Analytical modeling and simulation analysis of T-shaped III-V heterojunction vertical T-FET

In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical Tunneling FET with inherited properties of dual modulation effect. The device's surface potential is determined from the compact model,...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 147; p. 106717
Main Authors Singh, Shailendra, Raj, Balwinder
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical Tunneling FET with inherited properties of dual modulation effect. The device's surface potential is determined from the compact model, which is the most significant consideration for defining device current characteristics. There have been numerous efforts to predict the electrical characteristics of In0.53Ga0.47As as a heterojunction and to discuss the method of device improvement as a function of mole-fraction, gate-drain biasing potential, gate metal work-function. To determine the tunneling width, the dual modulation effect is used to regulate the biasing voltage at both the source and drain junction. A 2-D Poisson equation is solved for the proposed model by using parabolic approximation method with constant electric field which are used to determine the effect of In0.53Ga0.47As as a comparison to Silicon and SiGe material device. Moreover, a new expression of channel surface potential is derived that can forecast the effect of drain and gate biasing. The derived model results validation is carried out by the comparison with the results obtained by TCAD simulation. •A new 2-D compact analytical modeling analysis of surface potential model for III-V heterojunction Vertical T-shaped Tunnel FET.•By solving Poisson's equation, potential of gate-bias and drain bias have been calculated with imposed InGaAs layer and then, current has been estimated.•The Kane's Model is used for calculating the band-2-band tunneling generation rate to derive the drain current.•Most importantly, a new channel surface potential expression is derived that can forecast the effect of drain and gate biasing.•The derived model results are compared and found to be in perfect agreement with the simulated one in order to evaluate the validity of electrical parameter model.
AbstractList In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical Tunneling FET with inherited properties of dual modulation effect. The device's surface potential is determined from the compact model, which is the most significant consideration for defining device current characteristics. There have been numerous efforts to predict the electrical characteristics of In0.53Ga0.47As as a heterojunction and to discuss the method of device improvement as a function of mole-fraction, gate-drain biasing potential, gate metal work-function. To determine the tunneling width, the dual modulation effect is used to regulate the biasing voltage at both the source and drain junction. A 2-D Poisson equation is solved for the proposed model by using parabolic approximation method with constant electric field which are used to determine the effect of In0.53Ga0.47As as a comparison to Silicon and SiGe material device. Moreover, a new expression of channel surface potential is derived that can forecast the effect of drain and gate biasing. The derived model results validation is carried out by the comparison with the results obtained by TCAD simulation. •A new 2-D compact analytical modeling analysis of surface potential model for III-V heterojunction Vertical T-shaped Tunnel FET.•By solving Poisson's equation, potential of gate-bias and drain bias have been calculated with imposed InGaAs layer and then, current has been estimated.•The Kane's Model is used for calculating the band-2-band tunneling generation rate to derive the drain current.•Most importantly, a new channel surface potential expression is derived that can forecast the effect of drain and gate biasing.•The derived model results are compared and found to be in perfect agreement with the simulated one in order to evaluate the validity of electrical parameter model.
ArticleNumber 106717
Author Raj, Balwinder
Singh, Shailendra
Author_xml – sequence: 1
  givenname: Shailendra
  surname: Singh
  fullname: Singh, Shailendra
  email: shailendras.ec.18@nitj.ac.in
  organization: Nanoelectronics Research Lab, Department of Electronics and Communication Engineering, NIT, Jalandhar, India
– sequence: 2
  givenname: Balwinder
  surname: Raj
  fullname: Raj, Balwinder
  email: balwinderraj@gmail.com
  organization: Department of Electronics and Communication Engineering, NITTTR, Chandigarh, India
BookMark eNp9kE1qwzAQhUVJoUnaC3TlCygdWbZkQzch9MdQ6CbtpguhSnIjY8tBcgK5feW4qy4CA8MM8z3evAWaud4ZhO4JrAgQ9tCswr6zqxTSccE44VdoTqBkmDLOZ2gOPCsxA8pu0CKEBgDKjPA5-lo72Z4Gq2SbdL02rXU_iXQ6CbY7tHKwvYtjPAk2JH2dbHHYyb3RSVVV-DPZmcH4vjk4db48Gj9JbfHz0_YWXdeyDebury_RR9xuXvHb-0u1Wb9hRQEGzNIiV1RRyjMOPM_S2HMJJJcFJxmkhQZJ2TfURpG0KLSM3nld6rEKXjK6RMWkq3wfgje1UHY4Wx-8tK0gIMaQRCPGkMQYkphCimj6D91720l_ugw9TpCJTx2t8SIoa5wy2nqjBqF7ewn_Bcoage8
CitedBy_id crossref_primary_10_1142_S1793292024500565
crossref_primary_10_1007_s12633_022_01726_3
crossref_primary_10_1007_s12633_021_01559_6
crossref_primary_10_1007_s12633_021_01244_8
crossref_primary_10_1109_TED_2023_3312625
crossref_primary_10_1007_s12633_021_01416_6
crossref_primary_10_1002_adts_202400626
crossref_primary_10_1007_s12633_021_01384_x
crossref_primary_10_1007_s00339_021_04880_4
crossref_primary_10_1016_j_spmi_2021_106992
crossref_primary_10_1007_s12633_021_01576_5
crossref_primary_10_1007_s12633_021_01469_7
crossref_primary_10_1007_s12633_021_01009_3
crossref_primary_10_1007_s12633_022_01971_6
crossref_primary_10_1007_s12633_022_01835_z
Cites_doi 10.1109/TVLSI.2019.2901032
10.1109/LED.2007.901273
10.1109/JEDS.2014.2327626
10.1109/TED.2013.2270566
10.1021/nl4029494
10.1109/TED.2020.2971475
10.7567/JJAP.56.084301
10.1109/TED.2009.2030831
10.1109/TED.2008.2011934
10.1063/1.1735965
10.1109/5.915374
10.1038/nature10679
10.1109/TED.2016.2541181
10.1109/JEDS.2015.2390971
10.1063/1.90455
10.1109/TED.2015.2469678
10.1109/LED.2016.2574821
10.1109/TED.2011.2128320
10.1063/1.2924413
10.1109/TNANO.2018.2793953
10.1016/j.spmi.2020.106512
10.1109/TED.2009.2028055
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2020.106717
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2020_106717
S0749603620312660
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-6285c3c33747075427475a015a8714028d0a36b0fec1288da0097f9df9df87963
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:15 EDT 2025
Thu Apr 24 22:57:40 EDT 2025
Fri Feb 23 02:46:41 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Kane model
Electric field
Band 2 band tunneling (B2BT)
Vertical T-shaped tunneling filed effect transistor (V-TTFET)
Analytical modelling
Subthreshold slope (SS)
Mobile charge
2-D Poisson equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-6285c3c33747075427475a015a8714028d0a36b0fec1288da0097f9df9df87963
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2020_106717
crossref_primary_10_1016_j_spmi_2020_106717
elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Toh (bib9) 2008; 103
Koswatta, Lundstrom, Nikonov (bib2) 2009; 56
Sant, Schenk (bib8) May 2015; 3
Avci, Young (bib12) 2013
Nahory, Pollack, Johnston, Barns (bib22) 1978; 33
Goldberg, Schmidt (bib23) 1999; 1
Khatami, Banerjee (bib4) 2009; 56
Rajoriya, Shrivastava, Gossner, Schulz, Ramgopal Rao (bib10) 2013; 60
Ionescu, Heike (bib5) 2011; 479
Frank, Dennard, Nowak, Solomon, Yuan, Sum Philip Wong (bib1) 2001; 89
Krishnamohan, Kim, Raghunathan, Krishna (bib7) 2008
Kane (bib26) Jun. 1961; 32
Prabhat, Dutta (bib18) 2016; 63
Yang (bib14) 2016; 37
Singh, Raj (bib20) 2018; 17
Nayfeh, Hoyt, Antoniadis (bib16) 2009; 56
Dey, Svensson, Martin, Lind, Thelander, Wernersson (bib13) 2013; 13
Singh, Raj (bib17) 2019; 27
Li, Jason (bib24) 2020; 67
Sentaurus User’s Manual, Synopsys, Inc., Mountain View, CA, USA,2017.9.
Kim, Choi (bib21) 2017; 56
Badgujjar (bib19) 2019
Abdi, Jagadesh Kumar (bib15) 2014; 2
Wadhwa, Raj (bib25) 2020
Choi, Park, Duk Lee, Liu (bib3) 2007; 28
Anghel, Gupta, Amara, Vladimirescu (bib6) 2011; 58
Hemanjaneyulu, Shrivastava (bib11) 2015; 62
Rajoriya (10.1016/j.spmi.2020.106717_bib10) 2013; 60
Ionescu (10.1016/j.spmi.2020.106717_bib5) 2011; 479
Singh (10.1016/j.spmi.2020.106717_bib20) 2018; 17
Badgujjar (10.1016/j.spmi.2020.106717_bib19) 2019
Khatami (10.1016/j.spmi.2020.106717_bib4) 2009; 56
Dey (10.1016/j.spmi.2020.106717_bib13) 2013; 13
Krishnamohan (10.1016/j.spmi.2020.106717_bib7) 2008
Anghel (10.1016/j.spmi.2020.106717_bib6) 2011; 58
Goldberg (10.1016/j.spmi.2020.106717_bib23) 1999; 1
Nahory (10.1016/j.spmi.2020.106717_bib22) 1978; 33
Li (10.1016/j.spmi.2020.106717_bib24) 2020; 67
Kim (10.1016/j.spmi.2020.106717_bib21) 2017; 56
Koswatta (10.1016/j.spmi.2020.106717_bib2) 2009; 56
Kane (10.1016/j.spmi.2020.106717_bib26) 1961; 32
Nayfeh (10.1016/j.spmi.2020.106717_bib16) 2009; 56
Yang (10.1016/j.spmi.2020.106717_bib14) 2016; 37
Choi (10.1016/j.spmi.2020.106717_bib3) 2007; 28
Prabhat (10.1016/j.spmi.2020.106717_bib18) 2016; 63
Frank (10.1016/j.spmi.2020.106717_bib1) 2001; 89
10.1016/j.spmi.2020.106717_bib27
Avci (10.1016/j.spmi.2020.106717_bib12) 2013
Wadhwa (10.1016/j.spmi.2020.106717_bib25) 2020
Abdi (10.1016/j.spmi.2020.106717_bib15) 2014; 2
Singh (10.1016/j.spmi.2020.106717_bib17) 2019; 27
Toh (10.1016/j.spmi.2020.106717_bib9) 2008; 103
Hemanjaneyulu (10.1016/j.spmi.2020.106717_bib11) 2015; 62
Sant (10.1016/j.spmi.2020.106717_bib8) 2015; 3
References_xml – volume: 89
  start-page: 259
  year: 2001
  end-page: 288
  ident: bib1
  article-title: Device scaling limits of Si MOSFETs and their application dependencies
  publication-title: Proc. IEEE
– volume: 1
  start-page: 191
  year: 1999
  end-page: 213
  ident: bib23
  article-title: Handbook series on semiconductor parameters
– start-page: 106512
  year: 2020
  ident: bib25
  article-title: An analytical modeling of charge plasma based Tunnel Field Effect Transistor with impacts of gate underlap region
  publication-title: Superlattice. Microst.
– volume: 62
  start-page: 3184
  year: 2015
  end-page: 3191
  ident: bib11
  article-title: Fin enabled area scaled tunnel FET
  publication-title: IEEE Trans. Electron. Dev.
– volume: 479
  start-page: 329
  year: 2011
  end-page: 337
  ident: bib5
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: nature
– volume: 33
  start-page: 659
  year: 1978
  end-page: 661
  ident: bib22
  article-title: Band gap versus composition and demonstration of Vegard's law for In1− x Ga x as y P1− y lattice matched to InP
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 1649
  year: 2011
  end-page: 1654
  ident: bib6
  article-title: 30-nm tunnel FET with improved performance and reduced ambipolar current
  publication-title: IEEE Trans. Electron. Dev.
– start-page: 1
  year: 2008
  end-page: 3
  ident: bib7
  article-title: Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and≪ 60mV/dec subthreshold slope
  publication-title: 2008 IEEE International Electron Devices Meeting
– volume: 56
  start-page: 2752
  year: 2009
  end-page: 2760
  ident: bib4
  article-title: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy- efficient digital circuits
  publication-title: IEEE Trans. Electron. Dev.
– volume: 56
  start-page: 456
  year: 2009
  end-page: 465
  ident: bib2
  article-title: Performance comparison between pin tunneling transistors and conventional MOSFETs
  publication-title: IEEE Trans. Electron. Dev.
– volume: 3
  start-page: 164
  year: May 2015
  end-page: 175
  ident: bib8
  article-title: Band-offset engineering for GeSn-SiGeSn hetero tunnel FETs and the role of strain
  publication-title: IEEE J. Electron Devices Soc.
– volume: 60
  start-page: 2626
  year: 2013
  end-page: 2633
  ident: bib10
  article-title: Sub 0.5 V operation of performance driven mobile systems based on area scaled tunnel FET devices
  publication-title: IEEE Trans. Electron. Dev.
– volume: 67
  start-page: 1480
  year: 2020
  end-page: 1484
  ident: bib24
  article-title: Vertical P-TFET with a P-type SiGe pocket
  publication-title: IEEE Trans. Electron. Dev.
– volume: 32
  start-page: 83
  year: Jun. 1961
  end-page: 91
  ident: bib26
  article-title: Theory of tunneling
  publication-title: J. Appl. Phys.
– volume: 103
  start-page: 104504
  year: 2008
  ident: bib9
  article-title: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications
  publication-title: J. Appl. Phys.
– volume: 17
  start-page: 268
  year: 2018
  end-page: 275
  ident: bib20
  article-title: Modeling of mean barrier height levying various image forces of metal–insulator–metal structure to enhance the performance of conductive filament based memristor model
  publication-title: IEEE Trans. Nanotechnol.
– volume: 37
  start-page: 839
  year: 2016
  end-page: 842
  ident: bib14
  article-title: Tunnel field-effect transistor with an L-shaped gate
  publication-title: IEEE Electron. Device Lett.
– volume: 56
  year: 2017
  ident: bib21
  article-title: Improved compact model for double-gate tunnel field-effect transistors by the rigorous consideration of gate fringing field
  publication-title: Jpn. J. Appl. Phys.
– volume: 63
  start-page: 2190
  year: 2016
  end-page: 2196
  ident: bib18
  article-title: Analytical surface potential and drain current models of dual-metal-gate double-gate tunnel-FETs
  publication-title: IEEE Trans. Electron. Dev.
– reference: Sentaurus User’s Manual, Synopsys, Inc., Mountain View, CA, USA,2017.9.
– volume: 2
  start-page: 187
  year: 2014
  end-page: 190
  ident: bib15
  article-title: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain
  publication-title: IEEE Journal of the Electron Devices Society
– year: 2013
  ident: bib12
  article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length
  publication-title: 2013 IEEE International Electron Devices Meeting
– volume: 56
  start-page: 2264
  year: 2009
  end-page: 2269
  ident: bib16
  article-title: Strained-$\hbox {Si} _ {1-x}\hbox {Ge} _ {x}/\hbox {Si} $ band-to-band tunneling transistors: impact of tunnel-junction germanium composition and doping concentration on switching behavior
  publication-title: IEEE Trans. Electron. Dev.
– volume: 28
  start-page: 743
  year: 2007
  end-page: 745
  ident: bib3
  article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec
  publication-title: IEEE Electron. Device Lett.
– volume: 13
  start-page: 5919
  year: 2013
  end-page: 5924
  ident: bib13
  article-title: Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors
  publication-title: Nano Lett.
– volume: 27
  start-page: 1322
  year: 2019
  end-page: 1328
  ident: bib17
  article-title: Design and investigation of 7t2m-NVSRAM with enhanced stability and temperature impact on store/restore energy
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib19
  article-title: Design and analysis of dual source vertical tunnel field effect transistor for high performance
  publication-title: Transactions on Electrical and Electronic Materials
– year: 2013
  ident: 10.1016/j.spmi.2020.106717_bib12
  article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length
– volume: 27
  start-page: 1322
  issue: 6
  year: 2019
  ident: 10.1016/j.spmi.2020.106717_bib17
  article-title: Design and investigation of 7t2m-NVSRAM with enhanced stability and temperature impact on store/restore energy
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2019.2901032
– volume: 28
  start-page: 743
  issue: 8
  year: 2007
  ident: 10.1016/j.spmi.2020.106717_bib3
  article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2007.901273
– volume: 2
  start-page: 187
  issue: 6
  year: 2014
  ident: 10.1016/j.spmi.2020.106717_bib15
  article-title: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain
  publication-title: IEEE Journal of the Electron Devices Society
  doi: 10.1109/JEDS.2014.2327626
– start-page: 1
  year: 2019
  ident: 10.1016/j.spmi.2020.106717_bib19
  article-title: Design and analysis of dual source vertical tunnel field effect transistor for high performance
  publication-title: Transactions on Electrical and Electronic Materials
– volume: 60
  start-page: 2626
  issue: 8
  year: 2013
  ident: 10.1016/j.spmi.2020.106717_bib10
  article-title: Sub 0.5 V operation of performance driven mobile systems based on area scaled tunnel FET devices
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2013.2270566
– volume: 13
  start-page: 5919
  issue: 12
  year: 2013
  ident: 10.1016/j.spmi.2020.106717_bib13
  article-title: Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors
  publication-title: Nano Lett.
  doi: 10.1021/nl4029494
– volume: 1
  start-page: 191
  year: 1999
  ident: 10.1016/j.spmi.2020.106717_bib23
  article-title: Handbook series on semiconductor parameters
– volume: 67
  start-page: 1480
  issue: 4
  year: 2020
  ident: 10.1016/j.spmi.2020.106717_bib24
  article-title: Vertical P-TFET with a P-type SiGe pocket
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2020.2971475
– volume: 56
  issue: 8
  year: 2017
  ident: 10.1016/j.spmi.2020.106717_bib21
  article-title: Improved compact model for double-gate tunnel field-effect transistors by the rigorous consideration of gate fringing field
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.084301
– volume: 56
  start-page: 2752
  issue: 11
  year: 2009
  ident: 10.1016/j.spmi.2020.106717_bib4
  article-title: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy- efficient digital circuits
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2009.2030831
– volume: 56
  start-page: 456
  issue: 3
  year: 2009
  ident: 10.1016/j.spmi.2020.106717_bib2
  article-title: Performance comparison between pin tunneling transistors and conventional MOSFETs
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2008.2011934
– volume: 32
  start-page: 83
  issue: 1
  year: 1961
  ident: 10.1016/j.spmi.2020.106717_bib26
  article-title: Theory of tunneling
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1735965
– volume: 89
  start-page: 259
  issue: 3
  year: 2001
  ident: 10.1016/j.spmi.2020.106717_bib1
  article-title: Device scaling limits of Si MOSFETs and their application dependencies
  publication-title: Proc. IEEE
  doi: 10.1109/5.915374
– volume: 479
  start-page: 329
  issue: 7373
  year: 2011
  ident: 10.1016/j.spmi.2020.106717_bib5
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: nature
  doi: 10.1038/nature10679
– volume: 63
  start-page: 2190
  issue: 5
  year: 2016
  ident: 10.1016/j.spmi.2020.106717_bib18
  article-title: Analytical surface potential and drain current models of dual-metal-gate double-gate tunnel-FETs
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2016.2541181
– volume: 3
  start-page: 164
  issue: 3
  year: 2015
  ident: 10.1016/j.spmi.2020.106717_bib8
  article-title: Band-offset engineering for GeSn-SiGeSn hetero tunnel FETs and the role of strain
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2015.2390971
– volume: 33
  start-page: 659
  issue: 7
  year: 1978
  ident: 10.1016/j.spmi.2020.106717_bib22
  article-title: Band gap versus composition and demonstration of Vegard's law for In1− x Ga x as y P1− y lattice matched to InP
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.90455
– volume: 62
  start-page: 3184
  issue: 10
  year: 2015
  ident: 10.1016/j.spmi.2020.106717_bib11
  article-title: Fin enabled area scaled tunnel FET
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2015.2469678
– volume: 37
  start-page: 839
  issue: 7
  year: 2016
  ident: 10.1016/j.spmi.2020.106717_bib14
  article-title: Tunnel field-effect transistor with an L-shaped gate
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2016.2574821
– volume: 58
  start-page: 1649
  issue: 6
  year: 2011
  ident: 10.1016/j.spmi.2020.106717_bib6
  article-title: 30-nm tunnel FET with improved performance and reduced ambipolar current
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2011.2128320
– ident: 10.1016/j.spmi.2020.106717_bib27
– volume: 103
  start-page: 104504
  issue: 10
  year: 2008
  ident: 10.1016/j.spmi.2020.106717_bib9
  article-title: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2924413
– volume: 17
  start-page: 268
  issue: 2
  year: 2018
  ident: 10.1016/j.spmi.2020.106717_bib20
  article-title: Modeling of mean barrier height levying various image forces of metal–insulator–metal structure to enhance the performance of conductive filament based memristor model
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2018.2793953
– start-page: 106512
  year: 2020
  ident: 10.1016/j.spmi.2020.106717_bib25
  article-title: An analytical modeling of charge plasma based Tunnel Field Effect Transistor with impacts of gate underlap region
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106512
– start-page: 1
  year: 2008
  ident: 10.1016/j.spmi.2020.106717_bib7
  article-title: Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and≪ 60mV/dec subthreshold slope
– volume: 56
  start-page: 2264
  issue: 10
  year: 2009
  ident: 10.1016/j.spmi.2020.106717_bib16
  article-title: Strained-$\hbox {Si} _ {1-x}\hbox {Ge} _ {x}/\hbox {Si} $ band-to-band tunneling transistors: impact of tunnel-junction germanium composition and doping concentration on switching behavior
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2009.2028055
SSID ssj0009417
Score 2.1029937
Snippet In this paper, we have developed a new 2D compact analytical model for surface potential and drain current for III-V group heterojunction of T-shaped Vertical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106717
SubjectTerms 2-D Poisson equation
Analytical modelling
Band 2 band tunneling (B2BT)
Electric field
Kane model
Mobile charge
Subthreshold slope (SS)
Vertical T-shaped tunneling filed effect transistor (V-TTFET)
Title Analytical modeling and simulation analysis of T-shaped III-V heterojunction vertical T-FET
URI https://dx.doi.org/10.1016/j.spmi.2020.106717
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvoiOhXnx8iDbxLXNenX4xiOVXEvbjLwoTRpxzpcV-x89W_3Lk39ANmDUFpSLqVcrvdLmrv7EXLd4yoWCYyAEJbCbcaABVLZTHqJH0jJhdI7po9jdzQV9zNn1iCDOhcGwyqN7698uvbW5k7XaLNbZFn3CcAPpt_ggMEuAWZw3S6Eh1Z--_Ed5hEIzbqLwgylTeJMFeNVFqsM1og23nA9TVr2Bzj9AJzhITkwM0Xar17miDTSvEX2BjVBW4vs6uhNVR6TF11aRP-VppraBvCIxnlCy2xl6LmgWVUfoes5nbByERdpQsMwZM90gSEx6yUgnJbUDM34qAkb3k1OyBTOgxEzrAlMccvaMMyJVFxxDgsFC_lt4erEgPqxj8X5bD-xYu5Ka54qwCY_iTGVYx4kePgefI-npJmv8_SM0JT7jhRu6irhCQFDh8XqLcdOPC5i6aVt0qvVFSlTUhyZLV6jOnZsGaGKI1RxVKm4TW6--hRVQY2t0k49CtEvs4jA42_pd_7PfhdkH1tVsuElaW7e3tMrmHVsZEebVYfs9MOH0fgTlyDTzA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58IHoRn7g-c9CTxO026evgQXyw9XVxFcFDbdMsrrgP7Ip48U_5B51JUx8gHgShUJomIZ0M8yXNzHwAmw2hUpnjDEjpKDpmjHiUKZdnQR5GWSakMiemZ-d-81IeX3vXI_BWxcKQW6W1_aVNN9baltStNOuDTqd-geCHy280wKiXCDOO9aw80S_PuG8rduMDnOQt1z06bO03uaUW4Eo4zpBT4KASSghcTTtEAot3L0VoTEPKYOeGuZMKP3PaWqEBD_OU4h3aUU5XGKDSYr-jMC7RXBBtws7rp19JJA3NL42O0_BspE7pVFYMuh3clLpU4AeGJe0HNPyCcEczMG2Xpmyv_PpZGNG9OZjcrxjh5mDCuIuqYh5uTC4T8xucGS4dBECW9nJWdLqWDwwfy3QnrN9mLV7cpQOdsziO-RW7Ix-c_j1CqqlpKKGpqxZHKS7A5b_IchHGev2eXgKmRehl0te-koGUqCuUHd_x3DwQMs0CXYNGJa5E2RzmRKXxkFTOavcJiTghESeliGuw_dFmUGbw-LW2V81C8k0PE4SYX9ot_7HdBkw2W2enyWl8frICU_SmjHRchbHh45NewyXPMFs3Ksbg9r91-h1vEwyv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+modeling+and+simulation+analysis+of+T-shaped+III-V+heterojunction+vertical+T-FET&rft.jtitle=Superlattices+and+microstructures&rft.au=Singh%2C+Shailendra&rft.au=Raj%2C+Balwinder&rft.date=2020-11-01&rft.issn=0749-6036&rft.volume=147&rft.spage=106717&rft_id=info:doi/10.1016%2Fj.spmi.2020.106717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2020_106717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon