Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques

•We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and two publicly available datasets.•Our approach achieved remarkable classification accuracies, better than mentioned techniques. Neuromuscular...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 92; p. 106086
Main Authors Wang, Zihao, Wan, Huiying, Meng, Long, Zeng, Zheng, Akay, Metin, Chen, Chen, Chen, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and two publicly available datasets.•Our approach achieved remarkable classification accuracies, better than mentioned techniques. Neuromuscular diseases or physical disabilities have the potential to impair hand dexterity, significantly affecting daily life. To date, technologies for hand gesture recognition based on surface electromyography (sEMG) have garnered increasing attention. These technologies aim to decode motion intentions, thereby advancing assistive devices such as prosthetic hands in restoring lost hand function. However, the limited generalization capacity across different users has hindered progress towards practical implementation. In this study, high-density (256-channel) sEMG data of 10 commonly used hand gestures were collected from 41 subjects on their two days. Then, we evaluated the inter-subject classification performances. To guarantee strong robustness over users, we systematically investigated eight prevailing unsupervised domain adaptation techniques to align the feature distribution between the source domain and the target domain, and combined these techniques with 5 classifiers. Afterwards, a simplified approach is proposed. Meanwhile, to make a comprehensive comparison, extensive validation on both private dataset and two publicly available datasets (Ninapro DB4 and Ninapro DB5) are evaluated. As a result, our proposed approach achieving remarkable classification accuracies of 81.74%, 84.00%, and 93.50%, respectively. The outcomes showed that the proposed approach is promising to build for addressing the inter-subject differences and make significant strides in the field of gesture recognition for inter-subject scenario.
AbstractList •We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and two publicly available datasets.•Our approach achieved remarkable classification accuracies, better than mentioned techniques. Neuromuscular diseases or physical disabilities have the potential to impair hand dexterity, significantly affecting daily life. To date, technologies for hand gesture recognition based on surface electromyography (sEMG) have garnered increasing attention. These technologies aim to decode motion intentions, thereby advancing assistive devices such as prosthetic hands in restoring lost hand function. However, the limited generalization capacity across different users has hindered progress towards practical implementation. In this study, high-density (256-channel) sEMG data of 10 commonly used hand gestures were collected from 41 subjects on their two days. Then, we evaluated the inter-subject classification performances. To guarantee strong robustness over users, we systematically investigated eight prevailing unsupervised domain adaptation techniques to align the feature distribution between the source domain and the target domain, and combined these techniques with 5 classifiers. Afterwards, a simplified approach is proposed. Meanwhile, to make a comprehensive comparison, extensive validation on both private dataset and two publicly available datasets (Ninapro DB4 and Ninapro DB5) are evaluated. As a result, our proposed approach achieving remarkable classification accuracies of 81.74%, 84.00%, and 93.50%, respectively. The outcomes showed that the proposed approach is promising to build for addressing the inter-subject differences and make significant strides in the field of gesture recognition for inter-subject scenario.
ArticleNumber 106086
Author Wang, Zihao
Chen, Wei
Akay, Metin
Chen, Chen
Meng, Long
Wan, Huiying
Zeng, Zheng
Author_xml – sequence: 1
  givenname: Zihao
  orcidid: 0000-0002-0410-1496
  surname: Wang
  fullname: Wang, Zihao
  organization: Human Phenome Institute, Fudan University, Shanghai, China
– sequence: 2
  givenname: Huiying
  surname: Wan
  fullname: Wan, Huiying
  organization: Center of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 3
  givenname: Long
  surname: Meng
  fullname: Meng, Long
  organization: Center of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0002-4396-1675
  surname: Zeng
  fullname: Zeng, Zheng
  organization: Center of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 5
  givenname: Metin
  orcidid: 0000-0002-2988-4669
  surname: Akay
  fullname: Akay, Metin
  organization: Department of Biomedical Engineering, University of Houston, Houston, USA
– sequence: 6
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: Human Phenome Institute, Fudan University, Shanghai, China
– sequence: 7
  givenname: Wei
  orcidid: 0000-0003-3720-718X
  surname: Chen
  fullname: Chen, Wei
  email: w_chen@fudan.edu.cn
  organization: School of Biomedical Engineering, The University of Sydney, Australia
BookMark eNp9kL1OwzAUhS1UJFrgBZj8Ail2fhxHYkFVKUhFXWC2HPumdWidYDtF8PQkBBaGTvfoSt-RzjdDE9tYQOiGkjkllN3W89K3ah6TOO0fjHB2hqY0T1nEKeGTv0yK9ALNvK8JSXlO0yn62LTBHMyXDKaxuKmwsQFc5LuyBhWwXz6volJ60HgnrcZb8KFzgB2oZmvNDxSkf_O488ZucWd914I7moHQzUEai6WWbRj7A6idNe8d-Ct0Xsm9h-vfe4leH5Yvi8dovVk9Le7XkUoICRHLIKtYUSaqBCBZVTCtVQ6UZDSDRHIZq1TLhBW6iIuyIhw4pRnXVBJd5aVKLlE89irXeO-gEq0zB-k-BSViUCdqMagTgzoxqush_g9SZlwQnDT70-jdiEI_6mjACa8MWAXa9M6C0I05hX8DCNSQOg
CitedBy_id crossref_primary_10_1109_TMRB_2024_3504737
crossref_primary_10_1016_j_compbiomed_2024_108384
crossref_primary_10_3390_app142311375
crossref_primary_10_1109_JBHI_2024_3354909
crossref_primary_10_1186_s12984_024_01526_3
crossref_primary_10_48084_etasr_7670
crossref_primary_10_1109_ACCESS_2024_3456436
crossref_primary_10_1109_TIM_2025_3540139
Cites_doi 10.1109/34.709601
10.3390/s150923303
10.1109/TNSRE.2021.3082551
10.1016/j.knosys.2021.107165
10.1109/TNSRE.2015.2492619
10.1109/TSMC.1985.6313426
10.1016/j.bspc.2007.07.009
10.1109/CCDC.2013.6561165
10.1109/TNN.2010.2091281
10.3390/s17030458
10.1007/978-3-030-73197-7
10.1016/j.bspc.2014.05.001
10.1109/TNSRE.2019.2946625
10.1109/JBHI.2020.3009383
10.1609/aaai.v30i1.10306
10.1109/TBME.2011.2113182
10.1016/j.eswa.2016.05.031
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106086
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2024_106086
S1746809424001447
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-65e5f69b3cbee05f96ddc7e10515e3a8a2c4da369d929bf08e81158d1a0df7bc3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:22 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Sat May 25 15:41:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Unsupervised domain adaptation
surface electromyogram (sEMG)
Transfer learning
Hand gesture recognition
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-65e5f69b3cbee05f96ddc7e10515e3a8a2c4da369d929bf08e81158d1a0df7bc3
ORCID 0000-0002-0410-1496
0000-0003-3720-718X
0000-0002-4396-1675
0000-0002-2988-4669
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1746809424001447
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106086
crossref_citationtrail_10_1016_j_bspc_2024_106086
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vidovic, Hwang, Amsüss, Hahne, Farina, Müller (b0050) 2015; 24
Pan, Tsang, Kwok, Yang (b0110) 2011; 22
Ottobock-ltd. Bebionic upper limbs prosthetic hand n.d.
Jensen CS, Lim E-P, Yang D-N, Lee W-C, Tseng VS, Kalogeraki V, et al., editors. Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part II. vol. 12682. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-73197-7.
Long, Wang, Ding, Sun, Yu (b0125) 2014
Cheng, Chen, Liu, Peng (b0035) 2015; 15
Long, Wang, Ding, Sun, Yu (b0120) 2013
Scheme, Englehart, Hudgins (b0020) 2011; 58
(b0025) 2017; vol. 15
Côté-Allard, Fall, Campeau-Lecours, Gosselin, Laviolette, Gosselin (b0065) 2017
P. Yang, K. Xing, J. Huang, Y.A. Wang, A novel feature reduction method for real-time EMG pattern recognition system. 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China: IEEE; 2013, p. 1500–5. https://doi.org/10.1109/CCDC.2013.6561165.
Du, Jin, Wei, Hu, Geng (b0045) 2017; 17
B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence 2015;30. https://doi.org/10.1609/aaai.v30i1.10306.
Asghari Oskoei, Hu (b0030) 2007; 2
Wang, Chen, Hao, Feng, Shen (b0135) 2017
Gong, Shi, Sha, Grauman (b0115) 2012
Jiang, Liu, Fan, Ye, Dai, Clancy (b0080) 2021; 29
Kim, Guan, Lee (b0070) 2020; 28
Ho (b0095) 1998; 20
Platt (b0090) 1998
JM. Keller, M.R. Gray, J.A. Givens, A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 1985;SMC-15:580–5. https://doi.org/10.1109/TSMC.1985.6313426.
Khushaba, Al-Timemy, Kodagoda, Nazarpour (b0060) 2016; 61
Zhang (b0105) 2004
Manus-VR. Wearable manus gloves n.d.
Wu, Zhang, Zhang, Chen, Chen (b0040) 2021; 227
Biometrics-ltd. DataLite device n.d.
Chen, Li, Hu, Zhang, Chen (b0075) 2021; 25
Liu, Zhang, Sheng, Zhu (b0055) 2014; 13
Wang, Feng, Chen, Yu, Huang, Yu (b0140) 2018
Côté-Allard (10.1016/j.bspc.2024.106086_b0065) 2017
Gong (10.1016/j.bspc.2024.106086_b0115) 2012
Khushaba (10.1016/j.bspc.2024.106086_b0060) 2016; 61
Jiang (10.1016/j.bspc.2024.106086_b0080) 2021; 29
10.1016/j.bspc.2024.106086_b0100
10.1016/j.bspc.2024.106086_b0085
Du (10.1016/j.bspc.2024.106086_b0045) 2017; 17
Scheme (10.1016/j.bspc.2024.106086_b0020) 2011; 58
10.1016/j.bspc.2024.106086_b0015
Pan (10.1016/j.bspc.2024.106086_b0110) 2011; 22
Wang (10.1016/j.bspc.2024.106086_b0140) 2018
Zhang (10.1016/j.bspc.2024.106086_b0105) 2004
Asghari Oskoei (10.1016/j.bspc.2024.106086_b0030) 2007; 2
(10.1016/j.bspc.2024.106086_b0025) 2017; vol. 15
Chen (10.1016/j.bspc.2024.106086_b0075) 2021; 25
Liu (10.1016/j.bspc.2024.106086_b0055) 2014; 13
Cheng (10.1016/j.bspc.2024.106086_b0035) 2015; 15
Wang (10.1016/j.bspc.2024.106086_b0135) 2017
Wu (10.1016/j.bspc.2024.106086_b0040) 2021; 227
Ho (10.1016/j.bspc.2024.106086_b0095) 1998; 20
Kim (10.1016/j.bspc.2024.106086_b0070) 2020; 28
10.1016/j.bspc.2024.106086_b0130
10.1016/j.bspc.2024.106086_b0010
10.1016/j.bspc.2024.106086_b0005
10.1016/j.bspc.2024.106086_b0145
Vidovic (10.1016/j.bspc.2024.106086_b0050) 2015; 24
Long (10.1016/j.bspc.2024.106086_b0120) 2013
Long (10.1016/j.bspc.2024.106086_b0125) 2014
Platt (10.1016/j.bspc.2024.106086_b0090) 1998
References_xml – start-page: 2066
  year: 2012
  end-page: 2073
  ident: b0115
  publication-title: Geodesic Flow Kernel for Unsupervised Domain Adaptation
– start-page: 1663
  year: 2017
  end-page: 1668
  ident: b0065
  article-title: Transfer learning for sEMG hand gestures recognition using convolutional neural networks
  publication-title: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– start-page: 2200
  year: 2013
  end-page: 2207
  ident: b0120
  publication-title: Transfer Feature Learning with Joint Distribution Adaptation
– reference: Jensen CS, Lim E-P, Yang D-N, Lee W-C, Tseng VS, Kalogeraki V, et al., editors. Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part II. vol. 12682. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-73197-7.
– volume: 17
  year: 2017
  ident: b0045
  article-title: Surface EMG-Based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
– reference: JM. Keller, M.R. Gray, J.A. Givens, A fuzzy K-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 1985;SMC-15:580–5. https://doi.org/10.1109/TSMC.1985.6313426.
– reference: P. Yang, K. Xing, J. Huang, Y.A. Wang, A novel feature reduction method for real-time EMG pattern recognition system. 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China: IEEE; 2013, p. 1500–5. https://doi.org/10.1109/CCDC.2013.6561165.
– volume: 227
  year: 2021
  ident: b0040
  article-title: Metric learning for novel motion rejection in high-density myoelectric pattern recognition
  publication-title: Knowl.-Based Syst.
– start-page: 1410
  year: 2014
  end-page: 1417
  ident: b0125
  publication-title: Transfer Joint Matching for Unsupervised Domain Adaptation
– year: 2018
  ident: b0140
  publication-title: Visual Domain Adaptation with Manifold Embedded Distribution Alignment
– reference: Biometrics-ltd. DataLite device n.d.
– volume: vol. 15
  start-page: 965
  year: 2017
  end-page: 969
  ident: b0025
  publication-title: Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: b0110
  article-title: Domain Adaptation via Transfer Component Analysis
  publication-title: IEEE Trans Neural Netw
– volume: 28
  start-page: 94
  year: 2020
  end-page: 103
  ident: b0070
  article-title: A subject-transfer framework based on single-trial EMG analysis using convolutional neural networks
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: b0030
  article-title: Myoelectric control systems—A survey
  publication-title: Biomed. Signal Process. Control
– reference: Manus-VR. Wearable manus gloves n.d.
– volume: 58
  start-page: 1698
  year: 2011
  end-page: 1705
  ident: b0020
  article-title: Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions
  publication-title: IEEE Trans Biomed Eng
– volume: 15
  start-page: 23303
  year: 2015
  end-page: 23324
  ident: b0035
  article-title: A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors
  publication-title: Sensors
– volume: 29
  start-page: 1035
  year: 2021
  end-page: 1046
  ident: b0080
  article-title: Open access dataset, toolbox and benchmark processing results of high-density surface electromyogram recordings
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2004
  ident: b0105
  article-title: The optimality of naive bayes
  publication-title: International Flairs Conference
– start-page: 1129
  year: 2017
  end-page: 1134
  ident: b0135
  publication-title: Balanced Distribution Adaptation for Transfer Learning
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: b0095
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 1292
  year: 2021
  end-page: 1304
  ident: b0075
  article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method
  publication-title: IEEE J. Biomed. Health Inform.
– reference: B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence 2015;30. https://doi.org/10.1609/aaai.v30i1.10306.
– volume: 13
  start-page: 189
  year: 2014
  end-page: 197
  ident: b0055
  article-title: Quantification and solutions of arm movements effect on sEMG pattern recognition
  publication-title: Biomed. Signal Process. Control
– volume: 61
  start-page: 154
  year: 2016
  end-page: 161
  ident: b0060
  article-title: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition
  publication-title: Expert Syst. Appl.
– reference: Ottobock-ltd. Bebionic upper limbs prosthetic hand n.d.
– volume: 24
  start-page: 961
  year: 2015
  end-page: 970
  ident: b0050
  article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 1998
  ident: b0090
  article-title: Sequential minimal optimization: A fast algorithm for training support vector machines
  publication-title: Microsoft Research
– volume: 20
  start-page: 832
  year: 1998
  ident: 10.1016/j.bspc.2024.106086_b0095
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 15
  start-page: 23303
  year: 2015
  ident: 10.1016/j.bspc.2024.106086_b0035
  article-title: A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors
  publication-title: Sensors
  doi: 10.3390/s150923303
– volume: 29
  start-page: 1035
  year: 2021
  ident: 10.1016/j.bspc.2024.106086_b0080
  article-title: Open access dataset, toolbox and benchmark processing results of high-density surface electromyogram recordings
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3082551
– ident: 10.1016/j.bspc.2024.106086_b0010
– volume: 227
  year: 2021
  ident: 10.1016/j.bspc.2024.106086_b0040
  article-title: Metric learning for novel motion rejection in high-density myoelectric pattern recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107165
– year: 2004
  ident: 10.1016/j.bspc.2024.106086_b0105
  article-title: The optimality of naive bayes
  publication-title: International Flairs Conference
– year: 2018
  ident: 10.1016/j.bspc.2024.106086_b0140
  publication-title: Visual Domain Adaptation with Manifold Embedded Distribution Alignment
– start-page: 1410
  year: 2014
  ident: 10.1016/j.bspc.2024.106086_b0125
– start-page: 1129
  year: 2017
  ident: 10.1016/j.bspc.2024.106086_b0135
– volume: 24
  start-page: 961
  year: 2015
  ident: 10.1016/j.bspc.2024.106086_b0050
  article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2492619
– ident: 10.1016/j.bspc.2024.106086_b0100
  doi: 10.1109/TSMC.1985.6313426
– year: 1998
  ident: 10.1016/j.bspc.2024.106086_b0090
  article-title: Sequential minimal optimization: A fast algorithm for training support vector machines
  publication-title: Microsoft Research
– volume: 2
  start-page: 275
  year: 2007
  ident: 10.1016/j.bspc.2024.106086_b0030
  article-title: Myoelectric control systems—A survey
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.07.009
– ident: 10.1016/j.bspc.2024.106086_b0085
  doi: 10.1109/CCDC.2013.6561165
– volume: 22
  start-page: 199
  year: 2011
  ident: 10.1016/j.bspc.2024.106086_b0110
  article-title: Domain Adaptation via Transfer Component Analysis
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2091281
– volume: 17
  year: 2017
  ident: 10.1016/j.bspc.2024.106086_b0045
  article-title: Surface EMG-Based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
  doi: 10.3390/s17030458
– ident: 10.1016/j.bspc.2024.106086_b0145
  doi: 10.1007/978-3-030-73197-7
– start-page: 2200
  year: 2013
  ident: 10.1016/j.bspc.2024.106086_b0120
– volume: 13
  start-page: 189
  year: 2014
  ident: 10.1016/j.bspc.2024.106086_b0055
  article-title: Quantification and solutions of arm movements effect on sEMG pattern recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.05.001
– start-page: 1663
  year: 2017
  ident: 10.1016/j.bspc.2024.106086_b0065
  article-title: Transfer learning for sEMG hand gestures recognition using convolutional neural networks
– start-page: 2066
  year: 2012
  ident: 10.1016/j.bspc.2024.106086_b0115
– ident: 10.1016/j.bspc.2024.106086_b0015
– volume: 28
  start-page: 94
  year: 2020
  ident: 10.1016/j.bspc.2024.106086_b0070
  article-title: A subject-transfer framework based on single-trial EMG analysis using convolutional neural networks
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2946625
– ident: 10.1016/j.bspc.2024.106086_b0005
– volume: 25
  start-page: 1292
  year: 2021
  ident: 10.1016/j.bspc.2024.106086_b0075
  article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3009383
– ident: 10.1016/j.bspc.2024.106086_b0130
  doi: 10.1609/aaai.v30i1.10306
– volume: 58
  start-page: 1698
  year: 2011
  ident: 10.1016/j.bspc.2024.106086_b0020
  article-title: Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2113182
– volume: vol. 15
  start-page: 965
  year: 2017
  ident: 10.1016/j.bspc.2024.106086_b0025
  publication-title: Towards a Myoelectrically Controlled Virtual Reality Interface for Synergy-Based Stroke Rehabilitation
– volume: 61
  start-page: 154
  year: 2016
  ident: 10.1016/j.bspc.2024.106086_b0060
  article-title: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.05.031
SSID ssj0048714
Score 2.3942378
Snippet •We investigated eight unsupervised domain adaptation techniques combined with 5 classifiers.•A simplified approach is proposed and validated on a private and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106086
SubjectTerms Hand gesture recognition
surface electromyogram (sEMG)
Transfer learning
Unsupervised domain adaptation
Title Optimization of inter-subject sEMG-based hand gesture recognition tasks using unsupervised domain adaptation techniques
URI https://dx.doi.org/10.1016/j.bspc.2024.106086
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7VpHpvkWEprVawHLfQW9ilVm4YmwZu_3Z28qCA9eAlk2YEw2Z35dvebbxG6Dn0VKunYhIauIq4rzJSiihNHCqY1B72RQu1zSicz92HuzVtoWNfCAK2yiv1lTC-iddXSq7zZSxaL3ovB0jQwqxNgQZplAVSUmyeM8tvvhuZh8Hih7w2dCfSuCmdKjhdPE5AxtF3TQC2op_4rOW0knPEB2q-QIh6UH3OIWio-Qnsb-oHH6OvZTPhlVUmJVxqD-MOapDmH3RWcjp7uCKQpiWF_HMNRUr5WuCENGaOMpR8pBvb7G87jNE8gdoCFXC3ZIsZMsqQ8rceN3Gt6gmbj0etwQqqbFIhwLCsj1FOepiF3BFfK8nRIpRS-6sMFL8phAbOFK5lDQ2nQEtdWoAKDFAPZZ5bUPhfOKWrHq1idIaxk4DPpS1dr6SqDb2xtUEPgcN-2hdB2B_VrF0aikhmH2y4-o5pP9h6B2yNwe1S6vYNuGpukFNnY2tur_0z0a6hEJgtssTv_p90F2oW3kh92idrZOldXBolkvFsMtS7aGdw_TqY_TSzhAQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKvY8YEbsppmcZIjQkBLoRwAiVvkFZUljZpG_D6exqlAQhy4Oh7Jmtgzz_abZ4DTNNapVoFPWRpqGobSLimmBQ2U5MYI1BuZq32OWP8pvHmOnltw0dTCIK3Sxf46ps-jtWvpOm92i_G4-2CxNEvs7gRZkHZbEC9BB9WpojZ0zgfD_qgJyBaSzyW-sT9FA1c7U9O8RFmgkqEf2gbmYUn1b_npW865Woc1BxbJeT2eDWjpfBNWv0kIbsHnvV3zH66YkkwMQf2HKS0rgQcspLy8u6aYqRTBI3KCt0nVVJMFb8gazXj5VhIkwL-QKi-rAsMHWqjJBx_nhCte1Bf2ZKH4Wm7D09Xl40WfuscUqAw8b0ZZpCPDUhFIobUXmZQpJWPdwzdedMAT7stQ8YClygImYbxEJxYsJqrHPWViIYMdaOeTXO8C0SqJuYpVaIwKtYU4vrHAIQlE7PtSGn8Peo0LM-mUxvHBi_esoZS9Zuj2DN2e1W7fg7OFTVHrbPzZO2r-TPZjtmQ2Efxht_9PuxNY7j_e3Wa3g9HwAFbwS00XO4T2bFrpIwtMZuLYTbwvBQfjsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+inter-subject+sEMG-based+hand+gesture+recognition+tasks+using+unsupervised+domain+adaptation+techniques&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Zihao&rft.au=Wan%2C+Huiying&rft.au=Meng%2C+Long&rft.au=Zeng%2C+Zheng&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=92&rft_id=info:doi/10.1016%2Fj.bspc.2024.106086&rft.externalDocID=S1746809424001447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon