Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell

The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance of this layer depends significantly on its conductance, band energy and electrical trap density. In this study, doping the TiO2 layer is prese...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 145; p. 106627
Main Authors Teimouri, Razieh, Heydari, Zahra, Ghaziani, Mohammad Pouya, Madani, Mahdi, Abdy, Hamed, Kolahdouz, Mohammadreza, Asl-Soleimani, Ebrahim
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance of this layer depends significantly on its conductance, band energy and electrical trap density. In this study, doping the TiO2 layer is presented as a solution to decrease the solar power loss by increasing the ETL's conductance. The Li-doped TiO2 films have shown significantly improved characteristics by increasing conductivity and providing faster electron transport. The PSC structures were modeled using Solar Cell Capacitance Simulator (SCAPS) to study the effect of various Lithium contents on the efficiency of the PSCs. Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis and reliable sources. A PSC consists of an ETL with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23% which demonstrated 1.97% improvement compared to the one without doping. Pursuant to capacitance-frequency analysis, the doped TiO2 was more conductive and showed lower trap-state density at the ETL/absorber interface compared to the pristine one. •Li-doped TiO2 layer is presented as a solution to decrease the solar power loss.•The PSC structures were modeled using SCAPS to study the effect of various Lithium contents.•Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis.•The PSC with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23%.•Capacitance-frequency analysis showed lower trap-state density for doped ETL at the absorber interface.
AbstractList The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance of this layer depends significantly on its conductance, band energy and electrical trap density. In this study, doping the TiO2 layer is presented as a solution to decrease the solar power loss by increasing the ETL's conductance. The Li-doped TiO2 films have shown significantly improved characteristics by increasing conductivity and providing faster electron transport. The PSC structures were modeled using Solar Cell Capacitance Simulator (SCAPS) to study the effect of various Lithium contents on the efficiency of the PSCs. Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis and reliable sources. A PSC consists of an ETL with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23% which demonstrated 1.97% improvement compared to the one without doping. Pursuant to capacitance-frequency analysis, the doped TiO2 was more conductive and showed lower trap-state density at the ETL/absorber interface compared to the pristine one. •Li-doped TiO2 layer is presented as a solution to decrease the solar power loss.•The PSC structures were modeled using SCAPS to study the effect of various Lithium contents.•Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis.•The PSC with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23%.•Capacitance-frequency analysis showed lower trap-state density for doped ETL at the absorber interface.
ArticleNumber 106627
Author Abdy, Hamed
Asl-Soleimani, Ebrahim
Madani, Mahdi
Ghaziani, Mohammad Pouya
Kolahdouz, Mohammadreza
Heydari, Zahra
Teimouri, Razieh
Author_xml – sequence: 1
  givenname: Razieh
  surname: Teimouri
  fullname: Teimouri, Razieh
– sequence: 2
  givenname: Zahra
  surname: Heydari
  fullname: Heydari, Zahra
– sequence: 3
  givenname: Mohammad Pouya
  surname: Ghaziani
  fullname: Ghaziani, Mohammad Pouya
– sequence: 4
  givenname: Mahdi
  surname: Madani
  fullname: Madani, Mahdi
– sequence: 5
  givenname: Hamed
  surname: Abdy
  fullname: Abdy, Hamed
– sequence: 6
  givenname: Mohammadreza
  surname: Kolahdouz
  fullname: Kolahdouz, Mohammadreza
  email: kolahdouz@ut.ac.ir
– sequence: 7
  givenname: Ebrahim
  surname: Asl-Soleimani
  fullname: Asl-Soleimani, Ebrahim
BookMark eNp9kMtqwzAQRUVpoUnaH-hKP-B0ZMdyDN2U0BcEsmi6FrI8SpQqkpFEwP362qSrLgIDA3c4A_dMybXzDgl5YDBnwPjjYR67o5nnkI8B53l1RSYMap4VvKquyQSqRZ1xKPgtmcZ4AIB6waoJ0Z-9S3uM5se4HV0b2voOW7o1m5yiRZWCdzQF6WLnQ6JW9hgi1T7QvdntbU9Ra6MMukQ7K50MtMPgT_HbJKTR2yFQaO0dudHSRrz_2zPy9fqyXb1n683bx-p5nakCIGVl3ehClQUvm0pCUzdQAVNyGFALLutGDpcSsWIlygZyzqVUusRls1wqWUAxI_n5rwo-xoBadMEcZegFAzGaEgcxmhKjKXE2NUDLf5AySSbj3VDc2Mvo0xnFodTJYBBxlKGwNWGQJ1pvLuG_fE-JVQ
CitedBy_id crossref_primary_10_1016_j_mssp_2023_107467
crossref_primary_10_7498_aps_70_20202016
crossref_primary_10_1016_j_apsusc_2021_152150
crossref_primary_10_1007_s11051_024_05933_4
crossref_primary_10_1016_j_ijhydene_2024_05_354
crossref_primary_10_1016_j_jmat_2021_04_002
crossref_primary_10_1016_j_ceramint_2020_07_260
crossref_primary_10_3390_ma17102339
crossref_primary_10_1007_s00289_021_03904_6
crossref_primary_10_3389_fbioe_2022_900269
crossref_primary_10_1039_D4RA01559B
crossref_primary_10_1016_j_jpcs_2025_112598
crossref_primary_10_1002_er_8720
crossref_primary_10_1039_D3TC03151A
crossref_primary_10_1088_1402_4896_ad986e
crossref_primary_10_3390_en15041408
crossref_primary_10_1016_j_cej_2022_136761
crossref_primary_10_1016_j_solmat_2022_111926
crossref_primary_10_1109_TED_2020_3036020
crossref_primary_10_1051_epjap_2023230023
crossref_primary_10_1016_j_optmat_2021_111909
crossref_primary_10_3390_su151712805
crossref_primary_10_1002_adma_202305183
crossref_primary_10_3390_en15051648
crossref_primary_10_2139_ssrn_4167640
crossref_primary_10_1016_j_heliyon_2022_e11471
crossref_primary_10_1007_s10008_021_05064_z
crossref_primary_10_1038_s41598_023_42447_w
crossref_primary_10_1039_D1RA01236C
crossref_primary_10_3390_photonics10030271
crossref_primary_10_1155_2022_9299279
crossref_primary_10_1007_s11356_023_30732_0
crossref_primary_10_1016_j_cplett_2021_138609
crossref_primary_10_1088_1402_4896_ad9647
crossref_primary_10_1021_acsaem_1c04064
crossref_primary_10_1016_j_heliyon_2024_e27321
crossref_primary_10_1016_j_optmat_2024_115697
crossref_primary_10_1016_j_molstruc_2024_139864
crossref_primary_10_1007_s42247_023_00558_0
crossref_primary_10_1021_acsaelm_3c00970
crossref_primary_10_1002_adsu_202400094
crossref_primary_10_1007_s10854_023_09868_9
crossref_primary_10_3390_inorganics12070188
crossref_primary_10_1098_rsta_2021_0144
crossref_primary_10_1038_s41598_024_61985_5
crossref_primary_10_1021_acsomega_4c04505
crossref_primary_10_1007_s10854_023_11562_9
crossref_primary_10_1016_j_inoche_2024_112360
crossref_primary_10_1016_j_optmat_2022_113009
crossref_primary_10_1016_j_mtsust_2024_100857
crossref_primary_10_1140_epjp_s13360_021_01100_z
crossref_primary_10_1002_pssa_202400612
crossref_primary_10_1007_s11082_021_02959_z
crossref_primary_10_1016_j_jallcom_2023_169186
crossref_primary_10_2139_ssrn_4107130
crossref_primary_10_1039_D3NA00319A
crossref_primary_10_1166_sam_2022_4368
crossref_primary_10_1016_j_mtchem_2021_100595
crossref_primary_10_1140_epjp_s13360_021_01794_1
crossref_primary_10_3390_gels9020101
Cites_doi 10.1039/C6TA06879K
10.1007/s40195-016-0409-y
10.1016/j.chempr.2016.10.002
10.1155/2015/974161
10.1016/j.ijleo.2016.01.100
10.1016/j.solener.2014.01.041
10.1016/j.apt.2010.11.006
10.1016/j.jpowsour.2019.01.041
10.1021/jp036735i
10.1016/j.ijleo.2019.06.007
10.1038/ncomms10379
10.1166/jnn.2019.16219
10.1016/j.solener.2015.09.046
10.1016/j.nanoen.2016.11.028
10.1016/S0040-6090(99)00825-1
10.1016/j.tsf.2018.02.022
10.1016/j.vacuum.2016.03.013
10.1021/acsenergylett.9b00283
10.1016/j.solener.2017.03.035
10.3390/en9110861
10.1063/1.4916345
10.1016/j.jpowsour.2012.09.078
10.1016/j.solmat.2016.08.025
10.1039/c3cp54273d
10.1016/j.spmi.2018.03.079
10.3390/ma11030355
10.1016/j.electacta.2014.05.112
10.1021/ja809598r
10.1016/j.materresbull.2014.05.034
10.1021/acsaem.9b00801
10.1016/j.rinp.2017.03.014
10.1021/acssuschemeng.8b06580
10.1039/C5CS00352K
10.1039/C5EE02608C
10.1063/1.5063475
10.1016/j.jphotochem.2019.03.038
10.1103/PhysRevB.71.235418
10.1039/c0jm03327h
10.1021/acsami.6b14040
10.1021/acsaem.9b00708
10.1007/s10854-016-4591-5
10.1016/j.electacta.2015.07.172
10.1186/s11671-016-1811-0
10.1016/j.cej.2017.08.045
10.1016/j.jpowsour.2013.04.146
10.1021/nl051885l
10.1016/j.jssc.2019.04.022
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2020.106627
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2020_106627
S0749603619321330
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-59bf3c5365b7a0b9b0701ca1ca0c46a9ba65b5ee715eab0266aacf5e8b88ca303
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Thu Apr 24 23:03:47 EDT 2025
Tue Jul 01 01:35:15 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Li-TiO2
Planar perovskite solar cell
Li doping
ETL
SCAPS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-59bf3c5365b7a0b9b0701ca1ca0c46a9ba65b5ee715eab0266aacf5e8b88ca303
ParticipantIDs crossref_primary_10_1016_j_spmi_2020_106627
crossref_citationtrail_10_1016_j_spmi_2020_106627
elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ge (bib38) 2016; 128
Hou, Zhou, Huang, Ou-Yang, Pan, Chen (bib35) 2017; 330
Abdy, Aletayeb, Kolahdouz, Soleimani (bib42) 2019; 9
Lan (bib36) 2018; 11
Pugazhendhi, Jeyarani, Tenkyong, Kumar, Praveen (bib50) 2017; 9
Peng, Huang, Huang (bib21) Jan. 2012; 23
Giordano (bib33) Apr. 2016; 7
Lee (bib40) Sep. 2019; 2
Shin, Choi (bib37) Mar. 2019; 19
Prabavathy (bib14) 2019; 377
Nienhaus (bib5) Apr. 2019; 4
Huang (bib39) 2017; 9
Bayan, Lupeiko, Kolupaeva, Pustovaya, Fedorenko (bib51) 2017
Li, Yang, Zhang, Gao, Luo, Liu (bib13) 2014; 57
Roose, Pathak, Steiner (bib32) 2015; 44
Alberti (bib41) Sep. 2019; 2
Burgelman, Nollet, Degrave (bib44) Feb. 2000; 361
Kang, Liu, Dai, He, Song, Tan (bib11) 2019
Lv (bib15) Apr. 2018; 651
Neo, Ouyang (bib26) Nov. 2013; 241
Alta, Asu (bib2) 2020
Liu (bib34) 2017; 31
Xie, Zhu, Li, Shen, Abate, Wei (bib7) 2019; 415
Ma, Akiyama, Abe, Imai (bib30) Dec. 2005; 5
Kojima, Teshima, Shirai, Miyasaka (bib1) May 2009; 131
Dubey, Singh (bib19) 2017; 7
Teimouri, Mohammadpour (bib47) Jun. 2018; 118
Zhang (bib31) 2017; 12
Park, Choi (bib12) Apr. 2004; 108
Ghanbari Niaki, Bakhshayesh, Mohammadi (bib17) May 2014; 103
Yang (bib9) 2018; 9
Xie (bib20) Feb. 2013; 224
Wang (bib25) Mar. 2015; 106
Elumalai, Mahmud, Wang, Uddin (bib3) Oct. 2016; 9
Yadav (bib46) Dec. 2015; 122
Abdy (bib4) Aug. 2019; 191
Zhen, Wu, Chen, Wang, Liu, Cheng (bib6) 2019; 7
Richter (bib52) Jun. 2005; 71
Wang (bib29) Aug. 2014; 137
Hou, Zheng, Chen, Zhou, Deng, Tao (bib28) 2011; 21
Moradi, Teimouri, Zahedifar, Saadat (bib45) Apr. 2016; 127
Tanyi (bib23) Oct. 2015; 178
Gottesman (bib53) Nov. 2016; 1
Deng, Wang, Chen, Cui, Shi (bib16) Jul. 2019; 275
Chandrakala, Annai Joseph Steffy, Bachan, Jothi Jeyarani, Tenkyong, Shyla (bib49) May 2016; 29
Iraj, Kolahdouz, Asl-Soleimani, Esmaeili, Kolahdouz (bib10) 2016; 27
Correa Baena (bib8) 2015; 8
Huang (bib48) Dec. 2016; 157
Zhang (bib24) 2016; 4
Kraft (bib27) 2014; 78
Liu (bib43) May 2017; 147
Navas (bib22) 2014; 16
Pan, Liu, Yao, Zhong (bib18) 2015; 2015
Pan (10.1016/j.spmi.2020.106627_bib18) 2015; 2015
Yadav (10.1016/j.spmi.2020.106627_bib46) 2015; 122
Neo (10.1016/j.spmi.2020.106627_bib26) 2013; 241
Correa Baena (10.1016/j.spmi.2020.106627_bib8) 2015; 8
Liu (10.1016/j.spmi.2020.106627_bib34) 2017; 31
Bayan (10.1016/j.spmi.2020.106627_bib51) 2017
Ge (10.1016/j.spmi.2020.106627_bib38) 2016; 128
Gottesman (10.1016/j.spmi.2020.106627_bib53) 2016; 1
Chandrakala (10.1016/j.spmi.2020.106627_bib49) 2016; 29
Moradi (10.1016/j.spmi.2020.106627_bib45) 2016; 127
Burgelman (10.1016/j.spmi.2020.106627_bib44) 2000; 361
Prabavathy (10.1016/j.spmi.2020.106627_bib14) 2019; 377
Huang (10.1016/j.spmi.2020.106627_bib39) 2017; 9
Zhang (10.1016/j.spmi.2020.106627_bib31) 2017; 12
Zhen (10.1016/j.spmi.2020.106627_bib6) 2019; 7
Shin (10.1016/j.spmi.2020.106627_bib37) 2019; 19
Nienhaus (10.1016/j.spmi.2020.106627_bib5) 2019; 4
Kraft (10.1016/j.spmi.2020.106627_bib27) 2014; 78
Abdy (10.1016/j.spmi.2020.106627_bib4) 2019; 191
Ma (10.1016/j.spmi.2020.106627_bib30) 2005; 5
Xie (10.1016/j.spmi.2020.106627_bib20) 2013; 224
Liu (10.1016/j.spmi.2020.106627_bib43) 2017; 147
Yang (10.1016/j.spmi.2020.106627_bib9) 2018; 9
Peng (10.1016/j.spmi.2020.106627_bib21) 2012; 23
Xie (10.1016/j.spmi.2020.106627_bib7) 2019; 415
Huang (10.1016/j.spmi.2020.106627_bib48) 2016; 157
Hou (10.1016/j.spmi.2020.106627_bib35) 2017; 330
Tanyi (10.1016/j.spmi.2020.106627_bib23) 2015; 178
Elumalai (10.1016/j.spmi.2020.106627_bib3) 2016; 9
Teimouri (10.1016/j.spmi.2020.106627_bib47) 2018; 118
Navas (10.1016/j.spmi.2020.106627_bib22) 2014; 16
Pugazhendhi (10.1016/j.spmi.2020.106627_bib50) 2017; 9
Dubey (10.1016/j.spmi.2020.106627_bib19) 2017; 7
Wang (10.1016/j.spmi.2020.106627_bib25) 2015; 106
Lan (10.1016/j.spmi.2020.106627_bib36) 2018; 11
Deng (10.1016/j.spmi.2020.106627_bib16) 2019; 275
Alta (10.1016/j.spmi.2020.106627_bib2) 2020
Roose (10.1016/j.spmi.2020.106627_bib32) 2015; 44
Alberti (10.1016/j.spmi.2020.106627_bib41) 2019; 2
Hou (10.1016/j.spmi.2020.106627_bib28) 2011; 21
Park (10.1016/j.spmi.2020.106627_bib12) 2004; 108
Wang (10.1016/j.spmi.2020.106627_bib29) 2014; 137
Giordano (10.1016/j.spmi.2020.106627_bib33) 2016; 7
Lee (10.1016/j.spmi.2020.106627_bib40) 2019; 2
Kojima (10.1016/j.spmi.2020.106627_bib1) 2009; 131
Zhang (10.1016/j.spmi.2020.106627_bib24) 2016; 4
Iraj (10.1016/j.spmi.2020.106627_bib10) 2016; 27
Richter (10.1016/j.spmi.2020.106627_bib52) 2005; 71
Lv (10.1016/j.spmi.2020.106627_bib15) 2018; 651
Li (10.1016/j.spmi.2020.106627_bib13) 2014; 57
Abdy (10.1016/j.spmi.2020.106627_bib42) 2019; 9
Kang (10.1016/j.spmi.2020.106627_bib11) 2019
Ghanbari Niaki (10.1016/j.spmi.2020.106627_bib17) 2014; 103
References_xml – volume: 7
  start-page: 1283
  year: 2017
  end-page: 1288
  ident: bib19
  article-title: Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method
  publication-title: Results Phys
– volume: 275
  start-page: 206
  year: Jul. 2019
  end-page: 209
  ident: bib16
  article-title: Yttrium-doped TiO2 compact layers for efficient perovskite solar cells
  publication-title: J. Solid State Chem.
– volume: 191
  start-page: 100
  year: Aug. 2019
  end-page: 108
  ident: bib4
  article-title: Synthesis, optical characterization, and simulation of organo-metal halide perovskite materials
  publication-title: Optik
– volume: 7
  start-page: 4586
  year: 2019
  end-page: 4618
  ident: bib6
  article-title: Strategies for modifying TiO 2 based electron transport layers to boost perovskite solar cells
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  year: 2018
  ident: bib9
  article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO 2
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2543
  year: Dec. 2005
  end-page: 2547
  ident: bib30
  article-title: High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode
  publication-title: Nano Lett.
– volume: 21
  start-page: 3877
  year: 2011
  end-page: 3883
  ident: bib28
  article-title: Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 10379
  year: Apr. 2016
  ident: bib33
  article-title: Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2928
  year: 2015
  end-page: 2934
  ident: bib8
  article-title: Highly efficient planar perovskite solar cells through band alignment engineering
  publication-title: Energy Environ. Sci.
– volume: 157
  start-page: 1038
  year: Dec. 2016
  end-page: 1047
  ident: bib48
  article-title: Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2015
  year: 2015
  ident: bib18
  article-title: Enhanced efficiency of dye-sensitized solar cells by trace amount ca-doping in tio2 photoelectrodes
  publication-title: J. Nanomater.
– volume: 57
  start-page: 177
  year: 2014
  end-page: 183
  ident: bib13
  article-title: Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping
  publication-title: Mater. Res. Bull.
– volume: 44
  start-page: 8326
  year: 2015
  end-page: 8349
  ident: bib32
  article-title: Doping of TiO 2 for sensitized solar cells
  publication-title: Chem. Soc. Rev.
– volume: 108
  start-page: 4086
  year: Apr. 2004
  end-page: 4093
  ident: bib12
  article-title: Effects of TiO 2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 15216
  year: 2019
  ident: bib42
  article-title: Investigation of metal-nickel oxide contacts used for perovskite solar cell
  publication-title: AIP Adv.
– volume: 224
  start-page: 168
  year: Feb. 2013
  end-page: 173
  ident: bib20
  article-title: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes
  publication-title: J. Power Sources
– volume: 31
  start-page: 462
  year: 2017
  end-page: 468
  ident: bib34
  article-title: Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer
  publication-title: Nanomater. Energy
– volume: 415
  start-page: 8
  year: 2019
  end-page: 14
  ident: bib7
  article-title: TiO 2 -B as an electron transporting material for highly efficient perovskite solar cells
  publication-title: J. Power Sources
– volume: 11
  start-page: 8
  year: 2018
  end-page: 12
  ident: bib36
  article-title: Enhanced charge extraction of Li-doped TiO2 for efficient thermal-evaporated Sb2 S3 thin film solar cells
  publication-title: Materials
– volume: 241
  start-page: 647
  year: Nov. 2013
  end-page: 653
  ident: bib26
  article-title: LiF-doped mesoporous TiO2 as the photoanode of highly efficient dye-sensitized solar cells
  publication-title: J. Power Sources
– volume: 1
  start-page: 776
  year: Nov. 2016
  end-page: 789
  ident: bib53
  article-title: Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays
  publication-title: Chem
– volume: 9
  start-page: 861
  year: Oct. 2016
  ident: bib3
  article-title: Perovskite solar cells: progress and advancements
  publication-title: Energies
– volume: 4
  start-page: 15383
  year: 2016
  end-page: 15389
  ident: bib24
  article-title: Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19%
  publication-title: J. Mater. Chem. A
– volume: 106
  start-page: 121104
  year: Mar. 2015
  ident: bib25
  article-title: Performance enhancement of perovskite solar cells with Mg-doped TiO 2 compact film as the hole-blocking layer
  publication-title: Appl. Phys. Lett.
– volume: 127
  start-page: 4072
  year: Apr. 2016
  end-page: 4075
  ident: bib45
  article-title: “Optimization of Cd1−Zn S buffer layer in Cu(In,Ga)Se2 based thin film solar cells
  publication-title: Optik
– volume: 122
  start-page: 773
  year: Dec. 2015
  end-page: 782
  ident: bib46
  article-title: Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation
  publication-title: Sol. Energy
– volume: 137
  start-page: 744
  year: Aug. 2014
  end-page: 750
  ident: bib29
  article-title: Nitrogen-doped TiO2 nanoparticles better TiO2 nanotube array photo-anodes for dye sensitized solar cells
  publication-title: Electrochim. Acta
– volume: 27
  year: 2016
  ident: bib10
  article-title: TiO
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 103
  start-page: 210
  year: May 2014
  end-page: 222
  ident: bib17
  article-title: Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: improving electron injection and light scattering effect
  publication-title: Sol. Energy
– volume: 2
  start-page: 6263
  year: Sep. 2019
  end-page: 6268
  ident: bib40
  article-title: Sputtering of TiO 2 for high-efficiency perovskite and 23.1% perovskite/silicon 4-terminal tandem solar cells
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 402
  year: 2017
  end-page: 407
  ident: bib50
  article-title: Highly porous and novel 1D-TiO 2 nanoarchitecture with light harvesting morphology for photovoltaic applications
  publication-title: Mech. Mater. Sci. Eng.
– volume: 4
  start-page: 888
  year: Apr. 2019
  end-page: 895
  ident: bib5
  article-title: Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion
  publication-title: ACS Energy Lett.
– volume: 147
  start-page: 222
  year: May 2017
  end-page: 227
  ident: bib43
  article-title: Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH 3 NH 3 I concentration
  publication-title: Sol. Energy
– volume: 361
  start-page: 527
  year: Feb. 2000
  end-page: 532
  ident: bib44
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
– volume: 118
  start-page: 116
  year: Jun. 2018
  end-page: 122
  ident: bib47
  article-title: Potential application of CuSbS 2 as the hole transport material in perovskite solar cell: a simulation study
  publication-title: Superlattice. Microst.
– volume: 71
  start-page: 235418
  year: Jun. 2005
  ident: bib52
  article-title: Electronic structure of lithium-doped anatase prepared in ultrahigh vacuum
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 6218
  year: Sep. 2019
  end-page: 6229
  ident: bib41
  article-title: Nanostructured TiO 2 grown by low-temperature reactive sputtering for planar perovskite solar cells
  publication-title: ACS Appl. Energy Mater.
– volume: 377
  start-page: 43
  year: 2019
  end-page: 57
  ident: bib14
  article-title: Investigations on the photo catalytic activity of calcium doped TiO 2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 23
  start-page: 8
  year: Jan. 2012
  end-page: 12
  ident: bib21
  article-title: Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films
  publication-title: Adv. Powder Technol.
– year: 2019
  ident: bib11
  publication-title: Titanium Dioxide : from engineering to applications
– start-page: 17
  year: 2017
  end-page: 24
  ident: bib51
  article-title: Fluorine-Doped Titanium Dioxide: Synthesis, Structure, Morphology, Size and Photocatalytic Activity
– volume: 651
  start-page: 117
  year: Apr. 2018
  end-page: 123
  ident: bib15
  article-title: Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density
  publication-title: Thin Solid Films
– volume: 330
  start-page: 947
  year: 2017
  end-page: 955
  ident: bib35
  article-title: Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 457
  year: May 2016
  end-page: 463
  ident: bib49
  article-title: A comparative investigation of dye-sensitized titanium dioxide (TiO2) nanorods grown on indium tin oxide (ITO) substrates by direct and seed-mediated hydrothermal methods
  publication-title: Acta Metall. Sin. (English Lett.
– volume: 19
  start-page: 1549
  year: Mar. 2019
  end-page: 1553
  ident: bib37
  article-title: Performance of perovskite solar cell using compact layer by sputter deposition
  publication-title: J. Nanosci. Nanotechnol.
– volume: 16
  start-page: 3835
  year: 2014
  ident: bib22
  article-title: Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2
  publication-title: Phys. Chem. Chem. Phys.
– volume: 178
  start-page: 240
  year: Oct. 2015
  end-page: 248
  ident: bib23
  article-title: Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO 2 photoanodes
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 2016
  year: 2017
  end-page: 2022
  ident: bib39
  article-title: Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 128
  start-page: 91
  year: 2016
  end-page: 98
  ident: bib38
  article-title: The improvement of open circuit voltage by the sputtered TiO2 layer for efficient perovskite solar cell
  publication-title: Vacuum
– volume: 131
  start-page: 6050
  year: May 2009
  end-page: 6051
  ident: bib1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– start-page: 2020
  year: 2020
  ident: bib2
  article-title: Best Research-Cell Efficiencies
– volume: 78
  year: 2014
  ident: bib27
  publication-title: Highlights
– volume: 12
  start-page: 43
  year: 2017
  ident: bib31
  article-title: Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer
  publication-title: Nanoscale Res. Lett.
– volume: 4
  start-page: 15383
  issue: 40
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib24
  article-title: Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19%
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06879K
– volume: 29
  start-page: 457
  issue: 5
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib49
  article-title: A comparative investigation of dye-sensitized titanium dioxide (TiO2) nanorods grown on indium tin oxide (ITO) substrates by direct and seed-mediated hydrothermal methods
  publication-title: Acta Metall. Sin. (English Lett.
  doi: 10.1007/s40195-016-0409-y
– volume: 1
  start-page: 776
  issue: 5
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib53
  article-title: Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.10.002
– volume: 2015
  year: 2015
  ident: 10.1016/j.spmi.2020.106627_bib18
  article-title: Enhanced efficiency of dye-sensitized solar cells by trace amount ca-doping in tio2 photoelectrodes
  publication-title: J. Nanomater.
  doi: 10.1155/2015/974161
– volume: 127
  start-page: 4072
  issue: 8
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib45
  article-title: “Optimization of Cd1−Zn S buffer layer in Cu(In,Ga)Se2 based thin film solar cells
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.01.100
– volume: 103
  start-page: 210
  year: 2014
  ident: 10.1016/j.spmi.2020.106627_bib17
  article-title: Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: improving electron injection and light scattering effect
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.01.041
– volume: 9
  start-page: 402
  issue: 2
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib50
  article-title: Highly porous and novel 1D-TiO 2 nanoarchitecture with light harvesting morphology for photovoltaic applications
  publication-title: Mech. Mater. Sci. Eng.
– volume: 23
  start-page: 8
  issue: 1
  year: 2012
  ident: 10.1016/j.spmi.2020.106627_bib21
  article-title: Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2010.11.006
– volume: 415
  start-page: 8
  issue: November 2018
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib7
  article-title: TiO 2 -B as an electron transporting material for highly efficient perovskite solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.01.041
– volume: 108
  start-page: 4086
  issue: 13
  year: 2004
  ident: 10.1016/j.spmi.2020.106627_bib12
  article-title: Effects of TiO 2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036735i
– volume: 191
  start-page: 100
  issue: December 2018
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib4
  article-title: Synthesis, optical characterization, and simulation of organo-metal halide perovskite materials
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.06.007
– volume: 7
  start-page: 10379
  issue: 1
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib33
  article-title: Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10379
– volume: 19
  start-page: 1549
  issue: 3
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib37
  article-title: Performance of perovskite solar cell using compact layer by sputter deposition
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.16219
– volume: 122
  start-page: 773
  year: 2015
  ident: 10.1016/j.spmi.2020.106627_bib46
  article-title: Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.09.046
– volume: 31
  start-page: 462
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib34
  article-title: Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.11.028
– volume: 361
  start-page: 527
  issue: 362
  year: 2000
  ident: 10.1016/j.spmi.2020.106627_bib44
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00825-1
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.spmi.2020.106627_bib9
  article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO 2
  publication-title: Nat. Commun.
– volume: 651
  start-page: 117
  issue: December 2017
  year: 2018
  ident: 10.1016/j.spmi.2020.106627_bib15
  article-title: Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2018.02.022
– volume: 128
  start-page: 91
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib38
  article-title: The improvement of open circuit voltage by the sputtered TiO2 layer for efficient perovskite solar cell
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.03.013
– volume: 4
  start-page: 888
  issue: 4
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib5
  article-title: Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00283
– volume: 147
  start-page: 222
  issue: May
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib43
  article-title: Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH 3 NH 3 I concentration
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.03.035
– volume: 9
  start-page: 861
  issue: 11
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib3
  article-title: Perovskite solar cells: progress and advancements
  publication-title: Energies
  doi: 10.3390/en9110861
– volume: 106
  start-page: 121104
  issue: 12
  year: 2015
  ident: 10.1016/j.spmi.2020.106627_bib25
  article-title: Performance enhancement of perovskite solar cells with Mg-doped TiO 2 compact film as the hole-blocking layer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916345
– volume: 78
  issue: 12
  year: 2014
  ident: 10.1016/j.spmi.2020.106627_bib27
  publication-title: Highlights
– volume: 224
  start-page: 168
  year: 2013
  ident: 10.1016/j.spmi.2020.106627_bib20
  article-title: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.078
– volume: 157
  start-page: 1038
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib48
  article-title: Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.08.025
– volume: 16
  start-page: 3835
  issue: 8
  year: 2014
  ident: 10.1016/j.spmi.2020.106627_bib22
  article-title: Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54273d
– volume: 118
  start-page: 116
  year: 2018
  ident: 10.1016/j.spmi.2020.106627_bib47
  article-title: Potential application of CuSbS 2 as the hole transport material in perovskite solar cell: a simulation study
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2018.03.079
– volume: 11
  start-page: 8
  issue: 3
  year: 2018
  ident: 10.1016/j.spmi.2020.106627_bib36
  article-title: Enhanced charge extraction of Li-doped TiO2 for efficient thermal-evaporated Sb2 S3 thin film solar cells
  publication-title: Materials
  doi: 10.3390/ma11030355
– volume: 137
  start-page: 744
  year: 2014
  ident: 10.1016/j.spmi.2020.106627_bib29
  article-title: Nitrogen-doped TiO2 nanoparticles better TiO2 nanotube array photo-anodes for dye sensitized solar cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.05.112
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: 10.1016/j.spmi.2020.106627_bib1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 57
  start-page: 177
  year: 2014
  ident: 10.1016/j.spmi.2020.106627_bib13
  article-title: Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2014.05.034
– volume: 2
  start-page: 6263
  issue: 9
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib40
  article-title: Sputtering of TiO 2 for high-efficiency perovskite and 23.1% perovskite/silicon 4-terminal tandem solar cells
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00801
– volume: 7
  start-page: 1283
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib19
  article-title: Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2017.03.014
– volume: 7
  start-page: 4586
  issue: 5
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib6
  article-title: Strategies for modifying TiO 2 based electron transport layers to boost perovskite solar cells
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06580
– start-page: 2020
  year: 2020
  ident: 10.1016/j.spmi.2020.106627_bib2
– volume: 44
  start-page: 8326
  issue: 22
  year: 2015
  ident: 10.1016/j.spmi.2020.106627_bib32
  article-title: Doping of TiO 2 for sensitized solar cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00352K
– issue: 2
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib11
  publication-title: Titanium Dioxide : from engineering to applications
– volume: 8
  start-page: 2928
  issue: 10
  year: 2015
  ident: 10.1016/j.spmi.2020.106627_bib8
  article-title: Highly efficient planar perovskite solar cells through band alignment engineering
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02608C
– volume: 9
  start-page: 15216
  issue: 1
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib42
  article-title: Investigation of metal-nickel oxide contacts used for perovskite solar cell
  publication-title: AIP Adv.
  doi: 10.1063/1.5063475
– volume: 377
  start-page: 43
  issue: December 2018
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib14
  article-title: Investigations on the photo catalytic activity of calcium doped TiO 2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2019.03.038
– volume: 71
  start-page: 235418
  issue: 23
  year: 2005
  ident: 10.1016/j.spmi.2020.106627_bib52
  article-title: Electronic structure of lithium-doped anatase prepared in ultrahigh vacuum
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.235418
– volume: 21
  start-page: 3877
  issue: 11
  year: 2011
  ident: 10.1016/j.spmi.2020.106627_bib28
  article-title: Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03327h
– volume: 9
  start-page: 2016
  issue: 3
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib39
  article-title: Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14040
– volume: 2
  start-page: 6218
  issue: 9
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib41
  article-title: Nanostructured TiO 2 grown by low-temperature reactive sputtering for planar perovskite solar cells
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00708
– volume: 27
  issue: 6
  year: 2016
  ident: 10.1016/j.spmi.2020.106627_bib10
  article-title: TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells,
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-016-4591-5
– volume: 178
  start-page: 240
  year: 2015
  ident: 10.1016/j.spmi.2020.106627_bib23
  article-title: Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO 2 photoanodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.172
– volume: 12
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib31
  article-title: Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1811-0
– volume: 330
  start-page: 947
  issue: July
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib35
  article-title: Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.045
– volume: 241
  start-page: 647
  year: 2013
  ident: 10.1016/j.spmi.2020.106627_bib26
  article-title: LiF-doped mesoporous TiO2 as the photoanode of highly efficient dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.146
– volume: 5
  start-page: 2543
  issue: 12
  year: 2005
  ident: 10.1016/j.spmi.2020.106627_bib30
  article-title: High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode
  publication-title: Nano Lett.
  doi: 10.1021/nl051885l
– volume: 275
  start-page: 206
  year: 2019
  ident: 10.1016/j.spmi.2020.106627_bib16
  article-title: Yttrium-doped TiO2 compact layers for efficient perovskite solar cells
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.04.022
– start-page: 17
  year: 2017
  ident: 10.1016/j.spmi.2020.106627_bib51
SSID ssj0009417
Score 2.1729872
Snippet The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106627
SubjectTerms ETL
Li doping
Li-TiO2
Planar perovskite solar cell
SCAPS
Title Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell
URI https://dx.doi.org/10.1016/j.spmi.2020.106627
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEb2ITsX5MXLwJnXtlrTpcQzH_GAetsFuJclSqNSurFWYB_923-uHHyA7CL00TaC8JO-9X_jl9wi50gCMbcGY5QpwgShpbgkjuAVgwjM2U9Ip2RZjdzRj93M-b5BBfRcGaZWV7y99euGtq5ZOZc1OGkWdCQQ_SL97LqYggLQQtzPm4Sq_-fimefisqLqLnS3sXV2cKTleWfoSAUbsYgMqof8dnH4EnOEB2a8yRdovf-aQNEzSJLuDukBbk-wU7E2dHZFwsk4gkcuidwhE9DGii2VqFnQaPXVpXeeG5rWMOY0l5tkU0lWKasXxmppCSALiD01jmcgVRfnwtwxPdmmG4JfiAf8xmQ1vp4ORVRVQsHTPtnOL-yrsad5zufKkrXwF-9vREh5bM1f6SsIXbozncCMVoDFXSh1yI5QQWkJwOyFbyTIxp4QqAFI6VLC77RDiXugbw6TXVcL1paecRYs4teUCXamLY5GLOKhpZM8BWjtAaweltVvk-mtMWmprbOzN6wkJfq2QAJz_hnFn_xx3TvbwreSTXZCtfPVqLiEByVW7WGFtst2_exiNPwEcutqf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60IvUiPrE-96AniU3SbB4HD1KVVqserOAt7m43EKkxmKrUg3_KP-hMHj5APAhCTrvZsJldZuZLvv0GYFshMDZ9xzFcH10gSZobvva5gWDC06YjhVWwLc7dzpVzcs2vJ-CtOgtDtMrS9xc-PffWZUuztGYzjePmJQY_TL9bLqUgiLTMkll5qsfPiNuy_e4hLvKObR8f9dsdoywtYKiWaY4MHsiopXjL5dITpgwk7nxLCbxM5bgikAJ7uNaexbWQiFNcIVTEtS99Xwl0-_jcSZhy0F1Q2YS9109eSeDkZX5pdgZNrzypU5DKsvQuRlBqUwNJr_8cDb9EuOM5mC1TU3ZQvP08TOhkAertqiLcAkzndFGVLUJ0OU4wc8ziF4x8rBezwX2qB6wfX9isKqzDRpVuOhsKSuwZ5seM5JGHY6Zz5QoMeCwdikQ8MNIrf8roUzLLCG0z-qOwBFf_YtZlqCX3iV4BJhG5qUiiOzEjDLRRoLUjPFv6biA8aQ0aYFWWC1UpZ05VNYZhxVu7DcnaIVk7LKzdgN2PMWkh5vHr3bxakPDblgwx2vwybvWP47ag3umf9cJe9_x0DWaopyCzrUNt9PCoNzD7GcnNfLcxuPnv7f0OMDYXpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesizing+Li+doped+TiO2+electron+transport+layers+for+highly+efficient+planar+perovskite+solar+cell&rft.jtitle=Superlattices+and+microstructures&rft.au=Teimouri%2C+Razieh&rft.au=Heydari%2C+Zahra&rft.au=Ghaziani%2C+Mohammad+Pouya&rft.au=Madani%2C+Mahdi&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=145&rft_id=info:doi/10.1016%2Fj.spmi.2020.106627&rft.externalDocID=S0749603619321330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon