Chat mining: Automatically determination of chat conversations’ topic in Turkish text based chat mediums
Mostly, the conversations taking place in chat mediums bear important information concerning the speakers. This information can vary in many fields such as tendencies, habits, attitudes, guilt situations, and intentions of the speakers. Therefore, analysis and processing of these conversations are o...
Saved in:
Published in | Expert systems with applications Vol. 37; no. 12; pp. 8705 - 8710 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mostly, the conversations taking place in chat mediums bear important information concerning the speakers. This information can vary in many fields such as tendencies, habits, attitudes, guilt situations, and intentions of the speakers. Therefore, analysis and processing of these conversations are of much importance. Many social and semantic inferences can be made from these conversations. In determining characteristics of conversations and analysis of conversations, subject designation can be grounded on.
In this study, chat mining is chosen as an application of text mining, and a study concerning determination of subject in the Turkish text based chat conversations is conducted. In sorting the conversations, supervised learning methods are used in this study. As for classifiers, Naive Bayes, k-Nearest Neighbor and Support Vector Machine are used. Ninety-one percent success is achieved in determination of subject. |
---|---|
AbstractList | Mostly, the conversations taking place in chat mediums bear important information concerning the speakers. This information can vary in many fields such as tendencies, habits, attitudes, guilt situations, and intentions of the speakers. Therefore, analysis and processing of these conversations are of much importance. Many social and semantic inferences can be made from these conversations. In determining characteristics of conversations and analysis of conversations, subject designation can be grounded on.
In this study, chat mining is chosen as an application of text mining, and a study concerning determination of subject in the Turkish text based chat conversations is conducted. In sorting the conversations, supervised learning methods are used in this study. As for classifiers, Naive Bayes, k-Nearest Neighbor and Support Vector Machine are used. Ninety-one percent success is achieved in determination of subject. |
Author | Köse, Cemal Özyurt, Özcan |
Author_xml | – sequence: 1 givenname: Özcan surname: Özyurt fullname: Özyurt, Özcan email: oozyurt@ktu.edu.tr – sequence: 2 givenname: Cemal surname: Köse fullname: Köse, Cemal email: ckose@ktu.edu.tr |
BookMark | eNp9kE1OwzAQhS1UJNrCBVj5AimTOLFTxKaq-JMqsSlry3am1KVxKtstdMc1uB4nIWlZsejqSW_mG817A9JzjUNCrlMYpZDym9UIw4caZdAawEdQsDPST0vBEi7GrEf6MC5EkqcivyCDEFYAqQAQfbKaLlWktXXWvd3SyTY2tYrWqPV6TyuM6NtRazSONgtqul3TuB36cDDDz9c3jc3GGmodnW_9uw1LGvEzUq0CVkeixspu63BJzhdqHfDqT4fk9eF-Pn1KZi-Pz9PJLDEMICaF5nmRK811gSYruWal4SWgYTrVhcJSay1UxkDnHMcgctGqXnCNLAPGCzYk5fGu8U0IHhfS2Hh4N3pl1zIF2XUmV7LrTHadSeCy7axFs3_oxtta-f1p6O4IYRtqZ9HLYCw606b2aKKsGnsK_wWuZotD |
CitedBy_id | crossref_primary_10_1016_j_techfore_2018_06_009 crossref_primary_10_21733_ibad_615528 crossref_primary_10_1016_j_diin_2014_10_001 crossref_primary_10_7763_IJKE_2015_V1_12 crossref_primary_10_1016_j_artint_2013_02_004 crossref_primary_10_1016_j_ijpe_2017_06_006 crossref_primary_10_1016_j_eswa_2012_07_070 crossref_primary_10_17656_jzs_10273 crossref_primary_10_1016_j_eswa_2013_05_015 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd |
Copyright_xml | – notice: 2010 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2010.06.053 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 8710 |
ExternalDocumentID | 10_1016_j_eswa_2010_06_053 S0957417410005579 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-5b6454ab6b5ec286b38c680ec3b1b5ae8bbb7a230b46e9074746ebf6be3203653 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Apr 24 22:54:44 EDT 2025 Tue Jul 01 03:12:06 EDT 2025 Fri Feb 23 02:30:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Chat conversations Chat mining Feature selection Topic detection Text classification |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-5b6454ab6b5ec286b38c680ec3b1b5ae8bbb7a230b46e9074746ebf6be3203653 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2010_06_053 crossref_primary_10_1016_j_eswa_2010_06_053 elsevier_sciencedirect_doi_10_1016_j_eswa_2010_06_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2010 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Y., & Pederson, J. O. (1997). A comparative study on feature selection in text categorization. In Koppel, Argamon, Shimoni (bib12) 2002; 17 Amasyali, M. F., & Diri, B. (2006). Automatic Turkish text categorization in terms of author. Genre and gender. In St. Thomas: US Virgin Islands. Bengel, Gauch, Mitter, Vijayaraghavan (bib2) 2004; 3073 Witten, Frank (bib18) 2000 Kolenda, T., Hansen, L. K., & Larsen, J. (2001). Signal detection using ICA: Application to chat room topic spotting. In Bingham, Kab, Girolami (bib4) 2003; 17 Elnahrawy, E. (2002). Log-based chat room monitoring using text categorization: A comparative study. In Bing, L., Xiaoli, L., Wee, S. L., & Philip, S. Y. (2004). Text classification by labeling words. In Haichao, Siu, Yulan (bib6) 2006; 30 (pp. 425–430). LU-CSE-02-011. Joachims (bib9) 1998; 1398 Yang (bib16) 1999; 1 Han, Kamber (bib8) 2006 Khan, F. M., Fisher, T. A., Shuler, L. A., Tianhao, W., & Pottenger, W. M. (2002). Mining chat-room conversations for social and semantic interactions. Kose, Ozyurt, Ikibas (bib14) 2008; 4993 Tianhao, W., Khan, F. M., Fisher, T. A., Shuler, L. A., & Pottenger, W. M. (2002). Error-driven boolean-logic-rule-based learning for mining chat-room conversations. Kose, Ozyurt (bib13) 2006; 4263 (pp. 540–545). LU-CSE-02-008. Han, Karypis, Kumar (bib7) 2001; 2035 (pp. 412–420). NLDB 2006 (pp. 221–226). |
References_xml | – year: 2006 ident: bib8 article-title: Data mining concepts and techniques – reference: (pp. 540–545). – volume: 17 start-page: 401 year: 2002 end-page: 412 ident: bib12 article-title: Automatically categorizing written texts by author gender publication-title: Literary and Linguistic Computing – reference: Amasyali, M. F., & Diri, B. (2006). Automatic Turkish text categorization in terms of author. Genre and gender. In – volume: 4993 start-page: 638 year: 2008 end-page: 643 ident: bib14 article-title: A comparison of textual data mining methods for sex identification in chat conversations publication-title: Lecture Notes in Computer Science – reference: . St. Thomas: US Virgin Islands. – reference: . NLDB 2006 (pp. 221–226). – volume: 30 start-page: 496 year: 2006 end-page: 516 ident: bib6 article-title: Structural analysis of chat messages for topic detection publication-title: Online Information Review – reference: , LU-CSE-02-008. – reference: Elnahrawy, E. (2002). Log-based chat room monitoring using text categorization: A comparative study. In – volume: 2035 start-page: 53 year: 2001 end-page: 65 ident: bib7 article-title: Text categorization using weight adjusted k-nearest neighbor classification publication-title: Lecture Notes in Computer Science – reference: Yang, Y., & Pederson, J. O. (1997). A comparative study on feature selection in text categorization. In – reference: Khan, F. M., Fisher, T. A., Shuler, L. A., Tianhao, W., & Pottenger, W. M. (2002). Mining chat-room conversations for social and semantic interactions. – year: 2000 ident: bib18 article-title: Data mining: Practical machine learning tools and techniques with Java implementations – reference: Bing, L., Xiaoli, L., Wee, S. L., & Philip, S. Y. (2004). Text classification by labeling words. In – volume: 3073 start-page: 266 year: 2004 end-page: 277 ident: bib2 article-title: Chattrack: Chat room topic detection using classification publication-title: Lecture Notes in Computer Science – volume: 1398 start-page: 137 year: 1998 end-page: 142 ident: bib9 article-title: Text categorization with support vector machines: Learning with many relevant features publication-title: Lecture Notes in Computer Science – reference: (pp. 412–420). – reference: , LU-CSE-02-011. – reference: Tianhao, W., Khan, F. M., Fisher, T. A., Shuler, L. A., & Pottenger, W. M. (2002). Error-driven boolean-logic-rule-based learning for mining chat-room conversations. – reference: (pp. 425–430). – volume: 4263 start-page: 697 year: 2006 end-page: 706 ident: bib13 article-title: A target oriented agent to collect specific information in a chat medium publication-title: Lecture Notes in Computer Science – reference: Kolenda, T., Hansen, L. K., & Larsen, J. (2001). Signal detection using ICA: Application to chat room topic spotting. In – volume: 17 start-page: 69 year: 2003 end-page: 83 ident: bib4 article-title: Topic identification in dynamic text by complexity pursuit publication-title: Neural Processing Letters – volume: 1 start-page: 69 year: 1999 end-page: 90 ident: bib16 article-title: An evaluation of statistical approaches to text categorization publication-title: Information Retrieval Journal |
SSID | ssj0017007 |
Score | 2.0809336 |
Snippet | Mostly, the conversations taking place in chat mediums bear important information concerning the speakers. This information can vary in many fields such as... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 8705 |
SubjectTerms | Chat conversations Chat mining Feature selection Text classification Topic detection |
Title | Chat mining: Automatically determination of chat conversations’ topic in Turkish text based chat mediums |
URI | https://dx.doi.org/10.1016/j.eswa.2010.06.053 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NasMwDDalu-yy_7Hf4sNuI20ax066Wykr3cZ6WQu9BdtxaEqblDZh7DL2Gnu9PcmsxCkbjB4GgUCQwMiKJONPnxC68ULJnA71LC5Dz3L1Wi2hM4vl6kjoRI6tMyA0Jz8P2WDsPk7opIZ6VS8MwCpN7C9jehGtzZeWsWZrGcetF10c6HSoH7sgkoImPtf1wMub7xuYB9DPeSXfnl6KljaNMyXGS61fuYF3saZNyd_J6UfC6R-gPVMp4m65mENUU8kR2q-mMGDzUx6jWW_KM7woBj3c4W6epQULK5_P33BYgV3A_DiNsATZAmm-MjCer49PnKXLWOI4waN8pQvKKQY4CIYEF5YacAOfL9YnaNy_H_UGlpmgYEli25lFBRB2ccEEVdLxmSC-ZL6tJBFtQbnyhRAe16cQ4TIFx2RPv0XEhCJwQUnJKaonaaLOENbnvMh3HUUFUPgJzt2Qcc64FuVEqs45alemC6ShF4cpF_OgwpHNAjB3AOYOAExHyTm63egsS3KNrdK02pHgl4sEOvpv0bv4p94l2nU22JUrVM9WubrWFUgmGoWLNdBO9-FpMPwGhZ3diA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPejFt1ife_AmadMku0m9lWKp2vZiC72F3c2WtvRFmyJexL_h3_OXOJNsioL0IAQCYQaGye7MLPvNN4Tc-pHiToX5llCRb3lgqyUhs1geREKn79iQAbE5udXmja731GO9HKllvTAIqzSxP43pSbQ2X0rGm6X5cFh6geIA0iE8dkIkVdki2x5sXxxjUHxf4zyQf85PCffAFhA3nTMpyEsvX4XBd_Gizdy_s9OPjFM_IHumVKTV1JpDktPTI7KfjWGgZlcek1FtIGI6SSY93NPqKp4lNKxiPH6jUYZ2Qf_TWZ8qlE2g5guD4_n6-KTxbD5UdDilndUCKsoBRTwIxQwXpRp4Bb-aLE9It_7QqTUsM0LBUq5txxaTyNglJJdMKyfg0g0UD2ytXFmWTOhASukLOIZIj2s8J_vwln0utYs3lMw9JfnpbKrPCIWDXj_wHM0kcvhJIbyIC8EFiApX6UqBlDPXhcrwi-OYi3GYAclGIbo7RHeHiKZjboHcrXXmKbvGRmmW_ZHw1xoJIfxv0Dv_p94N2Wl0Ws2w-dh-viC7zhrIckny8WKlr6AcieV1sty-AbCs3xY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chat+mining%3A+Automatically+determination+of+chat+conversations%E2%80%99+topic+in+Turkish+text+based+chat+mediums&rft.jtitle=Expert+systems+with+applications&rft.au=%C3%96zyurt%2C+%C3%96zcan&rft.au=K%C3%B6se%2C+Cemal&rft.date=2010-12-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=37&rft.issue=12&rft.spage=8705&rft.epage=8710&rft_id=info:doi/10.1016%2Fj.eswa.2010.06.053&rft.externalDocID=S0957417410005579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |