Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques
•We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and two publicly available datasets.•Our approach achieved remarkable classification accuracies, better than mentioned techniques. Neuromuscular...
Saved in:
Published in | Biomedical signal processing and control Vol. 92; p. 106086 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and two publicly available datasets.•Our approach achieved remarkable classification accuracies, better than mentioned techniques.
Neuromuscular diseases or physical disabilities have the potential to impair hand dexterity, significantly affecting daily life. To date, technologies for hand gesture recognition based on surface electromyography (sEMG) have garnered increasing attention. These technologies aim to decode motion intentions, thereby advancing assistive devices such as prosthetic hands in restoring lost hand function. However, the limited generalization capacity across different users has hindered progress towards practical implementation. In this study, high-density (256-channel) sEMG data of 10 commonly used hand gestures were collected from 41 subjects on their two days. Then, we evaluated the inter-subject classification performances. To guarantee strong robustness over users, we systematically investigated eight prevailing unsupervised domain adaptation techniques to align the feature distribution between the source domain and the target domain, and combined these techniques with 5 classifiers. Afterwards, a simplified approach is proposed. Meanwhile, to make a comprehensive comparison, extensive validation on both private dataset and two publicly available datasets (Ninapro DB4 and Ninapro DB5) are evaluated. As a result, our proposed approach achieving remarkable classification accuracies of 81.74%, 84.00%, and 93.50%, respectively. The outcomes showed that the proposed approach is promising to build for addressing the inter-subject differences and make significant strides in the field of gesture recognition for inter-subject scenario. |
---|---|
AbstractList | •We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and two publicly available datasets.•Our approach achieved remarkable classification accuracies, better than mentioned techniques.
Neuromuscular diseases or physical disabilities have the potential to impair hand dexterity, significantly affecting daily life. To date, technologies for hand gesture recognition based on surface electromyography (sEMG) have garnered increasing attention. These technologies aim to decode motion intentions, thereby advancing assistive devices such as prosthetic hands in restoring lost hand function. However, the limited generalization capacity across different users has hindered progress towards practical implementation. In this study, high-density (256-channel) sEMG data of 10 commonly used hand gestures were collected from 41 subjects on their two days. Then, we evaluated the inter-subject classification performances. To guarantee strong robustness over users, we systematically investigated eight prevailing unsupervised domain adaptation techniques to align the feature distribution between the source domain and the target domain, and combined these techniques with 5 classifiers. Afterwards, a simplified approach is proposed. Meanwhile, to make a comprehensive comparison, extensive validation on both private dataset and two publicly available datasets (Ninapro DB4 and Ninapro DB5) are evaluated. As a result, our proposed approach achieving remarkable classification accuracies of 81.74%, 84.00%, and 93.50%, respectively. The outcomes showed that the proposed approach is promising to build for addressing the inter-subject differences and make significant strides in the field of gesture recognition for inter-subject scenario. |
ArticleNumber | 106086 |
Author | Wang, Zihao Chen, Wei Akay, Metin Chen, Chen Meng, Long Wan, Huiying Zeng, Zheng |
Author_xml | – sequence: 1 givenname: Zihao orcidid: 0000-0002-0410-1496 surname: Wang fullname: Wang, Zihao organization: Human Phenome Institute, Fudan University, Shanghai, China – sequence: 2 givenname: Huiying surname: Wan fullname: Wan, Huiying organization: Center of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China – sequence: 3 givenname: Long surname: Meng fullname: Meng, Long organization: Center of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China – sequence: 4 givenname: Zheng orcidid: 0000-0002-4396-1675 surname: Zeng fullname: Zeng, Zheng organization: Center of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China – sequence: 5 givenname: Metin orcidid: 0000-0002-2988-4669 surname: Akay fullname: Akay, Metin organization: Department of Biomedical Engineering, University of Houston, Houston, USA – sequence: 6 givenname: Chen surname: Chen fullname: Chen, Chen organization: Human Phenome Institute, Fudan University, Shanghai, China – sequence: 7 givenname: Wei orcidid: 0000-0003-3720-718X surname: Chen fullname: Chen, Wei email: w_chen@fudan.edu.cn organization: School of Biomedical Engineering, The University of Sydney, Australia |
BookMark | eNp9kL1OwzAUhS1UJFrgBZj8Ail2fhxHYkFVKUhFXWC2HPumdWidYDtF8PQkBBaGTvfoSt-RzjdDE9tYQOiGkjkllN3W89K3ah6TOO0fjHB2hqY0T1nEKeGTv0yK9ALNvK8JSXlO0yn62LTBHMyXDKaxuKmwsQFc5LuyBhWwXz6volJ60HgnrcZb8KFzgB2oZmvNDxSkf_O488ZucWd914I7moHQzUEai6WWbRj7A6idNe8d-Ct0Xsm9h-vfe4leH5Yvi8dovVk9Le7XkUoICRHLIKtYUSaqBCBZVTCtVQ6UZDSDRHIZq1TLhBW6iIuyIhw4pRnXVBJd5aVKLlE89irXeO-gEq0zB-k-BSViUCdqMagTgzoxqush_g9SZlwQnDT70-jdiEI_6mjACa8MWAXa9M6C0I05hX8DCNSQOg |
CitedBy_id | crossref_primary_10_1109_TMRB_2024_3504737 crossref_primary_10_1016_j_compbiomed_2024_108384 crossref_primary_10_3390_app142311375 crossref_primary_10_1109_JBHI_2024_3354909 crossref_primary_10_1186_s12984_024_01526_3 crossref_primary_10_48084_etasr_7670 crossref_primary_10_1109_ACCESS_2024_3456436 crossref_primary_10_1109_TIM_2025_3540139 |
Cites_doi | 10.1109/34.709601 10.3390/s150923303 10.1109/TNSRE.2021.3082551 10.1016/j.knosys.2021.107165 10.1109/TNSRE.2015.2492619 10.1109/TSMC.1985.6313426 10.1016/j.bspc.2007.07.009 10.1109/CCDC.2013.6561165 10.1109/TNN.2010.2091281 10.3390/s17030458 10.1007/978-3-030-73197-7 10.1016/j.bspc.2014.05.001 10.1109/TNSRE.2019.2946625 10.1109/JBHI.2020.3009383 10.1609/aaai.v30i1.10306 10.1109/TBME.2011.2113182 10.1016/j.eswa.2016.05.031 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.bspc.2024.106086 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2024_106086 S1746809424001447 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-65e5f69b3cbee05f96ddc7e10515e3a8a2c4da369d929bf08e81158d1a0df7bc3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:22 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Sat May 25 15:41:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Unsupervised domain adaptation surface electromyogram (sEMG) Transfer learning Hand gesture recognition |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-65e5f69b3cbee05f96ddc7e10515e3a8a2c4da369d929bf08e81158d1a0df7bc3 |
ORCID | 0000-0002-0410-1496 0000-0003-3720-718X 0000-0002-4396-1675 0000-0002-2988-4669 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1746809424001447 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2024_106086 crossref_citationtrail_10_1016_j_bspc_2024_106086 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vidovic, Hwang, Amsüss, Hahne, Farina, Müller (b0050) 2015; 24 Pan, Tsang, Kwok, Yang (b0110) 2011; 22 Ottobock-ltd. Bebionic upper limbs prosthetic hand n.d. Jensen CS, Lim E-P, Yang D-N, Lee W-C, Tseng VS, Kalogeraki V, et al., editors. Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part II. vol. 12682. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-73197-7. Long, Wang, Ding, Sun, Yu (b0125) 2014 Cheng, Chen, Liu, Peng (b0035) 2015; 15 Long, Wang, Ding, Sun, Yu (b0120) 2013 Scheme, Englehart, Hudgins (b0020) 2011; 58 (b0025) 2017; vol. 15 Côté-Allard, Fall, Campeau-Lecours, Gosselin, Laviolette, Gosselin (b0065) 2017 P. Yang, K. Xing, J. Huang, Y.A. Wang, A novel feature reduction method for real-time EMG pattern recognition system. 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China: IEEE; 2013, p. 1500–5. https://doi.org/10.1109/CCDC.2013.6561165. Du, Jin, Wei, Hu, Geng (b0045) 2017; 17 B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence 2015;30. https://doi.org/10.1609/aaai.v30i1.10306. Asghari Oskoei, Hu (b0030) 2007; 2 Wang, Chen, Hao, Feng, Shen (b0135) 2017 Gong, Shi, Sha, Grauman (b0115) 2012 Jiang, Liu, Fan, Ye, Dai, Clancy (b0080) 2021; 29 Kim, Guan, Lee (b0070) 2020; 28 Ho (b0095) 1998; 20 Platt (b0090) 1998 JM. Keller, M.R. Gray, J.A. Givens, A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 1985;SMC-15:580–5. https://doi.org/10.1109/TSMC.1985.6313426. Khushaba, Al-Timemy, Kodagoda, Nazarpour (b0060) 2016; 61 Zhang (b0105) 2004 Manus-VR. Wearable manus gloves n.d. Wu, Zhang, Zhang, Chen, Chen (b0040) 2021; 227 Biometrics-ltd. DataLite device n.d. Chen, Li, Hu, Zhang, Chen (b0075) 2021; 25 Liu, Zhang, Sheng, Zhu (b0055) 2014; 13 Wang, Feng, Chen, Yu, Huang, Yu (b0140) 2018 Côté-Allard (10.1016/j.bspc.2024.106086_b0065) 2017 Gong (10.1016/j.bspc.2024.106086_b0115) 2012 Khushaba (10.1016/j.bspc.2024.106086_b0060) 2016; 61 Jiang (10.1016/j.bspc.2024.106086_b0080) 2021; 29 10.1016/j.bspc.2024.106086_b0100 10.1016/j.bspc.2024.106086_b0085 Du (10.1016/j.bspc.2024.106086_b0045) 2017; 17 Scheme (10.1016/j.bspc.2024.106086_b0020) 2011; 58 10.1016/j.bspc.2024.106086_b0015 Pan (10.1016/j.bspc.2024.106086_b0110) 2011; 22 Wang (10.1016/j.bspc.2024.106086_b0140) 2018 Zhang (10.1016/j.bspc.2024.106086_b0105) 2004 Asghari Oskoei (10.1016/j.bspc.2024.106086_b0030) 2007; 2 (10.1016/j.bspc.2024.106086_b0025) 2017; vol. 15 Chen (10.1016/j.bspc.2024.106086_b0075) 2021; 25 Liu (10.1016/j.bspc.2024.106086_b0055) 2014; 13 Cheng (10.1016/j.bspc.2024.106086_b0035) 2015; 15 Wang (10.1016/j.bspc.2024.106086_b0135) 2017 Wu (10.1016/j.bspc.2024.106086_b0040) 2021; 227 Ho (10.1016/j.bspc.2024.106086_b0095) 1998; 20 Kim (10.1016/j.bspc.2024.106086_b0070) 2020; 28 10.1016/j.bspc.2024.106086_b0130 10.1016/j.bspc.2024.106086_b0010 10.1016/j.bspc.2024.106086_b0005 10.1016/j.bspc.2024.106086_b0145 Vidovic (10.1016/j.bspc.2024.106086_b0050) 2015; 24 Long (10.1016/j.bspc.2024.106086_b0120) 2013 Long (10.1016/j.bspc.2024.106086_b0125) 2014 Platt (10.1016/j.bspc.2024.106086_b0090) 1998 |
References_xml | – start-page: 2066 year: 2012 end-page: 2073 ident: b0115 publication-title: Geodesic Flow Kernel for Unsupervised Domain Adaptation – start-page: 1663 year: 2017 end-page: 1668 ident: b0065 article-title: Transfer learning for sEMG hand gestures recognition using convolutional neural networks publication-title: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – start-page: 2200 year: 2013 end-page: 2207 ident: b0120 publication-title: Transfer Feature Learning with Joint Distribution Adaptation – reference: Jensen CS, Lim E-P, Yang D-N, Lee W-C, Tseng VS, Kalogeraki V, et al., editors. Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part II. vol. 12682. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-73197-7. – volume: 17 year: 2017 ident: b0045 article-title: Surface EMG-Based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors – reference: JM. Keller, M.R. Gray, J.A. Givens, A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 1985;SMC-15:580–5. https://doi.org/10.1109/TSMC.1985.6313426. – reference: P. Yang, K. Xing, J. Huang, Y.A. Wang, A novel feature reduction method for real-time EMG pattern recognition system. 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China: IEEE; 2013, p. 1500–5. https://doi.org/10.1109/CCDC.2013.6561165. – volume: 227 year: 2021 ident: b0040 article-title: Metric learning for novel motion rejection in high-density myoelectric pattern recognition publication-title: Knowl.-Based Syst. – start-page: 1410 year: 2014 end-page: 1417 ident: b0125 publication-title: Transfer Joint Matching for Unsupervised Domain Adaptation – year: 2018 ident: b0140 publication-title: Visual Domain Adaptation with Manifold Embedded Distribution Alignment – reference: Biometrics-ltd. DataLite device n.d. – volume: vol. 15 start-page: 965 year: 2017 end-page: 969 ident: b0025 publication-title: Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: b0110 article-title: Domain Adaptation via Transfer Component Analysis publication-title: IEEE Trans Neural Netw – volume: 28 start-page: 94 year: 2020 end-page: 103 ident: b0070 article-title: A subject-transfer framework based on single-trial EMG analysis using convolutional neural networks publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: b0030 article-title: Myoelectric control systems—A survey publication-title: Biomed. Signal Process. Control – reference: Manus-VR. Wearable manus gloves n.d. – volume: 58 start-page: 1698 year: 2011 end-page: 1705 ident: b0020 article-title: Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions publication-title: IEEE Trans Biomed Eng – volume: 15 start-page: 23303 year: 2015 end-page: 23324 ident: b0035 article-title: A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors publication-title: Sensors – volume: 29 start-page: 1035 year: 2021 end-page: 1046 ident: b0080 article-title: Open access dataset, toolbox and benchmark processing results of high-density surface electromyogram recordings publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2004 ident: b0105 article-title: The optimality of naive bayes publication-title: International Flairs Conference – start-page: 1129 year: 2017 end-page: 1134 ident: b0135 publication-title: Balanced Distribution Adaptation for Transfer Learning – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: b0095 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 start-page: 1292 year: 2021 end-page: 1304 ident: b0075 article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method publication-title: IEEE J. Biomed. Health Inform. – reference: B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence 2015;30. https://doi.org/10.1609/aaai.v30i1.10306. – volume: 13 start-page: 189 year: 2014 end-page: 197 ident: b0055 article-title: Quantification and solutions of arm movements effect on sEMG pattern recognition publication-title: Biomed. Signal Process. Control – volume: 61 start-page: 154 year: 2016 end-page: 161 ident: b0060 article-title: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition publication-title: Expert Syst. Appl. – reference: Ottobock-ltd. Bebionic upper limbs prosthetic hand n.d. – volume: 24 start-page: 961 year: 2015 end-page: 970 ident: b0050 article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 1998 ident: b0090 article-title: Sequential minimal optimization: A fast algorithm for training support vector machines publication-title: Microsoft Research – volume: 20 start-page: 832 year: 1998 ident: 10.1016/j.bspc.2024.106086_b0095 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 15 start-page: 23303 year: 2015 ident: 10.1016/j.bspc.2024.106086_b0035 article-title: A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors publication-title: Sensors doi: 10.3390/s150923303 – volume: 29 start-page: 1035 year: 2021 ident: 10.1016/j.bspc.2024.106086_b0080 article-title: Open access dataset, toolbox and benchmark processing results of high-density surface electromyogram recordings publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3082551 – ident: 10.1016/j.bspc.2024.106086_b0010 – volume: 227 year: 2021 ident: 10.1016/j.bspc.2024.106086_b0040 article-title: Metric learning for novel motion rejection in high-density myoelectric pattern recognition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107165 – year: 2004 ident: 10.1016/j.bspc.2024.106086_b0105 article-title: The optimality of naive bayes publication-title: International Flairs Conference – year: 2018 ident: 10.1016/j.bspc.2024.106086_b0140 publication-title: Visual Domain Adaptation with Manifold Embedded Distribution Alignment – start-page: 1410 year: 2014 ident: 10.1016/j.bspc.2024.106086_b0125 – start-page: 1129 year: 2017 ident: 10.1016/j.bspc.2024.106086_b0135 – volume: 24 start-page: 961 year: 2015 ident: 10.1016/j.bspc.2024.106086_b0050 article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2492619 – ident: 10.1016/j.bspc.2024.106086_b0100 doi: 10.1109/TSMC.1985.6313426 – year: 1998 ident: 10.1016/j.bspc.2024.106086_b0090 article-title: Sequential minimal optimization: A fast algorithm for training support vector machines publication-title: Microsoft Research – volume: 2 start-page: 275 year: 2007 ident: 10.1016/j.bspc.2024.106086_b0030 article-title: Myoelectric control systems—A survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.07.009 – ident: 10.1016/j.bspc.2024.106086_b0085 doi: 10.1109/CCDC.2013.6561165 – volume: 22 start-page: 199 year: 2011 ident: 10.1016/j.bspc.2024.106086_b0110 article-title: Domain Adaptation via Transfer Component Analysis publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2091281 – volume: 17 year: 2017 ident: 10.1016/j.bspc.2024.106086_b0045 article-title: Surface EMG-Based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors doi: 10.3390/s17030458 – ident: 10.1016/j.bspc.2024.106086_b0145 doi: 10.1007/978-3-030-73197-7 – start-page: 2200 year: 2013 ident: 10.1016/j.bspc.2024.106086_b0120 – volume: 13 start-page: 189 year: 2014 ident: 10.1016/j.bspc.2024.106086_b0055 article-title: Quantification and solutions of arm movements effect on sEMG pattern recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.05.001 – start-page: 1663 year: 2017 ident: 10.1016/j.bspc.2024.106086_b0065 article-title: Transfer learning for sEMG hand gestures recognition using convolutional neural networks – start-page: 2066 year: 2012 ident: 10.1016/j.bspc.2024.106086_b0115 – ident: 10.1016/j.bspc.2024.106086_b0015 – volume: 28 start-page: 94 year: 2020 ident: 10.1016/j.bspc.2024.106086_b0070 article-title: A subject-transfer framework based on single-trial EMG analysis using convolutional neural networks publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2946625 – ident: 10.1016/j.bspc.2024.106086_b0005 – volume: 25 start-page: 1292 year: 2021 ident: 10.1016/j.bspc.2024.106086_b0075 article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3009383 – ident: 10.1016/j.bspc.2024.106086_b0130 doi: 10.1609/aaai.v30i1.10306 – volume: 58 start-page: 1698 year: 2011 ident: 10.1016/j.bspc.2024.106086_b0020 article-title: Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2113182 – volume: vol. 15 start-page: 965 year: 2017 ident: 10.1016/j.bspc.2024.106086_b0025 publication-title: Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation – volume: 61 start-page: 154 year: 2016 ident: 10.1016/j.bspc.2024.106086_b0060 article-title: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.05.031 |
SSID | ssj0048714 |
Score | 2.3942378 |
Snippet | •We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106086 |
SubjectTerms | Hand gesture recognition surface electromyogram (sEMG) Transfer learning Unsupervised domain adaptation |
Title | Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques |
URI | https://dx.doi.org/10.1016/j.bspc.2024.106086 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7VpHpvkWEprVawHLfQW9ilVm4YmwZu_3Z28qCA9eAlk2YEw2Z35dvebbxG6Dn0VKunYhIauIq4rzJSiihNHCqY1B72RQu1zSicz92HuzVtoWNfCAK2yiv1lTC-iddXSq7zZSxaL3ovB0jQwqxNgQZplAVSUmyeM8tvvhuZh8Hih7w2dCfSuCmdKjhdPE5AxtF3TQC2op_4rOW0knPEB2q-QIh6UH3OIWio-Qnsb-oHH6OvZTPhlVUmJVxqD-MOapDmH3RWcjp7uCKQpiWF_HMNRUr5WuCENGaOMpR8pBvb7G87jNE8gdoCFXC3ZIsZMsqQ8rceN3Gt6gmbj0etwQqqbFIhwLCsj1FOepiF3BFfK8nRIpRS-6sMFL8phAbOFK5lDQ2nQEtdWoAKDFAPZZ5bUPhfOKWrHq1idIaxk4DPpS1dr6SqDb2xtUEPgcN-2hdB2B_VrF0aikhmH2y4-o5pP9h6B2yNwe1S6vYNuGpukFNnY2tur_0z0a6hEJgtssTv_p90F2oW3kh92idrZOldXBolkvFsMtS7aGdw_TqY_TSzhAQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKvY8YEbsppmcZIjQkBLoRwAiVvkFZUljZpG_D6exqlAQhy4Oh7Jmtgzz_abZ4DTNNapVoFPWRpqGobSLimmBQ2U5MYI1BuZq32OWP8pvHmOnltw0dTCIK3Sxf46ps-jtWvpOm92i_G4-2CxNEvs7gRZkHZbEC9BB9WpojZ0zgfD_qgJyBaSzyW-sT9FA1c7U9O8RFmgkqEf2gbmYUn1b_npW865Woc1BxbJeT2eDWjpfBNWv0kIbsHnvV3zH66YkkwMQf2HKS0rgQcspLy8u6aYqRTBI3KCt0nVVJMFb8gazXj5VhIkwL-QKi-rAsMHWqjJBx_nhCte1Bf2ZKH4Wm7D09Xl40WfuscUqAw8b0ZZpCPDUhFIobUXmZQpJWPdwzdedMAT7stQ8YClygImYbxEJxYsJqrHPWViIYMdaOeTXO8C0SqJuYpVaIwKtYU4vrHAIQlE7PtSGn8Peo0LM-mUxvHBi_esoZS9Zuj2DN2e1W7fg7OFTVHrbPzZO2r-TPZjtmQ2Efxht_9PuxNY7j_e3Wa3g9HwAFbwS00XO4T2bFrpIwtMZuLYTbwvBQfjsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+inter-subject+sEMG-based+hand+gesture+recognition+tasks+using+unsupervised+domain+adaptation+techniques&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Zihao&rft.au=Wan%2C+Huiying&rft.au=Meng%2C+Long&rft.au=Zeng%2C+Zheng&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=92&rft_id=info:doi/10.1016%2Fj.bspc.2024.106086&rft.externalDocID=S1746809424001447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |