An improved random forest based on the classification accuracy and correlation measurement of decision trees
•Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision trees.•Propose a method for quantifying the diversity between decision trees.•Multiple tests verify the superiority of the proposed improved rando...
Saved in:
Published in | Expert systems with applications Vol. 237; p. 121549 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision trees.•Propose a method for quantifying the diversity between decision trees.•Multiple tests verify the superiority of the proposed improved random forest.
Random forest is one of the most widely used machine learning algorithms. Decision trees used to construct the random forest may have low classification accuracies or high correlations, which affects the comprehensive performance of the random forest. Aiming at these problems, the authors proposed an improved random forest based on the classification accuracy and correlation measurement of decision trees in this paper. Its main idea includes two parts, one is retaining the classification and regression trees (CARTs) with better classification effects, the other is reducing the correlations between the CARTs. Specifically, in the classification effect evaluation part, each CART was applied to make predictions on three reserved data sets, then the average classification accuracies were achieved, respectively. Thus, all the CARTs were sorted in descending order according to their achieved average classification accuracies. In the correlation measurement part, the improved dot product method was proposed to calculate the cosine similarity, i.e., the correlation, between CARTs in the feature space. By using the achieved average classification accuracy as reference, the grid search method was used to find the inner product threshold. On this basis, the CARTs with low average classification accuracy among CART pairs whose inner product values are higher than the inner product threshold were marked as deletable. The achieved average classification accuracies and correlations of CARTs were comprehensively considered, those with high correlation and weak classification effect were deleted, and those with better quality were retained to construct the random forest. Multiple experiments show that, the proposed improved random forest achieved higher average classification accuracy than the five random forests used for comparison, and the lead was stable. The G-means and out-of-bag data (OBD) score obtained by the proposed improved random forest were also higher than the five random forests, and the lead was more obvious. In addition, the test results of three non-parametric tests show that, there were significant diversities between the proposed improved random forest and the other five random forests. This effectively proves the superiority and practicability of the proposed improved random forest. |
---|---|
AbstractList | •Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision trees.•Propose a method for quantifying the diversity between decision trees.•Multiple tests verify the superiority of the proposed improved random forest.
Random forest is one of the most widely used machine learning algorithms. Decision trees used to construct the random forest may have low classification accuracies or high correlations, which affects the comprehensive performance of the random forest. Aiming at these problems, the authors proposed an improved random forest based on the classification accuracy and correlation measurement of decision trees in this paper. Its main idea includes two parts, one is retaining the classification and regression trees (CARTs) with better classification effects, the other is reducing the correlations between the CARTs. Specifically, in the classification effect evaluation part, each CART was applied to make predictions on three reserved data sets, then the average classification accuracies were achieved, respectively. Thus, all the CARTs were sorted in descending order according to their achieved average classification accuracies. In the correlation measurement part, the improved dot product method was proposed to calculate the cosine similarity, i.e., the correlation, between CARTs in the feature space. By using the achieved average classification accuracy as reference, the grid search method was used to find the inner product threshold. On this basis, the CARTs with low average classification accuracy among CART pairs whose inner product values are higher than the inner product threshold were marked as deletable. The achieved average classification accuracies and correlations of CARTs were comprehensively considered, those with high correlation and weak classification effect were deleted, and those with better quality were retained to construct the random forest. Multiple experiments show that, the proposed improved random forest achieved higher average classification accuracy than the five random forests used for comparison, and the lead was stable. The G-means and out-of-bag data (OBD) score obtained by the proposed improved random forest were also higher than the five random forests, and the lead was more obvious. In addition, the test results of three non-parametric tests show that, there were significant diversities between the proposed improved random forest and the other five random forests. This effectively proves the superiority and practicability of the proposed improved random forest. |
ArticleNumber | 121549 |
Author | Sun, Zhigang Liang, Xiaowen Li, Pengfei Wang, Hui Wang, Guotao Zhang, Min |
Author_xml | – sequence: 1 givenname: Zhigang orcidid: 0000-0002-5112-9627 surname: Sun fullname: Sun, Zhigang email: 22b906048@stu.hit.edu.cn organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China – sequence: 2 givenname: Guotao orcidid: 0000-0002-2487-9609 surname: Wang fullname: Wang, Guotao email: wanggt@hlju.edu.cn organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China – sequence: 3 givenname: Pengfei orcidid: 0000-0002-6282-6831 surname: Li fullname: Li, Pengfei email: 20b906020@stu.hit.edu.cn organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Hui orcidid: 0000-0002-0093-0510 surname: Wang fullname: Wang, Hui organization: School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China – sequence: 5 givenname: Min orcidid: 0000-0002-8978-677X surname: Zhang fullname: Zhang, Min email: 2211813@hlju.edu.cn organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China – sequence: 6 givenname: Xiaowen orcidid: 0000-0002-6174-2951 surname: Liang fullname: Liang, Xiaowen organization: School of Electrical and Electronic Engineering, Heilongjiang University, Harbin 150080, China |
BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP-BUDzuKoZsQ-oJAN-1aKKMRVbCtICkp-fvadVddZDVwh3PhnhmZdKFDQu45W3DGlw_7BaZvsxBMyAUXvCrrKzLlKyWLparlhExZXami5Kq8IbOU9oxxxZiakmbdUd8eYjihpdF0NrTUhYgp051JfRY6mr-QQmNS8s6Dyb6PDMAxGjjTnqAQYsRmfLRo0jFii12mwVGL4NOQ54iYbsm1M03Cu787J5_PTx-b12L7_vK2WW8LkIzlogKBZSl2RpW1dHZnRWWNUk46sUJeS1YLZiS3RkgLUtQSQLBdZVzFZM0lyDkRYy_EkFJEpw_RtyaeNWd68KX3evClB1969NVDq38Q-Pw7Kkfjm8vo44hiP-rkMeoEHjtA6yNC1jb4S_gPkn6KqQ |
CitedBy_id | crossref_primary_10_1016_j_kjs_2025_100408 crossref_primary_10_1088_2631_8695_adaca8 crossref_primary_10_11648_j_jccee_20251002_12 crossref_primary_10_1016_j_ijhydene_2024_09_054 crossref_primary_10_1080_23311932_2024_2448597 crossref_primary_10_2166_hydro_2024_324 crossref_primary_10_3390_app142210376 crossref_primary_10_1007_s11356_025_35999_z crossref_primary_10_1142_S0219686725500179 crossref_primary_10_21926_aeer_2404020 crossref_primary_10_3390_app14051956 crossref_primary_10_1016_j_eswa_2025_127131 crossref_primary_10_3934_era_2024237 crossref_primary_10_1021_acsomega_4c02086 crossref_primary_10_1016_j_fuproc_2025_108182 crossref_primary_10_1007_s13042_024_02462_3 crossref_primary_10_1109_TIM_2025_3547476 crossref_primary_10_3390_foods13182936 crossref_primary_10_1007_s11042_024_19769_6 crossref_primary_10_1016_j_knosys_2024_112939 crossref_primary_10_1186_s12911_024_02835_2 crossref_primary_10_1109_ACCESS_2024_3456295 crossref_primary_10_1016_j_spc_2024_03_019 crossref_primary_10_3390_asi7050085 crossref_primary_10_1016_j_cie_2024_110574 crossref_primary_10_1016_j_tust_2023_105514 crossref_primary_10_3390_math13050882 crossref_primary_10_1186_s40494_024_01329_8 crossref_primary_10_3390_d17010021 crossref_primary_10_3390_life15030394 crossref_primary_10_1109_ACCESS_2024_3465843 crossref_primary_10_1007_s44196_024_00716_0 crossref_primary_10_1039_D4RA02873B crossref_primary_10_1080_01431161_2024_2388864 crossref_primary_10_1063_5_0250694 crossref_primary_10_3389_ffgc_2024_1349772 crossref_primary_10_1016_j_powtec_2024_119649 crossref_primary_10_3390_ma17071452 crossref_primary_10_3390_f16030450 crossref_primary_10_3390_app15031231 crossref_primary_10_3389_fpubh_2024_1362392 crossref_primary_10_3390_su151914477 crossref_primary_10_1007_s41939_025_00806_2 crossref_primary_10_1016_j_apenergy_2024_124497 crossref_primary_10_1016_j_jclepro_2024_144332 crossref_primary_10_1016_j_fuproc_2024_108141 crossref_primary_10_1016_j_egyr_2024_09_073 crossref_primary_10_1016_j_ejrh_2025_102194 crossref_primary_10_1109_ACCESS_2025_3539081 crossref_primary_10_3390_math12244041 crossref_primary_10_1016_j_fuel_2024_133093 crossref_primary_10_1007_s10706_025_03091_5 crossref_primary_10_1016_j_jclepro_2024_141903 crossref_primary_10_1016_j_neucom_2024_128970 crossref_primary_10_1016_j_fuel_2025_135056 crossref_primary_10_3390_agronomy15010200 crossref_primary_10_1016_j_energy_2024_130899 crossref_primary_10_1109_ACCESS_2024_3467920 crossref_primary_10_1016_j_engappai_2025_110023 crossref_primary_10_1590_1806_9282_20241282 crossref_primary_10_1007_s12145_024_01635_6 crossref_primary_10_1063_5_0214890 crossref_primary_10_1109_ACCESS_2024_3492973 crossref_primary_10_1142_S021968672550012X crossref_primary_10_1002_wer_11136 crossref_primary_10_1016_j_eswa_2025_126413 crossref_primary_10_3390_s24196432 crossref_primary_10_3390_f15122247 crossref_primary_10_1016_j_engappai_2024_109944 crossref_primary_10_1016_j_foodres_2025_115835 crossref_primary_10_1080_00405000_2025_2450851 crossref_primary_10_1016_j_eswa_2025_126770 crossref_primary_10_3390_su16031079 crossref_primary_10_1007_s42454_024_00055_7 crossref_primary_10_1016_j_scs_2024_105978 crossref_primary_10_1007_s41742_024_00647_w crossref_primary_10_21015_vtcs_v12i2_1926 crossref_primary_10_1177_1420326X241303733 crossref_primary_10_3390_f16010015 crossref_primary_10_1109_ACCESS_2024_3481658 crossref_primary_10_1371_journal_pone_0304450 crossref_primary_10_1515_revce_2024_0047 crossref_primary_10_3390_app15020499 crossref_primary_10_3390_agronomy14092128 crossref_primary_10_3390_app14093940 crossref_primary_10_1016_j_omega_2024_103247 crossref_primary_10_1016_j_eswa_2023_122702 crossref_primary_10_3390_diagnostics14070723 crossref_primary_10_1007_s41062_025_01931_0 crossref_primary_10_1016_j_spc_2024_10_003 crossref_primary_10_1080_23080477_2024_2364537 crossref_primary_10_1109_ACCESS_2024_3373798 crossref_primary_10_1016_j_dib_2024_111224 crossref_primary_10_1016_j_measurement_2024_116257 crossref_primary_10_1111_ffe_14410 crossref_primary_10_3390_batteries11030108 crossref_primary_10_18287_2542_0461_2024_15_4_187_201 crossref_primary_10_1016_j_ins_2024_121084 crossref_primary_10_70749_ijbr_v2i02_396 crossref_primary_10_1093_jigpal_jzae104 crossref_primary_10_70322_amsm_2024_10009 crossref_primary_10_3390_electronics14030626 |
Cites_doi | 10.1007/BF00058655 10.1016/j.ins.2010.06.021 10.1007/s00180-011-0242-8 10.1016/j.datak.2013.07.002 10.1109/TNNLS.2017.2746107 10.1023/A:1010933404324 10.1093/bioinformatics/btr597 10.1109/34.709601 10.1007/s11596-012-0023-9 10.1016/j.measurement.2021.110164 10.1093/bioinformatics/btn356 10.1080/03610918.2014.931971 10.1109/ACCESS.2019.2913649 10.1080/00949655.2020.1814776 10.1007/BF00116037 10.23917/khif.v4i1.5975 10.1016/j.eswa.2018.12.042 10.1080/03610926.2019.1568485 10.1016/j.knosys.2020.105845 10.1021/ci034160g 10.7465/jkdi.2020.31.2.427 10.1016/j.eswa.2010.12.103 10.1007/s10955-020-02657-2 10.1016/j.promfg.2019.06.011 10.1080/03610918.2011.633728 10.1109/ACCESS.2020.2990422 10.3390/jrfm13070155 10.1016/j.ejro.2019.11.003 10.1016/j.asoc.2017.07.027 10.1007/s40484-017-0121-6 10.1007/s11227-018-2633-x 10.1016/j.patcog.2009.05.010 10.1016/j.engappai.2017.10.007 10.1214/08-AOAS169 10.3233/JIFS-189694 10.32604/cmc.2022.015378 10.1109/TCBB.2021.3089417 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.121549 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_121549 S0957417423020511 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-5c2e442ba7493fdbd25da77f3f28e1930920a31da23dc3293cc20b5af503913c3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:14 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Fri Feb 23 02:35:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Correlation measurement Random forest Classification accuracy Dot product CART |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-5c2e442ba7493fdbd25da77f3f28e1930920a31da23dc3293cc20b5af503913c3 |
ORCID | 0000-0002-6174-2951 0000-0002-5112-9627 0000-0002-2487-9609 0000-0002-6282-6831 0000-0002-8978-677X 0000-0002-0093-0510 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_121549 crossref_citationtrail_10_1016_j_eswa_2023_121549 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Merigo, Casanovas (b0175) 2011; 38 Liang, Jiang, Li, Xue, Wang (b0145) 2020; 196 Wang, Lu, Jiang, Xiao, Li (b0240) 2015; 29 Liu, Chen (b0155) 2012; 32 Sun, Jiang, Gao, Gao, Wang (b0225) 2021; 186 Khoshkenar, Mahlooji (b0110) 2013; 42 Liu, Quan, Feng, Qiu (b0150) 2010; 180 Schapire (b0195) 1990; 5 Kim, Myung, Kim (b0115) 2020; 31 Li, Yan, Liu, Li (b0135) 2018; 70 278-282. Canada. Piscataway: IEEE. Ditzler, LaBarck, Ritchie, Rosen, Polikar (b0060) 2018; 29 Sheng, Sun (b0200) 2019; 47 Han, Li, Su (b0080) 2019; 122 Putri, Waspada (b0190) 2018; 4 Tripoliti, Fotiadis, Manis (b0235) 2013; 87 Cervantes, Monroy, Medina-Perez, Gonzalez-Mendoza, Ramirez-Marquez (b0025) 2017; 67 Ishwaran, Kogalur, Blackstone, Lauer (b0095) 2008; 2 Jiang, Ji, Chang (b0105) 2020; 13 Crichton (b0040) 2000; 9 Martinez-Munoz, Suarez (b0170) 2010; 43 Breiman (b0015) 1996; 24 Canete-Sifuentes, Monroy, Medina-Perez, Loyola-Gonzalez, Voronisky (b0020) 2019; 7 Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (b0230) 2003; 43 Ho (b0085) 1998; 20 Chen, Zhang, Wang, Zhang, Wang (b0030) 2016; 36 Pereira, Afonso, Medeiros (b0185) 2015; 44 Li, Li, Zhang, Shen (b0130) 2012; 9 Breiman (b0010) 2001; 45 Ghosh, Cabrera (b0075) 2021; 19 Kulkarni, Revathy, Patil (b0120) 2021; 18 Ma, Pan, Liang, Hu, Zhao, Guo (b0165) 2019; 46 Jiang, Jia, Li, Chen, Jin (b0100) 2017; 32 Ding, Wu, Li (b0055) 2015; 38 Li, Kuang, Li, Kang (b0140) 2020; 8 Smayra, Charara, Sleilaty, Boustany, Menassa-Moussa, Halaby (b0205) 2019; 6 Wu (b0255) 2020; 76 Gall, Lempitsky (b0070) 2009 Kulkarni, Sinha (b0125) 2013; 2205 Amaratunga, Cabrera, Lee (b0005) 2008; 24 Ho, T.K. (1995). Random Decision Forests. Stekhoven, Buehlmann (b0210) 2012; 28 Farhadi, Bevrani, Feizi-Derakhshi (b0065) 2023 Wang, Wang (b0245) 2020; 91 Demsar, Schuurmans (b0045) 2006; 7 Deng, Hu, Li, Sui, Sun (b0050) 2016; 46 Suknovic, Delibasic, Jovanovic, Vukicevic, Becejski-Vujaklija, Obradovic (b0215) 2012; 27 Zeng (b0260) 2020; 49 Mienye, Wang, Sun (b0180) 2019; 35 Sun, Liu, Kan, Sui (b0220) 2021; 41 Wang, Zhang, Geng, Pang (b0250) 2022; 71 Chetlur, Dhillon, Dettmann (b0035) 2020; 181 Liu, Zhao (b0160) 2017; 5 Pereira (10.1016/j.eswa.2023.121549_b0185) 2015; 44 Jiang (10.1016/j.eswa.2023.121549_b0100) 2017; 32 Ho (10.1016/j.eswa.2023.121549_b0085) 1998; 20 Kulkarni (10.1016/j.eswa.2023.121549_b0125) 2013; 2205 Ding (10.1016/j.eswa.2023.121549_b0055) 2015; 38 Han (10.1016/j.eswa.2023.121549_b0080) 2019; 122 Liu (10.1016/j.eswa.2023.121549_b0150) 2010; 180 Wu (10.1016/j.eswa.2023.121549_b0255) 2020; 76 Ditzler (10.1016/j.eswa.2023.121549_b0060) 2018; 29 Gall (10.1016/j.eswa.2023.121549_b0070) 2009 Tripoliti (10.1016/j.eswa.2023.121549_b0235) 2013; 87 Breiman (10.1016/j.eswa.2023.121549_b0015) 1996; 24 Suknovic (10.1016/j.eswa.2023.121549_b0215) 2012; 27 Ghosh (10.1016/j.eswa.2023.121549_b0075) 2021; 19 Stekhoven (10.1016/j.eswa.2023.121549_b0210) 2012; 28 Crichton (10.1016/j.eswa.2023.121549_b0040) 2000; 9 Farhadi (10.1016/j.eswa.2023.121549_b0065) 2023 Li (10.1016/j.eswa.2023.121549_b0140) 2020; 8 Wang (10.1016/j.eswa.2023.121549_b0250) 2022; 71 Chetlur (10.1016/j.eswa.2023.121549_b0035) 2020; 181 Jiang (10.1016/j.eswa.2023.121549_b0105) 2020; 13 Sun (10.1016/j.eswa.2023.121549_b0225) 2021; 186 Putri (10.1016/j.eswa.2023.121549_b0190) 2018; 4 Kulkarni (10.1016/j.eswa.2023.121549_b0120) 2021; 18 Amaratunga (10.1016/j.eswa.2023.121549_b0005) 2008; 24 Zeng (10.1016/j.eswa.2023.121549_b0260) 2020; 49 Sheng (10.1016/j.eswa.2023.121549_b0200) 2019; 47 10.1016/j.eswa.2023.121549_b0090 Sun (10.1016/j.eswa.2023.121549_b0220) 2021; 41 Demsar (10.1016/j.eswa.2023.121549_b0045) 2006; 7 Wang (10.1016/j.eswa.2023.121549_b0240) 2015; 29 Liu (10.1016/j.eswa.2023.121549_b0155) 2012; 32 Svetnik (10.1016/j.eswa.2023.121549_b0230) 2003; 43 Mienye (10.1016/j.eswa.2023.121549_b0180) 2019; 35 Canete-Sifuentes (10.1016/j.eswa.2023.121549_b0020) 2019; 7 Deng (10.1016/j.eswa.2023.121549_b0050) 2016; 46 Liu (10.1016/j.eswa.2023.121549_b0160) 2017; 5 Ishwaran (10.1016/j.eswa.2023.121549_b0095) 2008; 2 Kim (10.1016/j.eswa.2023.121549_b0115) 2020; 31 Li (10.1016/j.eswa.2023.121549_b0130) 2012; 9 Breiman (10.1016/j.eswa.2023.121549_b0010) 2001; 45 Schapire (10.1016/j.eswa.2023.121549_b0195) 1990; 5 Merigo (10.1016/j.eswa.2023.121549_b0175) 2011; 38 Martinez-Munoz (10.1016/j.eswa.2023.121549_b0170) 2010; 43 Cervantes (10.1016/j.eswa.2023.121549_b0025) 2017; 67 Ma (10.1016/j.eswa.2023.121549_b0165) 2019; 46 Li (10.1016/j.eswa.2023.121549_b0135) 2018; 70 Liang (10.1016/j.eswa.2023.121549_b0145) 2020; 196 Wang (10.1016/j.eswa.2023.121549_b0245) 2020; 91 Khoshkenar (10.1016/j.eswa.2023.121549_b0110) 2013; 42 Chen (10.1016/j.eswa.2023.121549_b0030) 2016; 36 Smayra (10.1016/j.eswa.2023.121549_b0205) 2019; 6 |
References_xml | – volume: 46 start-page: 0701011 year: 2019 ident: b0165 article-title: Object Detection Based on Improved Grassberger Entropy Random Forest Classifier publication-title: Zhongguo Jiguang/Chinese Journal of Lasers – volume: 29 start-page: 4504 year: 2018 end-page: 4509 ident: b0060 article-title: Extensions to Online Feature Selection Using Bagging and Boosting publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 38 start-page: 64 year: 2015 end-page: 68 ident: b0055 article-title: Parking Plot Recognition Based on C4.5 Algorithm publication-title: Electronic Measurement Technology – volume: 13 start-page: 155 year: 2020 ident: b0105 article-title: A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment publication-title: Journal of Risk and Financial Management – volume: 32 start-page: 130 year: 2012 end-page: 134 ident: b0155 article-title: A SAS Macro for Testing Differences among Three or More Independent Groups Using Kruskal-Wallis and Nemenyi Tests publication-title: Journal of Huazhong University of Science and Technology - Medical Sciences – volume: 27 start-page: 127 year: 2012 end-page: 148 ident: b0215 article-title: Reusable Components in Decision Tree Induction Algorithms publication-title: Computational Statistics – volume: 91 start-page: 353 year: 2020 end-page: 367 ident: b0245 article-title: Improving Random Forest Algorithm by Lasso Method publication-title: Journal of Statistical Computation and Simulation – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: b0085 article-title: The Random Subspace Method for Constructing Decision Forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 7 start-page: 55744 year: 2019 end-page: 55762 ident: b0020 article-title: Classification Based on Multivariate Contrast Patterns publication-title: IEEE Access – volume: 8 start-page: 78590 year: 2020 end-page: 78607 ident: b0140 article-title: Improving Random Projections With Extra Vectors to Approximate Inner Products publication-title: IEEE Access – volume: 36 start-page: 2031 year: 2016 end-page: 2037 ident: b0030 article-title: Clone Group Mapping Method Based on Improved Vector Space Model publication-title: Journal of Computer Applications – volume: 19 start-page: 2817 year: 2021 end-page: 2828 ident: b0075 article-title: Enriched Random Forest for High Dimensional Genomic Data publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics – volume: 18 start-page: 103 year: 2021 end-page: 113 ident: b0120 article-title: A Novel Approach to Maximize G-mean in Nonstationary Data with Recurrent Imbalance Shifts publication-title: International Arab Journal of Information Technology – volume: 196 year: 2020 ident: b0145 article-title: LR-SMOTE—An Improved Unbalanced Dataset Oversampling Based on K-means and SVM publication-title: Knowledge-Based Systems – reference: , 278-282. Canada. Piscataway: IEEE. – volume: 2205 start-page: 1 year: 2013 end-page: 5 ident: b0125 article-title: Efficient Learning of Random Forest Classifier Using Disjoint Partitioning Approach publication-title: Lecture Notes in Engineering & Computer Science – volume: 9 year: 2000 ident: b0040 article-title: Wilcoxon Signed Rank Test publication-title: Journal of Clinical Nursing – volume: 122 start-page: 65 year: 2019 end-page: 74 ident: b0080 article-title: An Assertive Reasoning Method for Emergency Response Management Based on Knowledge Elements C4.5 Decision Tree publication-title: Expert Systems with Application – volume: 44 start-page: 2636 year: 2015 end-page: 2653 ident: b0185 article-title: Overview of Friedman’s Test and Post-hoc Analysis publication-title: Communications in Statistics-Simulation and Computation – volume: 46 start-page: 31 year: 2016 end-page: 35 ident: b0050 article-title: Similarity Matching Algorithm of Equipment Fault Case Based on SVSM publication-title: Radio Engineering – year: 2009 ident: b0070 article-title: Class-specific Hough Forests for Object Detection publication-title: , 10835939. USA – volume: 31 start-page: 427 year: 2020 end-page: 438 ident: b0115 article-title: Random Forest Ensemble Using a Weight-adjusted Voting Algorithm publication-title: Journal of the Korean Data and Information Science Sociaty – volume: 38 start-page: 7603 year: 2011 end-page: 7608 ident: b0175 article-title: Induced Aggregation Operators in the Euclidean Distance and its Application in Financial Decision Making publication-title: Expert Systems with Applications – volume: 29 start-page: 611 year: 2015 end-page: 615 ident: b0240 article-title: Study on PSO-based Decision-tree SVM Multi-class Classification Method publication-title: Journal of Electronic Measurement and Instrumentation – volume: 71 start-page: 3721 year: 2022 end-page: 3731 ident: b0250 article-title: Research on Optimization of Random Forest Algorithm Based on Spark publication-title: CMC-Computers Materials & Continua – volume: 24 start-page: 2010 year: 2008 end-page: 2014 ident: b0005 article-title: Enriched Random Forests publication-title: Bioinformatics – volume: 9 start-page: 231 year: 2012 end-page: 233 ident: b0130 article-title: Study on Boundary Search Method for DFM Mesh Generation publication-title: China Foundry – volume: 35 start-page: 698 year: 2019 end-page: 703 ident: b0180 article-title: Prediction Performance of Improved Decision Tree-based Algorithms: A Review publication-title: Procedia Manufacturing – volume: 4 start-page: 1 year: 2018 end-page: 7 ident: b0190 article-title: Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika publication-title: Khazanah Informatika Jurnal Ilmu Komputer dan Informatika – volume: 49 start-page: 2080 year: 2020 end-page: 2093 ident: b0260 article-title: On the Confusion Matrix in Credit Scoring and its Analytical Properties publication-title: Communications in Statistics - Theory and Methods – volume: 70 start-page: 1000 year: 2018 end-page: 1009 ident: b0135 article-title: A Principle Component Analysis-based Random Forest with the Potential Nearest Neighbor Method for Automobile Insurance Fraud Identification publication-title: Applied Soft Computing – volume: 181 start-page: 2109 year: 2020 end-page: 2130 ident: b0035 article-title: Shortest Path Distance in Manhattan Poisson Line Cox Process publication-title: Journal of Statistical Physics – volume: 76 start-page: 3702 year: 2020 end-page: 3712 ident: b0255 article-title: Heuristic Parallel Selective Ensemble Algorithm Based on Clustering and Improved Simulated Annealing publication-title: The Journal of Supercomputing – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: b0195 article-title: The Strength of Weak Learnability publication-title: Machine Learning – volume: 42 start-page: 202 year: 2013 end-page: 214 ident: b0110 article-title: A New Test of Randomness for Lehmer Generators Based on the Manhattan Distance Between Pairs of Consecutive Random Numbers publication-title: Communications in Statistics - Simulation and Computation – volume: 5 start-page: 338 year: 2017 end-page: 351 ident: b0160 article-title: Variable Importance-weighted Random Forests publication-title: Quantitative Biology – volume: 43 start-page: 1947 year: 2003 end-page: 1958 ident: b0230 article-title: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling publication-title: Journal of Chemical Information and Computer Sciences – volume: 32 start-page: 1 year: 2017 end-page: 11 ident: b0100 article-title: Cross-Correlation Coefficient-Based Coherency Identification in Bulk Power System Using Wide-Area Measurements publication-title: Transactions of China Electrotechnical Society – volume: 87 start-page: 41 year: 2013 end-page: 65 ident: b0235 article-title: Modifications of the Construction and Voting Mechanisms of the Random Forests Algorithm publication-title: Data & Knowledge Engineering – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0015 article-title: Bagging Predictors publication-title: Machine Learning – volume: 67 start-page: 270 year: 2017 end-page: 282 ident: b0025 article-title: Some Features Speak Loud, But Together They all Speak Louder: A Study on the Correlation Between Classification Error and Feature Usage in Decision-tree Classification Ensembles publication-title: Engineering Applications of Artificial Intelligence – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0045 article-title: Statistical Comparison of Classifier Over Multiple Data Sets publication-title: Journal of Machine Learning Research – volume: 186 year: 2021 ident: b0225 article-title: Technology of Locating Loose Particles Inside Sealed Electronic Equipment Based on Parameter-Optimized Random Forest publication-title: Measurement – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0010 article-title: Random Forests publication-title: Machine Learning – volume: 43 start-page: 143 year: 2010 end-page: 152 ident: b0170 article-title: Out-of-bag Estimation of the Optimal Sample Size in Bagging publication-title: Pattern Recognition – volume: 41 start-page: 4337 year: 2021 end-page: 4349 ident: b0220 article-title: A Study on the Classification of Vegetation Point Cloud Based on Random Forest in the Straw Checkerboard Barriers Area publication-title: Journal of Intelligent & Fuzzy Systems – volume: 28 start-page: 112 year: 2012 end-page: 118 ident: b0210 article-title: MissForest-non-parametric Missing Value Imputation for Mixed-type Data publication-title: Bioinformatics – year: 2023 ident: b0065 article-title: Improving Random Forest Algorithm by Selecting Appropriate Penalized Method – reference: Ho, T.K. (1995). Random Decision Forests. – volume: 180 start-page: 4031 year: 2010 end-page: 4041 ident: b0150 article-title: A Short Text Modeling Method Combining Semantic and Statistical Information publication-title: Information Sciences – volume: 6 start-page: 343 year: 2019 end-page: 349 ident: b0205 article-title: Classification and Regression Tree (CART) Model of Sonographic Signs in Predicting Thyroid Nodules Malignancy publication-title: European Journal of Radiology Open – volume: 47 year: 2019 ident: b0200 article-title: An Improved ID3 Decision Algorithm and Its Application publication-title: Computer & Digital Engineering – volume: 2 start-page: 841 year: 2008 end-page: 860 ident: b0095 article-title: Random Survival Forests publication-title: The Annals of Applied Statistics – volume: 18 start-page: 103 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.121549_b0120 article-title: A Novel Approach to Maximize G-mean in Nonstationary Data with Recurrent Imbalance Shifts publication-title: International Arab Journal of Information Technology – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.eswa.2023.121549_b0015 article-title: Bagging Predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – year: 2023 ident: 10.1016/j.eswa.2023.121549_b0065 – volume: 180 start-page: 4031 issue: 20 year: 2010 ident: 10.1016/j.eswa.2023.121549_b0150 article-title: A Short Text Modeling Method Combining Semantic and Statistical Information publication-title: Information Sciences doi: 10.1016/j.ins.2010.06.021 – volume: 27 start-page: 127 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.121549_b0215 article-title: Reusable Components in Decision Tree Induction Algorithms publication-title: Computational Statistics doi: 10.1007/s00180-011-0242-8 – volume: 46 start-page: 31 issue: 2 year: 2016 ident: 10.1016/j.eswa.2023.121549_b0050 article-title: Similarity Matching Algorithm of Equipment Fault Case Based on SVSM publication-title: Radio Engineering – volume: 87 start-page: 41 year: 2013 ident: 10.1016/j.eswa.2023.121549_b0235 article-title: Modifications of the Construction and Voting Mechanisms of the Random Forests Algorithm publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2013.07.002 – volume: 29 start-page: 4504 issue: 9 year: 2018 ident: 10.1016/j.eswa.2023.121549_b0060 article-title: Extensions to Online Feature Selection Using Bagging and Boosting publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2746107 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eswa.2023.121549_b0010 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 36 start-page: 2031 issue: 7 year: 2016 ident: 10.1016/j.eswa.2023.121549_b0030 article-title: Clone Group Mapping Method Based on Improved Vector Space Model publication-title: Journal of Computer Applications – volume: 29 start-page: 611 issue: 4 year: 2015 ident: 10.1016/j.eswa.2023.121549_b0240 article-title: Study on PSO-based Decision-tree SVM Multi-class Classification Method publication-title: Journal of Electronic Measurement and Instrumentation – volume: 28 start-page: 112 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.121549_b0210 article-title: MissForest-non-parametric Missing Value Imputation for Mixed-type Data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.eswa.2023.121549_b0085 article-title: The Random Subspace Method for Constructing Decision Forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.709601 – volume: 32 start-page: 130 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.121549_b0155 article-title: A SAS Macro for Testing Differences among Three or More Independent Groups Using Kruskal-Wallis and Nemenyi Tests publication-title: Journal of Huazhong University of Science and Technology - Medical Sciences doi: 10.1007/s11596-012-0023-9 – volume: 186 year: 2021 ident: 10.1016/j.eswa.2023.121549_b0225 article-title: Technology of Locating Loose Particles Inside Sealed Electronic Equipment Based on Parameter-Optimized Random Forest publication-title: Measurement doi: 10.1016/j.measurement.2021.110164 – volume: 24 start-page: 2010 issue: 18 year: 2008 ident: 10.1016/j.eswa.2023.121549_b0005 article-title: Enriched Random Forests publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn356 – volume: 44 start-page: 2636 issue: 10 year: 2015 ident: 10.1016/j.eswa.2023.121549_b0185 article-title: Overview of Friedman’s Test and Post-hoc Analysis publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610918.2014.931971 – volume: 7 start-page: 55744 year: 2019 ident: 10.1016/j.eswa.2023.121549_b0020 article-title: Classification Based on Multivariate Contrast Patterns publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913649 – volume: 32 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.eswa.2023.121549_b0100 article-title: Cross-Correlation Coefficient-Based Coherency Identification in Bulk Power System Using Wide-Area Measurements publication-title: Transactions of China Electrotechnical Society – year: 2009 ident: 10.1016/j.eswa.2023.121549_b0070 article-title: Class-specific Hough Forests for Object Detection – volume: 91 start-page: 353 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0245 article-title: Improving Random Forest Algorithm by Lasso Method publication-title: Journal of Statistical Computation and Simulation doi: 10.1080/00949655.2020.1814776 – volume: 5 start-page: 197 issue: 2 year: 1990 ident: 10.1016/j.eswa.2023.121549_b0195 article-title: The Strength of Weak Learnability publication-title: Machine Learning doi: 10.1007/BF00116037 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.121549_b0190 article-title: Penerapan Algoritma C4.5 pada Aplikasi Prediksi Kelulusan Mahasiswa Prodi Informatika publication-title: Khazanah Informatika Jurnal Ilmu Komputer dan Informatika doi: 10.23917/khif.v4i1.5975 – volume: 122 start-page: 65 issue: 5 year: 2019 ident: 10.1016/j.eswa.2023.121549_b0080 article-title: An Assertive Reasoning Method for Emergency Response Management Based on Knowledge Elements C4.5 Decision Tree publication-title: Expert Systems with Application doi: 10.1016/j.eswa.2018.12.042 – volume: 49 start-page: 2080 issue: 9 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0260 article-title: On the Confusion Matrix in Credit Scoring and its Analytical Properties publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610926.2019.1568485 – volume: 196 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0145 article-title: LR-SMOTE—An Improved Unbalanced Dataset Oversampling Based on K-means and SVM publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105845 – volume: 38 start-page: 64 issue: 8 year: 2015 ident: 10.1016/j.eswa.2023.121549_b0055 article-title: Parking Plot Recognition Based on C4.5 Algorithm publication-title: Electronic Measurement Technology – volume: 47 issue: 12 year: 2019 ident: 10.1016/j.eswa.2023.121549_b0200 article-title: An Improved ID3 Decision Algorithm and Its Application publication-title: Computer & Digital Engineering – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 10.1016/j.eswa.2023.121549_b0230 article-title: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci034160g – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.eswa.2023.121549_b0045 article-title: Statistical Comparison of Classifier Over Multiple Data Sets publication-title: Journal of Machine Learning Research – volume: 31 start-page: 427 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0115 article-title: Random Forest Ensemble Using a Weight-adjusted Voting Algorithm publication-title: Journal of the Korean Data and Information Science Sociaty doi: 10.7465/jkdi.2020.31.2.427 – volume: 38 start-page: 7603 issue: 6 year: 2011 ident: 10.1016/j.eswa.2023.121549_b0175 article-title: Induced Aggregation Operators in the Euclidean Distance and its Application in Financial Decision Making publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.103 – volume: 181 start-page: 2109 issue: 6 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0035 article-title: Shortest Path Distance in Manhattan Poisson Line Cox Process publication-title: Journal of Statistical Physics doi: 10.1007/s10955-020-02657-2 – volume: 35 start-page: 698 year: 2019 ident: 10.1016/j.eswa.2023.121549_b0180 article-title: Prediction Performance of Improved Decision Tree-based Algorithms: A Review publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2019.06.011 – volume: 42 start-page: 202 issue: 1 year: 2013 ident: 10.1016/j.eswa.2023.121549_b0110 article-title: A New Test of Randomness for Lehmer Generators Based on the Manhattan Distance Between Pairs of Consecutive Random Numbers publication-title: Communications in Statistics - Simulation and Computation doi: 10.1080/03610918.2011.633728 – volume: 46 start-page: 0701011 issue: 7 year: 2019 ident: 10.1016/j.eswa.2023.121549_b0165 article-title: Object Detection Based on Improved Grassberger Entropy Random Forest Classifier publication-title: Zhongguo Jiguang/Chinese Journal of Lasers – volume: 8 start-page: 78590 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0140 article-title: Improving Random Projections With Extra Vectors to Approximate Inner Products publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990422 – ident: 10.1016/j.eswa.2023.121549_b0090 – volume: 13 start-page: 155 issue: 7 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0105 article-title: A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment publication-title: Journal of Risk and Financial Management doi: 10.3390/jrfm13070155 – volume: 6 start-page: 343 year: 2019 ident: 10.1016/j.eswa.2023.121549_b0205 article-title: Classification and Regression Tree (CART) Model of Sonographic Signs in Predicting Thyroid Nodules Malignancy publication-title: European Journal of Radiology Open doi: 10.1016/j.ejro.2019.11.003 – volume: 70 start-page: 1000 year: 2018 ident: 10.1016/j.eswa.2023.121549_b0135 article-title: A Principle Component Analysis-based Random Forest with the Potential Nearest Neighbor Method for Automobile Insurance Fraud Identification publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.07.027 – volume: 5 start-page: 338 issue: 4 year: 2017 ident: 10.1016/j.eswa.2023.121549_b0160 article-title: Variable Importance-weighted Random Forests publication-title: Quantitative Biology doi: 10.1007/s40484-017-0121-6 – volume: 76 start-page: 3702 issue: 5 year: 2020 ident: 10.1016/j.eswa.2023.121549_b0255 article-title: Heuristic Parallel Selective Ensemble Algorithm Based on Clustering and Improved Simulated Annealing publication-title: The Journal of Supercomputing doi: 10.1007/s11227-018-2633-x – volume: 9 start-page: 231 issue: 3 year: 2012 ident: 10.1016/j.eswa.2023.121549_b0130 article-title: Study on Boundary Search Method for DFM Mesh Generation publication-title: China Foundry – volume: 43 start-page: 143 issue: 1 year: 2010 ident: 10.1016/j.eswa.2023.121549_b0170 article-title: Out-of-bag Estimation of the Optimal Sample Size in Bagging publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.05.010 – volume: 67 start-page: 270 year: 2017 ident: 10.1016/j.eswa.2023.121549_b0025 article-title: Some Features Speak Loud, But Together They all Speak Louder: A Study on the Correlation Between Classification Error and Feature Usage in Decision-tree Classification Ensembles publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.10.007 – volume: 2 start-page: 841 issue: 3 year: 2008 ident: 10.1016/j.eswa.2023.121549_b0095 article-title: Random Survival Forests publication-title: The Annals of Applied Statistics doi: 10.1214/08-AOAS169 – volume: 41 start-page: 4337 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121549_b0220 article-title: A Study on the Classification of Vegetation Point Cloud Based on Random Forest in the Straw Checkerboard Barriers Area publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-189694 – volume: 9 issue: 4 year: 2000 ident: 10.1016/j.eswa.2023.121549_b0040 article-title: Wilcoxon Signed Rank Test publication-title: Journal of Clinical Nursing – volume: 2205 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.eswa.2023.121549_b0125 article-title: Efficient Learning of Random Forest Classifier Using Disjoint Partitioning Approach publication-title: Lecture Notes in Engineering & Computer Science – volume: 71 start-page: 3721 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.121549_b0250 article-title: Research on Optimization of Random Forest Algorithm Based on Spark publication-title: CMC-Computers Materials & Continua doi: 10.32604/cmc.2022.015378 – volume: 19 start-page: 2817 issue: 5 year: 2021 ident: 10.1016/j.eswa.2023.121549_b0075 article-title: Enriched Random Forest for High Dimensional Genomic Data publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2021.3089417 |
SSID | ssj0017007 |
Score | 2.7181535 |
Snippet | •Propose an improved random forest based on the improvement of decision trees.•Improve the evaluation mechanism for the classification effect of decision... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121549 |
SubjectTerms | CART Classification accuracy Correlation measurement Dot product Random forest |
Title | An improved random forest based on the classification accuracy and correlation measurement of decision trees |
URI | https://dx.doi.org/10.1016/j.eswa.2023.121549 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWFj4RnzrBjYUmtgOacaqoiogukAltsg-J1IRpFVphVj47dwlTgEJMbAlkU-Kzvbds_38Togzg9LQtHGB6VhNCxRDT3jZoVWK0wYLWpBVrMq74eVgpG8e48eW6DV3YZhW6WN_HdOraO2_tL0329PxuH1P4IDSIZ80EuSJq_u9Wic8yi8-ljQPlp9Lar29JODW_uJMzfHKX99Ye0iqSmSB9TR_S07fEk5_U6x7pAjd-me2RCsvt8VGU4UB_KTcEc_dEsbV1kDugDKPm7wAIVGK9sApysGkBEJ5gIyTmRhU9QUYxMXM4DuQBSDX6KhZcfDytWsIkwKcL8IDfHz9uitG_auH3iDwNRQCVGE4D2KUudbSmkSnqnDWydiZJClUITs5gbcwlaFRkTNSOVSU-xFlaGNTxCwdr1DtiZVyUub7AtIotQpjpCWg4rxupCU0YUyorC2KSB6IqHFehl5gnOtcPGcNk-wpY4dn7PCsdviBOF_aTGt5jT9bx02fZD8GSUbx_w-7w3_aHYk1etM15exYrMxni_yEMMjcnlaD7FSsdq9vB8NP2NndCw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjXhzAxsKTeykaccKUZVXF1qpW2SfE6moTVEpQiz8du4Sp4CEOrBFiU-KzvZ9n-3Pd0JcaJSapo31dNOEtEDR9ISNJq1SbKgxowVZoap87DW6g_BuGA1XxHV1F4ZllS72lzG9iNbuTd15s_4yGtWfiBwQHPJJI1GeiO_3roY0fbmMwdXnQufB-efiMuFe7HFzd3OmFHmlr--cfEiqIssCJ9T8C51-IE5nS2w4qgjt8m-2xUqa74jNqgwDuFm5K8btHEbF3kBqgaDHTidAVJTCPTBGWZjmQDQPkIkyK4OKzgCN-DbT-AFkAchFOkpZHEy-tw1hmoF1VXiAz69f98Sgc9O_7nquiIKHyvfnXoQyDUNpdBy2VGaNlZHVcZypTDZTYm9-S_paBVZLZVER-CNK30Q6izh3vEK1L2r5NE8PBLSCllEYIa0BFQO7lobohNa-MibLAnkogsp5CboM41zoYpxUUrLnhB2esMOT0uGH4nJh81Lm11jaOqr6JPk1ShICgCV2R_-0Oxdr3f7jQ_Jw27s_Fuv0JSz1ZyeiNp-9padESObmrBhwXwMr3pk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+random+forest+based+on+the+classification+accuracy+and+correlation+measurement+of+decision+trees&rft.jtitle=Expert+systems+with+applications&rft.au=Sun%2C+Zhigang&rft.au=Wang%2C+Guotao&rft.au=Li%2C+Pengfei&rft.au=Wang%2C+Hui&rft.date=2024-03-01&rft.issn=0957-4174&rft.volume=237&rft.spage=121549&rft_id=info:doi/10.1016%2Fj.eswa.2023.121549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |