Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method
•High quality of synthesized ZnO powder with hexagonal wurtzite structure.•ZnO nanoparticles exhibit a broad band at about 369nm in the absorption spectra which is characteristic of a pure ZnO.•Raman studies indicate first and second order active modes of the ZnO. ZnO nanoparticles were synthesized...
Saved in:
Published in | Superlattices and microstructures Vol. 85; pp. 7 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •High quality of synthesized ZnO powder with hexagonal wurtzite structure.•ZnO nanoparticles exhibit a broad band at about 369nm in the absorption spectra which is characteristic of a pure ZnO.•Raman studies indicate first and second order active modes of the ZnO.
ZnO nanoparticles were synthesized by direct precipitation method at ambient conditions. Structural, thermal, morphological and optical properties of ZnO nanoparticles were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Ultraviolet–Visible spectroscopy and Raman spectroscopy. The XRD measurement shows that ZnO powder has a wurtzite structure. The grain size was estimated from Scherer’s method and Williamson–Hall (W–H) plots. From DSC curve we can deduce the various endothermic and exothermic peaks obtained when the sample was heated from room temperature to 413°C. The morphology and grain distribution of ZnO nanoparticles were analyzed by SEM. Optical properties were investigated by UV–Visible spectroscopy. The Tauc model was used to determine the optical gap energy of the synthesized ZnO particles. The observed Raman peak at 438cm−1 was attributed to the E2 (high) mode. The broad band at 569cm−1 is due to disorder-activated Raman scattering for A1 mode. These bands are associated with the first-order Raman active modes of the ZnO phase. |
---|---|
AbstractList | •High quality of synthesized ZnO powder with hexagonal wurtzite structure.•ZnO nanoparticles exhibit a broad band at about 369nm in the absorption spectra which is characteristic of a pure ZnO.•Raman studies indicate first and second order active modes of the ZnO.
ZnO nanoparticles were synthesized by direct precipitation method at ambient conditions. Structural, thermal, morphological and optical properties of ZnO nanoparticles were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Ultraviolet–Visible spectroscopy and Raman spectroscopy. The XRD measurement shows that ZnO powder has a wurtzite structure. The grain size was estimated from Scherer’s method and Williamson–Hall (W–H) plots. From DSC curve we can deduce the various endothermic and exothermic peaks obtained when the sample was heated from room temperature to 413°C. The morphology and grain distribution of ZnO nanoparticles were analyzed by SEM. Optical properties were investigated by UV–Visible spectroscopy. The Tauc model was used to determine the optical gap energy of the synthesized ZnO particles. The observed Raman peak at 438cm−1 was attributed to the E2 (high) mode. The broad band at 569cm−1 is due to disorder-activated Raman scattering for A1 mode. These bands are associated with the first-order Raman active modes of the ZnO phase. |
Author | Guermazi, S. Al-Hajry, A. Barhoumi, A. Bouzid, Anis Kahouli, M. |
Author_xml | – sequence: 1 givenname: M. surname: Kahouli fullname: Kahouli, M. email: Kahouli.majdi@yahoo.fr organization: University of Sfax, Research Unit: PMISI, Faculty of Science Sfax, Route de la Soukra, km 3.5, B.P. n 1171, 3000 Sfax, Tunisia – sequence: 2 givenname: A. surname: Barhoumi fullname: Barhoumi, A. organization: University of Sfax, Research Unit: PMISI, Faculty of Science Sfax, Route de la Soukra, km 3.5, B.P. n 1171, 3000 Sfax, Tunisia – sequence: 3 givenname: Anis surname: Bouzid fullname: Bouzid, Anis organization: University of Sfax, Research Unit: PMISI, Faculty of Science Sfax, Route de la Soukra, km 3.5, B.P. n 1171, 3000 Sfax, Tunisia – sequence: 4 givenname: A. surname: Al-Hajry fullname: Al-Hajry, A. organization: Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia – sequence: 5 givenname: S. surname: Guermazi fullname: Guermazi, S. organization: University of Sfax, Research Unit: PMISI, Faculty of Science Sfax, Route de la Soukra, km 3.5, B.P. n 1171, 3000 Sfax, Tunisia |
BookMark | eNp9kE1qwzAQhUVpoUnaC3SlC9gd2ZYcQzcl9A8CWbTddFEhS2Oq4FhCUgq5fW2SVReBBzPz4Btm3pxcDm5AQu4Y5AyYuN_m0e9sXgDjOYyC-oLMGDQiK0VdX5IZ1FWTCSjFNZnHuAWApmL1jHy_p7DXaR9UT9VgqPPJ6rH3wXkMyWKkrqNfw4YOanBejZbuR9MHHAc0tD1QYwPqNFnaeptUsm6gO0w_ztyQq071EW9PdUE-n58-Vq_ZevPytnpcZ7oESBnnGnEJTJVKiBaKqtKqqJrWaK4ahJa3jNdFUSA3qoOuWoq6E6zkZceMZk1dLsjyuFcHF2PATurTISko20sGcspJbuWUk5xykjAKJrT4h_pgdyoczkMPRwjHp34tBhm1xUHjMQtpnD2H_wHAR4Zc |
CitedBy_id | crossref_primary_10_1016_j_optmat_2022_112964 crossref_primary_10_1088_1742_6596_1943_1_012020 crossref_primary_10_1088_2053_1591_aae243 crossref_primary_10_1111_jace_15818 crossref_primary_10_1016_j_mtcomm_2022_103845 crossref_primary_10_1002_bio_4413 crossref_primary_10_1016_j_ijhydene_2020_09_053 crossref_primary_10_1002_celc_202300208 crossref_primary_10_3390_nano13111795 crossref_primary_10_3390_catal12101093 crossref_primary_10_1016_j_ssc_2024_115616 crossref_primary_10_1021_acs_langmuir_9b01921 crossref_primary_10_1016_j_ceramint_2023_01_172 crossref_primary_10_1016_j_jpcs_2024_112438 crossref_primary_10_1007_s10876_025_02770_w crossref_primary_10_1007_s12596_023_01394_5 crossref_primary_10_1016_j_apt_2018_10_004 crossref_primary_10_1016_j_solidstatesciences_2017_05_004 crossref_primary_10_1111_jace_19864 crossref_primary_10_1016_j_jphotobiol_2019_111728 crossref_primary_10_1016_j_ceramint_2019_06_001 crossref_primary_10_5004_dwt_2019_23248 crossref_primary_10_1002_htj_21379 crossref_primary_10_1088_1402_4896_ad5232 crossref_primary_10_1007_s10971_024_06500_y crossref_primary_10_1007_s00542_019_04476_2 crossref_primary_10_15251_JOR_2024_205_633 crossref_primary_10_1016_j_ceramint_2024_11_275 crossref_primary_10_1016_j_optlastec_2021_107035 crossref_primary_10_1016_j_ijhydene_2024_05_296 crossref_primary_10_1007_s12666_015_0618_5 crossref_primary_10_1039_C9RA09829A crossref_primary_10_1002_pc_23914 crossref_primary_10_1016_j_jics_2023_100889 crossref_primary_10_1088_1361_6641_aaf820 crossref_primary_10_1016_j_physb_2021_413291 crossref_primary_10_1080_09593330_2019_1683078 crossref_primary_10_3390_en16104137 crossref_primary_10_1016_j_ultsonch_2017_11_008 crossref_primary_10_1016_j_ceramint_2020_05_316 crossref_primary_10_1002_adfm_202107363 crossref_primary_10_5004_dwt_2017_20351 crossref_primary_10_1016_j_jmrt_2020_05_040 crossref_primary_10_1088_1757_899X_1046_1_012012 crossref_primary_10_1080_10667857_2020_1868745 crossref_primary_10_1016_j_ceramint_2016_08_025 crossref_primary_10_1007_s10904_020_01644_0 crossref_primary_10_1016_j_ijleo_2019_03_150 crossref_primary_10_1016_j_jallcom_2023_170316 crossref_primary_10_1016_j_vacuum_2018_06_046 crossref_primary_10_1007_s43207_024_00465_y crossref_primary_10_1007_s10854_024_13554_9 crossref_primary_10_1016_j_ceramint_2020_02_232 crossref_primary_10_3390_ijms22094513 crossref_primary_10_1016_j_molstruc_2024_139196 crossref_primary_10_2139_ssrn_3969606 crossref_primary_10_1016_j_optmat_2021_111794 crossref_primary_10_1016_j_rinp_2019_01_085 crossref_primary_10_1039_C7RA05429G crossref_primary_10_1007_s10854_020_03280_3 crossref_primary_10_1016_j_ceramint_2023_06_188 crossref_primary_10_1016_j_optmat_2017_04_065 crossref_primary_10_1039_C9NA00483A crossref_primary_10_1016_j_ceramint_2023_12_180 crossref_primary_10_1016_j_apt_2018_05_012 crossref_primary_10_1088_1742_6596_2673_1_012021 crossref_primary_10_1016_j_molstruc_2023_137223 crossref_primary_10_1007_s12666_023_03121_x crossref_primary_10_1016_j_solener_2020_05_025 crossref_primary_10_1134_S0036024418090315 crossref_primary_10_1007_s12034_022_02832_z crossref_primary_10_1016_j_jpcs_2020_109568 crossref_primary_10_1016_j_matchemphys_2023_127923 crossref_primary_10_1007_s10971_024_06529_z crossref_primary_10_1007_s12668_019_00687_z crossref_primary_10_1016_j_ceramint_2020_11_079 crossref_primary_10_1016_j_jcis_2021_05_137 crossref_primary_10_1016_j_ceramint_2021_05_024 crossref_primary_10_1039_D4LF00279B crossref_primary_10_1039_C7AY01468F crossref_primary_10_1007_s10973_024_13878_y crossref_primary_10_1039_C8NR04455D crossref_primary_10_1021_acsaom_3c00016 crossref_primary_10_1088_1402_4896_ad80e6 crossref_primary_10_1016_j_physb_2020_412555 crossref_primary_10_1016_j_cis_2017_07_033 crossref_primary_10_1016_j_apt_2017_11_019 crossref_primary_10_1039_D3NA00409K crossref_primary_10_1016_j_optmat_2023_114086 crossref_primary_10_1016_j_inoche_2022_110213 crossref_primary_10_1016_j_matchemphys_2020_123203 crossref_primary_10_1016_j_powtec_2017_02_029 crossref_primary_10_3390_molecules28062780 crossref_primary_10_1016_j_molstruc_2024_139821 crossref_primary_10_1016_j_cjph_2021_06_026 crossref_primary_10_1007_s11664_021_08785_z crossref_primary_10_1039_D1RA03653J crossref_primary_10_1016_j_jcrysgro_2024_128003 crossref_primary_10_1016_j_materresbull_2020_110884 crossref_primary_10_1039_D1RA09000C crossref_primary_10_1088_1742_6596_2190_1_012045 crossref_primary_10_1007_s10854_024_13930_5 crossref_primary_10_1039_C8NJ00496J crossref_primary_10_1016_j_mssp_2019_03_026 crossref_primary_10_1039_C8EN00389K crossref_primary_10_1016_j_ceramint_2023_03_206 crossref_primary_10_1088_1742_6596_872_1_012032 crossref_primary_10_1007_s10854_020_04776_8 crossref_primary_10_1039_D3MA00705G crossref_primary_10_1016_j_powtec_2020_07_025 crossref_primary_10_1016_j_tox_2024_153869 crossref_primary_10_1007_s00289_021_04033_w crossref_primary_10_1017_S1431927619010626 crossref_primary_10_3390_ma15165536 crossref_primary_10_1007_s10971_021_05653_4 crossref_primary_10_1007_s11082_023_05867_6 crossref_primary_10_1016_j_saa_2017_01_039 crossref_primary_10_1016_j_apsusc_2021_152352 crossref_primary_10_1080_24701556_2020_1862223 crossref_primary_10_1007_s00339_025_08431_z crossref_primary_10_1007_s13538_023_01278_w crossref_primary_10_1134_S1027451019060442 crossref_primary_10_1039_D3MA01096A crossref_primary_10_1016_j_jmrt_2020_11_053 crossref_primary_10_1016_j_ceramint_2019_07_200 crossref_primary_10_3390_nano9101441 crossref_primary_10_1166_jnn_2021_19489 crossref_primary_10_1039_D1RA07245E crossref_primary_10_1088_1757_899X_678_1_012122 crossref_primary_10_1016_j_nanoso_2024_101285 crossref_primary_10_1007_s10854_020_03601_6 crossref_primary_10_1016_j_vacuum_2022_111375 crossref_primary_10_1016_j_jallcom_2019_01_336 crossref_primary_10_1016_j_jphotobiol_2016_12_011 crossref_primary_10_1016_j_snb_2017_11_079 crossref_primary_10_1002_pssb_201700393 crossref_primary_10_1016_j_csite_2018_05_006 crossref_primary_10_1080_10667857_2022_2058835 crossref_primary_10_1016_j_colsurfa_2024_135724 crossref_primary_10_1007_s10854_022_09075_y crossref_primary_10_1016_j_spmi_2018_07_015 crossref_primary_10_3390_inorganics12020053 crossref_primary_10_1016_j_materresbull_2018_09_030 crossref_primary_10_1016_j_ijleo_2019_163637 crossref_primary_10_1515_mt_2023_0259 crossref_primary_10_5004_dwt_2021_26463 crossref_primary_10_1007_s10854_017_8103_z crossref_primary_10_3390_agronomy13123060 crossref_primary_10_1016_j_bbrc_2024_150612 crossref_primary_10_1016_j_ceramint_2021_02_026 crossref_primary_10_1016_j_jallcom_2017_02_160 crossref_primary_10_1080_00194506_2025_2475036 crossref_primary_10_1016_j_jallcom_2020_155078 crossref_primary_10_1007_s00339_022_05256_y crossref_primary_10_1002_adpr_202200159 crossref_primary_10_1007_s13204_021_01943_z crossref_primary_10_1016_j_jmrt_2022_05_137 crossref_primary_10_1016_j_matchemphys_2022_127248 crossref_primary_10_3390_toxins13010066 crossref_primary_10_1007_s11082_023_05324_4 crossref_primary_10_1016_j_solener_2019_04_002 crossref_primary_10_1016_j_spmi_2018_11_010 crossref_primary_10_1016_j_jiec_2018_01_012 crossref_primary_10_1016_j_jallcom_2021_158937 crossref_primary_10_1515_msp_2016_0119 crossref_primary_10_1016_j_mtcomm_2024_109335 crossref_primary_10_1117_1_JPE_10_023506 crossref_primary_10_1002_er_5939 crossref_primary_10_1016_j_jes_2018_02_014 crossref_primary_10_1088_1757_899X_131_1_012004 crossref_primary_10_1155_2020_1768371 crossref_primary_10_1016_j_envres_2022_114751 crossref_primary_10_1016_j_solidstatesciences_2017_10_002 crossref_primary_10_1016_j_apt_2019_11_006 crossref_primary_10_1016_j_matpr_2023_05_680 crossref_primary_10_1016_j_molstruc_2024_141177 crossref_primary_10_1088_1361_6463_acbb16 crossref_primary_10_1002_slct_202404773 crossref_primary_10_1007_s10854_020_04611_0 crossref_primary_10_4028_www_scientific_net_SSP_312_20 crossref_primary_10_1088_2053_1591_ab2c49 crossref_primary_10_15251_DJNB_2024_194_1765 crossref_primary_10_1016_j_ceramint_2021_08_128 crossref_primary_10_1016_j_hazadv_2022_100081 crossref_primary_10_1080_10601325_2018_1563494 crossref_primary_10_1016_j_molliq_2023_123783 crossref_primary_10_1134_S1027451020040242 crossref_primary_10_1007_s10854_021_07526_6 crossref_primary_10_1134_S1027451019010166 crossref_primary_10_1088_1757_899X_1263_1_012009 crossref_primary_10_1016_j_bcab_2020_101730 crossref_primary_10_1007_s10854_022_07852_3 crossref_primary_10_1016_j_optmat_2021_111610 crossref_primary_10_3390_pharmaceutics14102155 crossref_primary_10_1007_s13738_015_0713_x crossref_primary_10_1016_j_materresbull_2018_11_006 crossref_primary_10_1016_j_mcat_2021_111946 crossref_primary_10_1007_s10854_024_12170_x crossref_primary_10_1016_j_microc_2023_109812 crossref_primary_10_1007_s10854_021_06563_5 crossref_primary_10_1016_j_colsurfa_2024_133955 crossref_primary_10_3390_polym14173539 crossref_primary_10_1016_j_hazadv_2023_100245 crossref_primary_10_1088_2053_1591_ab4dd9 crossref_primary_10_1016_j_ijleo_2019_163706 crossref_primary_10_1007_s11164_016_2622_8 crossref_primary_10_1016_j_chip_2023_100072 crossref_primary_10_1007_s10854_021_06003_4 crossref_primary_10_1016_j_physe_2021_114726 crossref_primary_10_3390_nano12050779 crossref_primary_10_1016_j_ceramint_2020_02_031 crossref_primary_10_1016_j_jmst_2018_01_014 crossref_primary_10_1016_j_ica_2020_119661 crossref_primary_10_1080_10667857_2020_1775408 crossref_primary_10_1016_j_apsusc_2023_157548 crossref_primary_10_1016_j_jece_2024_115091 |
Cites_doi | 10.1002/jps.2600841109 10.1107/S0021889892008987 10.1016/j.scriptamat.2013.05.019 10.1016/j.matchemphys.2008.07.020 10.1021/jp0217381 10.1063/1.1699713 10.1016/j.ssc.2006.05.026 10.1021/jp803783s 10.1063/1.1657459 10.1103/PhysRevB.65.092101 10.1016/S0927-796X(02)00073-6 10.1016/j.spmi.2009.05.005 10.1016/j.optcom.2009.12.009 10.1016/0040-6090(95)06855-4 10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J 10.1007/s12034-014-0676-z 10.1016/j.apsusc.2011.06.094 10.1016/S0022-328X(01)01378-X 10.1016/S1369-7021(04)00286-X 10.1016/j.mssp.2007.04.002 10.1016/S0009-2509(02)00578-X 10.1080/15533174.2011.591308 10.1103/PhysRev.181.1351 10.1016/S0025-5408(96)00175-4 10.1080/14786435.2010.491810 10.1063/1.1944222 10.1016/S1002-0721(14)60405-1 10.1016/j.matchemphys.2004.08.010 10.1016/j.physb.2010.02.016 10.1016/j.jeurceramsoc.2008.05.003 10.1016/j.jcrysgro.2006.10.245 10.1016/j.tsf.2008.04.022 10.1166/jnn.2005.182 10.1116/1.580050 10.1016/j.jallcom.2009.10.102 10.1016/S1452-3981(23)15125-X 10.1002/pssb.19660150224 10.1103/PhysRevB.3.1338 10.1016/j.msea.2006.08.033 10.1016/0925-3467(95)00039-9 10.1016/j.jlumin.2006.01.089 10.1016/j.colsurfa.2007.06.017 10.1016/j.jpcs.2007.07.094 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2015.05.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 23 |
ExternalDocumentID | 10_1016_j_spmi_2015_05_007 S0749603615002669 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-55cee801a3a66b0244ca249bdc5a9e0b5b157222e5daf0f4867f61353f1dc1973 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 23:09:59 EDT 2025 Tue Jul 01 01:34:59 EDT 2025 Fri Feb 23 02:42:12 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Nanoparticles Raman spectra DSC Optical properties ZnO SEM XRD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-55cee801a3a66b0244ca249bdc5a9e0b5b157222e5daf0f4867f61353f1dc1973 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2015_05_007 crossref_primary_10_1016_j_spmi_2015_05_007 elsevier_sciencedirect_doi_10_1016_j_spmi_2015_05_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Zhang, Xu, Ji (b0170) 2006; 139 Sharma, Sharma, Kaith, Rajput, Kaur (b0020) 2011; 257 Wei, Chang (b0070) 2008; 69 Alim, Fonoberov, Shamsa, Balandin (b0260) 2005; 97 Wang (b0005) 2004; 7 Cheng, Cheng, Zhang, Wang (b0040) 2007; 299 Rataboul, Nayral, Casanove, Maisonnat, Chaudret (b0055) 2002; 643–644 Okuyama, Lenggoro (b0060) 2003; 58 Exarhos, Sharma (b0265) 1995; 270 Nagabhushana, Nagabhushana, Kumar, Premkumar, Shivakumara, Chakradhar (b0200) 2010; 90 Ali Yıldırım, Ates (b0150) 2010; 283 Papadopoulou, Varda, Kouroupis-Agalou, Androulidaki, Chikoidze, Galtier, Huyberechts, Aperathitis (b0145) 2008; 516 Puchet, Timbrell, Lamb (b0125) 1996; 14 Wurster, Oh, Wang (b0195) 1995; 84 Scherrer (b0120) 1918; 2 Zhou, Zhao, Wang, Zhang, Yang (b0095) 2007; 122–123 Adachi (b0165) 2004 Balzar, Ledbetter (b0175) 1993; 26 Khoshhesab, Sarfaraz, Asadabad (b0100) 2011; 41 Motevalizadeh, Heidary (b0155) 2014; 37 Wemple, Didomenico (b0215) 1969; 40 Amlouk, Boubaker, Amlouk (b0235) 2010; 490 Shuang, Wang, Zhong, Yan (b0250) 2007; 10 Takumoto, Pulcinelli, Santilli, Briois (b0045) 2003; 107 Zhai, Wu, Lu, Wang, Wang (b0085) 2008; 112 Wu, Liu (b0080) 2002; 14 Mahalingam, John, Hsu (b0135) 2007; 10 Fan, Lu (b0015) 2005; 5 Nye (b0185) 1985 Kim, Choi, Choa, Kim (b0030) 2007; 311 Bitenc, Marinsek, Crnjak Orel (b0090) 2008; 28 Abdullah, Rahman, Bouzid, Faisal, Khan, Al-Sayari1, Ismail (b0190) 2015; 33 Rao, Govindaraj (b0010) 2005 Omar (b0225) 1993 Tompkins, McGahan (b0210) 1999 Gervais (b0240) 2002; 39 Decremps, Pellicer-Porres, Saitta, Chervin, Polian (b0255) 2002; 65 Abdullah, Singh, Hasmuddin, Bhagavannarayana, Wahab (b0130) 2013; 69 Sesha Reddy, Ramakrishna Reddy, Naidu, Reddy (b0230) 1995; 4 Caglar, Aksoy, Ilican, Cagmar (b0115) 2009; 46 Hu, Zhu, Wang (b0075) 2004; 88 Cho, Jung, Lee (b0035) 2008; 112 Warren, Averbach (b0180) 1950; 21 Cullity, Rstock (b0105) 2001 Tauc, Grigorovichi, Vancu (b0205) 1966; 15 Rao, Santhosh kumar, Safarulla, Ganesan, Barman, Sanjeeviraja (b0110) 2010; 405 Arguello, Rousseau, Porto (b0245) 1969; 181 Suryanarayana, Grant Norton (b0160) 1998 Moghaddam, Nazari, Badraghi, Kazemzad (b0065) 2009; 4 Singhai, Chhabra, Kang, Shah (b0050) 1997; 32 Wemple, Didomenico (b0220) 1971; 3 Eftekhari, Molaei, Arami (b0025) 2006; 437 Prasada Rao, Santhosh Kumar, Safarullaa, Ganesan, Barman, Sanjeeviraja (b0140) 2010; 405 Wang (10.1016/j.spmi.2015.05.007_b0005) 2004; 7 Khoshhesab (10.1016/j.spmi.2015.05.007_b0100) 2011; 41 Nagabhushana (10.1016/j.spmi.2015.05.007_b0200) 2010; 90 Prasada Rao (10.1016/j.spmi.2015.05.007_b0140) 2010; 405 Takumoto (10.1016/j.spmi.2015.05.007_b0045) 2003; 107 Scherrer (10.1016/j.spmi.2015.05.007_b0120) 1918; 2 Cullity (10.1016/j.spmi.2015.05.007_b0105) 2001 Abdullah (10.1016/j.spmi.2015.05.007_b0130) 2013; 69 Abdullah (10.1016/j.spmi.2015.05.007_b0190) 2015; 33 Nye (10.1016/j.spmi.2015.05.007_b0185) 1985 Exarhos (10.1016/j.spmi.2015.05.007_b0265) 1995; 270 Tompkins (10.1016/j.spmi.2015.05.007_b0210) 1999 Arguello (10.1016/j.spmi.2015.05.007_b0245) 1969; 181 Sharma (10.1016/j.spmi.2015.05.007_b0020) 2011; 257 Moghaddam (10.1016/j.spmi.2015.05.007_b0065) 2009; 4 Wei (10.1016/j.spmi.2015.05.007_b0070) 2008; 69 Rao (10.1016/j.spmi.2015.05.007_b0010) 2005 Balzar (10.1016/j.spmi.2015.05.007_b0175) 1993; 26 Singhai (10.1016/j.spmi.2015.05.007_b0050) 1997; 32 Omar (10.1016/j.spmi.2015.05.007_b0225) 1993 Wu (10.1016/j.spmi.2015.05.007_b0080) 2002; 14 Cho (10.1016/j.spmi.2015.05.007_b0035) 2008; 112 Alim (10.1016/j.spmi.2015.05.007_b0260) 2005; 97 Eftekhari (10.1016/j.spmi.2015.05.007_b0025) 2006; 437 Wurster (10.1016/j.spmi.2015.05.007_b0195) 1995; 84 Suryanarayana (10.1016/j.spmi.2015.05.007_b0160) 1998 Rataboul (10.1016/j.spmi.2015.05.007_b0055) 2002; 643–644 Puchet (10.1016/j.spmi.2015.05.007_b0125) 1996; 14 Shuang (10.1016/j.spmi.2015.05.007_b0250) 2007; 10 Okuyama (10.1016/j.spmi.2015.05.007_b0060) 2003; 58 Mahalingam (10.1016/j.spmi.2015.05.007_b0135) 2007; 10 Motevalizadeh (10.1016/j.spmi.2015.05.007_b0155) 2014; 37 Decremps (10.1016/j.spmi.2015.05.007_b0255) 2002; 65 Bitenc (10.1016/j.spmi.2015.05.007_b0090) 2008; 28 Zhang (10.1016/j.spmi.2015.05.007_b0170) 2006; 139 Sesha Reddy (10.1016/j.spmi.2015.05.007_b0230) 1995; 4 Gervais (10.1016/j.spmi.2015.05.007_b0240) 2002; 39 Wemple (10.1016/j.spmi.2015.05.007_b0215) 1969; 40 Warren (10.1016/j.spmi.2015.05.007_b0180) 1950; 21 Tauc (10.1016/j.spmi.2015.05.007_b0205) 1966; 15 Fan (10.1016/j.spmi.2015.05.007_b0015) 2005; 5 Adachi (10.1016/j.spmi.2015.05.007_b0165) 2004 Papadopoulou (10.1016/j.spmi.2015.05.007_b0145) 2008; 516 Zhai (10.1016/j.spmi.2015.05.007_b0085) 2008; 112 Amlouk (10.1016/j.spmi.2015.05.007_b0235) 2010; 490 Cheng (10.1016/j.spmi.2015.05.007_b0040) 2007; 299 Wemple (10.1016/j.spmi.2015.05.007_b0220) 1971; 3 Ali Yıldırım (10.1016/j.spmi.2015.05.007_b0150) 2010; 283 Rao (10.1016/j.spmi.2015.05.007_b0110) 2010; 405 Hu (10.1016/j.spmi.2015.05.007_b0075) 2004; 88 Zhou (10.1016/j.spmi.2015.05.007_b0095) 2007; 122–123 Kim (10.1016/j.spmi.2015.05.007_b0030) 2007; 311 Caglar (10.1016/j.spmi.2015.05.007_b0115) 2009; 46 |
References_xml | – volume: 21 start-page: 595 year: 1950 ident: b0180 article-title: The effect of cold-work distortion on X-ray patterns publication-title: J. Appl. Phys. – volume: 7 start-page: 26 year: 2004 end-page: 33 ident: b0005 article-title: Nanostructures of zinc oxide publication-title: Mater. Today – volume: 257 start-page: 9661 year: 2011 end-page: 9672 ident: b0020 article-title: Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method publication-title: Appl. Surf. Sci. – volume: 516 start-page: 8141 year: 2008 end-page: 8145 ident: b0145 article-title: Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition publication-title: Thin Solid Films – volume: 10 start-page: 9 year: 2007 end-page: 14 ident: b0135 article-title: Microstructural analysis of electrodeposited zinc oxide thin films publication-title: J. New Mater. Electrochem. Syst. – volume: 14 start-page: 215 year: 2002 end-page: 218 ident: b0080 article-title: Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition publication-title: Adv. Mater. – volume: 405 start-page: 2226 year: 2010 ident: b0110 article-title: Physical properties of ZnO thin films deposited at various substrate temperature using spray pyrolysis publication-title: Physica B – year: 1993 ident: b0225 article-title: Elementary Solid State Physics – volume: 32 start-page: 239 year: 1997 end-page: 247 ident: b0050 article-title: Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion publication-title: Mater. Res. Bull. – volume: 58 start-page: 537 year: 2003 end-page: 547 ident: b0060 article-title: Preparation of nanoparticles via spray route publication-title: Chem. Eng. Sci. – year: 2005 ident: b0010 article-title: Nanotubes and Nanowires, The RSC Nanoscience and Nanotechnology Series – volume: 437 start-page: 446 year: 2006 end-page: 450 ident: b0025 article-title: Flower-like bundles of ZnO nanosheets as an intermediate between hollow nanosphere and nanoparticles publication-title: Mater. Sci. Eng. A – volume: 2 start-page: 98 year: 1918 ident: b0120 publication-title: Goettinger Nachr. – year: 1985 ident: b0185 article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices, (Anglais), Broché – volume: 112 start-page: 12769 year: 2008 end-page: 12776 ident: b0035 article-title: Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures publication-title: J. Phys. Chem. C – volume: 84 start-page: 1301 year: 1995 ident: b0195 article-title: Determination of the mechanism for the decrease in zinc oxide surface area upon high-temperature drying publication-title: J. Pharm. Sci. – volume: 33 start-page: 214 year: 2015 ident: b0190 publication-title: J. Rare Earths – volume: 3 start-page: 1338 year: 1971 ident: b0220 publication-title: Phys. Rev. B – volume: 40 start-page: 720 year: 1969 ident: b0215 article-title: Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects publication-title: J. Appl. Phys. – volume: 37 start-page: 397 year: 2014 end-page: 405 ident: b0155 article-title: Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods publication-title: Bull. Mater. Sci. – volume: 46 start-page: 469 year: 2009 end-page: 475 ident: b0115 article-title: Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films publication-title: Superlattices Microstruct. – volume: 139 start-page: 87 year: 2006 ident: b0170 article-title: General compliance transformation relation and applications for anisotropic hexagonal metals publication-title: Solid State Commun. – volume: 122–123 start-page: 195 year: 2007 end-page: 197 ident: b0095 article-title: Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties publication-title: J. Lumin. – year: 2001 ident: b0105 article-title: Elements of X-ray Diffraction – volume: 90 start-page: 3567 year: 2010 end-page: 3579 ident: b0200 article-title: Synthesis, characterization and photoluminescence properties of CaSiO publication-title: Philos. Magn. – volume: 4 start-page: 787 year: 1995 end-page: 790 ident: b0230 article-title: Optical constants of polycrystalline CuGaTe publication-title: Opt. Mater. – volume: 28 start-page: 2915 year: 2008 end-page: 2921 ident: b0090 article-title: Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles publication-title: J. Eur. Ceram. Soc. – volume: 283 start-page: 1370 year: 2010 end-page: 1377 ident: b0150 article-title: Influence of films thickness and structure on the photo-response of ZnO films publication-title: Opt. Commun. – volume: 10 start-page: 97 year: 2007 end-page: 102 ident: b0250 article-title: Raman scattering and cathodoluminescence properties of flower-like manganese doped ZnO nanorods publication-title: Mater. Sci. Semicond. Process. – volume: 26 start-page: 97 year: 1993 ident: b0175 article-title: Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks publication-title: J. Appl. Crystallogr. – volume: 97 start-page: 124313 year: 2005 end-page: 124323 ident: b0260 article-title: Micro-Raman investigation of optical phonons in ZnO nanocrystals publication-title: J. Appl. Phys. – volume: 5 start-page: 1561 year: 2005 end-page: 1573 ident: b0015 article-title: Zinc oxide nanostructures: synthesis and properties publication-title: J. Nanosci. Nanotechnol. – volume: 299 start-page: 34 year: 2007 end-page: 40 ident: b0040 article-title: Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition publication-title: J. Cryst. Growth – volume: 405 start-page: 2226 year: 2010 end-page: 2231 ident: b0140 article-title: Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis publication-title: Physica B – volume: 69 start-page: 688 year: 2008 end-page: 692 ident: b0070 article-title: Characteristics of nano zinc oxide synthesized under ultrasonic publication-title: J. Phys. Chem. Solids – volume: 311 start-page: 170 year: 2007 end-page: 173 ident: b0030 article-title: Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method publication-title: Colloids Surf. A: Physicochem. Eng. Aspects – volume: 14 start-page: 2220 year: 1996 end-page: 2230 ident: b0125 publication-title: J. Vac. Sci. Technol. – year: 1999 ident: b0210 article-title: Spectroscopic Ellipsometry and Reflectometry – volume: 69 start-page: 381 year: 2013 ident: b0130 article-title: In-situ growth and ab-initio optical characterizations of amorphous Ga publication-title: Scripta Mater. – volume: 41 start-page: 814 year: 2011 end-page: 819 ident: b0100 article-title: Preparation of ZnO nanostructures by chemical precipitation method publication-title: Synth. React. Inorg., Met.-Org., Nano-Met. Chem. – year: 1998 ident: b0160 article-title: X-ray Diffraction: A Practical Approach – volume: 88 start-page: 421 year: 2004 end-page: 426 ident: b0075 article-title: Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods publication-title: Mater. Chem. Phys. – volume: 181 start-page: 1351 year: 1969 end-page: 1363 ident: b0245 article-title: First-order Raman effect in wurtzite-type crystals publication-title: Phys. Rev. – volume: 270 start-page: 27 year: 1995 end-page: 32 ident: b0265 article-title: Influence of processing variables on the structure and properties of ZnO films publication-title: Thin Solid Films – volume: 39 start-page: 29 year: 2002 end-page: 92 ident: b0240 article-title: Optical conductivity of oxides publication-title: Mater. Sci. Eng. R – year: 2004 ident: b0165 article-title: Handbook on Physical Properties of Semiconductors – volume: 107 start-page: 568 year: 2003 ident: b0045 publication-title: J. Phys. Chem. B – volume: 65 start-page: 092101 year: 2002 ident: b0255 article-title: High-pressure Raman spectroscopy study of wurtzite ZnO publication-title: Phys. Rev. B – volume: 112 start-page: 1024 year: 2008 end-page: 1028 ident: b0085 publication-title: Mater. Chem. Phys. – volume: 643–644 start-page: 307 year: 2002 end-page: 312 ident: b0055 article-title: Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C publication-title: J. Organomet. Chem. – volume: 15 start-page: 627 year: 1966 ident: b0205 article-title: Optical properties and electronic structure of amorphous germanium publication-title: Phys. Status Solidi – volume: 490 start-page: 602 year: 2010 end-page: 604 ident: b0235 publication-title: J. Alloys Compd. – volume: 4 start-page: 247 year: 2009 end-page: 257 ident: b0065 article-title: Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film publication-title: Int. J. Electrochem. Sci. – volume: 84 start-page: 1301 year: 1995 ident: 10.1016/j.spmi.2015.05.007_b0195 article-title: Determination of the mechanism for the decrease in zinc oxide surface area upon high-temperature drying publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600841109 – volume: 26 start-page: 97 year: 1993 ident: 10.1016/j.spmi.2015.05.007_b0175 article-title: Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892008987 – volume: 69 start-page: 381 year: 2013 ident: 10.1016/j.spmi.2015.05.007_b0130 article-title: In-situ growth and ab-initio optical characterizations of amorphous Ga3Se4 thin film: a new chalcogenide compound semiconductor thin film publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2013.05.019 – volume: 112 start-page: 1024 year: 2008 ident: 10.1016/j.spmi.2015.05.007_b0085 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.07.020 – volume: 2 start-page: 98 year: 1918 ident: 10.1016/j.spmi.2015.05.007_b0120 publication-title: Goettinger Nachr. – volume: 107 start-page: 568 year: 2003 ident: 10.1016/j.spmi.2015.05.007_b0045 publication-title: J. Phys. Chem. B doi: 10.1021/jp0217381 – volume: 21 start-page: 595 year: 1950 ident: 10.1016/j.spmi.2015.05.007_b0180 article-title: The effect of cold-work distortion on X-ray patterns publication-title: J. Appl. Phys. doi: 10.1063/1.1699713 – volume: 139 start-page: 87 year: 2006 ident: 10.1016/j.spmi.2015.05.007_b0170 article-title: General compliance transformation relation and applications for anisotropic hexagonal metals publication-title: Solid State Commun. doi: 10.1016/j.ssc.2006.05.026 – volume: 112 start-page: 12769 year: 2008 ident: 10.1016/j.spmi.2015.05.007_b0035 article-title: Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures publication-title: J. Phys. Chem. C doi: 10.1021/jp803783s – year: 2004 ident: 10.1016/j.spmi.2015.05.007_b0165 – year: 2005 ident: 10.1016/j.spmi.2015.05.007_b0010 – volume: 40 start-page: 720 year: 1969 ident: 10.1016/j.spmi.2015.05.007_b0215 article-title: Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects publication-title: J. Appl. Phys. doi: 10.1063/1.1657459 – volume: 65 start-page: 092101 year: 2002 ident: 10.1016/j.spmi.2015.05.007_b0255 article-title: High-pressure Raman spectroscopy study of wurtzite ZnO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.092101 – volume: 39 start-page: 29 year: 2002 ident: 10.1016/j.spmi.2015.05.007_b0240 article-title: Optical conductivity of oxides publication-title: Mater. Sci. Eng. R doi: 10.1016/S0927-796X(02)00073-6 – volume: 46 start-page: 469 year: 2009 ident: 10.1016/j.spmi.2015.05.007_b0115 article-title: Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.05.005 – volume: 283 start-page: 1370 year: 2010 ident: 10.1016/j.spmi.2015.05.007_b0150 article-title: Influence of films thickness and structure on the photo-response of ZnO films publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.12.009 – volume: 270 start-page: 27 year: 1995 ident: 10.1016/j.spmi.2015.05.007_b0265 article-title: Influence of processing variables on the structure and properties of ZnO films publication-title: Thin Solid Films doi: 10.1016/0040-6090(95)06855-4 – volume: 14 start-page: 215 year: 2002 ident: 10.1016/j.spmi.2015.05.007_b0080 article-title: Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J – year: 1999 ident: 10.1016/j.spmi.2015.05.007_b0210 – volume: 37 start-page: 397 year: 2014 ident: 10.1016/j.spmi.2015.05.007_b0155 article-title: Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-014-0676-z – volume: 257 start-page: 9661 year: 2011 ident: 10.1016/j.spmi.2015.05.007_b0020 article-title: Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.06.094 – year: 1985 ident: 10.1016/j.spmi.2015.05.007_b0185 – volume: 643–644 start-page: 307 year: 2002 ident: 10.1016/j.spmi.2015.05.007_b0055 article-title: Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2] publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(01)01378-X – volume: 7 start-page: 26 year: 2004 ident: 10.1016/j.spmi.2015.05.007_b0005 article-title: Nanostructures of zinc oxide publication-title: Mater. Today doi: 10.1016/S1369-7021(04)00286-X – volume: 10 start-page: 9 year: 2007 ident: 10.1016/j.spmi.2015.05.007_b0135 article-title: Microstructural analysis of electrodeposited zinc oxide thin films publication-title: J. New Mater. Electrochem. Syst. – volume: 10 start-page: 97 year: 2007 ident: 10.1016/j.spmi.2015.05.007_b0250 article-title: Raman scattering and cathodoluminescence properties of flower-like manganese doped ZnO nanorods publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2007.04.002 – volume: 58 start-page: 537 year: 2003 ident: 10.1016/j.spmi.2015.05.007_b0060 article-title: Preparation of nanoparticles via spray route publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00578-X – volume: 41 start-page: 814 year: 2011 ident: 10.1016/j.spmi.2015.05.007_b0100 article-title: Preparation of ZnO nanostructures by chemical precipitation method publication-title: Synth. React. Inorg., Met.-Org., Nano-Met. Chem. doi: 10.1080/15533174.2011.591308 – volume: 181 start-page: 1351 year: 1969 ident: 10.1016/j.spmi.2015.05.007_b0245 article-title: First-order Raman effect in wurtzite-type crystals publication-title: Phys. Rev. doi: 10.1103/PhysRev.181.1351 – volume: 32 start-page: 239 year: 1997 ident: 10.1016/j.spmi.2015.05.007_b0050 article-title: Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(96)00175-4 – volume: 90 start-page: 3567 year: 2010 ident: 10.1016/j.spmi.2015.05.007_b0200 article-title: Synthesis, characterization and photoluminescence properties of CaSiO3:Dy3+ nanophosphors publication-title: Philos. Magn. doi: 10.1080/14786435.2010.491810 – volume: 97 start-page: 124313 year: 2005 ident: 10.1016/j.spmi.2015.05.007_b0260 article-title: Micro-Raman investigation of optical phonons in ZnO nanocrystals publication-title: J. Appl. Phys. doi: 10.1063/1.1944222 – volume: 33 start-page: 214 year: 2015 ident: 10.1016/j.spmi.2015.05.007_b0190 publication-title: J. Rare Earths doi: 10.1016/S1002-0721(14)60405-1 – volume: 88 start-page: 421 year: 2004 ident: 10.1016/j.spmi.2015.05.007_b0075 article-title: Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2004.08.010 – volume: 405 start-page: 2226 year: 2010 ident: 10.1016/j.spmi.2015.05.007_b0110 article-title: Physical properties of ZnO thin films deposited at various substrate temperature using spray pyrolysis publication-title: Physica B doi: 10.1016/j.physb.2010.02.016 – volume: 28 start-page: 2915 year: 2008 ident: 10.1016/j.spmi.2015.05.007_b0090 article-title: Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2008.05.003 – volume: 299 start-page: 34 year: 2007 ident: 10.1016/j.spmi.2015.05.007_b0040 article-title: Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.10.245 – volume: 516 start-page: 8141 year: 2008 ident: 10.1016/j.spmi.2015.05.007_b0145 article-title: Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.04.022 – volume: 5 start-page: 1561 year: 2005 ident: 10.1016/j.spmi.2015.05.007_b0015 article-title: Zinc oxide nanostructures: synthesis and properties publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2005.182 – volume: 405 start-page: 2226 year: 2010 ident: 10.1016/j.spmi.2015.05.007_b0140 article-title: Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis publication-title: Physica B doi: 10.1016/j.physb.2010.02.016 – volume: 14 start-page: 2220 year: 1996 ident: 10.1016/j.spmi.2015.05.007_b0125 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.580050 – volume: 490 start-page: 602 year: 2010 ident: 10.1016/j.spmi.2015.05.007_b0235 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.10.102 – year: 1993 ident: 10.1016/j.spmi.2015.05.007_b0225 – volume: 4 start-page: 247 year: 2009 ident: 10.1016/j.spmi.2015.05.007_b0065 article-title: Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15125-X – volume: 15 start-page: 627 year: 1966 ident: 10.1016/j.spmi.2015.05.007_b0205 article-title: Optical properties and electronic structure of amorphous germanium publication-title: Phys. Status Solidi doi: 10.1002/pssb.19660150224 – volume: 3 start-page: 1338 year: 1971 ident: 10.1016/j.spmi.2015.05.007_b0220 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.3.1338 – volume: 437 start-page: 446 year: 2006 ident: 10.1016/j.spmi.2015.05.007_b0025 article-title: Flower-like bundles of ZnO nanosheets as an intermediate between hollow nanosphere and nanoparticles publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.08.033 – year: 1998 ident: 10.1016/j.spmi.2015.05.007_b0160 – volume: 4 start-page: 787 year: 1995 ident: 10.1016/j.spmi.2015.05.007_b0230 article-title: Optical constants of polycrystalline CuGaTe2 films publication-title: Opt. Mater. doi: 10.1016/0925-3467(95)00039-9 – year: 2001 ident: 10.1016/j.spmi.2015.05.007_b0105 – volume: 122–123 start-page: 195 year: 2007 ident: 10.1016/j.spmi.2015.05.007_b0095 article-title: Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties publication-title: J. Lumin. doi: 10.1016/j.jlumin.2006.01.089 – volume: 311 start-page: 170 year: 2007 ident: 10.1016/j.spmi.2015.05.007_b0030 article-title: Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method publication-title: Colloids Surf. A: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2007.06.017 – volume: 69 start-page: 688 year: 2008 ident: 10.1016/j.spmi.2015.05.007_b0070 article-title: Characteristics of nano zinc oxide synthesized under ultrasonic publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2007.07.094 |
SSID | ssj0009417 |
Score | 2.2059224 |
SecondaryResourceType | review_article |
Snippet | •High quality of synthesized ZnO powder with hexagonal wurtzite structure.•ZnO nanoparticles exhibit a broad band at about 369nm in the absorption spectra... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 7 |
SubjectTerms | DSC Nanoparticles Optical properties Raman spectra SEM XRD ZnO |
Title | Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method |
URI | https://dx.doi.org/10.1016/j.spmi.2015.05.007 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGP8YE9GL6FScj5GDN6lLH-njOIZjKs7DHAwPljRNoKJdcbt48W83X5r6ANlB6KVtAuFL-j3SX34_gHMZIwVIljsqokiqzTyHS1_pKiWmSe55sTAUG3eTcDwLbuZs3oJhcxYGYZXW99c-3Xhr-6RvrdmviqI_1cFPp98-MprrQiLEQ3xBEOEqv_z4hnkkgVHdxcYOtrYHZ2qM17J6LRDexQx7J0rK_hWcfgSc0S7s2EyRDOrB7EFLlh3YGjYCbR3YNOhNsdyHp6lhgUUGDcLLnCwqs0NNKtxpf0PKVLJQ5LG8JyUvdZVswXD6vTQAdJK9k9oO-EgUlSXuJrW-9AHMRlcPw7FjhRMc4VO6chjToU-HHu7zMMx0FA4E12VWlgvGE0kzlrks0omBZDlXVCHpngpRAEO5uXCTyD-Edrko5REQETBPZXHEXfwZzBR-r9yN40RIwXlAu-A2FkuFHRyKW7ykDXzsOUUrp2jllOqLRl24-OpT1Zwaa1uzZiLSXysj1U5_Tb_jf_Y7gW28q3Fkp9DWEyjPdOKxynpmZfVgY3B9O558AjZ72Dk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MDdGL6FScnzl4k7J0bfpxHMOxuQ8P22B4sKRpAhXtitvF_968NvUDZAehpyQPwkv6PpJffg_gVgZIARInlvIpkmqzjsWlo3SWEtAw6XQCUVBsTKbeYOE-LNmyBr3qLQzCKo3tL216Ya1NS9tos52naXumnZ8Ovx1kNNeJhBfuQAPZqVgdGt3haDD95t51i8K7ON5CAfN2poR5rfO3FBFerCDwxKqyf_mnHz6nfwgHJlgk3XI-R1CTWRP2elWNtibsFgBOsT6G51lBBIskGoRnCVnlxSE1yfGw_R1ZU8lKkafskWQ804mywcPpfllg0En8QUpVYJNIc8PdTcoS0yew6N_PewPL1E6whEPpxmJMez_tfbjDPS_WjtgVXGdacSIYDyWNWWwzX8cGkiVcUYW8e8rDGhjKToQd-s4p1LNVJs-ACJd1VBz43Mb7YKbwl-V2EIRCCs5d2gK70lgkzOSwvsVrVCHIXiLUcoRajqj-qN-Cuy-ZvKTV2DqaVQsR_dockbb7W-TO_yl3A3uD-WQcjYfT0QXsY08JK7uEul5MeaXjkE18bfbZJ6n02uo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+optical+properties+of+ZnO+nanoparticles+prepared+by+direct+precipitation+method&rft.jtitle=Superlattices+and+microstructures&rft.au=Kahouli%2C+M.&rft.au=Barhoumi%2C+A.&rft.au=Bouzid%2C+Anis&rft.au=Al-Hajry%2C+A.&rft.date=2015-09-01&rft.issn=0749-6036&rft.volume=85&rft.spage=7&rft.epage=23&rft_id=info:doi/10.1016%2Fj.spmi.2015.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2015_05_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |