An improved random forest based on the classification accuracy and correlation measurement of decision trees

•Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision trees.•Propose a method for quantifying the diversity between decision trees.•Multiple tests verify the superiority of the proposed improved rando...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 237; p. 121549
Main Authors Sun, Zhigang, Wang, Guotao, Li, Pengfei, Wang, Hui, Zhang, Min, Liang, Xiaowen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision trees.•Propose a method for quantifying the diversity between decision trees.•Multiple tests verify the superiority of the proposed improved random forest. Random forest is one of the most widely used machine learning algorithms. Decision trees used to construct the random forest may have low classification accuracies or high correlations, which affects the comprehensive performance of the random forest. Aiming at these problems, the authors proposed an improved random forest based on the classification accuracy and correlation measurement of decision trees in this paper. Its main idea includes two parts, one is retaining the classification and regression trees (CARTs) with better classification effects, the other is reducing the correlations between the CARTs. Specifically, in the classification effect evaluation part, each CART was applied to make predictions on three reserved data sets, then the average classification accuracies were achieved, respectively. Thus, all the CARTs were sorted in descending order according to their achieved average classification accuracies. In the correlation measurement part, the improved dot product method was proposed to calculate the cosine similarity, i.e., the correlation, between CARTs in the feature space. By using the achieved average classification accuracy as reference, the grid search method was used to find the inner product threshold. On this basis, the CARTs with low average classification accuracy among CART pairs whose inner product values are higher than the inner product threshold were marked as deletable. The achieved average classification accuracies and correlations of CARTs were comprehensively considered, those with high correlation and weak classification effect were deleted, and those with better quality were retained to construct the random forest. Multiple experiments show that, the proposed improved random forest achieved higher average classification accuracy than the five random forests used for comparison, and the lead was stable. The G-means and out-of-bag data (OBD) score obtained by the proposed improved random forest were also higher than the five random forests, and the lead was more obvious. In addition, the test results of three non-parametric tests show that, there were significant diversities between the proposed improved random forest and the other five random forests. This effectively proves the superiority and practicability of the proposed improved random forest.
AbstractList •Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision trees.•Propose a method for quantifying the diversity between decision trees.•Multiple tests verify the superiority of the proposed improved random forest. Random forest is one of the most widely used machine learning algorithms. Decision trees used to construct the random forest may have low classification accuracies or high correlations, which affects the comprehensive performance of the random forest. Aiming at these problems, the authors proposed an improved random forest based on the classification accuracy and correlation measurement of decision trees in this paper. Its main idea includes two parts, one is retaining the classification and regression trees (CARTs) with better classification effects, the other is reducing the correlations between the CARTs. Specifically, in the classification effect evaluation part, each CART was applied to make predictions on three reserved data sets, then the average classification accuracies were achieved, respectively. Thus, all the CARTs were sorted in descending order according to their achieved average classification accuracies. In the correlation measurement part, the improved dot product method was proposed to calculate the cosine similarity, i.e., the correlation, between CARTs in the feature space. By using the achieved average classification accuracy as reference, the grid search method was used to find the inner product threshold. On this basis, the CARTs with low average classification accuracy among CART pairs whose inner product values are higher than the inner product threshold were marked as deletable. The achieved average classification accuracies and correlations of CARTs were comprehensively considered, those with high correlation and weak classification effect were deleted, and those with better quality were retained to construct the random forest. Multiple experiments show that, the proposed improved random forest achieved higher average classification accuracy than the five random forests used for comparison, and the lead was stable. The G-means and out-of-bag data (OBD) score obtained by the proposed improved random forest were also higher than the five random forests, and the lead was more obvious. In addition, the test results of three non-parametric tests show that, there were significant diversities between the proposed improved random forest and the other five random forests. This effectively proves the superiority and practicability of the proposed improved random forest.
ArticleNumber 121549
Author Sun, Zhigang
Liang, Xiaowen
Li, Pengfei
Wang, Hui
Wang, Guotao
Zhang, Min
Author_xml – sequence: 1
  givenname: Zhigang
  orcidid: 0000-0002-5112-9627
  surname: Sun
  fullname: Sun, Zhigang
  email: 22b906048@stu.hit.edu.cn
  organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China
– sequence: 2
  givenname: Guotao
  orcidid: 0000-0002-2487-9609
  surname: Wang
  fullname: Wang, Guotao
  email: wanggt@hlju.edu.cn
  organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China
– sequence: 3
  givenname: Pengfei
  orcidid: 0000-0002-6282-6831
  surname: Li
  fullname: Li, Pengfei
  email: 20b906020@stu.hit.edu.cn
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Hui
  orcidid: 0000-0002-0093-0510
  surname: Wang
  fullname: Wang, Hui
  organization: School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
– sequence: 5
  givenname: Min
  orcidid: 0000-0002-8978-677X
  surname: Zhang
  fullname: Zhang, Min
  email: 2211813@hlju.edu.cn
  organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China
– sequence: 6
  givenname: Xiaowen
  orcidid: 0000-0002-6174-2951
  surname: Liang
  fullname: Liang, Xiaowen
  organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-BUDzuKoZsQ-oJAN-1aKKMRVbCtICkp-fvadVddZDVwh3PhnhmZdKFDQu45W3DGlw_7BaZvsxBMyAUXvCrrKzLlKyWLparlhExZXami5Kq8IbOU9oxxxZiakmbdUd8eYjihpdF0NrTUhYgp051JfRY6mr-QQmNS8s6Dyb6PDMAxGjjTnqAQYsRmfLRo0jFii12mwVGL4NOQ54iYbsm1M03Cu787J5_PTx-b12L7_vK2WW8LkIzlogKBZSl2RpW1dHZnRWWNUk46sUJeS1YLZiS3RkgLUtQSQLBdZVzFZM0lyDkRYy_EkFJEpw_RtyaeNWd68KX3evClB1969NVDq38Q-Pw7Kkfjm8vo44hiP-rkMeoEHjtA6yNC1jb4S_gPkn6KqQ
CitedBy_id crossref_primary_10_1016_j_kjs_2025_100408
crossref_primary_10_1088_2631_8695_adaca8
crossref_primary_10_11648_j_jccee_20251002_12
crossref_primary_10_1016_j_ijhydene_2024_09_054
crossref_primary_10_1080_23311932_2024_2448597
crossref_primary_10_2166_hydro_2024_324
crossref_primary_10_3390_app142210376
crossref_primary_10_1007_s11356_025_35999_z
crossref_primary_10_1142_S0219686725500179
crossref_primary_10_21926_aeer_2404020
crossref_primary_10_3390_app14051956
crossref_primary_10_1016_j_eswa_2025_127131
crossref_primary_10_3934_era_2024237
crossref_primary_10_1021_acsomega_4c02086
crossref_primary_10_1016_j_fuproc_2025_108182
crossref_primary_10_1007_s13042_024_02462_3
crossref_primary_10_1109_TIM_2025_3547476
crossref_primary_10_3390_foods13182936
crossref_primary_10_1007_s11042_024_19769_6
crossref_primary_10_1016_j_knosys_2024_112939
crossref_primary_10_1186_s12911_024_02835_2
crossref_primary_10_1109_ACCESS_2024_3456295
crossref_primary_10_1016_j_spc_2024_03_019
crossref_primary_10_3390_asi7050085
crossref_primary_10_1016_j_cie_2024_110574
crossref_primary_10_1016_j_tust_2023_105514
crossref_primary_10_3390_math13050882
crossref_primary_10_1186_s40494_024_01329_8
crossref_primary_10_3390_d17010021
crossref_primary_10_3390_life15030394
crossref_primary_10_1109_ACCESS_2024_3465843
crossref_primary_10_1007_s44196_024_00716_0
crossref_primary_10_1039_D4RA02873B
crossref_primary_10_1080_01431161_2024_2388864
crossref_primary_10_1063_5_0250694
crossref_primary_10_3389_ffgc_2024_1349772
crossref_primary_10_1016_j_powtec_2024_119649
crossref_primary_10_3390_ma17071452
crossref_primary_10_3390_f16030450
crossref_primary_10_3390_app15031231
crossref_primary_10_3389_fpubh_2024_1362392
crossref_primary_10_3390_su151914477
crossref_primary_10_1007_s41939_025_00806_2
crossref_primary_10_1016_j_apenergy_2024_124497
crossref_primary_10_1016_j_jclepro_2024_144332
crossref_primary_10_1016_j_fuproc_2024_108141
crossref_primary_10_1016_j_egyr_2024_09_073
crossref_primary_10_1016_j_ejrh_2025_102194
crossref_primary_10_1109_ACCESS_2025_3539081
crossref_primary_10_3390_math12244041
crossref_primary_10_1016_j_fuel_2024_133093
crossref_primary_10_1007_s10706_025_03091_5
crossref_primary_10_1016_j_jclepro_2024_141903
crossref_primary_10_1016_j_neucom_2024_128970
crossref_primary_10_1016_j_fuel_2025_135056
crossref_primary_10_3390_agronomy15010200
crossref_primary_10_1016_j_energy_2024_130899
crossref_primary_10_1109_ACCESS_2024_3467920
crossref_primary_10_1016_j_engappai_2025_110023
crossref_primary_10_1590_1806_9282_20241282
crossref_primary_10_1007_s12145_024_01635_6
crossref_primary_10_1063_5_0214890
crossref_primary_10_1109_ACCESS_2024_3492973
crossref_primary_10_1142_S021968672550012X
crossref_primary_10_1002_wer_11136
crossref_primary_10_1016_j_eswa_2025_126413
crossref_primary_10_3390_s24196432
crossref_primary_10_3390_f15122247
crossref_primary_10_1016_j_engappai_2024_109944
crossref_primary_10_1016_j_foodres_2025_115835
crossref_primary_10_1080_00405000_2025_2450851
crossref_primary_10_1016_j_eswa_2025_126770
crossref_primary_10_3390_su16031079
crossref_primary_10_1007_s42454_024_00055_7
crossref_primary_10_1016_j_scs_2024_105978
crossref_primary_10_1007_s41742_024_00647_w
crossref_primary_10_21015_vtcs_v12i2_1926
crossref_primary_10_1177_1420326X241303733
crossref_primary_10_3390_f16010015
crossref_primary_10_1109_ACCESS_2024_3481658
crossref_primary_10_1371_journal_pone_0304450
crossref_primary_10_1515_revce_2024_0047
crossref_primary_10_3390_app15020499
crossref_primary_10_3390_agronomy14092128
crossref_primary_10_3390_app14093940
crossref_primary_10_1016_j_omega_2024_103247
crossref_primary_10_1016_j_eswa_2023_122702
crossref_primary_10_3390_diagnostics14070723
crossref_primary_10_1007_s41062_025_01931_0
crossref_primary_10_1016_j_spc_2024_10_003
crossref_primary_10_1080_23080477_2024_2364537
crossref_primary_10_1109_ACCESS_2024_3373798
crossref_primary_10_1016_j_dib_2024_111224
crossref_primary_10_1016_j_measurement_2024_116257
crossref_primary_10_1111_ffe_14410
crossref_primary_10_3390_batteries11030108
crossref_primary_10_18287_2542_0461_2024_15_4_187_201
crossref_primary_10_1016_j_ins_2024_121084
crossref_primary_10_70749_ijbr_v2i02_396
crossref_primary_10_1093_jigpal_jzae104
crossref_primary_10_70322_amsm_2024_10009
crossref_primary_10_3390_electronics14030626
Cites_doi 10.1007/BF00058655
10.1016/j.ins.2010.06.021
10.1007/s00180-011-0242-8
10.1016/j.datak.2013.07.002
10.1109/TNNLS.2017.2746107
10.1023/A:1010933404324
10.1093/bioinformatics/btr597
10.1109/34.709601
10.1007/s11596-012-0023-9
10.1016/j.measurement.2021.110164
10.1093/bioinformatics/btn356
10.1080/03610918.2014.931971
10.1109/ACCESS.2019.2913649
10.1080/00949655.2020.1814776
10.1007/BF00116037
10.23917/khif.v4i1.5975
10.1016/j.eswa.2018.12.042
10.1080/03610926.2019.1568485
10.1016/j.knosys.2020.105845
10.1021/ci034160g
10.7465/jkdi.2020.31.2.427
10.1016/j.eswa.2010.12.103
10.1007/s10955-020-02657-2
10.1016/j.promfg.2019.06.011
10.1080/03610918.2011.633728
10.1109/ACCESS.2020.2990422
10.3390/jrfm13070155
10.1016/j.ejro.2019.11.003
10.1016/j.asoc.2017.07.027
10.1007/s40484-017-0121-6
10.1007/s11227-018-2633-x
10.1016/j.patcog.2009.05.010
10.1016/j.engappai.2017.10.007
10.1214/08-AOAS169
10.3233/JIFS-189694
10.32604/cmc.2022.015378
10.1109/TCBB.2021.3089417
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121549
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121549
S0957417423020511
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-5c2e442ba7493fdbd25da77f3f28e1930920a31da23dc3293cc20b5af503913c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:14 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Fri Feb 23 02:35:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Correlation measurement
Random forest
Classification accuracy
Dot product
CART
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-5c2e442ba7493fdbd25da77f3f28e1930920a31da23dc3293cc20b5af503913c3
ORCID 0000-0002-6174-2951
0000-0002-5112-9627
0000-0002-2487-9609
0000-0002-6282-6831
0000-0002-8978-677X
0000-0002-0093-0510
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_121549
crossref_citationtrail_10_1016_j_eswa_2023_121549
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Merigo, Casanovas (b0175) 2011; 38
Liang, Jiang, Li, Xue, Wang (b0145) 2020; 196
Wang, Lu, Jiang, Xiao, Li (b0240) 2015; 29
Liu, Chen (b0155) 2012; 32
Sun, Jiang, Gao, Gao, Wang (b0225) 2021; 186
Khoshkenar, Mahlooji (b0110) 2013; 42
Liu, Quan, Feng, Qiu (b0150) 2010; 180
Schapire (b0195) 1990; 5
Kim, Myung, Kim (b0115) 2020; 31
Li, Yan, Liu, Li (b0135) 2018; 70
278-282. Canada. Piscataway: IEEE.
Ditzler, LaBarck, Ritchie, Rosen, Polikar (b0060) 2018; 29
Sheng, Sun (b0200) 2019; 47
Han, Li, Su (b0080) 2019; 122
Putri, Waspada (b0190) 2018; 4
Tripoliti, Fotiadis, Manis (b0235) 2013; 87
Cervantes, Monroy, Medina-Perez, Gonzalez-Mendoza, Ramirez-Marquez (b0025) 2017; 67
Ishwaran, Kogalur, Blackstone, Lauer (b0095) 2008; 2
Jiang, Ji, Chang (b0105) 2020; 13
Crichton (b0040) 2000; 9
Martinez-Munoz, Suarez (b0170) 2010; 43
Breiman (b0015) 1996; 24
Canete-Sifuentes, Monroy, Medina-Perez, Loyola-Gonzalez, Voronisky (b0020) 2019; 7
Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (b0230) 2003; 43
Ho (b0085) 1998; 20
Chen, Zhang, Wang, Zhang, Wang (b0030) 2016; 36
Pereira, Afonso, Medeiros (b0185) 2015; 44
Li, Li, Zhang, Shen (b0130) 2012; 9
Breiman (b0010) 2001; 45
Ghosh, Cabrera (b0075) 2021; 19
Kulkarni, Revathy, Patil (b0120) 2021; 18
Ma, Pan, Liang, Hu, Zhao, Guo (b0165) 2019; 46
Jiang, Jia, Li, Chen, Jin (b0100) 2017; 32
Ding, Wu, Li (b0055) 2015; 38
Li, Kuang, Li, Kang (b0140) 2020; 8
Smayra, Charara, Sleilaty, Boustany, Menassa-Moussa, Halaby (b0205) 2019; 6
Wu (b0255) 2020; 76
Gall, Lempitsky (b0070) 2009
Kulkarni, Sinha (b0125) 2013; 2205
Amaratunga, Cabrera, Lee (b0005) 2008; 24
Ho, T.K. (1995). Random Decision Forests.
Stekhoven, Buehlmann (b0210) 2012; 28
Farhadi, Bevrani, Feizi-Derakhshi (b0065) 2023
Wang, Wang (b0245) 2020; 91
Demsar, Schuurmans (b0045) 2006; 7
Deng, Hu, Li, Sui, Sun (b0050) 2016; 46
Suknovic, Delibasic, Jovanovic, Vukicevic, Becejski-Vujaklija, Obradovic (b0215) 2012; 27
Zeng (b0260) 2020; 49
Mienye, Wang, Sun (b0180) 2019; 35
Sun, Liu, Kan, Sui (b0220) 2021; 41
Wang, Zhang, Geng, Pang (b0250) 2022; 71
Chetlur, Dhillon, Dettmann (b0035) 2020; 181
Liu, Zhao (b0160) 2017; 5
Pereira (10.1016/j.eswa.2023.121549_b0185) 2015; 44
Jiang (10.1016/j.eswa.2023.121549_b0100) 2017; 32
Ho (10.1016/j.eswa.2023.121549_b0085) 1998; 20
Kulkarni (10.1016/j.eswa.2023.121549_b0125) 2013; 2205
Ding (10.1016/j.eswa.2023.121549_b0055) 2015; 38
Han (10.1016/j.eswa.2023.121549_b0080) 2019; 122
Liu (10.1016/j.eswa.2023.121549_b0150) 2010; 180
Wu (10.1016/j.eswa.2023.121549_b0255) 2020; 76
Ditzler (10.1016/j.eswa.2023.121549_b0060) 2018; 29
Gall (10.1016/j.eswa.2023.121549_b0070) 2009
Tripoliti (10.1016/j.eswa.2023.121549_b0235) 2013; 87
Breiman (10.1016/j.eswa.2023.121549_b0015) 1996; 24
Suknovic (10.1016/j.eswa.2023.121549_b0215) 2012; 27
Ghosh (10.1016/j.eswa.2023.121549_b0075) 2021; 19
Stekhoven (10.1016/j.eswa.2023.121549_b0210) 2012; 28
Crichton (10.1016/j.eswa.2023.121549_b0040) 2000; 9
Farhadi (10.1016/j.eswa.2023.121549_b0065) 2023
Li (10.1016/j.eswa.2023.121549_b0140) 2020; 8
Wang (10.1016/j.eswa.2023.121549_b0250) 2022; 71
Chetlur (10.1016/j.eswa.2023.121549_b0035) 2020; 181
Jiang (10.1016/j.eswa.2023.121549_b0105) 2020; 13
Sun (10.1016/j.eswa.2023.121549_b0225) 2021; 186
Putri (10.1016/j.eswa.2023.121549_b0190) 2018; 4
Kulkarni (10.1016/j.eswa.2023.121549_b0120) 2021; 18
Amaratunga (10.1016/j.eswa.2023.121549_b0005) 2008; 24
Zeng (10.1016/j.eswa.2023.121549_b0260) 2020; 49
Sheng (10.1016/j.eswa.2023.121549_b0200) 2019; 47
10.1016/j.eswa.2023.121549_b0090
Sun (10.1016/j.eswa.2023.121549_b0220) 2021; 41
Demsar (10.1016/j.eswa.2023.121549_b0045) 2006; 7
Wang (10.1016/j.eswa.2023.121549_b0240) 2015; 29
Liu (10.1016/j.eswa.2023.121549_b0155) 2012; 32
Svetnik (10.1016/j.eswa.2023.121549_b0230) 2003; 43
Mienye (10.1016/j.eswa.2023.121549_b0180) 2019; 35
Canete-Sifuentes (10.1016/j.eswa.2023.121549_b0020) 2019; 7
Deng (10.1016/j.eswa.2023.121549_b0050) 2016; 46
Liu (10.1016/j.eswa.2023.121549_b0160) 2017; 5
Ishwaran (10.1016/j.eswa.2023.121549_b0095) 2008; 2
Kim (10.1016/j.eswa.2023.121549_b0115) 2020; 31
Li (10.1016/j.eswa.2023.121549_b0130) 2012; 9
Breiman (10.1016/j.eswa.2023.121549_b0010) 2001; 45
Schapire (10.1016/j.eswa.2023.121549_b0195) 1990; 5
Merigo (10.1016/j.eswa.2023.121549_b0175) 2011; 38
Martinez-Munoz (10.1016/j.eswa.2023.121549_b0170) 2010; 43
Cervantes (10.1016/j.eswa.2023.121549_b0025) 2017; 67
Ma (10.1016/j.eswa.2023.121549_b0165) 2019; 46
Li (10.1016/j.eswa.2023.121549_b0135) 2018; 70
Liang (10.1016/j.eswa.2023.121549_b0145) 2020; 196
Wang (10.1016/j.eswa.2023.121549_b0245) 2020; 91
Khoshkenar (10.1016/j.eswa.2023.121549_b0110) 2013; 42
Chen (10.1016/j.eswa.2023.121549_b0030) 2016; 36
Smayra (10.1016/j.eswa.2023.121549_b0205) 2019; 6
References_xml – volume: 46
  start-page: 0701011
  year: 2019
  ident: b0165
  article-title: Object Detection Based on Improved Grassberger Entropy Random Forest Classifier
  publication-title: Zhongguo Jiguang/Chinese Journal of Lasers
– volume: 29
  start-page: 4504
  year: 2018
  end-page: 4509
  ident: b0060
  article-title: Extensions to Online Feature Selection Using Bagging and Boosting
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 38
  start-page: 64
  year: 2015
  end-page: 68
  ident: b0055
  article-title: Parking Plot Recognition Based on C4.5 Algorithm
  publication-title: Electronic Measurement Technology
– volume: 13
  start-page: 155
  year: 2020
  ident: b0105
  article-title: A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment
  publication-title: Journal of Risk and Financial Management
– volume: 32
  start-page: 130
  year: 2012
  end-page: 134
  ident: b0155
  article-title: A SAS Macro for Testing Differences among Three or More Independent Groups Using Kruskal-Wallis and Nemenyi Tests
  publication-title: Journal of Huazhong University of Science and Technology - Medical Sciences
– volume: 27
  start-page: 127
  year: 2012
  end-page: 148
  ident: b0215
  article-title: Reusable Components in Decision Tree Induction Algorithms
  publication-title: Computational Statistics
– volume: 91
  start-page: 353
  year: 2020
  end-page: 367
  ident: b0245
  article-title: Improving Random Forest Algorithm by Lasso Method
  publication-title: Journal of Statistical Computation and Simulation
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: b0085
  article-title: The Random Subspace Method for Constructing Decision Forests
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 7
  start-page: 55744
  year: 2019
  end-page: 55762
  ident: b0020
  article-title: Classification Based on Multivariate Contrast Patterns
  publication-title: IEEE Access
– volume: 8
  start-page: 78590
  year: 2020
  end-page: 78607
  ident: b0140
  article-title: Improving Random Projections With Extra Vectors to Approximate Inner Products
  publication-title: IEEE Access
– volume: 36
  start-page: 2031
  year: 2016
  end-page: 2037
  ident: b0030
  article-title: Clone Group Mapping Method Based on Improved Vector Space Model
  publication-title: Journal of Computer Applications
– volume: 19
  start-page: 2817
  year: 2021
  end-page: 2828
  ident: b0075
  article-title: Enriched Random Forest for High Dimensional Genomic Data
  publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics
– volume: 18
  start-page: 103
  year: 2021
  end-page: 113
  ident: b0120
  article-title: A Novel Approach to Maximize G-mean in Nonstationary Data with Recurrent Imbalance Shifts
  publication-title: International Arab Journal of Information Technology
– volume: 196
  year: 2020
  ident: b0145
  article-title: LR-SMOTE—An Improved Unbalanced Dataset Oversampling Based on K-means and SVM
  publication-title: Knowledge-Based Systems
– reference: , 278-282. Canada. Piscataway: IEEE.
– volume: 2205
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0125
  article-title: Efficient Learning of Random Forest Classifier Using Disjoint Partitioning Approach
  publication-title: Lecture Notes in Engineering & Computer Science
– volume: 9
  year: 2000
  ident: b0040
  article-title: Wilcoxon Signed Rank Test
  publication-title: Journal of Clinical Nursing
– volume: 122
  start-page: 65
  year: 2019
  end-page: 74
  ident: b0080
  article-title: An Assertive Reasoning Method for Emergency Response Management Based on Knowledge Elements C4.5 Decision Tree
  publication-title: Expert Systems with Application
– volume: 44
  start-page: 2636
  year: 2015
  end-page: 2653
  ident: b0185
  article-title: Overview of Friedman’s Test and Post-hoc Analysis
  publication-title: Communications in Statistics-Simulation and Computation
– volume: 46
  start-page: 31
  year: 2016
  end-page: 35
  ident: b0050
  article-title: Similarity Matching Algorithm of Equipment Fault Case Based on SVSM
  publication-title: Radio Engineering
– year: 2009
  ident: b0070
  article-title: Class-specific Hough Forests for Object Detection
  publication-title: , 10835939. USA
– volume: 31
  start-page: 427
  year: 2020
  end-page: 438
  ident: b0115
  article-title: Random Forest Ensemble Using a Weight-adjusted Voting Algorithm
  publication-title: Journal of the Korean Data and Information Science Sociaty
– volume: 38
  start-page: 7603
  year: 2011
  end-page: 7608
  ident: b0175
  article-title: Induced Aggregation Operators in the Euclidean Distance and its Application in Financial Decision Making
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 611
  year: 2015
  end-page: 615
  ident: b0240
  article-title: Study on PSO-based Decision-tree SVM Multi-class Classification Method
  publication-title: Journal of Electronic Measurement and Instrumentation
– volume: 71
  start-page: 3721
  year: 2022
  end-page: 3731
  ident: b0250
  article-title: Research on Optimization of Random Forest Algorithm Based on Spark
  publication-title: CMC-Computers Materials & Continua
– volume: 24
  start-page: 2010
  year: 2008
  end-page: 2014
  ident: b0005
  article-title: Enriched Random Forests
  publication-title: Bioinformatics
– volume: 9
  start-page: 231
  year: 2012
  end-page: 233
  ident: b0130
  article-title: Study on Boundary Search Method for DFM Mesh Generation
  publication-title: China Foundry
– volume: 35
  start-page: 698
  year: 2019
  end-page: 703
  ident: b0180
  article-title: Prediction Performance of Improved Decision Tree-based Algorithms: A Review
  publication-title: Procedia Manufacturing
– volume: 4
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0190
  article-title: Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika
  publication-title: Khazanah Informatika Jurnal Ilmu Komputer dan Informatika
– volume: 49
  start-page: 2080
  year: 2020
  end-page: 2093
  ident: b0260
  article-title: On the Confusion Matrix in Credit Scoring and its Analytical Properties
  publication-title: Communications in Statistics - Theory and Methods
– volume: 70
  start-page: 1000
  year: 2018
  end-page: 1009
  ident: b0135
  article-title: A Principle Component Analysis-based Random Forest with the Potential Nearest Neighbor Method for Automobile Insurance Fraud Identification
  publication-title: Applied Soft Computing
– volume: 181
  start-page: 2109
  year: 2020
  end-page: 2130
  ident: b0035
  article-title: Shortest Path Distance in Manhattan Poisson Line Cox Process
  publication-title: Journal of Statistical Physics
– volume: 76
  start-page: 3702
  year: 2020
  end-page: 3712
  ident: b0255
  article-title: Heuristic Parallel Selective Ensemble Algorithm Based on Clustering and Improved Simulated Annealing
  publication-title: The Journal of Supercomputing
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b0195
  article-title: The Strength of Weak Learnability
  publication-title: Machine Learning
– volume: 42
  start-page: 202
  year: 2013
  end-page: 214
  ident: b0110
  article-title: A New Test of Randomness for Lehmer Generators Based on the Manhattan Distance Between Pairs of Consecutive Random Numbers
  publication-title: Communications in Statistics - Simulation and Computation
– volume: 5
  start-page: 338
  year: 2017
  end-page: 351
  ident: b0160
  article-title: Variable Importance-weighted Random Forests
  publication-title: Quantitative Biology
– volume: 43
  start-page: 1947
  year: 2003
  end-page: 1958
  ident: b0230
  article-title: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
  publication-title: Journal of Chemical Information and Computer Sciences
– volume: 32
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0100
  article-title: Cross-Correlation Coefficient-Based Coherency Identification in Bulk Power System Using Wide-Area Measurements
  publication-title: Transactions of China Electrotechnical Society
– volume: 87
  start-page: 41
  year: 2013
  end-page: 65
  ident: b0235
  article-title: Modifications of the Construction and Voting Mechanisms of the Random Forests Algorithm
  publication-title: Data & Knowledge Engineering
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0015
  article-title: Bagging Predictors
  publication-title: Machine Learning
– volume: 67
  start-page: 270
  year: 2017
  end-page: 282
  ident: b0025
  article-title: Some Features Speak Loud, But Together They all Speak Louder: A Study on the Correlation Between Classification Error and Feature Usage in Decision-tree Classification Ensembles
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0045
  article-title: Statistical Comparison of Classifier Over Multiple Data Sets
  publication-title: Journal of Machine Learning Research
– volume: 186
  year: 2021
  ident: b0225
  article-title: Technology of Locating Loose Particles Inside Sealed Electronic Equipment Based on Parameter-Optimized Random Forest
  publication-title: Measurement
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0010
  article-title: Random Forests
  publication-title: Machine Learning
– volume: 43
  start-page: 143
  year: 2010
  end-page: 152
  ident: b0170
  article-title: Out-of-bag Estimation of the Optimal Sample Size in Bagging
  publication-title: Pattern Recognition
– volume: 41
  start-page: 4337
  year: 2021
  end-page: 4349
  ident: b0220
  article-title: A Study on the Classification of Vegetation Point Cloud Based on Random Forest in the Straw Checkerboard Barriers Area
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 28
  start-page: 112
  year: 2012
  end-page: 118
  ident: b0210
  article-title: MissForest-non-parametric Missing Value Imputation for Mixed-type Data
  publication-title: Bioinformatics
– year: 2023
  ident: b0065
  article-title: Improving Random Forest Algorithm by Selecting Appropriate Penalized Method
– reference: Ho, T.K. (1995). Random Decision Forests.
– volume: 180
  start-page: 4031
  year: 2010
  end-page: 4041
  ident: b0150
  article-title: A Short Text Modeling Method Combining Semantic and Statistical Information
  publication-title: Information Sciences
– volume: 6
  start-page: 343
  year: 2019
  end-page: 349
  ident: b0205
  article-title: Classification and Regression Tree (CART) Model of Sonographic Signs in Predicting Thyroid Nodules Malignancy
  publication-title: European Journal of Radiology Open
– volume: 47
  year: 2019
  ident: b0200
  article-title: An Improved ID3 Decision Algorithm and Its Application
  publication-title: Computer & Digital Engineering
– volume: 2
  start-page: 841
  year: 2008
  end-page: 860
  ident: b0095
  article-title: Random Survival Forests
  publication-title: The Annals of Applied Statistics
– volume: 18
  start-page: 103
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.121549_b0120
  article-title: A Novel Approach to Maximize G-mean in Nonstationary Data with Recurrent Imbalance Shifts
  publication-title: International Arab Journal of Information Technology
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2023.121549_b0015
  article-title: Bagging Predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– year: 2023
  ident: 10.1016/j.eswa.2023.121549_b0065
– volume: 180
  start-page: 4031
  issue: 20
  year: 2010
  ident: 10.1016/j.eswa.2023.121549_b0150
  article-title: A Short Text Modeling Method Combining Semantic and Statistical Information
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.06.021
– volume: 27
  start-page: 127
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.121549_b0215
  article-title: Reusable Components in Decision Tree Induction Algorithms
  publication-title: Computational Statistics
  doi: 10.1007/s00180-011-0242-8
– volume: 46
  start-page: 31
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2023.121549_b0050
  article-title: Similarity Matching Algorithm of Equipment Fault Case Based on SVSM
  publication-title: Radio Engineering
– volume: 87
  start-page: 41
  year: 2013
  ident: 10.1016/j.eswa.2023.121549_b0235
  article-title: Modifications of the Construction and Voting Mechanisms of the Random Forests Algorithm
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/j.datak.2013.07.002
– volume: 29
  start-page: 4504
  issue: 9
  year: 2018
  ident: 10.1016/j.eswa.2023.121549_b0060
  article-title: Extensions to Online Feature Selection Using Bagging and Boosting
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2746107
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2023.121549_b0010
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 36
  start-page: 2031
  issue: 7
  year: 2016
  ident: 10.1016/j.eswa.2023.121549_b0030
  article-title: Clone Group Mapping Method Based on Improved Vector Space Model
  publication-title: Journal of Computer Applications
– volume: 29
  start-page: 611
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2023.121549_b0240
  article-title: Study on PSO-based Decision-tree SVM Multi-class Classification Method
  publication-title: Journal of Electronic Measurement and Instrumentation
– volume: 28
  start-page: 112
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.121549_b0210
  article-title: MissForest-non-parametric Missing Value Imputation for Mixed-type Data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.eswa.2023.121549_b0085
  article-title: The Random Subspace Method for Constructing Decision Forests
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.709601
– volume: 32
  start-page: 130
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.121549_b0155
  article-title: A SAS Macro for Testing Differences among Three or More Independent Groups Using Kruskal-Wallis and Nemenyi Tests
  publication-title: Journal of Huazhong University of Science and Technology - Medical Sciences
  doi: 10.1007/s11596-012-0023-9
– volume: 186
  year: 2021
  ident: 10.1016/j.eswa.2023.121549_b0225
  article-title: Technology of Locating Loose Particles Inside Sealed Electronic Equipment Based on Parameter-Optimized Random Forest
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110164
– volume: 24
  start-page: 2010
  issue: 18
  year: 2008
  ident: 10.1016/j.eswa.2023.121549_b0005
  article-title: Enriched Random Forests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn356
– volume: 44
  start-page: 2636
  issue: 10
  year: 2015
  ident: 10.1016/j.eswa.2023.121549_b0185
  article-title: Overview of Friedman’s Test and Post-hoc Analysis
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918.2014.931971
– volume: 7
  start-page: 55744
  year: 2019
  ident: 10.1016/j.eswa.2023.121549_b0020
  article-title: Classification Based on Multivariate Contrast Patterns
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913649
– volume: 32
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2023.121549_b0100
  article-title: Cross-Correlation Coefficient-Based Coherency Identification in Bulk Power System Using Wide-Area Measurements
  publication-title: Transactions of China Electrotechnical Society
– year: 2009
  ident: 10.1016/j.eswa.2023.121549_b0070
  article-title: Class-specific Hough Forests for Object Detection
– volume: 91
  start-page: 353
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0245
  article-title: Improving Random Forest Algorithm by Lasso Method
  publication-title: Journal of Statistical Computation and Simulation
  doi: 10.1080/00949655.2020.1814776
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10.1016/j.eswa.2023.121549_b0195
  article-title: The Strength of Weak Learnability
  publication-title: Machine Learning
  doi: 10.1007/BF00116037
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.121549_b0190
  article-title: Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika
  publication-title: Khazanah Informatika Jurnal Ilmu Komputer dan Informatika
  doi: 10.23917/khif.v4i1.5975
– volume: 122
  start-page: 65
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2023.121549_b0080
  article-title: An Assertive Reasoning Method for Emergency Response Management Based on Knowledge Elements C4.5 Decision Tree
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2018.12.042
– volume: 49
  start-page: 2080
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0260
  article-title: On the Confusion Matrix in Credit Scoring and its Analytical Properties
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610926.2019.1568485
– volume: 196
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0145
  article-title: LR-SMOTE—An Improved Unbalanced Dataset Oversampling Based on K-means and SVM
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105845
– volume: 38
  start-page: 64
  issue: 8
  year: 2015
  ident: 10.1016/j.eswa.2023.121549_b0055
  article-title: Parking Plot Recognition Based on C4.5 Algorithm
  publication-title: Electronic Measurement Technology
– volume: 47
  issue: 12
  year: 2019
  ident: 10.1016/j.eswa.2023.121549_b0200
  article-title: An Improved ID3 Decision Algorithm and Its Application
  publication-title: Computer & Digital Engineering
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 10.1016/j.eswa.2023.121549_b0230
  article-title: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci034160g
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2023.121549_b0045
  article-title: Statistical Comparison of Classifier Over Multiple Data Sets
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 427
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0115
  article-title: Random Forest Ensemble Using a Weight-adjusted Voting Algorithm
  publication-title: Journal of the Korean Data and Information Science Sociaty
  doi: 10.7465/jkdi.2020.31.2.427
– volume: 38
  start-page: 7603
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2023.121549_b0175
  article-title: Induced Aggregation Operators in the Euclidean Distance and its Application in Financial Decision Making
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.103
– volume: 181
  start-page: 2109
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0035
  article-title: Shortest Path Distance in Manhattan Poisson Line Cox Process
  publication-title: Journal of Statistical Physics
  doi: 10.1007/s10955-020-02657-2
– volume: 35
  start-page: 698
  year: 2019
  ident: 10.1016/j.eswa.2023.121549_b0180
  article-title: Prediction Performance of Improved Decision Tree-based Algorithms: A Review
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2019.06.011
– volume: 42
  start-page: 202
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2023.121549_b0110
  article-title: A New Test of Randomness for Lehmer Generators Based on the Manhattan Distance Between Pairs of Consecutive Random Numbers
  publication-title: Communications in Statistics - Simulation and Computation
  doi: 10.1080/03610918.2011.633728
– volume: 46
  start-page: 0701011
  issue: 7
  year: 2019
  ident: 10.1016/j.eswa.2023.121549_b0165
  article-title: Object Detection Based on Improved Grassberger Entropy Random Forest Classifier
  publication-title: Zhongguo Jiguang/Chinese Journal of Lasers
– volume: 8
  start-page: 78590
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0140
  article-title: Improving Random Projections With Extra Vectors to Approximate Inner Products
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990422
– ident: 10.1016/j.eswa.2023.121549_b0090
– volume: 13
  start-page: 155
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0105
  article-title: A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment
  publication-title: Journal of Risk and Financial Management
  doi: 10.3390/jrfm13070155
– volume: 6
  start-page: 343
  year: 2019
  ident: 10.1016/j.eswa.2023.121549_b0205
  article-title: Classification and Regression Tree (CART) Model of Sonographic Signs in Predicting Thyroid Nodules Malignancy
  publication-title: European Journal of Radiology Open
  doi: 10.1016/j.ejro.2019.11.003
– volume: 70
  start-page: 1000
  year: 2018
  ident: 10.1016/j.eswa.2023.121549_b0135
  article-title: A Principle Component Analysis-based Random Forest with the Potential Nearest Neighbor Method for Automobile Insurance Fraud Identification
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.07.027
– volume: 5
  start-page: 338
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2023.121549_b0160
  article-title: Variable Importance-weighted Random Forests
  publication-title: Quantitative Biology
  doi: 10.1007/s40484-017-0121-6
– volume: 76
  start-page: 3702
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2023.121549_b0255
  article-title: Heuristic Parallel Selective Ensemble Algorithm Based on Clustering and Improved Simulated Annealing
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-018-2633-x
– volume: 9
  start-page: 231
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2023.121549_b0130
  article-title: Study on Boundary Search Method for DFM Mesh Generation
  publication-title: China Foundry
– volume: 43
  start-page: 143
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2023.121549_b0170
  article-title: Out-of-bag Estimation of the Optimal Sample Size in Bagging
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.05.010
– volume: 67
  start-page: 270
  year: 2017
  ident: 10.1016/j.eswa.2023.121549_b0025
  article-title: Some Features Speak Loud, But Together They all Speak Louder: A Study on the Correlation Between Classification Error and Feature Usage in Decision-tree Classification Ensembles
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.10.007
– volume: 2
  start-page: 841
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2023.121549_b0095
  article-title: Random Survival Forests
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/08-AOAS169
– volume: 41
  start-page: 4337
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121549_b0220
  article-title: A Study on the Classification of Vegetation Point Cloud Based on Random Forest in the Straw Checkerboard Barriers Area
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-189694
– volume: 9
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2023.121549_b0040
  article-title: Wilcoxon Signed Rank Test
  publication-title: Journal of Clinical Nursing
– volume: 2205
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2023.121549_b0125
  article-title: Efficient Learning of Random Forest Classifier Using Disjoint Partitioning Approach
  publication-title: Lecture Notes in Engineering & Computer Science
– volume: 71
  start-page: 3721
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2023.121549_b0250
  article-title: Research on Optimization of Random Forest Algorithm Based on Spark
  publication-title: CMC-Computers Materials & Continua
  doi: 10.32604/cmc.2022.015378
– volume: 19
  start-page: 2817
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.121549_b0075
  article-title: Enriched Random Forest for High Dimensional Genomic Data
  publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2021.3089417
SSID ssj0017007
Score 2.7181535
Snippet •Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121549
SubjectTerms CART
Classification accuracy
Correlation measurement
Dot product
Random forest
Title An improved random forest based on the classification accuracy and correlation measurement of decision trees
URI https://dx.doi.org/10.1016/j.eswa.2023.121549
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWFj4RnzrBjYUmtgOacaqoiogukAltsg-J1IRpFVphVj47dwlTgEJMbAlkU-Kzvbds_38Togzg9LQtHGB6VhNCxRDT3jZoVWK0wYLWpBVrMq74eVgpG8e48eW6DV3YZhW6WN_HdOraO2_tL0329PxuH1P4IDSIZ80EuSJq_u9Wic8yi8-ljQPlp9Lar29JODW_uJMzfHKX99Ye0iqSmSB9TR_S07fEk5_U6x7pAjd-me2RCsvt8VGU4UB_KTcEc_dEsbV1kDugDKPm7wAIVGK9sApysGkBEJ5gIyTmRhU9QUYxMXM4DuQBSDX6KhZcfDytWsIkwKcL8IDfHz9uitG_auH3iDwNRQCVGE4D2KUudbSmkSnqnDWydiZJClUITs5gbcwlaFRkTNSOVSU-xFlaGNTxCwdr1DtiZVyUub7AtIotQpjpCWg4rxupCU0YUyorC2KSB6IqHFehl5gnOtcPGcNk-wpY4dn7PCsdviBOF_aTGt5jT9bx02fZD8GSUbx_w-7w3_aHYk1etM15exYrMxni_yEMMjcnlaD7FSsdq9vB8NP2NndCw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjXhzAxsKTeykaccKUZVXF1qpW2SfE6moTVEpQiz8du4Sp4CEOrBFiU-KzvZ9n-3Pd0JcaJSapo31dNOEtEDR9ISNJq1SbKgxowVZoap87DW6g_BuGA1XxHV1F4ZllS72lzG9iNbuTd15s_4yGtWfiBwQHPJJI1GeiO_3roY0fbmMwdXnQufB-efiMuFe7HFzd3OmFHmlr--cfEiqIssCJ9T8C51-IE5nS2w4qgjt8m-2xUqa74jNqgwDuFm5K8btHEbF3kBqgaDHTidAVJTCPTBGWZjmQDQPkIkyK4OKzgCN-DbT-AFkAchFOkpZHEy-tw1hmoF1VXiAz69f98Sgc9O_7nquiIKHyvfnXoQyDUNpdBy2VGaNlZHVcZypTDZTYm9-S_paBVZLZVER-CNK30Q6izh3vEK1L2r5NE8PBLSCllEYIa0BFQO7lobohNa-MibLAnkogsp5CboM41zoYpxUUrLnhB2esMOT0uGH4nJh81Lm11jaOqr6JPk1ShICgCV2R_-0Oxdr3f7jQ_Jw27s_Fuv0JSz1ZyeiNp-9padESObmrBhwXwMr3pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+random+forest+based+on+the+classification+accuracy+and+correlation+measurement+of+decision+trees&rft.jtitle=Expert+systems+with+applications&rft.au=Sun%2C+Zhigang&rft.au=Wang%2C+Guotao&rft.au=Li%2C+Pengfei&rft.au=Wang%2C+Hui&rft.date=2024-03-01&rft.issn=0957-4174&rft.volume=237&rft.spage=121549&rft_id=info:doi/10.1016%2Fj.eswa.2023.121549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon