Analytical modeling and simulation analysis of T-shaped III-V heterojunction vertical T-FET
In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical Tunneling FET with inherited properties of dual modulation effect. The device's surface potential is determined from the compact model,...
Saved in:
Published in | Superlattices and microstructures Vol. 147; p. 106717 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical Tunneling FET with inherited properties of dual modulation effect. The device's surface potential is determined from the compact model, which is the most significant consideration for defining device current characteristics. There have been numerous efforts to predict the electrical characteristics of In0.53Ga0.47As as a heterojunction and to discuss the method of device improvement as a function of mole-fraction, gate-drain biasing potential, gate metal work-function. To determine the tunneling width, the dual modulation effect is used to regulate the biasing voltage at both the source and drain junction. A 2-D Poisson equation is solved for the proposed model by using parabolic approximation method with constant electric field which are used to determine the effect of In0.53Ga0.47As as a comparison to Silicon and SiGe material device. Moreover, a new expression of channel surface potential is derived that can forecast the effect of drain and gate biasing. The derived model results validation is carried out by the comparison with the results obtained by TCAD simulation.
•A new 2-D compact analytical modeling analysis of surface potential model for III-V heterojunction Vertical T-shaped Tunnel FET.•By solving Poisson's equation, potential of gate-bias and drain bias have been calculated with imposed InGaAs layer and then, current has been estimated.•The Kane's Model is used for calculating the band-2-band tunneling generation rate to derive the drain current.•Most importantly, a new channel surface potential expression is derived that can forecast the effect of drain and gate biasing.•The derived model results are compared and found to be in perfect agreement with the simulated one in order to evaluate the validity of electrical parameter model. |
---|---|
AbstractList | In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical Tunneling FET with inherited properties of dual modulation effect. The device's surface potential is determined from the compact model, which is the most significant consideration for defining device current characteristics. There have been numerous efforts to predict the electrical characteristics of In0.53Ga0.47As as a heterojunction and to discuss the method of device improvement as a function of mole-fraction, gate-drain biasing potential, gate metal work-function. To determine the tunneling width, the dual modulation effect is used to regulate the biasing voltage at both the source and drain junction. A 2-D Poisson equation is solved for the proposed model by using parabolic approximation method with constant electric field which are used to determine the effect of In0.53Ga0.47As as a comparison to Silicon and SiGe material device. Moreover, a new expression of channel surface potential is derived that can forecast the effect of drain and gate biasing. The derived model results validation is carried out by the comparison with the results obtained by TCAD simulation.
•A new 2-D compact analytical modeling analysis of surface potential model for III-V heterojunction Vertical T-shaped Tunnel FET.•By solving Poisson's equation, potential of gate-bias and drain bias have been calculated with imposed InGaAs layer and then, current has been estimated.•The Kane's Model is used for calculating the band-2-band tunneling generation rate to derive the drain current.•Most importantly, a new channel surface potential expression is derived that can forecast the effect of drain and gate biasing.•The derived model results are compared and found to be in perfect agreement with the simulated one in order to evaluate the validity of electrical parameter model. |
ArticleNumber | 106717 |
Author | Raj, Balwinder Singh, Shailendra |
Author_xml | – sequence: 1 givenname: Shailendra surname: Singh fullname: Singh, Shailendra email: shailendras.ec.18@nitj.ac.in organization: Nanoelectronics Research Lab, Department of Electronics and Communication Engineering, NIT, Jalandhar, India – sequence: 2 givenname: Balwinder surname: Raj fullname: Raj, Balwinder email: balwinderraj@gmail.com organization: Department of Electronics and Communication Engineering, NITTTR, Chandigarh, India |
BookMark | eNp9kE1qwzAQhUVJoUnaC3TlCygdWbZkQzch9MdQ6CbtpguhSnIjY8tBcgK5feW4qy4CA8MM8z3evAWaud4ZhO4JrAgQ9tCswr6zqxTSccE44VdoTqBkmDLOZ2gOPCsxA8pu0CKEBgDKjPA5-lo72Z4Gq2SbdL02rXU_iXQ6CbY7tHKwvYtjPAk2JH2dbHHYyb3RSVVV-DPZmcH4vjk4db48Gj9JbfHz0_YWXdeyDebury_RR9xuXvHb-0u1Wb9hRQEGzNIiV1RRyjMOPM_S2HMJJJcFJxmkhQZJ2TfURpG0KLSM3nld6rEKXjK6RMWkq3wfgje1UHY4Wx-8tK0gIMaQRCPGkMQYkphCimj6D91720l_ugw9TpCJTx2t8SIoa5wy2nqjBqF7ewn_Bcoage8 |
CitedBy_id | crossref_primary_10_1142_S1793292024500565 crossref_primary_10_1007_s12633_022_01726_3 crossref_primary_10_1007_s12633_021_01559_6 crossref_primary_10_1007_s12633_021_01244_8 crossref_primary_10_1109_TED_2023_3312625 crossref_primary_10_1007_s12633_021_01416_6 crossref_primary_10_1002_adts_202400626 crossref_primary_10_1007_s12633_021_01384_x crossref_primary_10_1007_s00339_021_04880_4 crossref_primary_10_1016_j_spmi_2021_106992 crossref_primary_10_1007_s12633_021_01576_5 crossref_primary_10_1007_s12633_021_01469_7 crossref_primary_10_1007_s12633_021_01009_3 crossref_primary_10_1007_s12633_022_01971_6 crossref_primary_10_1007_s12633_022_01835_z |
Cites_doi | 10.1109/TVLSI.2019.2901032 10.1109/LED.2007.901273 10.1109/JEDS.2014.2327626 10.1109/TED.2013.2270566 10.1021/nl4029494 10.1109/TED.2020.2971475 10.7567/JJAP.56.084301 10.1109/TED.2009.2030831 10.1109/TED.2008.2011934 10.1063/1.1735965 10.1109/5.915374 10.1038/nature10679 10.1109/TED.2016.2541181 10.1109/JEDS.2015.2390971 10.1063/1.90455 10.1109/TED.2015.2469678 10.1109/LED.2016.2574821 10.1109/TED.2011.2128320 10.1063/1.2924413 10.1109/TNANO.2018.2793953 10.1016/j.spmi.2020.106512 10.1109/TED.2009.2028055 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2020.106717 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2020_106717 S0749603620312660 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-6285c3c33747075427475a015a8714028d0a36b0fec1288da0097f9df9df87963 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:15 EDT 2025 Thu Apr 24 22:57:40 EDT 2025 Fri Feb 23 02:46:41 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Kane model Electric field Band 2 band tunneling (B2BT) Vertical T-shaped tunneling filed effect transistor (V-TTFET) Analytical modelling Subthreshold slope (SS) Mobile charge 2-D Poisson equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-6285c3c33747075427475a015a8714028d0a36b0fec1288da0097f9df9df87963 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2020_106717 crossref_primary_10_1016_j_spmi_2020_106717 elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Toh (bib9) 2008; 103 Koswatta, Lundstrom, Nikonov (bib2) 2009; 56 Sant, Schenk (bib8) May 2015; 3 Avci, Young (bib12) 2013 Nahory, Pollack, Johnston, Barns (bib22) 1978; 33 Goldberg, Schmidt (bib23) 1999; 1 Khatami, Banerjee (bib4) 2009; 56 Rajoriya, Shrivastava, Gossner, Schulz, Ramgopal Rao (bib10) 2013; 60 Ionescu, Heike (bib5) 2011; 479 Frank, Dennard, Nowak, Solomon, Yuan, Sum Philip Wong (bib1) 2001; 89 Krishnamohan, Kim, Raghunathan, Krishna (bib7) 2008 Kane (bib26) Jun. 1961; 32 Prabhat, Dutta (bib18) 2016; 63 Yang (bib14) 2016; 37 Singh, Raj (bib20) 2018; 17 Nayfeh, Hoyt, Antoniadis (bib16) 2009; 56 Dey, Svensson, Martin, Lind, Thelander, Wernersson (bib13) 2013; 13 Singh, Raj (bib17) 2019; 27 Li, Jason (bib24) 2020; 67 Sentaurus User’s Manual, Synopsys, Inc., Mountain View, CA, USA,2017.9. Kim, Choi (bib21) 2017; 56 Badgujjar (bib19) 2019 Abdi, Jagadesh Kumar (bib15) 2014; 2 Wadhwa, Raj (bib25) 2020 Choi, Park, Duk Lee, Liu (bib3) 2007; 28 Anghel, Gupta, Amara, Vladimirescu (bib6) 2011; 58 Hemanjaneyulu, Shrivastava (bib11) 2015; 62 Rajoriya (10.1016/j.spmi.2020.106717_bib10) 2013; 60 Ionescu (10.1016/j.spmi.2020.106717_bib5) 2011; 479 Singh (10.1016/j.spmi.2020.106717_bib20) 2018; 17 Badgujjar (10.1016/j.spmi.2020.106717_bib19) 2019 Khatami (10.1016/j.spmi.2020.106717_bib4) 2009; 56 Dey (10.1016/j.spmi.2020.106717_bib13) 2013; 13 Krishnamohan (10.1016/j.spmi.2020.106717_bib7) 2008 Anghel (10.1016/j.spmi.2020.106717_bib6) 2011; 58 Goldberg (10.1016/j.spmi.2020.106717_bib23) 1999; 1 Nahory (10.1016/j.spmi.2020.106717_bib22) 1978; 33 Li (10.1016/j.spmi.2020.106717_bib24) 2020; 67 Kim (10.1016/j.spmi.2020.106717_bib21) 2017; 56 Koswatta (10.1016/j.spmi.2020.106717_bib2) 2009; 56 Kane (10.1016/j.spmi.2020.106717_bib26) 1961; 32 Nayfeh (10.1016/j.spmi.2020.106717_bib16) 2009; 56 Yang (10.1016/j.spmi.2020.106717_bib14) 2016; 37 Choi (10.1016/j.spmi.2020.106717_bib3) 2007; 28 Prabhat (10.1016/j.spmi.2020.106717_bib18) 2016; 63 Frank (10.1016/j.spmi.2020.106717_bib1) 2001; 89 10.1016/j.spmi.2020.106717_bib27 Avci (10.1016/j.spmi.2020.106717_bib12) 2013 Wadhwa (10.1016/j.spmi.2020.106717_bib25) 2020 Abdi (10.1016/j.spmi.2020.106717_bib15) 2014; 2 Singh (10.1016/j.spmi.2020.106717_bib17) 2019; 27 Toh (10.1016/j.spmi.2020.106717_bib9) 2008; 103 Hemanjaneyulu (10.1016/j.spmi.2020.106717_bib11) 2015; 62 Sant (10.1016/j.spmi.2020.106717_bib8) 2015; 3 |
References_xml | – volume: 89 start-page: 259 year: 2001 end-page: 288 ident: bib1 article-title: Device scaling limits of Si MOSFETs and their application dependencies publication-title: Proc. IEEE – volume: 1 start-page: 191 year: 1999 end-page: 213 ident: bib23 article-title: Handbook series on semiconductor parameters – start-page: 106512 year: 2020 ident: bib25 article-title: An analytical modeling of charge plasma based Tunnel Field Effect Transistor with impacts of gate underlap region publication-title: Superlattice. Microst. – volume: 62 start-page: 3184 year: 2015 end-page: 3191 ident: bib11 article-title: Fin enabled area scaled tunnel FET publication-title: IEEE Trans. Electron. Dev. – volume: 479 start-page: 329 year: 2011 end-page: 337 ident: bib5 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: nature – volume: 33 start-page: 659 year: 1978 end-page: 661 ident: bib22 article-title: Band gap versus composition and demonstration of Vegard's law for In1− x Ga x as y P1− y lattice matched to InP publication-title: Appl. Phys. Lett. – volume: 58 start-page: 1649 year: 2011 end-page: 1654 ident: bib6 article-title: 30-nm tunnel FET with improved performance and reduced ambipolar current publication-title: IEEE Trans. Electron. Dev. – start-page: 1 year: 2008 end-page: 3 ident: bib7 article-title: Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and≪ 60mV/dec subthreshold slope publication-title: 2008 IEEE International Electron Devices Meeting – volume: 56 start-page: 2752 year: 2009 end-page: 2760 ident: bib4 article-title: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy- efficient digital circuits publication-title: IEEE Trans. Electron. Dev. – volume: 56 start-page: 456 year: 2009 end-page: 465 ident: bib2 article-title: Performance comparison between pin tunneling transistors and conventional MOSFETs publication-title: IEEE Trans. Electron. Dev. – volume: 3 start-page: 164 year: May 2015 end-page: 175 ident: bib8 article-title: Band-offset engineering for GeSn-SiGeSn hetero tunnel FETs and the role of strain publication-title: IEEE J. Electron Devices Soc. – volume: 60 start-page: 2626 year: 2013 end-page: 2633 ident: bib10 article-title: Sub 0.5 V operation of performance driven mobile systems based on area scaled tunnel FET devices publication-title: IEEE Trans. Electron. Dev. – volume: 67 start-page: 1480 year: 2020 end-page: 1484 ident: bib24 article-title: Vertical P-TFET with a P-type SiGe pocket publication-title: IEEE Trans. Electron. Dev. – volume: 32 start-page: 83 year: Jun. 1961 end-page: 91 ident: bib26 article-title: Theory of tunneling publication-title: J. Appl. Phys. – volume: 103 start-page: 104504 year: 2008 ident: bib9 article-title: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications publication-title: J. Appl. Phys. – volume: 17 start-page: 268 year: 2018 end-page: 275 ident: bib20 article-title: Modeling of mean barrier height levying various image forces of metal–insulator–metal structure to enhance the performance of conductive filament based memristor model publication-title: IEEE Trans. Nanotechnol. – volume: 37 start-page: 839 year: 2016 end-page: 842 ident: bib14 article-title: Tunnel field-effect transistor with an L-shaped gate publication-title: IEEE Electron. Device Lett. – volume: 56 year: 2017 ident: bib21 article-title: Improved compact model for double-gate tunnel field-effect transistors by the rigorous consideration of gate fringing field publication-title: Jpn. J. Appl. Phys. – volume: 63 start-page: 2190 year: 2016 end-page: 2196 ident: bib18 article-title: Analytical surface potential and drain current models of dual-metal-gate double-gate tunnel-FETs publication-title: IEEE Trans. Electron. Dev. – reference: Sentaurus User’s Manual, Synopsys, Inc., Mountain View, CA, USA,2017.9. – volume: 2 start-page: 187 year: 2014 end-page: 190 ident: bib15 article-title: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain publication-title: IEEE Journal of the Electron Devices Society – year: 2013 ident: bib12 article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length publication-title: 2013 IEEE International Electron Devices Meeting – volume: 56 start-page: 2264 year: 2009 end-page: 2269 ident: bib16 article-title: Strained-$\hbox {Si} _ {1-x}\hbox {Ge} _ {x}/\hbox {Si} $ band-to-band tunneling transistors: impact of tunnel-junction germanium composition and doping concentration on switching behavior publication-title: IEEE Trans. Electron. Dev. – volume: 28 start-page: 743 year: 2007 end-page: 745 ident: bib3 article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec publication-title: IEEE Electron. Device Lett. – volume: 13 start-page: 5919 year: 2013 end-page: 5924 ident: bib13 article-title: Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors publication-title: Nano Lett. – volume: 27 start-page: 1322 year: 2019 end-page: 1328 ident: bib17 article-title: Design and investigation of 7t2m-NVSRAM with enhanced stability and temperature impact on store/restore energy publication-title: IEEE Trans. Very Large Scale Integr. Syst. – start-page: 1 year: 2019 end-page: 9 ident: bib19 article-title: Design and analysis of dual source vertical tunnel field effect transistor for high performance publication-title: Transactions on Electrical and Electronic Materials – year: 2013 ident: 10.1016/j.spmi.2020.106717_bib12 article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length – volume: 27 start-page: 1322 issue: 6 year: 2019 ident: 10.1016/j.spmi.2020.106717_bib17 article-title: Design and investigation of 7t2m-NVSRAM with enhanced stability and temperature impact on store/restore energy publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2019.2901032 – volume: 28 start-page: 743 issue: 8 year: 2007 ident: 10.1016/j.spmi.2020.106717_bib3 article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2007.901273 – volume: 2 start-page: 187 issue: 6 year: 2014 ident: 10.1016/j.spmi.2020.106717_bib15 article-title: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain publication-title: IEEE Journal of the Electron Devices Society doi: 10.1109/JEDS.2014.2327626 – start-page: 1 year: 2019 ident: 10.1016/j.spmi.2020.106717_bib19 article-title: Design and analysis of dual source vertical tunnel field effect transistor for high performance publication-title: Transactions on Electrical and Electronic Materials – volume: 60 start-page: 2626 issue: 8 year: 2013 ident: 10.1016/j.spmi.2020.106717_bib10 article-title: Sub 0.5 V operation of performance driven mobile systems based on area scaled tunnel FET devices publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2013.2270566 – volume: 13 start-page: 5919 issue: 12 year: 2013 ident: 10.1016/j.spmi.2020.106717_bib13 article-title: Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors publication-title: Nano Lett. doi: 10.1021/nl4029494 – volume: 1 start-page: 191 year: 1999 ident: 10.1016/j.spmi.2020.106717_bib23 article-title: Handbook series on semiconductor parameters – volume: 67 start-page: 1480 issue: 4 year: 2020 ident: 10.1016/j.spmi.2020.106717_bib24 article-title: Vertical P-TFET with a P-type SiGe pocket publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2020.2971475 – volume: 56 issue: 8 year: 2017 ident: 10.1016/j.spmi.2020.106717_bib21 article-title: Improved compact model for double-gate tunnel field-effect transistors by the rigorous consideration of gate fringing field publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.084301 – volume: 56 start-page: 2752 issue: 11 year: 2009 ident: 10.1016/j.spmi.2020.106717_bib4 article-title: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy- efficient digital circuits publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2009.2030831 – volume: 56 start-page: 456 issue: 3 year: 2009 ident: 10.1016/j.spmi.2020.106717_bib2 article-title: Performance comparison between pin tunneling transistors and conventional MOSFETs publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2008.2011934 – volume: 32 start-page: 83 issue: 1 year: 1961 ident: 10.1016/j.spmi.2020.106717_bib26 article-title: Theory of tunneling publication-title: J. Appl. Phys. doi: 10.1063/1.1735965 – volume: 89 start-page: 259 issue: 3 year: 2001 ident: 10.1016/j.spmi.2020.106717_bib1 article-title: Device scaling limits of Si MOSFETs and their application dependencies publication-title: Proc. IEEE doi: 10.1109/5.915374 – volume: 479 start-page: 329 issue: 7373 year: 2011 ident: 10.1016/j.spmi.2020.106717_bib5 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: nature doi: 10.1038/nature10679 – volume: 63 start-page: 2190 issue: 5 year: 2016 ident: 10.1016/j.spmi.2020.106717_bib18 article-title: Analytical surface potential and drain current models of dual-metal-gate double-gate tunnel-FETs publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2016.2541181 – volume: 3 start-page: 164 issue: 3 year: 2015 ident: 10.1016/j.spmi.2020.106717_bib8 article-title: Band-offset engineering for GeSn-SiGeSn hetero tunnel FETs and the role of strain publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2015.2390971 – volume: 33 start-page: 659 issue: 7 year: 1978 ident: 10.1016/j.spmi.2020.106717_bib22 article-title: Band gap versus composition and demonstration of Vegard's law for In1− x Ga x as y P1− y lattice matched to InP publication-title: Appl. Phys. Lett. doi: 10.1063/1.90455 – volume: 62 start-page: 3184 issue: 10 year: 2015 ident: 10.1016/j.spmi.2020.106717_bib11 article-title: Fin enabled area scaled tunnel FET publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2015.2469678 – volume: 37 start-page: 839 issue: 7 year: 2016 ident: 10.1016/j.spmi.2020.106717_bib14 article-title: Tunnel field-effect transistor with an L-shaped gate publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2016.2574821 – volume: 58 start-page: 1649 issue: 6 year: 2011 ident: 10.1016/j.spmi.2020.106717_bib6 article-title: 30-nm tunnel FET with improved performance and reduced ambipolar current publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2011.2128320 – ident: 10.1016/j.spmi.2020.106717_bib27 – volume: 103 start-page: 104504 issue: 10 year: 2008 ident: 10.1016/j.spmi.2020.106717_bib9 article-title: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications publication-title: J. Appl. Phys. doi: 10.1063/1.2924413 – volume: 17 start-page: 268 issue: 2 year: 2018 ident: 10.1016/j.spmi.2020.106717_bib20 article-title: Modeling of mean barrier height levying various image forces of metal–insulator–metal structure to enhance the performance of conductive filament based memristor model publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2018.2793953 – start-page: 106512 year: 2020 ident: 10.1016/j.spmi.2020.106717_bib25 article-title: An analytical modeling of charge plasma based Tunnel Field Effect Transistor with impacts of gate underlap region publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106512 – start-page: 1 year: 2008 ident: 10.1016/j.spmi.2020.106717_bib7 article-title: Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and≪ 60mV/dec subthreshold slope – volume: 56 start-page: 2264 issue: 10 year: 2009 ident: 10.1016/j.spmi.2020.106717_bib16 article-title: Strained-$\hbox {Si} _ {1-x}\hbox {Ge} _ {x}/\hbox {Si} $ band-to-band tunneling transistors: impact of tunnel-junction germanium composition and doping concentration on switching behavior publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2009.2028055 |
SSID | ssj0009417 |
Score | 2.1029937 |
Snippet | In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106717 |
SubjectTerms | 2-D Poisson equation Analytical modelling Band 2 band tunneling (B2BT) Electric field Kane model Mobile charge Subthreshold slope (SS) Vertical T-shaped tunneling filed effect transistor (V-TTFET) |
Title | Analytical modeling and simulation analysis of T-shaped III-V heterojunction vertical T-FET |
URI | https://dx.doi.org/10.1016/j.spmi.2020.106717 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvoiOhXnx8iDbxLXNenX4xiOVXEvbjLwoTRpxzpcV-x89W_3Lk39ANmDUFpSLqVcrvdLmrv7EXLd4yoWCYyAEJbCbcaABVLZTHqJH0jJhdI7po9jdzQV9zNn1iCDOhcGwyqN7698uvbW5k7XaLNbZFn3CcAPpt_ggMEuAWZw3S6Eh1Z--_Ed5hEIzbqLwgylTeJMFeNVFqsM1og23nA9TVr2Bzj9AJzhITkwM0Xar17miDTSvEX2BjVBW4vs6uhNVR6TF11aRP-VppraBvCIxnlCy2xl6LmgWVUfoes5nbByERdpQsMwZM90gSEx6yUgnJbUDM34qAkb3k1OyBTOgxEzrAlMccvaMMyJVFxxDgsFC_lt4erEgPqxj8X5bD-xYu5Ka54qwCY_iTGVYx4kePgefI-npJmv8_SM0JT7jhRu6irhCQFDh8XqLcdOPC5i6aVt0qvVFSlTUhyZLV6jOnZsGaGKI1RxVKm4TW6--hRVQY2t0k49CtEvs4jA42_pd_7PfhdkH1tVsuElaW7e3tMrmHVsZEebVYfs9MOH0fgTlyDTzA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58IHoRn7g-c9CTxO026evgQXyw9XVxFcFDbdMsrrgP7Ip48U_5B51JUx8gHgShUJomIZ0M8yXNzHwAmw2hUpnjDEjpKDpmjHiUKZdnQR5GWSakMiemZ-d-81IeX3vXI_BWxcKQW6W1_aVNN9baltStNOuDTqd-geCHy280wKiXCDOO9aw80S_PuG8rduMDnOQt1z06bO03uaUW4Eo4zpBT4KASSghcTTtEAot3L0VoTEPKYOeGuZMKP3PaWqEBD_OU4h3aUU5XGKDSYr-jMC7RXBBtws7rp19JJA3NL42O0_BspE7pVFYMuh3clLpU4AeGJe0HNPyCcEczMG2Xpmyv_PpZGNG9OZjcrxjh5mDCuIuqYh5uTC4T8xucGS4dBECW9nJWdLqWDwwfy3QnrN9mLV7cpQOdsziO-RW7Ix-c_j1CqqlpKKGpqxZHKS7A5b_IchHGev2eXgKmRehl0te-koGUqCuUHd_x3DwQMs0CXYNGJa5E2RzmRKXxkFTOavcJiTghESeliGuw_dFmUGbw-LW2V81C8k0PE4SYX9ot_7HdBkw2W2enyWl8frICU_SmjHRchbHh45NewyXPMFs3Ksbg9r91-h1vEwyv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+modeling+and+simulation+analysis+of+T-shaped+III-V+heterojunction+vertical+T-FET&rft.jtitle=Superlattices+and+microstructures&rft.au=Singh%2C+Shailendra&rft.au=Raj%2C+Balwinder&rft.date=2020-11-01&rft.issn=0749-6036&rft.volume=147&rft.spage=106717&rft_id=info:doi/10.1016%2Fj.spmi.2020.106717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2020_106717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |