The effects of colony microstructure on the fatigue crack growth behavior for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb titanium alloy
The fatigue crack growth (FCG) behavior for materials applied in aerospace field is very important, for the majority of incidents happened were due to fatigue fracture. Six double annealing processes were conducted to get different colony features for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb alloy. Then the effec...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 621; pp. 252 - 258 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-5093 1873-4936 |
DOI | 10.1016/j.msea.2014.09.112 |
Cover
Loading…
Abstract | The fatigue crack growth (FCG) behavior for materials applied in aerospace field is very important, for the majority of incidents happened were due to fatigue fracture. Six double annealing processes were conducted to get different colony features for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb alloy. Then the effects of the colony microstructure on the FCG behavior of this alloy are studied. The results show that the FCG curves for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb alloy under four processes are distinguished by a clearly defined transition point. The values of ΔKT (transitional stress intensity range) under these processes are almost the same, about 15MPam. The fatigue crack growth rates (FCGR) for six microstructures vary obviously at low ΔK-levels (ΔK≤ΔKT) and then tend to approach each other at high ΔK-levels (ΔK≥ΔKT). Above phenomena are all due to the difference of crack deflection effect caused by different colony microstructures. The α platelet thickness and colony size are two key parameters determining the crack deflection effect of colony microstructure. For microstructure with thin α platelets, the main crack cuts the α platelets easily and propagates in a flat way. In this situation, the colony size exerts no influence on crack propagation path. For microstructure with thick α platelets, the main crack tends to propagate along the colony boundaries or the α platelet spacings. In this situation, the colony size can greatly influence the crack propagation path. The bigger the colony size, the more the tortuous crack path. |
---|---|
AbstractList | The fatigue crack growth (FCG) behavior for materials applied in aerospace field is very important, for the majority of incidents happened were due to fatigue fracture. Six double annealing processes were conducted to get different colony features for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb alloy. Then the effects of the colony microstructure on the FCG behavior of this alloy are studied. The results show that the FCG curves for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb alloy under four processes are distinguished by a clearly defined transition point. The values of ΔKT (transitional stress intensity range) under these processes are almost the same, about 15MPam. The fatigue crack growth rates (FCGR) for six microstructures vary obviously at low ΔK-levels (ΔK≤ΔKT) and then tend to approach each other at high ΔK-levels (ΔK≥ΔKT). Above phenomena are all due to the difference of crack deflection effect caused by different colony microstructures. The α platelet thickness and colony size are two key parameters determining the crack deflection effect of colony microstructure. For microstructure with thin α platelets, the main crack cuts the α platelets easily and propagates in a flat way. In this situation, the colony size exerts no influence on crack propagation path. For microstructure with thick α platelets, the main crack tends to propagate along the colony boundaries or the α platelet spacings. In this situation, the colony size can greatly influence the crack propagation path. The bigger the colony size, the more the tortuous crack path. |
Author | Shi, Xiao-Hui Shi, Chun-Ling Jia, Zhi-Qiang Wang, Hao-Jun Zeng, Wei-Dong |
Author_xml | – sequence: 1 givenname: Xiao-Hui surname: Shi fullname: Shi, Xiao-Hui organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi׳an, Shaanxi 710072, China – sequence: 2 givenname: Wei-Dong surname: Zeng fullname: Zeng, Wei-Dong email: zengwd@nwpu.edu.cn organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi׳an, Shaanxi 710072, China – sequence: 3 givenname: Chun-Ling surname: Shi fullname: Shi, Chun-Ling organization: AVIC Xi׳an Aircraft Industry (Group) Company Limited, Xi׳an, Shaanxi 710089, China – sequence: 4 givenname: Hao-Jun surname: Wang fullname: Wang, Hao-Jun organization: AVIC Xi׳an Aircraft Industry (Group) Company Limited, Xi׳an, Shaanxi 710089, China – sequence: 5 givenname: Zhi-Qiang surname: Jia fullname: Jia, Zhi-Qiang organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi׳an, Shaanxi 710072, China |
BookMark | eNp9kE1OwzAQRi1UJNrCBVj5Agm2EyexxKaq-JMKLCgbNpbj2K1LEiPHKeoOiSNwQ06CQ1mx6MKfpdG80cybgFFrWwXAOUYxRji72MRNp0RMEE5jxGKMyREY4yJPopQl2QiMESM4ooglJ2DSdRuEQieiY_C5XCuotFbSd9BqKG1t2x1sjHS2866XvncK2hb60KeFN6teQemEfIUrZ9_9GpZqLbbGOqjDW5rvj69shkOSFzfkUxsyubch8fy38lBCb7xoTd9AUdd2dwqOtag7dfb3T8Hz9dVyfhstHm_u5rNFJBOEfJQJTDORkJTojIoKyUJLyahmaVJlqCpJqkvCtC6qEtE8LWkqKMEpVTnOc1bpZArIfu5wW-eU5m_ONMLtOEZ80Mg3fNDIB40cMR40Bqj4B8mwvDe29U6Y-jB6uUdVOGprlOOdNKqVqjIu-OaVNYfwH3-6lvw |
CitedBy_id | crossref_primary_10_1016_S1003_6326_20_65392_4 crossref_primary_10_1016_j_jmrt_2024_11_140 crossref_primary_10_1007_s11661_016_3937_1 crossref_primary_10_1016_j_ijfatigue_2021_106646 crossref_primary_10_1016_j_jmrt_2024_05_027 crossref_primary_10_1016_j_matchar_2021_111163 crossref_primary_10_1016_j_msea_2015_11_081 crossref_primary_10_1016_j_engfracmech_2024_110500 crossref_primary_10_1016_j_msea_2019_138577 crossref_primary_10_1016_j_msea_2015_08_007 crossref_primary_10_1016_S1003_6326_23_66313_7 crossref_primary_10_1080_02670836_2021_2010010 crossref_primary_10_1007_s11665_024_10334_8 crossref_primary_10_1016_j_msea_2021_141942 crossref_primary_10_1016_j_msea_2016_07_003 crossref_primary_10_1016_j_msea_2023_145385 crossref_primary_10_1557_adv_2020_190 crossref_primary_10_1016_j_ijmecsci_2016_09_014 crossref_primary_10_1016_j_msea_2017_10_064 crossref_primary_10_1016_j_jallcom_2022_165816 crossref_primary_10_1016_j_jallcom_2021_159023 crossref_primary_10_1016_j_matchar_2023_112825 crossref_primary_10_1007_s12540_018_0117_4 crossref_primary_10_1557_jmr_2015_282 |
Cites_doi | 10.1016/j.msea.2009.02.050 10.1016/0013-7944(79)90138-3 10.1016/j.msea.2012.04.103 10.1016/S0921-5093(97)00782-X 10.1007/s11661-001-1031-8 10.1016/j.commatsci.2011.01.015 10.1016/j.msea.2013.03.047 10.1016/j.msea.2006.10.124 10.1016/S1875-5372(10)60047-1 10.1016/S0921-5093(96)10525-6 10.1016/j.msea.2006.07.168 10.1016/j.msea.2012.09.036 10.1016/S0142-1123(97)00035-2 10.1016/j.jallcom.2009.10.081 10.1016/S0921-5093(01)01014-0 10.1016/j.msea.2010.11.015 10.1016/j.matdes.2010.01.060 10.1016/j.msea.2012.08.134 10.1016/j.msea.2003.12.008 10.1016/j.jallcom.2014.04.086 10.1016/j.msea.2013.08.065 10.1016/S0921-5093(01)01934-7 10.1007/BF02661812 10.1016/j.msea.2011.10.055 10.1016/j.msea.2008.04.017 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.msea.2014.09.112 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
EndPage | 258 |
ExternalDocumentID | 10_1016_j_msea_2014_09_112 S0921509314012283 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c300t-6a156a3242f65ad0c8fcc95f943d60db24fb29ff8db0574b54a52145e71779df3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 03:29:16 EDT 2025 Fri Feb 23 02:33:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Titanium Transition Fatigue crack growth Platelet width Colony size |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-6a156a3242f65ad0c8fcc95f943d60db24fb29ff8db0574b54a52145e71779df3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_msea_2014_09_112 crossref_citationtrail_10_1016_j_msea_2014_09_112 elsevier_sciencedirect_doi_10_1016_j_msea_2014_09_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-05 |
PublicationDateYYYYMMDD | 2015-01-05 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Evans, Bache, McElhone, Grabowski (bib25) 1997; 19 Guan, Yu (bib10) 2013; 559 Shao, Zhao, Ge, Zeng (bib5) 2013; 559 Momeni, Abbasi (bib2) 2010; 31 AVIC Beijing Institute of Aeronautical Materials, State Intellectual Property Office of the PR China, Patent number: CN 1403622A, 2003. Wu, Shi, Sha, Sha, Jiang (bib12) 2013; 575 Zhu, Zeng, Sun (bib9) 2011; 50 Sinhaa, Soboyejo (bib19) 2001; 319–321 Yoder, Cooley, Crooker (bib17) 1978; 9A Lütjering, Albrecht, Sauer (bib28) 2007; 468 Zhang, Wang, Dong, Zhang (bib15) 2013; 587 Wang, Zhao (bib6) 2010; 490 Xu, Feng, Song, Wang (bib13) 2012; 551 Tiley, Searles, Lee (bib21) 2004; 372 Zhu, Zeng, Feng (bib7) 2011; 528 Adib, Baptista (bib24) 2007; 452–453 Liu, Feng (bib8) 2009; 38 Mine, Takashima, Bowen (bib27) 2012; 532 Yoder, Cooley, Crooker (bib18) 1979; 11 Peters, Lütjering. (bib16) 2001; 32A Prasad, Seshacharyulu (bib1) 1998; 243 Zhu, Xuan, Wang (bib11) 2009; 515 Ali, Scudino, Anwar (bib23) 2014; 607 Fei, Zhou, Qu (bib4) 2008; 494 Campbell (bib22) 2012 Qu, Zhou, Zhou (bib3) 2005; 15 Keshava Murthy, Sundaresan (bib26) 1997; 22 Shademan, Soboyejo (bib14) 2002; 335 Lütjering (10.1016/j.msea.2014.09.112_bib28) 2007; 468 Wu (10.1016/j.msea.2014.09.112_bib12) 2013; 575 Liu (10.1016/j.msea.2014.09.112_bib8) 2009; 38 Campbell (10.1016/j.msea.2014.09.112_bib22) 2012 Momeni (10.1016/j.msea.2014.09.112_bib2) 2010; 31 Shademan (10.1016/j.msea.2014.09.112_bib14) 2002; 335 Prasad (10.1016/j.msea.2014.09.112_bib1) 1998; 243 Fei (10.1016/j.msea.2014.09.112_bib4) 2008; 494 Keshava Murthy (10.1016/j.msea.2014.09.112_bib26) 1997; 22 Qu (10.1016/j.msea.2014.09.112_bib3) 2005; 15 10.1016/j.msea.2014.09.112_bib20 Guan (10.1016/j.msea.2014.09.112_bib10) 2013; 559 Peters (10.1016/j.msea.2014.09.112_bib16) 2001; 32A Yoder (10.1016/j.msea.2014.09.112_bib17) 1978; 9A Sinhaa (10.1016/j.msea.2014.09.112_bib19) 2001; 319–321 Zhu (10.1016/j.msea.2014.09.112_bib11) 2009; 515 Zhu (10.1016/j.msea.2014.09.112_bib7) 2011; 528 Adib (10.1016/j.msea.2014.09.112_bib24) 2007; 452–453 Ali (10.1016/j.msea.2014.09.112_bib23) 2014; 607 Shao (10.1016/j.msea.2014.09.112_bib5) 2013; 559 Mine (10.1016/j.msea.2014.09.112_bib27) 2012; 532 Zhang (10.1016/j.msea.2014.09.112_bib15) 2013; 587 Tiley (10.1016/j.msea.2014.09.112_bib21) 2004; 372 Zhu (10.1016/j.msea.2014.09.112_bib9) 2011; 50 Yoder (10.1016/j.msea.2014.09.112_bib18) 1979; 11 Evans (10.1016/j.msea.2014.09.112_bib25) 1997; 19 Xu (10.1016/j.msea.2014.09.112_bib13) 2012; 551 Wang (10.1016/j.msea.2014.09.112_bib6) 2010; 490 |
References_xml | – volume: 19 start-page: 177 year: 1997 end-page: 182 ident: bib25 publication-title: Int. J. Fatigue – volume: 607 start-page: 274 year: 2014 end-page: 279 ident: bib23 publication-title: J. Alloys Compd. – volume: 559 start-page: 515 year: 2013 end-page: 519 ident: bib5 publication-title: Mater. Sci. Eng. A – volume: 50 start-page: 1785 year: 2011 end-page: 1790 ident: bib9 publication-title: Comput. Mater. Sci. – volume: 9A start-page: 1413 year: 1978 end-page: 1420 ident: bib17 publication-title: Metall. Trans. A – start-page: 346 year: 2012 end-page: 349 ident: bib22 article-title: Phase Diagrams: Understanding the Basics – volume: 490 start-page: 562 year: 2010 end-page: 567 ident: bib6 publication-title: J. Alloys Compd. – volume: 38 start-page: 1509 year: 2009 end-page: 1513 ident: bib8 publication-title: Rare Metal Mater. Eng. – volume: 575 start-page: 111 year: 2013 end-page: 118 ident: bib12 publication-title: Mater. Sci. Eng. A – volume: 32A start-page: 2805 year: 2001 end-page: 2818 ident: bib16 publication-title: Metall. Mater. Trans. – volume: 22 start-page: 201 year: 1997 end-page: 211 ident: bib26 publication-title: Mater. Sci. Eng. A – volume: 528 start-page: 1757 year: 2011 end-page: 1763 ident: bib7 publication-title: Mater. Sci. Eng. A – reference: AVIC Beijing Institute of Aeronautical Materials, State Intellectual Property Office of the PR China, Patent number: CN 1403622A, 2003. – volume: 31 start-page: 3599 year: 2010 end-page: 3604 ident: bib2 publication-title: Mater. Des. – volume: 15 start-page: 1120 year: 2005 end-page: 1124 ident: bib3 publication-title: Trans. Nonferrous Metals Soc. China – volume: 551 start-page: 110 year: 2012 end-page: 115 ident: bib13 publication-title: Mater. Sci. Eng. A – volume: 468 start-page: 201 year: 2007 end-page: 209 ident: bib28 publication-title: Mater. Sci. Eng. A – volume: 587 start-page: 168 year: 2013 end-page: 178 ident: bib15 publication-title: Mater. Sci. Eng. A – volume: 11 start-page: 805 year: 1979 end-page: 816 ident: bib18 publication-title: Eng. Fract. Mech. – volume: 515 start-page: 85 year: 2009 end-page: 92 ident: bib11 publication-title: Mater. Sci. Eng. A – volume: 243 start-page: 82 year: 1998 end-page: 88 ident: bib1 publication-title: Mater. Sci. Eng. A – volume: 559 start-page: 875 year: 2013 end-page: 881 ident: bib10 publication-title: Mater. Sci. Eng. A – volume: 532 start-page: 13 year: 2012 end-page: 20 ident: bib27 publication-title: Mater. Sci. Eng. A – volume: 452–453 start-page: 321 year: 2007 end-page: 325 ident: bib24 publication-title: Mater. Sci. Eng. A – volume: 335 start-page: 116 year: 2002 end-page: 127 ident: bib14 publication-title: Mater. Sci. Eng. A – volume: 494 start-page: 166 year: 2008 end-page: 172 ident: bib4 publication-title: Mater. Sci. Eng. A – volume: 319–321 start-page: 607 year: 2001 end-page: 612 ident: bib19 publication-title: Mater. Sci. Eng. A – volume: 372 start-page: 191 year: 2004 end-page: 198 ident: bib21 publication-title: Mater. Sci. Eng. A – volume: 515 start-page: 85 year: 2009 ident: 10.1016/j.msea.2014.09.112_bib11 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.02.050 – volume: 11 start-page: 805 year: 1979 ident: 10.1016/j.msea.2014.09.112_bib18 publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(79)90138-3 – volume: 551 start-page: 110 year: 2012 ident: 10.1016/j.msea.2014.09.112_bib13 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.04.103 – volume: 243 start-page: 82 year: 1998 ident: 10.1016/j.msea.2014.09.112_bib1 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00782-X – volume: 32A start-page: 2805 year: 2001 ident: 10.1016/j.msea.2014.09.112_bib16 publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-001-1031-8 – volume: 50 start-page: 1785 year: 2011 ident: 10.1016/j.msea.2014.09.112_bib9 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.01.015 – volume: 575 start-page: 111 year: 2013 ident: 10.1016/j.msea.2014.09.112_bib12 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.03.047 – volume: 452–453 start-page: 321 year: 2007 ident: 10.1016/j.msea.2014.09.112_bib24 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.10.124 – volume: 38 start-page: 1509 year: 2009 ident: 10.1016/j.msea.2014.09.112_bib8 publication-title: Rare Metal Mater. Eng. doi: 10.1016/S1875-5372(10)60047-1 – volume: 22 start-page: 201 year: 1997 ident: 10.1016/j.msea.2014.09.112_bib26 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(96)10525-6 – volume: 468 start-page: 201 year: 2007 ident: 10.1016/j.msea.2014.09.112_bib28 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.07.168 – start-page: 346 year: 2012 ident: 10.1016/j.msea.2014.09.112_bib22 – volume: 559 start-page: 875 year: 2013 ident: 10.1016/j.msea.2014.09.112_bib10 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.09.036 – volume: 19 start-page: 177 year: 1997 ident: 10.1016/j.msea.2014.09.112_bib25 publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(97)00035-2 – volume: 490 start-page: 562 year: 2010 ident: 10.1016/j.msea.2014.09.112_bib6 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.10.081 – volume: 319–321 start-page: 607 year: 2001 ident: 10.1016/j.msea.2014.09.112_bib19 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01014-0 – ident: 10.1016/j.msea.2014.09.112_bib20 – volume: 528 start-page: 1757 year: 2011 ident: 10.1016/j.msea.2014.09.112_bib7 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.11.015 – volume: 31 start-page: 3599 year: 2010 ident: 10.1016/j.msea.2014.09.112_bib2 publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.01.060 – volume: 559 start-page: 515 year: 2013 ident: 10.1016/j.msea.2014.09.112_bib5 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.08.134 – volume: 372 start-page: 191 year: 2004 ident: 10.1016/j.msea.2014.09.112_bib21 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.12.008 – volume: 607 start-page: 274 year: 2014 ident: 10.1016/j.msea.2014.09.112_bib23 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.04.086 – volume: 587 start-page: 168 year: 2013 ident: 10.1016/j.msea.2014.09.112_bib15 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.08.065 – volume: 335 start-page: 116 year: 2002 ident: 10.1016/j.msea.2014.09.112_bib14 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01934-7 – volume: 9A start-page: 1413 year: 1978 ident: 10.1016/j.msea.2014.09.112_bib17 publication-title: Metall. Trans. A doi: 10.1007/BF02661812 – volume: 532 start-page: 13 year: 2012 ident: 10.1016/j.msea.2014.09.112_bib27 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.10.055 – volume: 494 start-page: 166 year: 2008 ident: 10.1016/j.msea.2014.09.112_bib4 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.04.017 – volume: 15 start-page: 1120 year: 2005 ident: 10.1016/j.msea.2014.09.112_bib3 publication-title: Trans. Nonferrous Metals Soc. China |
SSID | ssj0001405 |
Score | 2.276846 |
Snippet | The fatigue crack growth (FCG) behavior for materials applied in aerospace field is very important, for the majority of incidents happened were due to fatigue... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 252 |
SubjectTerms | Colony size Fatigue crack growth Platelet width Titanium Transition |
Title | The effects of colony microstructure on the fatigue crack growth behavior for Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb titanium alloy |
URI | https://dx.doi.org/10.1016/j.msea.2014.09.112 |
Volume | 621 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eZO0-kmxzLMVSFXtpBfGybLJJrdptKe2hFxH8Cf5Df4kz-9AK4sHLwGYnsGTCPLLffCHkNAyt4p4Vju9Z7jAZa0d5XDnaWPSGgWAajwZueqJ7y67u-F2FtMteGIRVFr4_9-mZty5GGsVqNqajUaPvSghXUJBjiYAkLtjBzkLkzz9_-YZ5wNsMxgjKDmoXjTM5xmsM2wnhXRnXqef5vwenlYDT2SKbRaZIW_nHbJOKSXfIxgp_4C55AyPTApFBJ5YiA3W6pGME2eXEsIuZoZOUQpZHLdhguDBUz2L9RIdQfs8faNmlTyF3pYPRx-u7aHkg_fsZyn4KMriZgPTa2UhPUWxLS0eLMcV_9ss9ctu5GLS7TnGrgqMD1507IoaSLcY8ygoeJ65uWq0lt5IFiXAT5TOrfGltM1GQyzHFWcyRztxA4RfKxAb7pJpOUnNAqBAyaYZMgzpy3NhmLJPAWBXEXBhwXDXilcsZ6YJyHG--eI5KbNljhCaI0ASRK6Ec8Wvk7GvONCfc-FObl1aKfmybCCLCH_MO_znviKzDE8_OYPgxqYIpzQlkJXNVz7Zdnay1Lq-7vU9CgecW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIry9MCGouZltx6riqpQ2oVWQixR7NilQJOqagc2JH4C_5Bfwl3iVEVCDCw3OHeS5Tvdw7n7TMhlrWYk8wx3fM8wJxSxcqTHpKO0QW8Y8FDh1UC3x9uD8PaBPayQZjkLg22V1vcXPj331nalak-zOhmNqveugHAFBTmWCAjiskrWEZ0KjH29cdNp9xYOGRjyTkbgd1DAzs4UbV5jsCjs8MrhTj3P_z0-LcWc1g7ZtskibRT72SUrOt0jW0sQgvvkA_RMbVMGzQxFEOr0jY6xz67Ahp1PNc1SCokeNaCG4VxTNY3VCx1CBT57ouWgPoX0lfZHX--fvOEB9R-nSO9ToEE3A-o185WepDiZlo7mY4q_7d8OyKB13W-2HfuwgqMC1505PIaqLcZUynAWJ66qG6UEMyIMEu4m0g-N9IUx9URCOhdKFsYMEc011H41kZjgkKylWaqPCOVcJPVaqIAdYW5MPRZJoI0MYsY1-K4K8crjjJRFHcfHL16jsr3sOUIVRKiCyBVQkfgVcrWQmRSYG39ys1JL0Q_LiSAo_CF3_E-5C7LR7nfvorubXueEbMIXll_JsFOyBmrVZ5CkzOS5NcJvJxDpxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+colony+microstructure+on+the+fatigue+crack+growth+behavior+for+Ti%E2%80%936A1%E2%80%932Zr%E2%80%932Sn%E2%80%933Mo%E2%80%931Cr%E2%80%932Nb+titanium+alloy&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Shi%2C+Xiao-Hui&rft.au=Zeng%2C+Wei-Dong&rft.au=Shi%2C+Chun-Ling&rft.au=Wang%2C+Hao-Jun&rft.date=2015-01-05&rft.issn=0921-5093&rft.volume=621&rft.spage=252&rft.epage=258&rft_id=info:doi/10.1016%2Fj.msea.2014.09.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2014_09_112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |