Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell
The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance of this layer depends significantly on its conductance, band energy and electrical trap density. In this study, doping the TiO2 layer is prese...
Saved in:
Published in | Superlattices and microstructures Vol. 145; p. 106627 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance of this layer depends significantly on its conductance, band energy and electrical trap density. In this study, doping the TiO2 layer is presented as a solution to decrease the solar power loss by increasing the ETL's conductance. The Li-doped TiO2 films have shown significantly improved characteristics by increasing conductivity and providing faster electron transport. The PSC structures were modeled using Solar Cell Capacitance Simulator (SCAPS) to study the effect of various Lithium contents on the efficiency of the PSCs. Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis and reliable sources. A PSC consists of an ETL with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23% which demonstrated 1.97% improvement compared to the one without doping. Pursuant to capacitance-frequency analysis, the doped TiO2 was more conductive and showed lower trap-state density at the ETL/absorber interface compared to the pristine one.
•Li-doped TiO2 layer is presented as a solution to decrease the solar power loss.•The PSC structures were modeled using SCAPS to study the effect of various Lithium contents.•Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis.•The PSC with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23%.•Capacitance-frequency analysis showed lower trap-state density for doped ETL at the absorber interface. |
---|---|
AbstractList | The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance of this layer depends significantly on its conductance, band energy and electrical trap density. In this study, doping the TiO2 layer is presented as a solution to decrease the solar power loss by increasing the ETL's conductance. The Li-doped TiO2 films have shown significantly improved characteristics by increasing conductivity and providing faster electron transport. The PSC structures were modeled using Solar Cell Capacitance Simulator (SCAPS) to study the effect of various Lithium contents on the efficiency of the PSCs. Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis and reliable sources. A PSC consists of an ETL with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23% which demonstrated 1.97% improvement compared to the one without doping. Pursuant to capacitance-frequency analysis, the doped TiO2 was more conductive and showed lower trap-state density at the ETL/absorber interface compared to the pristine one.
•Li-doped TiO2 layer is presented as a solution to decrease the solar power loss.•The PSC structures were modeled using SCAPS to study the effect of various Lithium contents.•Key parameters for electrical modeling of planar PSCs were extracted from experimental analysis.•The PSC with 0.3 M Li doped TiO2 resulted a power conversion efficiency of 24.23%.•Capacitance-frequency analysis showed lower trap-state density for doped ETL at the absorber interface. |
ArticleNumber | 106627 |
Author | Abdy, Hamed Asl-Soleimani, Ebrahim Madani, Mahdi Ghaziani, Mohammad Pouya Kolahdouz, Mohammadreza Heydari, Zahra Teimouri, Razieh |
Author_xml | – sequence: 1 givenname: Razieh surname: Teimouri fullname: Teimouri, Razieh – sequence: 2 givenname: Zahra surname: Heydari fullname: Heydari, Zahra – sequence: 3 givenname: Mohammad Pouya surname: Ghaziani fullname: Ghaziani, Mohammad Pouya – sequence: 4 givenname: Mahdi surname: Madani fullname: Madani, Mahdi – sequence: 5 givenname: Hamed surname: Abdy fullname: Abdy, Hamed – sequence: 6 givenname: Mohammadreza surname: Kolahdouz fullname: Kolahdouz, Mohammadreza email: kolahdouz@ut.ac.ir – sequence: 7 givenname: Ebrahim surname: Asl-Soleimani fullname: Asl-Soleimani, Ebrahim |
BookMark | eNp9kMtqwzAQRUVpoUnaH-hKP-B0ZMdyDN2U0BcEsmi6FrI8SpQqkpFEwP362qSrLgIDA3c4A_dMybXzDgl5YDBnwPjjYR67o5nnkI8B53l1RSYMap4VvKquyQSqRZ1xKPgtmcZ4AIB6waoJ0Z-9S3uM5se4HV0b2voOW7o1m5yiRZWCdzQF6WLnQ6JW9hgi1T7QvdntbU9Ra6MMukQ7K50MtMPgT_HbJKTR2yFQaO0dudHSRrz_2zPy9fqyXb1n683bx-p5nakCIGVl3ehClQUvm0pCUzdQAVNyGFALLutGDpcSsWIlygZyzqVUusRls1wqWUAxI_n5rwo-xoBadMEcZegFAzGaEgcxmhKjKXE2NUDLf5AySSbj3VDc2Mvo0xnFodTJYBBxlKGwNWGQJ1pvLuG_fE-JVQ |
CitedBy_id | crossref_primary_10_1016_j_mssp_2023_107467 crossref_primary_10_7498_aps_70_20202016 crossref_primary_10_1016_j_apsusc_2021_152150 crossref_primary_10_1007_s11051_024_05933_4 crossref_primary_10_1016_j_ijhydene_2024_05_354 crossref_primary_10_1016_j_jmat_2021_04_002 crossref_primary_10_1016_j_ceramint_2020_07_260 crossref_primary_10_3390_ma17102339 crossref_primary_10_1007_s00289_021_03904_6 crossref_primary_10_3389_fbioe_2022_900269 crossref_primary_10_1039_D4RA01559B crossref_primary_10_1016_j_jpcs_2025_112598 crossref_primary_10_1002_er_8720 crossref_primary_10_1039_D3TC03151A crossref_primary_10_1088_1402_4896_ad986e crossref_primary_10_3390_en15041408 crossref_primary_10_1016_j_cej_2022_136761 crossref_primary_10_1016_j_solmat_2022_111926 crossref_primary_10_1109_TED_2020_3036020 crossref_primary_10_1051_epjap_2023230023 crossref_primary_10_1016_j_optmat_2021_111909 crossref_primary_10_3390_su151712805 crossref_primary_10_1002_adma_202305183 crossref_primary_10_3390_en15051648 crossref_primary_10_2139_ssrn_4167640 crossref_primary_10_1016_j_heliyon_2022_e11471 crossref_primary_10_1007_s10008_021_05064_z crossref_primary_10_1038_s41598_023_42447_w crossref_primary_10_1039_D1RA01236C crossref_primary_10_3390_photonics10030271 crossref_primary_10_1155_2022_9299279 crossref_primary_10_1007_s11356_023_30732_0 crossref_primary_10_1016_j_cplett_2021_138609 crossref_primary_10_1088_1402_4896_ad9647 crossref_primary_10_1021_acsaem_1c04064 crossref_primary_10_1016_j_heliyon_2024_e27321 crossref_primary_10_1016_j_optmat_2024_115697 crossref_primary_10_1016_j_molstruc_2024_139864 crossref_primary_10_1007_s42247_023_00558_0 crossref_primary_10_1021_acsaelm_3c00970 crossref_primary_10_1002_adsu_202400094 crossref_primary_10_1007_s10854_023_09868_9 crossref_primary_10_3390_inorganics12070188 crossref_primary_10_1098_rsta_2021_0144 crossref_primary_10_1038_s41598_024_61985_5 crossref_primary_10_1021_acsomega_4c04505 crossref_primary_10_1007_s10854_023_11562_9 crossref_primary_10_1016_j_inoche_2024_112360 crossref_primary_10_1016_j_optmat_2022_113009 crossref_primary_10_1016_j_mtsust_2024_100857 crossref_primary_10_1140_epjp_s13360_021_01100_z crossref_primary_10_1002_pssa_202400612 crossref_primary_10_1007_s11082_021_02959_z crossref_primary_10_1016_j_jallcom_2023_169186 crossref_primary_10_2139_ssrn_4107130 crossref_primary_10_1039_D3NA00319A crossref_primary_10_1166_sam_2022_4368 crossref_primary_10_1016_j_mtchem_2021_100595 crossref_primary_10_1140_epjp_s13360_021_01794_1 crossref_primary_10_3390_gels9020101 |
Cites_doi | 10.1039/C6TA06879K 10.1007/s40195-016-0409-y 10.1016/j.chempr.2016.10.002 10.1155/2015/974161 10.1016/j.ijleo.2016.01.100 10.1016/j.solener.2014.01.041 10.1016/j.apt.2010.11.006 10.1016/j.jpowsour.2019.01.041 10.1021/jp036735i 10.1016/j.ijleo.2019.06.007 10.1038/ncomms10379 10.1166/jnn.2019.16219 10.1016/j.solener.2015.09.046 10.1016/j.nanoen.2016.11.028 10.1016/S0040-6090(99)00825-1 10.1016/j.tsf.2018.02.022 10.1016/j.vacuum.2016.03.013 10.1021/acsenergylett.9b00283 10.1016/j.solener.2017.03.035 10.3390/en9110861 10.1063/1.4916345 10.1016/j.jpowsour.2012.09.078 10.1016/j.solmat.2016.08.025 10.1039/c3cp54273d 10.1016/j.spmi.2018.03.079 10.3390/ma11030355 10.1016/j.electacta.2014.05.112 10.1021/ja809598r 10.1016/j.materresbull.2014.05.034 10.1021/acsaem.9b00801 10.1016/j.rinp.2017.03.014 10.1021/acssuschemeng.8b06580 10.1039/C5CS00352K 10.1039/C5EE02608C 10.1063/1.5063475 10.1016/j.jphotochem.2019.03.038 10.1103/PhysRevB.71.235418 10.1039/c0jm03327h 10.1021/acsami.6b14040 10.1021/acsaem.9b00708 10.1007/s10854-016-4591-5 10.1016/j.electacta.2015.07.172 10.1186/s11671-016-1811-0 10.1016/j.cej.2017.08.045 10.1016/j.jpowsour.2013.04.146 10.1021/nl051885l 10.1016/j.jssc.2019.04.022 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2020.106627 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2020_106627 S0749603619321330 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-59bf3c5365b7a0b9b0701ca1ca0c46a9ba65b5ee715eab0266aacf5e8b88ca303 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 23:03:47 EDT 2025 Tue Jul 01 01:35:15 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Li-TiO2 Planar perovskite solar cell Li doping ETL SCAPS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-59bf3c5365b7a0b9b0701ca1ca0c46a9ba65b5ee715eab0266aacf5e8b88ca303 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2020_106627 crossref_citationtrail_10_1016_j_spmi_2020_106627 elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ge (bib38) 2016; 128 Hou, Zhou, Huang, Ou-Yang, Pan, Chen (bib35) 2017; 330 Abdy, Aletayeb, Kolahdouz, Soleimani (bib42) 2019; 9 Lan (bib36) 2018; 11 Pugazhendhi, Jeyarani, Tenkyong, Kumar, Praveen (bib50) 2017; 9 Peng, Huang, Huang (bib21) Jan. 2012; 23 Giordano (bib33) Apr. 2016; 7 Lee (bib40) Sep. 2019; 2 Shin, Choi (bib37) Mar. 2019; 19 Prabavathy (bib14) 2019; 377 Nienhaus (bib5) Apr. 2019; 4 Huang (bib39) 2017; 9 Bayan, Lupeiko, Kolupaeva, Pustovaya, Fedorenko (bib51) 2017 Li, Yang, Zhang, Gao, Luo, Liu (bib13) 2014; 57 Roose, Pathak, Steiner (bib32) 2015; 44 Alberti (bib41) Sep. 2019; 2 Burgelman, Nollet, Degrave (bib44) Feb. 2000; 361 Kang, Liu, Dai, He, Song, Tan (bib11) 2019 Lv (bib15) Apr. 2018; 651 Neo, Ouyang (bib26) Nov. 2013; 241 Alta, Asu (bib2) 2020 Liu (bib34) 2017; 31 Xie, Zhu, Li, Shen, Abate, Wei (bib7) 2019; 415 Ma, Akiyama, Abe, Imai (bib30) Dec. 2005; 5 Kojima, Teshima, Shirai, Miyasaka (bib1) May 2009; 131 Dubey, Singh (bib19) 2017; 7 Teimouri, Mohammadpour (bib47) Jun. 2018; 118 Zhang (bib31) 2017; 12 Park, Choi (bib12) Apr. 2004; 108 Ghanbari Niaki, Bakhshayesh, Mohammadi (bib17) May 2014; 103 Yang (bib9) 2018; 9 Xie (bib20) Feb. 2013; 224 Wang (bib25) Mar. 2015; 106 Elumalai, Mahmud, Wang, Uddin (bib3) Oct. 2016; 9 Yadav (bib46) Dec. 2015; 122 Abdy (bib4) Aug. 2019; 191 Zhen, Wu, Chen, Wang, Liu, Cheng (bib6) 2019; 7 Richter (bib52) Jun. 2005; 71 Wang (bib29) Aug. 2014; 137 Hou, Zheng, Chen, Zhou, Deng, Tao (bib28) 2011; 21 Moradi, Teimouri, Zahedifar, Saadat (bib45) Apr. 2016; 127 Tanyi (bib23) Oct. 2015; 178 Gottesman (bib53) Nov. 2016; 1 Deng, Wang, Chen, Cui, Shi (bib16) Jul. 2019; 275 Chandrakala, Annai Joseph Steffy, Bachan, Jothi Jeyarani, Tenkyong, Shyla (bib49) May 2016; 29 Iraj, Kolahdouz, Asl-Soleimani, Esmaeili, Kolahdouz (bib10) 2016; 27 Correa Baena (bib8) 2015; 8 Huang (bib48) Dec. 2016; 157 Zhang (bib24) 2016; 4 Kraft (bib27) 2014; 78 Liu (bib43) May 2017; 147 Navas (bib22) 2014; 16 Pan, Liu, Yao, Zhong (bib18) 2015; 2015 Pan (10.1016/j.spmi.2020.106627_bib18) 2015; 2015 Yadav (10.1016/j.spmi.2020.106627_bib46) 2015; 122 Neo (10.1016/j.spmi.2020.106627_bib26) 2013; 241 Correa Baena (10.1016/j.spmi.2020.106627_bib8) 2015; 8 Liu (10.1016/j.spmi.2020.106627_bib34) 2017; 31 Bayan (10.1016/j.spmi.2020.106627_bib51) 2017 Ge (10.1016/j.spmi.2020.106627_bib38) 2016; 128 Gottesman (10.1016/j.spmi.2020.106627_bib53) 2016; 1 Chandrakala (10.1016/j.spmi.2020.106627_bib49) 2016; 29 Moradi (10.1016/j.spmi.2020.106627_bib45) 2016; 127 Burgelman (10.1016/j.spmi.2020.106627_bib44) 2000; 361 Prabavathy (10.1016/j.spmi.2020.106627_bib14) 2019; 377 Huang (10.1016/j.spmi.2020.106627_bib39) 2017; 9 Zhang (10.1016/j.spmi.2020.106627_bib31) 2017; 12 Zhen (10.1016/j.spmi.2020.106627_bib6) 2019; 7 Shin (10.1016/j.spmi.2020.106627_bib37) 2019; 19 Nienhaus (10.1016/j.spmi.2020.106627_bib5) 2019; 4 Kraft (10.1016/j.spmi.2020.106627_bib27) 2014; 78 Abdy (10.1016/j.spmi.2020.106627_bib4) 2019; 191 Ma (10.1016/j.spmi.2020.106627_bib30) 2005; 5 Xie (10.1016/j.spmi.2020.106627_bib20) 2013; 224 Liu (10.1016/j.spmi.2020.106627_bib43) 2017; 147 Yang (10.1016/j.spmi.2020.106627_bib9) 2018; 9 Peng (10.1016/j.spmi.2020.106627_bib21) 2012; 23 Xie (10.1016/j.spmi.2020.106627_bib7) 2019; 415 Huang (10.1016/j.spmi.2020.106627_bib48) 2016; 157 Hou (10.1016/j.spmi.2020.106627_bib35) 2017; 330 Tanyi (10.1016/j.spmi.2020.106627_bib23) 2015; 178 Elumalai (10.1016/j.spmi.2020.106627_bib3) 2016; 9 Teimouri (10.1016/j.spmi.2020.106627_bib47) 2018; 118 Navas (10.1016/j.spmi.2020.106627_bib22) 2014; 16 Pugazhendhi (10.1016/j.spmi.2020.106627_bib50) 2017; 9 Dubey (10.1016/j.spmi.2020.106627_bib19) 2017; 7 Wang (10.1016/j.spmi.2020.106627_bib25) 2015; 106 Lan (10.1016/j.spmi.2020.106627_bib36) 2018; 11 Deng (10.1016/j.spmi.2020.106627_bib16) 2019; 275 Alta (10.1016/j.spmi.2020.106627_bib2) 2020 Roose (10.1016/j.spmi.2020.106627_bib32) 2015; 44 Alberti (10.1016/j.spmi.2020.106627_bib41) 2019; 2 Hou (10.1016/j.spmi.2020.106627_bib28) 2011; 21 Park (10.1016/j.spmi.2020.106627_bib12) 2004; 108 Wang (10.1016/j.spmi.2020.106627_bib29) 2014; 137 Giordano (10.1016/j.spmi.2020.106627_bib33) 2016; 7 Lee (10.1016/j.spmi.2020.106627_bib40) 2019; 2 Kojima (10.1016/j.spmi.2020.106627_bib1) 2009; 131 Zhang (10.1016/j.spmi.2020.106627_bib24) 2016; 4 Iraj (10.1016/j.spmi.2020.106627_bib10) 2016; 27 Richter (10.1016/j.spmi.2020.106627_bib52) 2005; 71 Lv (10.1016/j.spmi.2020.106627_bib15) 2018; 651 Li (10.1016/j.spmi.2020.106627_bib13) 2014; 57 Abdy (10.1016/j.spmi.2020.106627_bib42) 2019; 9 Kang (10.1016/j.spmi.2020.106627_bib11) 2019 Ghanbari Niaki (10.1016/j.spmi.2020.106627_bib17) 2014; 103 |
References_xml | – volume: 7 start-page: 1283 year: 2017 end-page: 1288 ident: bib19 article-title: Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method publication-title: Results Phys – volume: 275 start-page: 206 year: Jul. 2019 end-page: 209 ident: bib16 article-title: Yttrium-doped TiO2 compact layers for efficient perovskite solar cells publication-title: J. Solid State Chem. – volume: 191 start-page: 100 year: Aug. 2019 end-page: 108 ident: bib4 article-title: Synthesis, optical characterization, and simulation of organo-metal halide perovskite materials publication-title: Optik – volume: 7 start-page: 4586 year: 2019 end-page: 4618 ident: bib6 article-title: Strategies for modifying TiO 2 based electron transport layers to boost perovskite solar cells publication-title: ACS Sustain. Chem. Eng. – volume: 9 year: 2018 ident: bib9 article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO 2 publication-title: Nat. Commun. – volume: 5 start-page: 2543 year: Dec. 2005 end-page: 2547 ident: bib30 article-title: High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode publication-title: Nano Lett. – volume: 21 start-page: 3877 year: 2011 end-page: 3883 ident: bib28 article-title: Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells publication-title: J. Mater. Chem. – volume: 7 start-page: 10379 year: Apr. 2016 ident: bib33 article-title: Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells publication-title: Nat. Commun. – volume: 8 start-page: 2928 year: 2015 end-page: 2934 ident: bib8 article-title: Highly efficient planar perovskite solar cells through band alignment engineering publication-title: Energy Environ. Sci. – volume: 157 start-page: 1038 year: Dec. 2016 end-page: 1047 ident: bib48 article-title: Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation publication-title: Sol. Energy Mater. Sol. Cells – volume: 2015 year: 2015 ident: bib18 article-title: Enhanced efficiency of dye-sensitized solar cells by trace amount ca-doping in tio2 photoelectrodes publication-title: J. Nanomater. – volume: 57 start-page: 177 year: 2014 end-page: 183 ident: bib13 article-title: Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping publication-title: Mater. Res. Bull. – volume: 44 start-page: 8326 year: 2015 end-page: 8349 ident: bib32 article-title: Doping of TiO 2 for sensitized solar cells publication-title: Chem. Soc. Rev. – volume: 108 start-page: 4086 year: Apr. 2004 end-page: 4093 ident: bib12 article-title: Effects of TiO 2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors publication-title: J. Phys. Chem. B – volume: 9 start-page: 15216 year: 2019 ident: bib42 article-title: Investigation of metal-nickel oxide contacts used for perovskite solar cell publication-title: AIP Adv. – volume: 224 start-page: 168 year: Feb. 2013 end-page: 173 ident: bib20 article-title: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes publication-title: J. Power Sources – volume: 31 start-page: 462 year: 2017 end-page: 468 ident: bib34 article-title: Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer publication-title: Nanomater. Energy – volume: 415 start-page: 8 year: 2019 end-page: 14 ident: bib7 article-title: TiO 2 -B as an electron transporting material for highly efficient perovskite solar cells publication-title: J. Power Sources – volume: 11 start-page: 8 year: 2018 end-page: 12 ident: bib36 article-title: Enhanced charge extraction of Li-doped TiO2 for efficient thermal-evaporated Sb2 S3 thin film solar cells publication-title: Materials – volume: 241 start-page: 647 year: Nov. 2013 end-page: 653 ident: bib26 article-title: LiF-doped mesoporous TiO2 as the photoanode of highly efficient dye-sensitized solar cells publication-title: J. Power Sources – volume: 1 start-page: 776 year: Nov. 2016 end-page: 789 ident: bib53 article-title: Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays publication-title: Chem – volume: 9 start-page: 861 year: Oct. 2016 ident: bib3 article-title: Perovskite solar cells: progress and advancements publication-title: Energies – volume: 4 start-page: 15383 year: 2016 end-page: 15389 ident: bib24 article-title: Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19% publication-title: J. Mater. Chem. A – volume: 106 start-page: 121104 year: Mar. 2015 ident: bib25 article-title: Performance enhancement of perovskite solar cells with Mg-doped TiO 2 compact film as the hole-blocking layer publication-title: Appl. Phys. Lett. – volume: 127 start-page: 4072 year: Apr. 2016 end-page: 4075 ident: bib45 article-title: “Optimization of Cd1−Zn S buffer layer in Cu(In,Ga)Se2 based thin film solar cells publication-title: Optik – volume: 122 start-page: 773 year: Dec. 2015 end-page: 782 ident: bib46 article-title: Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation publication-title: Sol. Energy – volume: 137 start-page: 744 year: Aug. 2014 end-page: 750 ident: bib29 article-title: Nitrogen-doped TiO2 nanoparticles better TiO2 nanotube array photo-anodes for dye sensitized solar cells publication-title: Electrochim. Acta – volume: 27 year: 2016 ident: bib10 article-title: TiO publication-title: J. Mater. Sci. Mater. Electron. – volume: 103 start-page: 210 year: May 2014 end-page: 222 ident: bib17 article-title: Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: improving electron injection and light scattering effect publication-title: Sol. Energy – volume: 2 start-page: 6263 year: Sep. 2019 end-page: 6268 ident: bib40 article-title: Sputtering of TiO 2 for high-efficiency perovskite and 23.1% perovskite/silicon 4-terminal tandem solar cells publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 402 year: 2017 end-page: 407 ident: bib50 article-title: Highly porous and novel 1D-TiO 2 nanoarchitecture with light harvesting morphology for photovoltaic applications publication-title: Mech. Mater. Sci. Eng. – volume: 4 start-page: 888 year: Apr. 2019 end-page: 895 ident: bib5 article-title: Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion publication-title: ACS Energy Lett. – volume: 147 start-page: 222 year: May 2017 end-page: 227 ident: bib43 article-title: Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH 3 NH 3 I concentration publication-title: Sol. Energy – volume: 361 start-page: 527 year: Feb. 2000 end-page: 532 ident: bib44 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films – volume: 118 start-page: 116 year: Jun. 2018 end-page: 122 ident: bib47 article-title: Potential application of CuSbS 2 as the hole transport material in perovskite solar cell: a simulation study publication-title: Superlattice. Microst. – volume: 71 start-page: 235418 year: Jun. 2005 ident: bib52 article-title: Electronic structure of lithium-doped anatase prepared in ultrahigh vacuum publication-title: Phys. Rev. B – volume: 2 start-page: 6218 year: Sep. 2019 end-page: 6229 ident: bib41 article-title: Nanostructured TiO 2 grown by low-temperature reactive sputtering for planar perovskite solar cells publication-title: ACS Appl. Energy Mater. – volume: 377 start-page: 43 year: 2019 end-page: 57 ident: bib14 article-title: Investigations on the photo catalytic activity of calcium doped TiO 2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells publication-title: J. Photochem. Photobiol. A Chem. – volume: 23 start-page: 8 year: Jan. 2012 end-page: 12 ident: bib21 article-title: Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films publication-title: Adv. Powder Technol. – year: 2019 ident: bib11 publication-title: Titanium Dioxide : from engineering to applications – start-page: 17 year: 2017 end-page: 24 ident: bib51 article-title: Fluorine-Doped Titanium Dioxide: Synthesis, Structure, Morphology, Size and Photocatalytic Activity – volume: 651 start-page: 117 year: Apr. 2018 end-page: 123 ident: bib15 article-title: Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density publication-title: Thin Solid Films – volume: 330 start-page: 947 year: 2017 end-page: 955 ident: bib35 article-title: Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution publication-title: Chem. Eng. J. – volume: 29 start-page: 457 year: May 2016 end-page: 463 ident: bib49 article-title: A comparative investigation of dye-sensitized titanium dioxide (TiO2) nanorods grown on indium tin oxide (ITO) substrates by direct and seed-mediated hydrothermal methods publication-title: Acta Metall. Sin. (English Lett. – volume: 19 start-page: 1549 year: Mar. 2019 end-page: 1553 ident: bib37 article-title: Performance of perovskite solar cell using compact layer by sputter deposition publication-title: J. Nanosci. Nanotechnol. – volume: 16 start-page: 3835 year: 2014 ident: bib22 article-title: Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2 publication-title: Phys. Chem. Chem. Phys. – volume: 178 start-page: 240 year: Oct. 2015 end-page: 248 ident: bib23 article-title: Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO 2 photoanodes publication-title: Electrochim. Acta – volume: 9 start-page: 2016 year: 2017 end-page: 2022 ident: bib39 article-title: Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer publication-title: ACS Appl. Mater. Interfaces – volume: 128 start-page: 91 year: 2016 end-page: 98 ident: bib38 article-title: The improvement of open circuit voltage by the sputtered TiO2 layer for efficient perovskite solar cell publication-title: Vacuum – volume: 131 start-page: 6050 year: May 2009 end-page: 6051 ident: bib1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – start-page: 2020 year: 2020 ident: bib2 article-title: Best Research-Cell Efficiencies – volume: 78 year: 2014 ident: bib27 publication-title: Highlights – volume: 12 start-page: 43 year: 2017 ident: bib31 article-title: Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer publication-title: Nanoscale Res. Lett. – volume: 4 start-page: 15383 issue: 40 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib24 article-title: Mg-doped TiO 2 boosts the efficiency of planar perovskite solar cells to exceed 19% publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06879K – volume: 29 start-page: 457 issue: 5 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib49 article-title: A comparative investigation of dye-sensitized titanium dioxide (TiO2) nanorods grown on indium tin oxide (ITO) substrates by direct and seed-mediated hydrothermal methods publication-title: Acta Metall. Sin. (English Lett. doi: 10.1007/s40195-016-0409-y – volume: 1 start-page: 776 issue: 5 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib53 article-title: Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays publication-title: Chem doi: 10.1016/j.chempr.2016.10.002 – volume: 2015 year: 2015 ident: 10.1016/j.spmi.2020.106627_bib18 article-title: Enhanced efficiency of dye-sensitized solar cells by trace amount ca-doping in tio2 photoelectrodes publication-title: J. Nanomater. doi: 10.1155/2015/974161 – volume: 127 start-page: 4072 issue: 8 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib45 article-title: “Optimization of Cd1−Zn S buffer layer in Cu(In,Ga)Se2 based thin film solar cells publication-title: Optik doi: 10.1016/j.ijleo.2016.01.100 – volume: 103 start-page: 210 year: 2014 ident: 10.1016/j.spmi.2020.106627_bib17 article-title: Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: improving electron injection and light scattering effect publication-title: Sol. Energy doi: 10.1016/j.solener.2014.01.041 – volume: 9 start-page: 402 issue: 2 year: 2017 ident: 10.1016/j.spmi.2020.106627_bib50 article-title: Highly porous and novel 1D-TiO 2 nanoarchitecture with light harvesting morphology for photovoltaic applications publication-title: Mech. Mater. Sci. Eng. – volume: 23 start-page: 8 issue: 1 year: 2012 ident: 10.1016/j.spmi.2020.106627_bib21 article-title: Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2010.11.006 – volume: 415 start-page: 8 issue: November 2018 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib7 article-title: TiO 2 -B as an electron transporting material for highly efficient perovskite solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.01.041 – volume: 108 start-page: 4086 issue: 13 year: 2004 ident: 10.1016/j.spmi.2020.106627_bib12 article-title: Effects of TiO 2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors publication-title: J. Phys. Chem. B doi: 10.1021/jp036735i – volume: 191 start-page: 100 issue: December 2018 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib4 article-title: Synthesis, optical characterization, and simulation of organo-metal halide perovskite materials publication-title: Optik doi: 10.1016/j.ijleo.2019.06.007 – volume: 7 start-page: 10379 issue: 1 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib33 article-title: Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms10379 – volume: 19 start-page: 1549 issue: 3 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib37 article-title: Performance of perovskite solar cell using compact layer by sputter deposition publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2019.16219 – volume: 122 start-page: 773 year: 2015 ident: 10.1016/j.spmi.2020.106627_bib46 article-title: Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation publication-title: Sol. Energy doi: 10.1016/j.solener.2015.09.046 – volume: 31 start-page: 462 year: 2017 ident: 10.1016/j.spmi.2020.106627_bib34 article-title: Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.11.028 – volume: 361 start-page: 527 issue: 362 year: 2000 ident: 10.1016/j.spmi.2020.106627_bib44 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 9 issue: 1 year: 2018 ident: 10.1016/j.spmi.2020.106627_bib9 article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO 2 publication-title: Nat. Commun. – volume: 651 start-page: 117 issue: December 2017 year: 2018 ident: 10.1016/j.spmi.2020.106627_bib15 article-title: Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.02.022 – volume: 128 start-page: 91 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib38 article-title: The improvement of open circuit voltage by the sputtered TiO2 layer for efficient perovskite solar cell publication-title: Vacuum doi: 10.1016/j.vacuum.2016.03.013 – volume: 4 start-page: 888 issue: 4 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib5 article-title: Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00283 – volume: 147 start-page: 222 issue: May year: 2017 ident: 10.1016/j.spmi.2020.106627_bib43 article-title: Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH 3 NH 3 I concentration publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.035 – volume: 9 start-page: 861 issue: 11 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib3 article-title: Perovskite solar cells: progress and advancements publication-title: Energies doi: 10.3390/en9110861 – volume: 106 start-page: 121104 issue: 12 year: 2015 ident: 10.1016/j.spmi.2020.106627_bib25 article-title: Performance enhancement of perovskite solar cells with Mg-doped TiO 2 compact film as the hole-blocking layer publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916345 – volume: 78 issue: 12 year: 2014 ident: 10.1016/j.spmi.2020.106627_bib27 publication-title: Highlights – volume: 224 start-page: 168 year: 2013 ident: 10.1016/j.spmi.2020.106627_bib20 article-title: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.078 – volume: 157 start-page: 1038 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib48 article-title: Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.08.025 – volume: 16 start-page: 3835 issue: 8 year: 2014 ident: 10.1016/j.spmi.2020.106627_bib22 article-title: Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54273d – volume: 118 start-page: 116 year: 2018 ident: 10.1016/j.spmi.2020.106627_bib47 article-title: Potential application of CuSbS 2 as the hole transport material in perovskite solar cell: a simulation study publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2018.03.079 – volume: 11 start-page: 8 issue: 3 year: 2018 ident: 10.1016/j.spmi.2020.106627_bib36 article-title: Enhanced charge extraction of Li-doped TiO2 for efficient thermal-evaporated Sb2 S3 thin film solar cells publication-title: Materials doi: 10.3390/ma11030355 – volume: 137 start-page: 744 year: 2014 ident: 10.1016/j.spmi.2020.106627_bib29 article-title: Nitrogen-doped TiO2 nanoparticles better TiO2 nanotube array photo-anodes for dye sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.112 – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: 10.1016/j.spmi.2020.106627_bib1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 57 start-page: 177 year: 2014 ident: 10.1016/j.spmi.2020.106627_bib13 article-title: Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2014.05.034 – volume: 2 start-page: 6263 issue: 9 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib40 article-title: Sputtering of TiO 2 for high-efficiency perovskite and 23.1% perovskite/silicon 4-terminal tandem solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00801 – volume: 7 start-page: 1283 year: 2017 ident: 10.1016/j.spmi.2020.106627_bib19 article-title: Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method publication-title: Results Phys doi: 10.1016/j.rinp.2017.03.014 – volume: 7 start-page: 4586 issue: 5 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib6 article-title: Strategies for modifying TiO 2 based electron transport layers to boost perovskite solar cells publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06580 – start-page: 2020 year: 2020 ident: 10.1016/j.spmi.2020.106627_bib2 – volume: 44 start-page: 8326 issue: 22 year: 2015 ident: 10.1016/j.spmi.2020.106627_bib32 article-title: Doping of TiO 2 for sensitized solar cells publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00352K – issue: 2 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib11 publication-title: Titanium Dioxide : from engineering to applications – volume: 8 start-page: 2928 issue: 10 year: 2015 ident: 10.1016/j.spmi.2020.106627_bib8 article-title: Highly efficient planar perovskite solar cells through band alignment engineering publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02608C – volume: 9 start-page: 15216 issue: 1 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib42 article-title: Investigation of metal-nickel oxide contacts used for perovskite solar cell publication-title: AIP Adv. doi: 10.1063/1.5063475 – volume: 377 start-page: 43 issue: December 2018 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib14 article-title: Investigations on the photo catalytic activity of calcium doped TiO 2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2019.03.038 – volume: 71 start-page: 235418 issue: 23 year: 2005 ident: 10.1016/j.spmi.2020.106627_bib52 article-title: Electronic structure of lithium-doped anatase prepared in ultrahigh vacuum publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.235418 – volume: 21 start-page: 3877 issue: 11 year: 2011 ident: 10.1016/j.spmi.2020.106627_bib28 article-title: Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells publication-title: J. Mater. Chem. doi: 10.1039/c0jm03327h – volume: 9 start-page: 2016 issue: 3 year: 2017 ident: 10.1016/j.spmi.2020.106627_bib39 article-title: Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14040 – volume: 2 start-page: 6218 issue: 9 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib41 article-title: Nanostructured TiO 2 grown by low-temperature reactive sputtering for planar perovskite solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00708 – volume: 27 issue: 6 year: 2016 ident: 10.1016/j.spmi.2020.106627_bib10 article-title: TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells, publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-4591-5 – volume: 178 start-page: 240 year: 2015 ident: 10.1016/j.spmi.2020.106627_bib23 article-title: Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO 2 photoanodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.172 – volume: 12 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.spmi.2020.106627_bib31 article-title: Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1811-0 – volume: 330 start-page: 947 issue: July year: 2017 ident: 10.1016/j.spmi.2020.106627_bib35 article-title: Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.045 – volume: 241 start-page: 647 year: 2013 ident: 10.1016/j.spmi.2020.106627_bib26 article-title: LiF-doped mesoporous TiO2 as the photoanode of highly efficient dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.146 – volume: 5 start-page: 2543 issue: 12 year: 2005 ident: 10.1016/j.spmi.2020.106627_bib30 article-title: High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode publication-title: Nano Lett. doi: 10.1021/nl051885l – volume: 275 start-page: 206 year: 2019 ident: 10.1016/j.spmi.2020.106627_bib16 article-title: Yttrium-doped TiO2 compact layers for efficient perovskite solar cells publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.04.022 – start-page: 17 year: 2017 ident: 10.1016/j.spmi.2020.106627_bib51 |
SSID | ssj0009417 |
Score | 2.1729872 |
Snippet | The electron transport layer (ETL) in planar perovskite solar cells (PSC) is a very important layer which extracts photo generated electrons. The performance... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106627 |
SubjectTerms | ETL Li doping Li-TiO2 Planar perovskite solar cell SCAPS |
Title | Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell |
URI | https://dx.doi.org/10.1016/j.spmi.2020.106627 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEb2ITsX5MXLwJnXtlrTpcQzH_GAetsFuJclSqNSurFWYB_923-uHHyA7CL00TaC8JO-9X_jl9wi50gCMbcGY5QpwgShpbgkjuAVgwjM2U9Ip2RZjdzRj93M-b5BBfRcGaZWV7y99euGtq5ZOZc1OGkWdCQQ_SL97LqYggLQQtzPm4Sq_-fimefisqLqLnS3sXV2cKTleWfoSAUbsYgMqof8dnH4EnOEB2a8yRdovf-aQNEzSJLuDukBbk-wU7E2dHZFwsk4gkcuidwhE9DGii2VqFnQaPXVpXeeG5rWMOY0l5tkU0lWKasXxmppCSALiD01jmcgVRfnwtwxPdmmG4JfiAf8xmQ1vp4ORVRVQsHTPtnOL-yrsad5zufKkrXwF-9vREh5bM1f6SsIXbozncCMVoDFXSh1yI5QQWkJwOyFbyTIxp4QqAFI6VLC77RDiXugbw6TXVcL1paecRYs4teUCXamLY5GLOKhpZM8BWjtAaweltVvk-mtMWmprbOzN6wkJfq2QAJz_hnFn_xx3TvbwreSTXZCtfPVqLiEByVW7WGFtst2_exiNPwEcutqf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60IvUiPrE-96AniU3SbB4HD1KVVqserOAt7m43EKkxmKrUg3_KP-hMHj5APAhCTrvZsJldZuZLvv0GYFshMDZ9xzFcH10gSZobvva5gWDC06YjhVWwLc7dzpVzcs2vJ-CtOgtDtMrS9xc-PffWZUuztGYzjePmJQY_TL9bLqUgiLTMkll5qsfPiNuy_e4hLvKObR8f9dsdoywtYKiWaY4MHsiopXjL5dITpgwk7nxLCbxM5bgikAJ7uNaexbWQiFNcIVTEtS99Xwl0-_jcSZhy0F1Q2YS9109eSeDkZX5pdgZNrzypU5DKsvQuRlBqUwNJr_8cDb9EuOM5mC1TU3ZQvP08TOhkAertqiLcAkzndFGVLUJ0OU4wc8ziF4x8rBezwX2qB6wfX9isKqzDRpVuOhsKSuwZ5seM5JGHY6Zz5QoMeCwdikQ8MNIrf8roUzLLCG0z-qOwBFf_YtZlqCX3iV4BJhG5qUiiOzEjDLRRoLUjPFv6biA8aQ0aYFWWC1UpZ05VNYZhxVu7DcnaIVk7LKzdgN2PMWkh5vHr3bxakPDblgwx2vwybvWP47ag3umf9cJe9_x0DWaopyCzrUNt9PCoNzD7GcnNfLcxuPnv7f0OMDYXpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesizing+Li+doped+TiO2+electron+transport+layers+for+highly+efficient+planar+perovskite+solar+cell&rft.jtitle=Superlattices+and+microstructures&rft.au=Teimouri%2C+Razieh&rft.au=Heydari%2C+Zahra&rft.au=Ghaziani%2C+Mohammad+Pouya&rft.au=Madani%2C+Mahdi&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=145&rft_id=info:doi/10.1016%2Fj.spmi.2020.106627&rft.externalDocID=S0749603619321330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |