merging absorption bands of plasmonic structures via dispersion engineering
  publication-title: Appl Phys Lett
– volume: 5
  start-page: 13956
  year: 2015
  ident: b0065
  article-title: Tunable mid-infrared coherent perfect absorption in a graphene meta-surface
  publication-title: Sci Rep
– volume: 60
  start-page: 5164
  year: 2012
  end-page: 5172
  ident: b0120
  article-title: Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces
  publication-title: IEEE Trans Antennas Propag
– volume: 2
  start-page: 2113
  year: 2019
  end-page: 2122
  ident: b0105
  article-title: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency
  publication-title: OSA Continuum
– volume: 38
  start-page: 97
  year: 2019
  end-page: 102
  ident: b0075
  article-title: Design of a photo-excited broadband tunable terahertz absorber
  publication-title: J Infrared Millim Waves
– volume: 49
  year: 2016
  ident: b0225
  article-title: Calculations of a wideband metamaterial absorber using equivalent medium theory
  publication-title: J Phys D: Appl Phys
– volume: 110
  start-page: 27
  year: 2016
  end-page: 34
  ident: b0200
  article-title: Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range
  publication-title: Mater Des
– volume: 100
  year: 2008
  ident: b0015
  article-title: Perfect metamaterial absorber
  publication-title: Phys Rev Lett
– volume: 47
  start-page: 323
  year: 2018
  end-page: 328
  ident: b0145
  article-title: Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure
  publication-title: J Electron Mater
– volume: 56
  start-page: 31301
  year: 2011
  ident: b0025
  article-title: Multi-band metamaterial absorber using cave-cross resonator
  publication-title: Europ Phys J Appl Phys
– volume: 26
  start-page: 16769
  year: 2018
  end-page: 16781
  ident: b0070
  article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons
  publication-title: Opt Express
– volume: 219
  start-page: 123
  year: 2018
  end-page: 126
  ident: b0040
  article-title: Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application
  publication-title: Mater Lett
– volume: 13
  start-page: 860
  year: 2020
  ident: b0100
  article-title: A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene
  publication-title: Materials
– volume: 24
  start-page: 98
  year: 2012
  end-page: 120
  ident: b0020
  article-title: Metamaterial electromagnetic wave absorbers
  publication-title: Adv Mater
– volume: 86
  year: 2012
  ident: b0030
  article-title: Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber
  publication-title: Phys Rev B
– volume: 45
  start-page: 5033
  year: 2016
  end-page: 5039
  ident: b0230
  article-title: Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors
  publication-title: J Electron Mater
– volume: 111
  start-page: 483
  year: 2013
  end-page: 488
  ident: b0170
  article-title: Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators
  publication-title: Appl Phys B
– year: 2010
  ident: b0010
  article-title: Theory, design and applications
– volume: 16
  year: 2020
  ident: b0050
  article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays
  publication-title: Results Phys
– volume: 462
  year: 2020
  ident: b0095
  article-title: Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure
  publication-title: Opt Commun
– year: 1970
  ident: b0005
  article-title: Radar cross section handbook
– volume: 60
  start-page: 3007
  year: 2012
  end-page: 3011
  ident: b0265
  article-title: Analysis and design of thin circular polarizers based on meander lines
  publication-title: IEEE Trans Antenn Propag
– year: 1970
  ident: 10.1016/j.aeue.2020.153198_b0005
– volume: 16
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0110
  article-title: Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays
  publication-title: Mater Today Energy
– volume: 110
  start-page: 27
  year: 2016
  ident: 10.1016/j.aeue.2020.153198_b0200
  article-title: Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.07.118
– volume: 111
  start-page: 483
  issue: 3
  year: 2013
  ident: 10.1016/j.aeue.2020.153198_b0170
  article-title: Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators
  publication-title: Appl Phys B
  doi: 10.1007/s00340-013-5361-1
– volume: 45
  start-page: 5033
  issue: 10
  year: 2016
  ident: 10.1016/j.aeue.2020.153198_b0230
  article-title: Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors
  publication-title: J Electron Mater
  doi: 10.1007/s11664-016-4693-0
– volume: 21
  issue: 12
  year: 2012
  ident: 10.1016/j.aeue.2020.153198_b0210
  article-title: A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/21/12/127801
– volume: 112
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0150
  article-title: Merging absorption bands of plasmonic structures via dispersion engineering
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5040067
– volume: 125
  start-page: 130
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0205
  article-title: Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial
  publication-title: Appl Phys A
  doi: 10.1007/s00339-019-2422-2
– volume: 104
  start-page: 22903
  year: 2014
  ident: 10.1016/j.aeue.2020.153198_b0125
  article-title: Integrating nonplanar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4862262
– volume: 49
  year: 2016
  ident: 10.1016/j.aeue.2020.153198_b0235
  article-title: Ultrathin microwave absorber based on metamaterial
  publication-title: J Phys D: Appl Phys
  doi: 10.1088/0022-3727/49/43/435102
– volume: 117
  start-page: 1915
  issue: 4
  year: 2014
  ident: 10.1016/j.aeue.2020.153198_b0215
  article-title: Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment
  publication-title: Appl Phys A
  doi: 10.1007/s00339-014-8637-3
– volume: 7
  start-page: 4814
  year: 2017
  ident: 10.1016/j.aeue.2020.153198_b0165
  article-title: Bandwidth-enhanced and wide-angle of-incidence metamaterial absorber using a hybrid unit cell
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-14792-0
– volume: 38
  start-page: 97
  issue: 1
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0075
  article-title: Design of a photo-excited broadband tunable terahertz absorber
  publication-title: J Infrared Millim Waves
– volume: 23
  start-page: 3523
  issue: 3
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0055
  article-title: Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial
  publication-title: Opt Exp
  doi: 10.1364/OE.23.003523
– volume: 16
  start-page: 928
  year: 2016
  ident: 10.1016/j.aeue.2020.153198_b0240
  article-title: An ultra-wideband miniaturized metamaterial absorber in the ultrahigh-frequency range
  publication-title: IEEE Antennas Wirel Propag Lett
  doi: 10.1109/LAWP.2016.2614703
– volume: 6
  start-page: 1
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0260
  article-title: Broadband microwave metamaterial absorber with lumped resistor loading
  publication-title: EPJ Appl Metamat
  doi: 10.1051/epjam/2018011
– volume: 11
  start-page: 309
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0090
  article-title: Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties
  publication-title: Micromachines
  doi: 10.3390/mi11030309
– volume: 2
  start-page: 2113
  issue: 7
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0105
  article-title: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency
  publication-title: OSA Continuum
  doi: 10.1364/OSAC.2.002113
– volume: 16
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0050
  article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.102951
– volume: 462
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0095
  article-title: Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2020.125265
– volume: 114
  issue: 16
  year: 2013
  ident: 10.1016/j.aeue.2020.153198_b0160
  article-title: Planar isotropic broadband metamaterial absorber
  publication-title: J Appl Phys
  doi: 10.1063/1.4826911
– volume: 99
  start-page: 1
  year: 2017
  ident: 10.1016/j.aeue.2020.153198_b0275
  article-title: Integrated microstrip meander line traveling wave tube based on metamaterial absorber
  publication-title: IEEE Trans Electron Dev
– volume: 60
  start-page: 3007
  issue: 6
  year: 2012
  ident: 10.1016/j.aeue.2020.153198_b0265
  article-title: Analysis and design of thin circular polarizers based on meander lines
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.2012.2194659
– volume: 88
  start-page: 674
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0045
  article-title: Design of a six-band terahertz metamaterial absorber for temperature sensing application
  publication-title: Opt Mater
  doi: 10.1016/j.optmat.2019.01.002
– year: 2010
  ident: 10.1016/j.aeue.2020.153198_b0010
– volume: 65
  year: 2002
  ident: 10.1016/j.aeue.2020.153198_b0290
  article-title: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.65.195104
– volume: 8
  start-page: 3104
  issue: 10
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0280
  article-title: Dual and broadband terahertz metamaterial absorber based on a compact resonator structure
  publication-title: Opt Mater Exp
  doi: 10.1364/OME.8.003104
– volume: 121
  start-page: 233
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0195
  article-title: Ultra-thin wideband magnetic-type metamaterial absorber based on LC resonator at low frequencies
  publication-title: Appl Phys A
  doi: 10.1007/s00339-015-9415-6
– volume: 100
  year: 2012
  ident: 10.1016/j.aeue.2020.153198_b0135
  article-title: Ultra-broadband microwave metamaterial absorber
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3692178
– volume: 5
  start-page: 15367
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0175
  article-title: Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays
  publication-title: Sci Rep
  doi: 10.1038/srep15367
– volume: 124
  start-page: 452
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0185
  article-title: Polarization-independent wide-angle ultrathin double-layered metamaterial absorber for broadband application
  publication-title: Appl Phys A
  doi: 10.1007/s00339-018-1686-2
– volume: 56
  start-page: 31301
  issue: 3
  year: 2011
  ident: 10.1016/j.aeue.2020.153198_b0025
  article-title: Multi-band metamaterial absorber using cave-cross resonator
  publication-title: Europ Phys J Appl Phys
  doi: 10.1051/epjap/2011110206
– volume: 219
  start-page: 123
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0040
  article-title: Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.02.078
– volume: 31
  start-page: 1750231
  issue: 25
  year: 2017
  ident: 10.1016/j.aeue.2020.153198_b0060
  article-title: Design of an ultrabroadband visible metamaterial absorber based on threedimensional metallic nanostructures
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984917502311
– volume: 48
  start-page: 3939
  issue: 6
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0285
  article-title: Compact Ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure
  publication-title: J Electron Mater
  doi: 10.1007/s11664-019-07156-z
– volume: 86
  year: 2012
  ident: 10.1016/j.aeue.2020.153198_b0030
  article-title: Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.86.205104
– volume: 60
  start-page: 5164
  issue: 11
  year: 2012
  ident: 10.1016/j.aeue.2020.153198_b0120
  article-title: Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.2012.2207686
– volume: 10
  start-page: 257
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0085
  article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes
  publication-title: Nanomaterials
  doi: 10.3390/nano10020257
– volume: 47
  start-page: 323
  issue: 1
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0145
  article-title: Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure
  publication-title: J Electron Mater
  doi: 10.1007/s11664-017-5770-8
– volume: 24
  start-page: 98
  issue: 23
  year: 2012
  ident: 10.1016/j.aeue.2020.153198_b0020
  article-title: Metamaterial electromagnetic wave absorbers
  publication-title: Adv Mater
– volume: 5
  start-page: 13956
  issue: 1
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0065
  article-title: Tunable mid-infrared coherent perfect absorption in a graphene meta-surface
  publication-title: Sci Rep
  doi: 10.1038/srep13956
– volume: 46
  start-page: 1293
  issue: 2
  year: 2017
  ident: 10.1016/j.aeue.2020.153198_b0140
  article-title: Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial
  publication-title: J Electron Mater
  doi: 10.1007/s11664-016-5115-z
– volume: 8
  start-page: 495
  year: 2014
  ident: 10.1016/j.aeue.2020.153198_b0035
  article-title: Plasmonic and metamaterial structures as electromagnetic absorbers
  publication-title: Laser Photon Rev
  doi: 10.1002/lpor.201400026
– volume: 44
  start-page: 4269
  issue: 11
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0220
  article-title: Polarization-Independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances
  publication-title: J Electron Mater
  doi: 10.1007/s11664-015-3951-x
– volume: 43
  start-page: 2764
  issue: 12
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0180
  article-title: Flexible thin broadband microwave absorber based on pyramidal periodic structure of lossy composite
  publication-title: Opt Lett
  doi: 10.1364/OL.43.002764
– volume: 17
  start-page: 45105
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0130
  article-title: Perfect and broad absorption by the active control of electric resonance in metamaterial
  publication-title: J Opt
  doi: 10.1088/2040-8978/17/4/045105
– volume: 11
  start-page: 189
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0115
  article-title: Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties
  publication-title: Micromachines
  doi: 10.3390/mi11020189
– volume: 125
  start-page: 15
  year: 2019
  ident: 10.1016/j.aeue.2020.153198_b0080
  article-title: A broadband plasmonic light absorber based on a tungsten meander ring-resonator in visible region
  publication-title: Appl Phys A
  doi: 10.1007/s00339-018-2310-1
– volume: 8
  start-page: 2103
  issue: 8
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0245
  article-title: Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors
  publication-title: Opt Mater Exp
  doi: 10.1364/OME.8.002103
– volume: 13
  start-page: 386
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0250
  article-title: Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-018-2810-0
– volume: 57
  start-page: 1072
  issue: 5
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0155
  article-title: Ultrathin polarization independent absorber with enhanced bandwidth by incorporating Giusepe Peano fractal in square ring
  publication-title: Microwave Opt Technol Lett
  doi: 10.1002/mop.29020
– volume: 70
  year: 2004
  ident: 10.1016/j.aeue.2020.153198_b0295
  article-title: Retrieval of the effective constitutive parameters of bianisotropic metamaterials
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.70.016608
– volume: 115
  start-page: 229
  year: 2014
  ident: 10.1016/j.aeue.2020.153198_b0190
  article-title: Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism
  publication-title: Appl Phys A
  doi: 10.1007/s00339-013-7996-5
– volume: 26
  start-page: 16769
  issue: 13
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0070
  article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons
  publication-title: Opt Express
  doi: 10.1364/OE.26.016769
– volume: 13
  start-page: 860
  year: 2020
  ident: 10.1016/j.aeue.2020.153198_b0100
  article-title: A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene
  publication-title: Materials
  doi: 10.3390/ma13040860
– volume: 63
  start-page: 4609
  issue: 10
  year: 2015
  ident: 10.1016/j.aeue.2020.153198_b0270
  article-title: A single-layer circular polarizer based on hybrid meander-line and loop configuration
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.2015.2462128
– volume: 49
  year: 2016
  ident: 10.1016/j.aeue.2020.153198_b0225
  article-title: Calculations of a wideband metamaterial absorber using equivalent medium theory
  publication-title: J Phys D: Appl Phys
  doi: 10.1088/0022-3727/49/32/325101
– volume: 112
  year: 2018
  ident: 10.1016/j.aeue.2020.153198_b0255
  article-title: Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5004211
– volume: 100
  issue: 20
  year: 2008
  ident: 10.1016/j.aeue.2020.153198_b0015
  article-title: Perfect metamaterial absorber
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.207402
SSID ssj0020726
Score 2.5140882
Snippet In this paper, a compact and low-frequency broadband microwave metamaterial absorber (MMA) based on meander wire structure loaded with lumped resistor has been...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 153198
SubjectTerms Lumped resistor
Meander wire structure
Metamaterial absorber
Microwave
Title Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors
URI https://dx.doi.org/10.1016/j.aeue.2020.153198
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuOXiTuLVNmva4LC6rwl5U8FYmTQorayu7XRcv_nZnmu6iIB48FNp0UsJkOvMlzHxh7MJCDglII4LQpUIWTgnQcSHSnAK8dUleNGyfo3j4JO-e1fMa6y9rYSitsvX93qc33rpt6bba7L6Nx90HjPQykYgX0E4jraiiXEpNVn71uUrzCAMd-gqjSAqSbgtnfI4XuDlRZYa0wYK2mPwenL4FnMEO226RIu_5weyyNVfusa1v_IH7rG7-5rzmUFo-qRaimPrM6A9uphVYQ-2vlHK3gHfHX10NCFAbm-NgZtXUuCmnOGZ5VeLrptKFE3sx97yyc7yb4IdQAJflDaPI7IA9DW4e-0PRHqMg8igIahFDXpgklHFUWAkmTV0Q2BBCvJSWRhuII8Ah4ew4nUtlEARG2qUEHg2tYQ_ZelmV7ojxBF1joRVOqXVS2QIc7WOpFHETOk6wx-x6qb8sbznG6aiLSbZMJnvJSOcZ6TzzOj9ml6s-b55h409ptZyW7IedZBgC_uh38s9-p2yTnnxy2BlbR-W7c4Qhtek0dtZhG73b--HoC-fK3uA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB90Peg7iD6fPL9zeDcJ29cmTXsUUdavvajgrUyaFJS1lbUq_vfONF1REA8eCiXJlDAznY8w8wvAP4clZqisjGKfS1V5LdGklcxLdvDOZ2XVoX2O09G1Or3RN3NwOOuF4bLK3vYHm95Z635k2HNz-HB7O7wkT68yRfEC6WlitJmHBUan0gNYODg5G43f867IxKHJKFGSCfremVDmhf6J0TJjPmMhdcy-9k8ffM7xCiz3waI4CPtZhTlf_4ZfHyAE16DtfuiyFVg7MWleZDUNxdGvwk4bdJbH77nq7gWfvbj3LVKM2qmdQPvYTK2fCnZlTjQ1TXfNLoIBjEWAln2itwl9iBZQZt6Bijz-gevjo6vDkexvUpBlEkWtTLGsbBarNKmcQpvnPopcjDE92ihrLKYJ0pZIQN6USluKAxPjc44fLaex6zCom9r_BZGRdayMJqk6r7Sr0PNRls4pdCLbiW4D_s_4V5Q9zDjfdjEpZvVkdwXzvGCeF4HnG7D_TvMQQDa-Xa1nYik-qUpBXuAbus0f0u3B4ujq4rw4PxmfbcESz4RasW0YkCD8DkUlrd3tte4NkhPhkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+and+low-frequency+broadband+microwave+metamaterial+absorber+based+on+meander+wire+structure+loaded+resistors&rft.jtitle=International+journal+of+electronics+and+communications&rft.au=Wang%2C+Qi&rft.au=Cheng%2C+Yongzhi&rft.date=2020-06-01&rft.pub=Elsevier+GmbH&rft.issn=1434-8411&rft.eissn=1618-0399&rft.volume=120&rft_id=info:doi/10.1016%2Fj.aeue.2020.153198&rft.externalDocID=S1434841120303757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-8411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-8411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-8411&client=summon