Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot

•A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization of MAACO is operated to find suitable parameter combination.•The MAACO is compared with several existing approaches based on several instanc...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 215; p. 119410
Main Authors Wu, Lei, Huang, Xiaodong, Cui, Junguo, Liu, Chao, Xiao, Wensheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2022.119410

Cover

Loading…
Abstract •A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization of MAACO is operated to find suitable parameter combination.•The MAACO is compared with several existing approaches based on several instances.•Experimental results show the superiority of MAACO. As the key point for auto-navigation of mobile robot, path planning is a research hotspot in the field of robot. Generally, the ant colony optimization algorithm (ACO) is one of the commonly used approaches aiming to solve the problem of path planning of mobile robot. Nevertheless, the traditional ACO has the shortcomings such as slow convergence speed, inefficiency and easily fall into local optimal values. Thus, a novel variant of ACO is proposed in this study. In detail, a new heuristic mechanism with orientation information is firstly introduced to add direction guidance during the iteration process, further to advance the convergence speed of algorithm. Secondly, an improved heuristic function is presented to enhance the purposiveness and reduce the number of turn times of planned path. Then, an improved state transition probability rule is introduced to improve the search efficiency significantly and increase the swarm diversity. Moreover, a new method for unevenly distributing initial pheromone concentration is proposed to avoid blind searching. After integrating the four improvements, the new variation of ACO called modified adaptive ant colony optimization algorithm (MAACO) is formed. Subsequently, parameter optimization of MAACO is carried out. For verifying the effectiveness of the proposed MAACO, a series of experiments are conducted based on five static space environment modes and one dynamic environment mode. Comparing with 13 existing approaches for solving the problem of path planning of mobile robot, including several variants of ACO and two commonly used algorithms (A* algorithm and Dijkstra algorithm), the experimental results demonstrate the merits of MAACO in terms of decreasing the path length, reducing the number of turn times, and promoting the convergence speed. In detail, in all the static simulation experiments, the proposed MAACO generates the shortest path length with a standard deviation of zero, and achieves the least number of turn times within the smallest convergence generation. In terms of the five experiments, the average number of reducing turn times is two with a generally reduction ratio of 22.2% compared with the best existing results. The obtained results of MAACO prove its practicality and high-efficiency for path planning.
AbstractList •A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization of MAACO is operated to find suitable parameter combination.•The MAACO is compared with several existing approaches based on several instances.•Experimental results show the superiority of MAACO. As the key point for auto-navigation of mobile robot, path planning is a research hotspot in the field of robot. Generally, the ant colony optimization algorithm (ACO) is one of the commonly used approaches aiming to solve the problem of path planning of mobile robot. Nevertheless, the traditional ACO has the shortcomings such as slow convergence speed, inefficiency and easily fall into local optimal values. Thus, a novel variant of ACO is proposed in this study. In detail, a new heuristic mechanism with orientation information is firstly introduced to add direction guidance during the iteration process, further to advance the convergence speed of algorithm. Secondly, an improved heuristic function is presented to enhance the purposiveness and reduce the number of turn times of planned path. Then, an improved state transition probability rule is introduced to improve the search efficiency significantly and increase the swarm diversity. Moreover, a new method for unevenly distributing initial pheromone concentration is proposed to avoid blind searching. After integrating the four improvements, the new variation of ACO called modified adaptive ant colony optimization algorithm (MAACO) is formed. Subsequently, parameter optimization of MAACO is carried out. For verifying the effectiveness of the proposed MAACO, a series of experiments are conducted based on five static space environment modes and one dynamic environment mode. Comparing with 13 existing approaches for solving the problem of path planning of mobile robot, including several variants of ACO and two commonly used algorithms (A* algorithm and Dijkstra algorithm), the experimental results demonstrate the merits of MAACO in terms of decreasing the path length, reducing the number of turn times, and promoting the convergence speed. In detail, in all the static simulation experiments, the proposed MAACO generates the shortest path length with a standard deviation of zero, and achieves the least number of turn times within the smallest convergence generation. In terms of the five experiments, the average number of reducing turn times is two with a generally reduction ratio of 22.2% compared with the best existing results. The obtained results of MAACO prove its practicality and high-efficiency for path planning.
ArticleNumber 119410
Author Huang, Xiaodong
Liu, Chao
Cui, Junguo
Xiao, Wensheng
Wu, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  email: wuleiupc@163.com
  organization: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 2
  givenname: Xiaodong
  surname: Huang
  fullname: Huang, Xiaodong
  email: b22050013@s.upc.edu.cn
  organization: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 3
  givenname: Junguo
  surname: Cui
  fullname: Cui, Junguo
  email: cuijunguo@upc.edu.cn
  organization: National Engineering Lab of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 4
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: National Engineering Lab of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 5
  givenname: Wensheng
  surname: Xiao
  fullname: Xiao, Wensheng
  organization: National Engineering Lab of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao 266580, China
BookMark eNp9kMlOwzAQQC1UJFrgBzj5BxLsrLbEBVVsUhEXOFuO7bRTJXawraLy9SSEE4eeRrO80cxboYV11iB0Q0lKCa1u96kJXzLNSJallPKCkjO0pKzOk6rm-QItCS_rpKB1cYFWIewJoTUh9RJ9vjoNLRiNpZZDhIPB0kasXOfsEbux0sO3jOAslt3WeYi7fpzQGGLAchg6UHO3dR4H1x3AbvEg4w4PnbR2ylyLe9dAZ7B3jYtX6LyVXTDXf_ESfTw-vK-fk83b08v6fpOonJCYlCWnFVW80JxrVhFTMsaqglPOSsNV2VRMq7yQknFNqrKSuWLF2MoapbPckPwSsXmv8i4Eb1qhIP7eGr2ETlAiJnViLyZ1YlInZnUjmv1DBw-99MfT0N0MmfGpAxgvggJjldHgjYpCOziF_wCJ_Yv8
CitedBy_id crossref_primary_10_3390_machines11020167
crossref_primary_10_1109_ACCESS_2023_3337602
crossref_primary_10_3390_math11132983
crossref_primary_10_61112_jiens_1365282
crossref_primary_10_1007_s44196_024_00691_6
crossref_primary_10_3390_inventions9010005
crossref_primary_10_1016_j_knosys_2023_110540
crossref_primary_10_1177_17298806241278170
crossref_primary_10_1016_j_heliyon_2024_e37286
crossref_primary_10_1039_D4NR02910K
crossref_primary_10_1016_j_eswa_2023_120070
crossref_primary_10_1016_j_cie_2024_110601
crossref_primary_10_1177_00202940241291282
crossref_primary_10_1016_j_engappai_2024_109866
crossref_primary_10_1007_s40430_024_04768_3
crossref_primary_10_3389_fnbot_2024_1406658
crossref_primary_10_3390_robotics14030032
crossref_primary_10_48084_etasr_7353
crossref_primary_10_1016_j_compeleceng_2023_108957
crossref_primary_10_1007_s11370_024_00566_x
crossref_primary_10_1109_ACCESS_2025_3548326
crossref_primary_10_26599_JICV_2023_9210011
crossref_primary_10_1016_j_watres_2025_123165
crossref_primary_10_3390_electronics13173443
crossref_primary_10_1002_rob_22354
crossref_primary_10_2478_bipie_2023_0017
crossref_primary_10_3390_jmse12060939
crossref_primary_10_3390_electronics13050825
crossref_primary_10_1016_j_autcon_2024_105689
crossref_primary_10_3390_s23052804
crossref_primary_10_1016_j_jobe_2024_111725
crossref_primary_10_3389_fnbot_2024_1464572
crossref_primary_10_3934_math_2024587
crossref_primary_10_3390_pr11123302
crossref_primary_10_1016_j_asoc_2024_112433
crossref_primary_10_3390_biomimetics8020241
crossref_primary_10_1002_eng2_13035
crossref_primary_10_36930_40340518
crossref_primary_10_1007_s10462_023_10542_z
crossref_primary_10_32604_cmes_2023_045096
crossref_primary_10_3934_mbe_2023846
crossref_primary_10_3390_biomimetics10020092
crossref_primary_10_1016_j_oceaneng_2024_117415
crossref_primary_10_1016_j_birob_2024_100206
crossref_primary_10_1007_s12008_025_02241_6
crossref_primary_10_1016_j_asoc_2023_111042
crossref_primary_10_1016_j_heliyon_2024_e27753
crossref_primary_10_1007_s10115_024_02179_3
crossref_primary_10_1007_s00500_023_09513_x
crossref_primary_10_1016_j_asoc_2023_110868
crossref_primary_10_1007_s00500_024_10322_z
crossref_primary_10_1016_j_cma_2024_117429
crossref_primary_10_1111_asj_13992
crossref_primary_10_3389_fnbot_2023_1269447
crossref_primary_10_1038_s41598_024_82471_y
crossref_primary_10_7161_omuanajas_1394616
crossref_primary_10_1007_s10878_024_01233_8
crossref_primary_10_3390_app15031165
crossref_primary_10_1016_j_yofte_2023_103651
crossref_primary_10_1016_j_energy_2024_130417
crossref_primary_10_1109_JIOT_2024_3459918
crossref_primary_10_1007_s00500_025_10469_3
crossref_primary_10_1016_j_compag_2024_109696
crossref_primary_10_32604_cmc_2023_039883
crossref_primary_10_3390_s25051326
crossref_primary_10_1088_1361_6501_ad56b2
crossref_primary_10_3390_biomimetics9090552
crossref_primary_10_1016_j_jestch_2025_101950
crossref_primary_10_1016_j_eswa_2024_126123
crossref_primary_10_3390_agriculture14040622
crossref_primary_10_3390_s25061897
crossref_primary_10_3390_electronics12214462
crossref_primary_10_3390_sym15112048
crossref_primary_10_59782_aai_v1i3_314
crossref_primary_10_1038_s41598_024_68964_w
crossref_primary_10_3390_electronics13010188
crossref_primary_10_1109_ACCESS_2024_3451616
crossref_primary_10_1016_j_eswa_2023_121369
crossref_primary_10_3390_smartcities7060142
crossref_primary_10_1007_s11370_024_00525_6
crossref_primary_10_1016_j_eswa_2023_120433
crossref_primary_10_3390_math11071684
crossref_primary_10_1016_j_eswa_2023_122057
crossref_primary_10_3390_electronics13224491
crossref_primary_10_1016_j_compag_2024_108707
crossref_primary_10_3390_act12030133
crossref_primary_10_3390_fractalfract8030157
crossref_primary_10_1109_ACCESS_2023_3270802
crossref_primary_10_1016_j_rineng_2025_104234
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_32604_cmc_2024_048402
crossref_primary_10_3934_mbe_2023768
crossref_primary_10_3390_s24247950
crossref_primary_10_55546_jmm_1291032
crossref_primary_10_1016_j_cosrev_2024_100651
crossref_primary_10_3390_drones7040257
crossref_primary_10_3390_math13050717
crossref_primary_10_1038_s41598_024_79420_0
crossref_primary_10_1088_1361_6501_adac02
crossref_primary_10_1063_5_0181605
crossref_primary_10_3390_math12121851
crossref_primary_10_1016_j_cogr_2024_02_001
crossref_primary_10_1142_S0129183124500839
crossref_primary_10_3390_electronics12163483
crossref_primary_10_1016_j_eswa_2023_121623
crossref_primary_10_1016_j_eswa_2023_122313
crossref_primary_10_1007_s00500_024_09935_1
crossref_primary_10_1007_s11370_023_00504_3
crossref_primary_10_3390_jmse11122245
crossref_primary_10_3390_agriculture14091473
Cites_doi 10.12677/CSA.2021.114087
10.1007/s00366-016-0479-5
10.1155/2018/2163278
10.1016/j.knosys.2021.107526
10.1016/j.engappai.2017.08.012
10.3390/electronics10131605
10.1109/ACCESS.2021.3056651
10.4028/www.scientific.net/AMM.596.861
10.1016/j.cie.2021.107230
10.1007/s13344-021-0034-z
10.1109/MCI.2013.2264233
10.3390/jmse9060556
10.1016/j.knosys.2018.05.033
10.1155/2016/7672839
10.4028/www.scientific.net/AMM.198-199.1025
10.1016/j.knosys.2019.105201
10.3390/electronics10070853
10.1155/2021/8025730
10.3390/s20092515
10.1109/ACCESS.2022.3197628
10.3390/app11083605
10.1504/IJCSM.2021.114182
10.1016/j.trpro.2020.08.227
10.1016/j.eswa.2020.113425
10.1016/j.eswa.2015.02.033
10.1007/s00521-016-2631-y
10.1016/j.future.2021.03.007
10.3390/app11083417
10.1007/s00521-019-04172-2
10.1016/j.knosys.2020.105530
10.1109/ACCESS.2019.2949835
10.1016/j.eswa.2021.115445
10.1109/MCI.2006.329691
10.1109/3477.484436
10.1007/s11227-020-03303-0
10.1016/j.proeng.2014.12.098
10.1016/j.knosys.2019.05.015
10.1177/1729881418784221
10.1177/0954406215573600
10.1016/j.asoc.2019.01.036
10.3389/fnbot.2021.642733
10.1109/4235.585892
10.1080/01490419.2021.1906799
10.1016/j.cie.2020.106695
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.119410
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_119410
S0957417422024290
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-559161c94d99d860e58886491985e9c5b68dc34aa89d0656a3c8485e2bcd23e03
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:07 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Fri Feb 23 02:38:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heuristic function
Path planning
Pheromone updating
Ant colony optimization algorithm
State transition probability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-559161c94d99d860e58886491985e9c5b68dc34aa89d0656a3c8485e2bcd23e03
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_119410
crossref_primary_10_1016_j_eswa_2022_119410
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fountas, Vaxevanidis, Stergious, Benhadj-Djilali (b0085) 2016; 33
Wu, Tian, Zhang, Liu, Xiao, Yang (b0240) 2017; 66
Xie, Y., Peng, J., & Wu, Min. (2006). Study on evolutionary artificial potential field based path planning in Robocup. Computer Engineering and Applications, 42, 176-179. https://doi.org/1002-8331(2006)42:9<176:ZQJQRL>2.0.TX;2-Z.
Deng, Li, Zhao, Wang, Gui (b0040) 2021; 183
Xi, Zhao, Xiao, Chen (b0270) 2020; 1682
Moayedi, Nguyen, Foong (b0170) 2019; 2019
Fadzli, Abdulkadir, Makhtar, Jamal (b0070) 2015
Feng, Lei, Wu, Song (b0080) 2019; 55
Wang, X.Y., Yang, L., Zhang, Y., & Meng, S., (2018). Robot path planning based on improved ant colony algorithm with potential field heuristic. Control and Decision, 33, 1775–1781. https://doi.org/1001-0920(2018)33:10<1775:JYGJSC>2.0.TX;2-L.
Kim, D.H., Choi, Y.S., Kim, S.H., Wu, J., Yuan, C., Luo, LP., Lee, J.Y., & Han, C.S. (2015). Adaptive rapidly-exploring random tree for efficient path planning of high-degree-of-freedom articulated robots. Proceedings of the institution of mechanical engineers part C-Journal of mechanical engineering science, 229, 3361-3367. https://doi.org/10.1177/0954406215573600.
Orozco-Rosas, Picos, Montiel (b0185) 2019; 7
Tao, Gao, Ren, Chen, Wang, Xiong, Jiang (b0215) 2021; 11
Huynh, Pham, Thang (b0115) 2019; 180
Luo, Wang, Zheng, He (b0150) 2020; 32
Pei, Z., & Chen, X. (2015). Improved ant colony algorithm and its application in obstacle avoidance for robot. CAAI Transactions on Intelligent Systems, 10, 90–96. https://doi.org/1673-4785(2015)10:1<90:GJYQSF>2.0.TX;2-R.
Xiong, Zhou, Yang, Xiang, Ma (b0280) 2021; 15
Orozco-Rosas, Picos, Pantrigo, Montemayor, Cuesta-Infante (b0190) 2022; 10
Song, Q.S., Li, S.B., Yang, J., Bai, Q., Hu, J.J., Zhang, X.X., & Zhang, A.S., (2021). Intelligent Optimization Algorithm-Based Path Planning for a Mobile Robot. Computational Intelligence and Neuroscience, 2021. https://doi.org/ 10.1155/2021/8025730.
Lyu, D.D., Chen, Z.W., Cai, Z.S., & Piao, S.H. (2021). Robot path planning by leveraging the graph-encorded Floyd algorithm. Future Generation computer Systems-The International Journal Of Escience, 122, 204-208. https://doi.org/ 10.1016/j.future.2021.03.007.
Wu, Huang, Zhao, Lan (b0250) 2021; 1972
Xiong, Zhou, Lu, Zeng, Lian, Y, c.y. (b0275) 2020; 20
Li, Wei, Gao, Wang, Fan (b0135) 2020; 152
Qu, Gai, Zhang, Zhong (b0200) 2020; 194
Zhao, Cheng, Hao (b0305) 2016; 2016
Dorigo, Maniezzo, Colorni (b0060) 1996; 26
Duchon, Babinec, Kajan, Beno, Florek, Fico, Jurisica (b0065) 2014; 96
Dasari, Gupta (b0035) 2020; 48
Zhang, Li, Zhang, Wei, Zhang (b0295) 2021; 1941
Li, Li, Che (b0140) 2014; 596
Bayliss, Martins, do Leandro, Juan (b0020) 2020; 148
Wu, Chen, Chen, Zhong, Xie, Guo, Fujita (b0245) 2020; 196
Orozco-Rosas, U., Montiel, O., & Picos, K., (2019a). Mobile robot path planning using membrane evolutionary artificial potential field. Applied soft computing, 77, 236-251. https://doi.org/ 10.1016/j.asoc.2019.01.036.
Chong, Chai, Li, Yao, Xiao, Guo (b0030) 2021; 44
Hassani, Maalej, Rekik (b0090) 2018; 2018
Yao, Liang, Li, Yu, Chen, Ni, Teng (b0285) 2021; 35
Dorigo, Gambardella (b0050) 1997; 1
Matez-Bandera, Monroy, Gonzalez-Jimenez (b0160) 2021
Ahmed, Pawase, Chang (b0015) 2021; 11
Zhao, Y.J., Zheng, Z., & Liu, Y. (2018). Survey on computational-intelligence-based UAV path planning. Knowledge-Based Systems, 158, 54-64. https://doi.org/10.1016/10.1016/j.knosys.2018.05.033.
Takwa, Saoussen (b0210) 2021; 186
Liu, Yang, Geng, Gao (b0130) 2015; 46
Montiel, O., Orozco-Rosas, U., & Sepulveda, R., (2015). Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Systems With Applictions, 12,5177-5191. https://doi.org/ 10.1016/j.eswa.2015.02.033.
Abhishek, Dayal (b0005) 2021; 179
Hsu, C.H., & Juang, C.H. (2013). Multi-Objective continuous Ant-Colony-Optimized FC for robot Wall-Following control [J]. Computational Intelligence Magazine IEEE, 2013, 8 (3): 28–40. https://doi.org/10.1109/MCI.2013.2264233.
Wang, Tang (b0220) 2021; 233
Xiao, Tan, Wang (b0260) 2021; 10
Kathen, Flores, Reina (b0120) 2021; 10
Wang, Zhao (b0225) 2012; 198–199
Dorigo, Gambardella (b0055) 1996
Dorigo, Birattari, Stutzle (b0045) 2006; 1
Wei, J., Wang, J.J., Wang, J., Qin, C.X., & Mei, S.H., (2020). 3D path planning based on improved ant colony algorithm. Computer engineering and application, 56, 217-223. https://doi.org/1002-8331(2020)56:17<217:JYGJYQ>2.0.TX;2M.
Xia, Sun, Xia (b0255) 2021; 9
Zhang, Xiong, Li, Du, Zhao (b0290) 2018; 15
Zhang, Pu, Si (b0300) 2021; 9
Chen, Guo, Yang, Wang, Liu (b0025) 2021; 77
Li, X.X., & Hu, P., (2021). Robot 3D Path Planning Algorithm Based on Improved Elitist Potential Field Ant Colony Algorithm. Computer Science and Application, 11, 849-858. https://doi.org/10.12677/CSA.2021.114087.
Fatemidokht, Rafsanjani (b0075) 2018; 29
Miao, Chen, Yan, Wu (b0165) 2021; 156
Akshay, Himansh, Parsediya (b0010) 2016; 2016
Hui (b0110) 2021; 13
Holland (b0095) 2018; 8
Zhu, Y., You, X.M., Liu, S., & Yuan, W.H., (2018). Research for robot path planning problem based on improved ant colony system (ACS) algorithm. Computer engineering and application, 54, 129-134. https://doi.org/1002-8331(2018)54:19<129:JYGJYQ>2.0.TX;2-H.
Huang, Zhu, Ding (b0105) 2014; 74
Zhang (10.1016/j.eswa.2022.119410_b0290) 2018; 15
Huynh (10.1016/j.eswa.2022.119410_b0115) 2019; 180
Hui (10.1016/j.eswa.2022.119410_b0110) 2021; 13
Fadzli (10.1016/j.eswa.2022.119410_b0070) 2015
Orozco-Rosas (10.1016/j.eswa.2022.119410_b0190) 2022; 10
Wang (10.1016/j.eswa.2022.119410_b0220) 2021; 233
10.1016/j.eswa.2022.119410_b0145
Zhang (10.1016/j.eswa.2022.119410_b0300) 2021; 9
10.1016/j.eswa.2022.119410_b0100
10.1016/j.eswa.2022.119410_b0265
Xia (10.1016/j.eswa.2022.119410_b0255) 2021; 9
10.1016/j.eswa.2022.119410_b0180
Dorigo (10.1016/j.eswa.2022.119410_b0050) 1997; 1
Dasari (10.1016/j.eswa.2022.119410_b0035) 2020; 48
Zhao (10.1016/j.eswa.2022.119410_b0305) 2016; 2016
Dorigo (10.1016/j.eswa.2022.119410_b0055) 1996
Bayliss (10.1016/j.eswa.2022.119410_b0020) 2020; 148
Xiong (10.1016/j.eswa.2022.119410_b0275) 2020; 20
Wu (10.1016/j.eswa.2022.119410_b0240) 2017; 66
Fountas (10.1016/j.eswa.2022.119410_b0085) 2016; 33
Luo (10.1016/j.eswa.2022.119410_b0150) 2020; 32
10.1016/j.eswa.2022.119410_b0310
10.1016/j.eswa.2022.119410_b0155
Duchon (10.1016/j.eswa.2022.119410_b0065) 2014; 96
Holland (10.1016/j.eswa.2022.119410_b0095) 2018; 8
10.1016/j.eswa.2022.119410_b0235
Tao (10.1016/j.eswa.2022.119410_b0215) 2021; 11
Fatemidokht (10.1016/j.eswa.2022.119410_b0075) 2018; 29
10.1016/j.eswa.2022.119410_b0315
Chen (10.1016/j.eswa.2022.119410_b0025) 2021; 77
10.1016/j.eswa.2022.119410_b0195
Wu (10.1016/j.eswa.2022.119410_b0245) 2020; 196
10.1016/j.eswa.2022.119410_b0230
Wu (10.1016/j.eswa.2022.119410_b0250) 2021; 1972
Chong (10.1016/j.eswa.2022.119410_b0030) 2021; 44
Huang (10.1016/j.eswa.2022.119410_b0105) 2014; 74
Deng (10.1016/j.eswa.2022.119410_b0040) 2021; 183
Moayedi (10.1016/j.eswa.2022.119410_b0170) 2019; 2019
Miao (10.1016/j.eswa.2022.119410_b0165) 2021; 156
Feng (10.1016/j.eswa.2022.119410_b0080) 2019; 55
10.1016/j.eswa.2022.119410_b0125
Yao (10.1016/j.eswa.2022.119410_b0285) 2021; 35
Wang (10.1016/j.eswa.2022.119410_b0225) 2012; 198–199
Matez-Bandera (10.1016/j.eswa.2022.119410_b0160) 2021
10.1016/j.eswa.2022.119410_b0205
Orozco-Rosas (10.1016/j.eswa.2022.119410_b0185) 2019; 7
Li (10.1016/j.eswa.2022.119410_b0135) 2020; 152
Zhang (10.1016/j.eswa.2022.119410_b0295) 2021; 1941
Xiong (10.1016/j.eswa.2022.119410_b0280) 2021; 15
Liu (10.1016/j.eswa.2022.119410_b0130) 2015; 46
Dorigo (10.1016/j.eswa.2022.119410_b0045) 2006; 1
Takwa (10.1016/j.eswa.2022.119410_b0210) 2021; 186
Qu (10.1016/j.eswa.2022.119410_b0200) 2020; 194
Akshay (10.1016/j.eswa.2022.119410_b0010) 2016; 2016
Dorigo (10.1016/j.eswa.2022.119410_b0060) 1996; 26
Ahmed (10.1016/j.eswa.2022.119410_b0015) 2021; 11
Kathen (10.1016/j.eswa.2022.119410_b0120) 2021; 10
Xiao (10.1016/j.eswa.2022.119410_b0260) 2021; 10
Hassani (10.1016/j.eswa.2022.119410_b0090) 2018; 2018
Li (10.1016/j.eswa.2022.119410_b0140) 2014; 596
Abhishek (10.1016/j.eswa.2022.119410_b0005) 2021; 179
Xi (10.1016/j.eswa.2022.119410_b0270) 2020; 1682
10.1016/j.eswa.2022.119410_b0175
References_xml – volume: 198–199
  start-page: 1025
  year: 2012
  end-page: 1029
  ident: b0225
  article-title: An evolutionary method of traditional artificial potential field
  publication-title: Applied Mechanics and Materials
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0170
  article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network
  publication-title: Engineering with Computers
– volume: 8
  start-page: 1975
  year: 2018
  ident: b0095
  article-title: Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  publication-title: Ann Arbor: University of Michigan Press
– volume: 233
  year: 2021
  ident: b0220
  article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey
  publication-title: Knowledge-Based Systems
– reference: Hsu, C.H., & Juang, C.H. (2013). Multi-Objective continuous Ant-Colony-Optimized FC for robot Wall-Following control [J]. Computational Intelligence Magazine IEEE, 2013, 8 (3): 28–40. https://doi.org/10.1109/MCI.2013.2264233.
– volume: 156
  year: 2021
  ident: b0165
  article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
  publication-title: Computers and Industrial Engineering
– volume: 9
  start-page: 556
  year: 2021
  ident: b0255
  article-title: Multiple Task Assignment and Path Planning of a Multiple Unmanned Surface Vehicles System Based on Improved Self-Organizing Mapping and Improved Genetic Algorithm
  publication-title: Journal of Marine Science and Engineering
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b0045
  article-title: Ant colony optimization: artificial ants as a computational intelligence technique
  publication-title: IEEE Computational Intelligence Magazine
– volume: 1682
  start-page: 012003
  year: 2020
  end-page: 012012
  ident: b0270
  article-title: Research on material allocation path based on hopfield neural network and simulated annealing hybrid algorithm
  publication-title: Journal of Physics: Conference Series
– volume: 196
  year: 2020
  ident: b0245
  article-title: The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method
  publication-title: Knowledge-Based Systems
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0060
  article-title: Ant system: Optimization by a colony of cooperating agent
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– reference: Xie, Y., Peng, J., & Wu, Min. (2006). Study on evolutionary artificial potential field based path planning in Robocup. Computer Engineering and Applications, 42, 176-179. https://doi.org/1002-8331(2006)42:9<176:ZQJQRL>2.0.TX;2-Z.
– reference: Zhao, Y.J., Zheng, Z., & Liu, Y. (2018). Survey on computational-intelligence-based UAV path planning. Knowledge-Based Systems, 158, 54-64. https://doi.org/10.1016/10.1016/j.knosys.2018.05.033.
– volume: 9
  start-page: 24933
  year: 2021
  end-page: 24945
  ident: b0300
  article-title: An adaptive improved ant colony system based on population information entropy for path planning of mobile robot
  publication-title: IEEE Access
– volume: 10
  start-page: 84648
  year: 2022
  end-page: 84663
  ident: b0190
  article-title: Mobile robot path planning using a QAPF learning algorithm for known and unknown environments
  publication-title: IEEE ACCESS
– volume: 148
  year: 2020
  ident: b0020
  article-title: A Two-phase Local Search with a Discrete-event Heuristic for the Omnichannel Vehicle Routing Problem
  publication-title: Computers & Industrial Engineering
– volume: 179
  year: 2021
  ident: b0005
  article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain
  publication-title: Expert Systems with Applications
– volume: 74
  start-page: 999
  year: 2014
  end-page: 1012
  ident: b0105
  article-title: Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment
  publication-title: Journal of Intelligent & Robotic
– volume: 11
  start-page: 3605
  year: 2021
  ident: b0215
  article-title: A mobile service robot global path planning method based on ant colony optimization and fuzzy control
  publication-title: Applied Sciences
– volume: 44
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0030
  article-title: Automatic recognition of geomagnetic suitability areas for path planning of autonomous underwater vehicle
  publication-title: Marine Geodesy
– volume: 2018
  start-page: 2163278
  year: 2018
  ident: b0090
  article-title: Robot path planning with avoiding obstacles in known environment using free segments and turning points algorithm
  publication-title: Mathematical Problems in Engineering
– volume: 1941
  year: 2021
  ident: b0295
  article-title: Multi-UAV cooperative Route planning based on decision variables and improved genetic algorithm
  publication-title: Journal of Physics: Conference Series
– reference: Wang, X.Y., Yang, L., Zhang, Y., & Meng, S., (2018). Robot path planning based on improved ant colony algorithm with potential field heuristic. Control and Decision, 33, 1775–1781. https://doi.org/1001-0920(2018)33:10<1775:JYGJSC>2.0.TX;2-L.
– start-page: 143
  year: 2015
  end-page: 146
  ident: b0070
  article-title: Robotic Indoor Path Planning Using Dijkstra's Algorithm with Multi-Layer Dictionaries
  publication-title: International Conference on Information Science & Security
– volume: 7
  start-page: 15687
  year: 2019
  end-page: 156803
  ident: b0185
  article-title: Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots
  publication-title: IEEE ACCESS
– volume: 596
  start-page: 861
  year: 2014
  end-page: 867
  ident: b0140
  article-title: Research on composite web services selection based on dijkstra algorithm
  publication-title: Applied Mechanics and Materials
– volume: 35
  start-page: 372
  year: 2021
  end-page: 383
  ident: b0285
  article-title: Path planning method based on D* lite algorithm for unmanned surface vehicles in complex environments
  publication-title: China Ocean Engineering
– start-page: 656
  year: 1996
  end-page: 665
  ident: b0055
  article-title: A study of some properties of Ant-Q
  publication-title: International conference on parallel problem solving from nature
– volume: 11
  start-page: 3417
  year: 2021
  ident: b0015
  article-title: Distributed 3-D Path Planning for Multi-UAVs with full area surveillance based on particle swarm optimization
  publication-title: Applied Sciences
– volume: 48
  start-page: 1987
  year: 2020
  end-page: 1997
  ident: b0035
  article-title: Application of fractal analysis in evaluation of urban road networks in small sized city of India: Case city of karimnagar
  publication-title: Transportation Research Procedia
– volume: 2016
  start-page: 7672839
  year: 2016
  ident: b0305
  article-title: An improved ant colony algorithm for solving the path planning problem of the omnidirectional mobile vehicle
  publication-title: Mathematical Problems in Engineering
– volume: 1
  start-page: 53
  year: 1997
  end-page: 66
  ident: b0050
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 1972
  start-page: 012080
  year: 2021
  end-page: 012090
  ident: b0250
  article-title: Urban traffic planning and traffic flow prediction based on ulchis gravity model and dijkstra algorithm
  publication-title: Journal of Physics: Conference Series
– volume: 15
  year: 2018
  ident: b0290
  article-title: Path planning for mobile robot based on modified rapidly exploring random tree method and neural network
  publication-title: International Journal of Advanced Robotic Systems
– reference: Zhu, Y., You, X.M., Liu, S., & Yuan, W.H., (2018). Research for robot path planning problem based on improved ant colony system (ACS) algorithm. Computer engineering and application, 54, 129-134. https://doi.org/1002-8331(2018)54:19<129:JYGJYQ>2.0.TX;2-H.
– volume: 29
  start-page: 1127
  year: 2018
  end-page: 1137
  ident: b0075
  article-title: F-Ant: An effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks
  publication-title: Neural Computing and Applications
– reference: Song, Q.S., Li, S.B., Yang, J., Bai, Q., Hu, J.J., Zhang, X.X., & Zhang, A.S., (2021). Intelligent Optimization Algorithm-Based Path Planning for a Mobile Robot. Computational Intelligence and Neuroscience, 2021. https://doi.org/ 10.1155/2021/8025730.
– volume: 186
  year: 2021
  ident: b0210
  article-title: A Simulated annealing-based recommender system for solving the tourist trip design problem
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 375
  year: 2016
  end-page: 391
  ident: b0085
  article-title: A virus-evolutionary multi-objective intelligent tool path optimization methodology for 5-axis sculptured surface CNC machining
  publication-title: Engineering With Computers
– volume: 183
  year: 2021
  ident: b0040
  article-title: Multi-obstacle path planning and optimization for mobile robot
  publication-title: Expert Systems with Applications
– reference: Orozco-Rosas, U., Montiel, O., & Picos, K., (2019a). Mobile robot path planning using membrane evolutionary artificial potential field. Applied soft computing, 77, 236-251. https://doi.org/ 10.1016/j.asoc.2019.01.036.
– volume: 10
  start-page: 853
  year: 2021
  ident: b0260
  article-title: A simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D reconstruction
  publication-title: Electronics
– volume: 10
  start-page: 1605
  year: 2021
  ident: b0120
  article-title: An informative path planner for a swarm of asvs based on an enhanced PSO with gaussian surrogate model components intended for water monitoring applications
  publication-title: Electronics
– volume: 77
  start-page: 1958
  year: 2021
  end-page: 1975
  ident: b0025
  article-title: Research on navigation of bidirectional A* algorithm based on ant colony algorithm
  publication-title: The Journal of Supercomputing
– volume: 194
  year: 2020
  ident: b0200
  article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning
  publication-title: Knowledge-Based Systems
– volume: 32
  start-page: 1555
  year: 2020
  end-page: 1566
  ident: b0150
  article-title: Research on path planning of mobile robot based on improved ant colony algorithm
  publication-title: Neural Computing and Applications
– year: 2021
  ident: b0160
  article-title: Efficient semantic place categorization by a robot through active line-of-sight selection
  publication-title: Knowledge-Based Systems
– reference: Li, X.X., & Hu, P., (2021). Robot 3D Path Planning Algorithm Based on Improved Elitist Potential Field Ant Colony Algorithm. Computer Science and Application, 11, 849-858. https://doi.org/10.12677/CSA.2021.114087.
– volume: 66
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0240
  article-title: An improved heuristic algorithm for 2D rectangle packing area minimization problems with central rectangles
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Montiel, O., Orozco-Rosas, U., & Sepulveda, R., (2015). Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Systems With Applictions, 12,5177-5191. https://doi.org/ 10.1016/j.eswa.2015.02.033.
– volume: 15
  year: 2021
  ident: b0280
  article-title: Mobile robot path planning based on time taboo ant colony optimization in dynamic environment
  publication-title: Frontiers in Neurorobotics
– volume: 55
  start-page: 35
  year: 2019
  end-page: 43
  ident: b0080
  article-title: Mobile robot path planning based on adaptive ant colony algorithm
  publication-title: Computer Engineering and Application
– reference: Lyu, D.D., Chen, Z.W., Cai, Z.S., & Piao, S.H. (2021). Robot path planning by leveraging the graph-encorded Floyd algorithm. Future Generation computer Systems-The International Journal Of Escience, 122, 204-208. https://doi.org/ 10.1016/j.future.2021.03.007.
– volume: 20
  start-page: 2525
  year: 2020
  ident: b0275
  article-title: Rapidly-exploring adaptive sampling tree*: A sample-based path-planning algorithm for unmanned marine vehicles information gathering in variable ocean environments
  publication-title: Sensors
– volume: 180
  start-page: 12
  year: 2019
  end-page: 25
  ident: b0115
  article-title: New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm
  publication-title: Knowledge-Based Systems
– reference: Kim, D.H., Choi, Y.S., Kim, S.H., Wu, J., Yuan, C., Luo, LP., Lee, J.Y., & Han, C.S. (2015). Adaptive rapidly-exploring random tree for efficient path planning of high-degree-of-freedom articulated robots. Proceedings of the institution of mechanical engineers part C-Journal of mechanical engineering science, 229, 3361-3367. https://doi.org/10.1177/0954406215573600.
– reference: Pei, Z., & Chen, X. (2015). Improved ant colony algorithm and its application in obstacle avoidance for robot. CAAI Transactions on Intelligent Systems, 10, 90–96. https://doi.org/1673-4785(2015)10:1<90:GJYQSF>2.0.TX;2-R.
– volume: 13
  start-page: 80
  year: 2021
  ident: b0110
  article-title: Research on robot optimal path planning method based on improved ant colony algorithm
  publication-title: International Journal of Computing Science and Mathematics
– volume: 96
  start-page: 59
  year: 2014
  end-page: 69
  ident: b0065
  article-title: Path planning with modified a star algorithm for a mobile robot
  publication-title: Procedia Engineering
– reference: Wei, J., Wang, J.J., Wang, J., Qin, C.X., & Mei, S.H., (2020). 3D path planning based on improved ant colony algorithm. Computer engineering and application, 56, 217-223. https://doi.org/1002-8331(2020)56:17<217:JYGJYQ>2.0.TX;2M.
– volume: 152
  year: 2020
  ident: b0135
  article-title: PQ-RRT*: An improved path planning algorithm for mobile robots
  publication-title: Expert Systems with Applications
– volume: 2016
  start-page: 144
  year: 2016
  end-page: 149
  ident: b0010
  article-title: Time-efficient A∗ algorithm for robot path planning
  publication-title: Procedia Technology
– volume: 46
  start-page: 18
  year: 2015
  end-page: 27
  ident: b0130
  article-title: Robot global path planning based on ant colony optimization with artificial potential field
  publication-title: Transactions of The Chinese Society of Agricultural Machinery
– volume: 46
  start-page: 18
  year: 2015
  ident: 10.1016/j.eswa.2022.119410_b0130
  article-title: Robot global path planning based on ant colony optimization with artificial potential field
  publication-title: Transactions of The Chinese Society of Agricultural Machinery
– volume: 1972
  start-page: 012080
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0250
  article-title: Urban traffic planning and traffic flow prediction based on ulchis gravity model and dijkstra algorithm
  publication-title: Journal of Physics: Conference Series
– ident: 10.1016/j.eswa.2022.119410_b0265
– ident: 10.1016/j.eswa.2022.119410_b0145
  doi: 10.12677/CSA.2021.114087
– volume: 33
  start-page: 375
  year: 2016
  ident: 10.1016/j.eswa.2022.119410_b0085
  article-title: A virus-evolutionary multi-objective intelligent tool path optimization methodology for 5-axis sculptured surface CNC machining
  publication-title: Engineering With Computers
  doi: 10.1007/s00366-016-0479-5
– volume: 2018
  start-page: 2163278
  year: 2018
  ident: 10.1016/j.eswa.2022.119410_b0090
  article-title: Robot path planning with avoiding obstacles in known environment using free segments and turning points algorithm
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2018/2163278
– volume: 233
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0220
  article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107526
– volume: 66
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.119410_b0240
  article-title: An improved heuristic algorithm for 2D rectangle packing area minimization problems with central rectangles
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.08.012
– volume: 10
  start-page: 1605
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0120
  article-title: An informative path planner for a swarm of asvs based on an enhanced PSO with gaussian surrogate model components intended for water monitoring applications
  publication-title: Electronics
  doi: 10.3390/electronics10131605
– volume: 9
  start-page: 24933
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0300
  article-title: An adaptive improved ant colony system based on population information entropy for path planning of mobile robot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056651
– volume: 596
  start-page: 861
  year: 2014
  ident: 10.1016/j.eswa.2022.119410_b0140
  article-title: Research on composite web services selection based on dijkstra algorithm
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.596.861
– volume: 156
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0165
  article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2021.107230
– volume: 35
  start-page: 372
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0285
  article-title: Path planning method based on D* lite algorithm for unmanned surface vehicles in complex environments
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-021-0034-z
– ident: 10.1016/j.eswa.2022.119410_b0100
  doi: 10.1109/MCI.2013.2264233
– volume: 9
  start-page: 556
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0255
  article-title: Multiple Task Assignment and Path Planning of a Multiple Unmanned Surface Vehicles System Based on Improved Self-Organizing Mapping and Improved Genetic Algorithm
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse9060556
– ident: 10.1016/j.eswa.2022.119410_b0310
  doi: 10.1016/j.knosys.2018.05.033
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.119410_b0170
  article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network
  publication-title: Engineering with Computers
– volume: 186
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0210
  article-title: A Simulated annealing-based recommender system for solving the tourist trip design problem
  publication-title: Expert Systems with Applications
– volume: 2016
  start-page: 7672839
  year: 2016
  ident: 10.1016/j.eswa.2022.119410_b0305
  article-title: An improved ant colony algorithm for solving the path planning problem of the omnidirectional mobile vehicle
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2016/7672839
– volume: 198–199
  start-page: 1025
  year: 2012
  ident: 10.1016/j.eswa.2022.119410_b0225
  article-title: An evolutionary method of traditional artificial potential field
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.198-199.1025
– volume: 196
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0245
  article-title: The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105201
– volume: 8
  start-page: 1975
  year: 2018
  ident: 10.1016/j.eswa.2022.119410_b0095
  article-title: Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  publication-title: Ann Arbor: University of Michigan Press
– volume: 10
  start-page: 853
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0260
  article-title: A simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D reconstruction
  publication-title: Electronics
  doi: 10.3390/electronics10070853
– ident: 10.1016/j.eswa.2022.119410_b0205
  doi: 10.1155/2021/8025730
– volume: 20
  start-page: 2525
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0275
  article-title: Rapidly-exploring adaptive sampling tree*: A sample-based path-planning algorithm for unmanned marine vehicles information gathering in variable ocean environments
  publication-title: Sensors
  doi: 10.3390/s20092515
– volume: 74
  start-page: 999
  year: 2014
  ident: 10.1016/j.eswa.2022.119410_b0105
  article-title: Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment
  publication-title: Journal of Intelligent & Robotic
– volume: 10
  start-page: 84648
  year: 2022
  ident: 10.1016/j.eswa.2022.119410_b0190
  article-title: Mobile robot path planning using a QAPF learning algorithm for known and unknown environments
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2022.3197628
– volume: 11
  start-page: 3605
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0215
  article-title: A mobile service robot global path planning method based on ant colony optimization and fuzzy control
  publication-title: Applied Sciences
  doi: 10.3390/app11083605
– volume: 1941
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0295
  article-title: Multi-UAV cooperative Route planning based on decision variables and improved genetic algorithm
  publication-title: Journal of Physics: Conference Series
– start-page: 143
  year: 2015
  ident: 10.1016/j.eswa.2022.119410_b0070
  article-title: Robotic Indoor Path Planning Using Dijkstra's Algorithm with Multi-Layer Dictionaries
– start-page: 656
  year: 1996
  ident: 10.1016/j.eswa.2022.119410_b0055
  article-title: A study of some properties of Ant-Q
  publication-title: International conference on parallel problem solving from nature
– year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0160
  article-title: Efficient semantic place categorization by a robot through active line-of-sight selection
  publication-title: Knowledge-Based Systems
– volume: 13
  start-page: 80
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0110
  article-title: Research on robot optimal path planning method based on improved ant colony algorithm
  publication-title: International Journal of Computing Science and Mathematics
  doi: 10.1504/IJCSM.2021.114182
– volume: 48
  start-page: 1987
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0035
  article-title: Application of fractal analysis in evaluation of urban road networks in small sized city of India: Case city of karimnagar
  publication-title: Transportation Research Procedia
  doi: 10.1016/j.trpro.2020.08.227
– volume: 152
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0135
  article-title: PQ-RRT*: An improved path planning algorithm for mobile robots
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113425
– ident: 10.1016/j.eswa.2022.119410_b0175
  doi: 10.1016/j.eswa.2015.02.033
– volume: 29
  start-page: 1127
  year: 2018
  ident: 10.1016/j.eswa.2022.119410_b0075
  article-title: F-Ant: An effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2631-y
– ident: 10.1016/j.eswa.2022.119410_b0155
  doi: 10.1016/j.future.2021.03.007
– ident: 10.1016/j.eswa.2022.119410_b0315
– volume: 11
  start-page: 3417
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0015
  article-title: Distributed 3-D Path Planning for Multi-UAVs with full area surveillance based on particle swarm optimization
  publication-title: Applied Sciences
  doi: 10.3390/app11083417
– volume: 55
  start-page: 35
  year: 2019
  ident: 10.1016/j.eswa.2022.119410_b0080
  article-title: Mobile robot path planning based on adaptive ant colony algorithm
  publication-title: Computer Engineering and Application
– volume: 32
  start-page: 1555
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0150
  article-title: Research on path planning of mobile robot based on improved ant colony algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04172-2
– volume: 194
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0200
  article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105530
– ident: 10.1016/j.eswa.2022.119410_b0230
– volume: 7
  start-page: 15687
  year: 2019
  ident: 10.1016/j.eswa.2022.119410_b0185
  article-title: Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2019.2949835
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0040
  article-title: Multi-obstacle path planning and optimization for mobile robot
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115445
– volume: 1
  start-page: 28
  year: 2006
  ident: 10.1016/j.eswa.2022.119410_b0045
  article-title: Ant colony optimization: artificial ants as a computational intelligence technique
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 26
  start-page: 29
  year: 1996
  ident: 10.1016/j.eswa.2022.119410_b0060
  article-title: Ant system: Optimization by a colony of cooperating agent
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/3477.484436
– volume: 77
  start-page: 1958
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0025
  article-title: Research on navigation of bidirectional A* algorithm based on ant colony algorithm
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-020-03303-0
– volume: 96
  start-page: 59
  year: 2014
  ident: 10.1016/j.eswa.2022.119410_b0065
  article-title: Path planning with modified a star algorithm for a mobile robot
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2014.12.098
– volume: 1682
  start-page: 012003
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0270
  article-title: Research on material allocation path based on hopfield neural network and simulated annealing hybrid algorithm
  publication-title: Journal of Physics: Conference Series
– volume: 180
  start-page: 12
  year: 2019
  ident: 10.1016/j.eswa.2022.119410_b0115
  article-title: New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.05.015
– volume: 179
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0005
  article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain
  publication-title: Expert Systems with Applications
– volume: 15
  year: 2018
  ident: 10.1016/j.eswa.2022.119410_b0290
  article-title: Path planning for mobile robot based on modified rapidly exploring random tree method and neural network
  publication-title: International Journal of Advanced Robotic Systems
  doi: 10.1177/1729881418784221
– ident: 10.1016/j.eswa.2022.119410_b0125
  doi: 10.1177/0954406215573600
– ident: 10.1016/j.eswa.2022.119410_b0180
  doi: 10.1016/j.asoc.2019.01.036
– ident: 10.1016/j.eswa.2022.119410_b0235
– volume: 2016
  start-page: 144
  issue: 23
  year: 2016
  ident: 10.1016/j.eswa.2022.119410_b0010
  article-title: Time-efficient A∗ algorithm for robot path planning
  publication-title: Procedia Technology
– volume: 15
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0280
  article-title: Mobile robot path planning based on time taboo ant colony optimization in dynamic environment
  publication-title: Frontiers in Neurorobotics
  doi: 10.3389/fnbot.2021.642733
– volume: 1
  start-page: 53
  year: 1997
  ident: 10.1016/j.eswa.2022.119410_b0050
  article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– volume: 44
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119410_b0030
  article-title: Automatic recognition of geomagnetic suitability areas for path planning of autonomous underwater vehicle
  publication-title: Marine Geodesy
  doi: 10.1080/01490419.2021.1906799
– volume: 148
  year: 2020
  ident: 10.1016/j.eswa.2022.119410_b0020
  article-title: A Two-phase Local Search with a Discrete-event Heuristic for the Omnichannel Vehicle Routing Problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106695
– ident: 10.1016/j.eswa.2022.119410_b0195
SSID ssj0017007
Score 2.6996336
Snippet •A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119410
SubjectTerms Ant colony optimization algorithm
Heuristic function
Path planning
Pheromone updating
State transition probability
Title Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot
URI https://dx.doi.org/10.1016/j.eswa.2022.119410
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvHjxbcQHmYM3UynttuweCZGgBi5Kwq1pdxetAYpQY7z4252hW4KJ4eB1OpM0s7Mz37TzYOxaSZn43FWOkoY7XIWhg4QQL54QBhEHTwQ1OPcHYW_IH0bBqMI6ZS8MlVVa31_49JW3tpSG1WZjnqaNJwQHGA4xtfMozkjK2zlvkZXffq_LPGj8XKuYt9dyiNs2zhQ1Xmb5SbOHPA89h-TURftXcNoION0DtmeRIrSLlzlkFTM7YvvlFgawl_KYvfcznY4RSUKs4zl5L0BtAU2jnn1BhpSp7bWEePKSLdL8dYocGtJ8CRv_rwHhK6Al0hcGoEXFMLcLjSAbwzRL0H_AIkuy_IQNu3fPnZ5jFyk4ynfd3MGsAYGdklxLqUXomgDz3pDLphSBkSpIQqGVz-NYSI2QJIx9JTg-8hKlPd-4_imrzrKZOWOgYx8RHOZM2uc80EHC8Qw8rUQgvaZpuTXWLDUYKTtlnJZdTKKynOwtIq1HpPWo0HqN3axl5sWMja3cQXkw0S9LiTAIbJE7_6fcBdulFfNFtc4lq-aLD3OFQCRP6itLq7Od9v1jb_ADdvvcvA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDI4QHLbL3tPY04fdporSJiU5IjQE43EZSNyqNglbJ6AMOk3793PWFDFp4rCrG0uR49ifGz8IuZdCxD51pSOFpg6VQeAgIcCLx7lGxEFjbgqcB8OgM6ZPEzYpkVZRC2PSKq3tz236j7W2lJqVZm2ZJLVnBAfoDjG084yfERi3V0x3KlYmlWa31xluHhMabl41jesdw2BrZ_I0L73-NO2HPA-Nh6CmkPYv_7Tlc9pH5MCCRWjm-zkmJb04IYfFIAaw9_KUvA9SlUwRTEKkoqUxYIACA9OQevEFKVLmttwSotlLukqy1zmuUJBka9h6wgZEsIDKaH4ygJlVDEs70wjSKczTGE0IrNI4zc7IuP04anUcO0vBkb7rZg4GDojtpKBKCMUDVzMMfQMq6oIzLSSLA66kT6OIC4WoJIh8ySl-8mKpPF-7_jkpL9KFviCgIh9BHIZNyqeUKRZTPAZPSc6EV9cNt0rqhQRDaRuNm3kXs7DIKHsLjdRDI_Uwl3qVPGx4lnmbjZ2rWXEw4S9lCdEP7OC7_CffHdnrjAb9sN8d9q7Ivpk4nyfvXJNytvrQN4hLsvjW6t03EuTfbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+adaptive+ant+colony+optimization+algorithm+and+its+application+for+solving+path+planning+of+mobile+robot&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Lei&rft.au=Huang%2C+Xiaodong&rft.au=Cui%2C+Junguo&rft.au=Liu%2C+Chao&rft.date=2023-04-01&rft.issn=0957-4174&rft.volume=215&rft.spage=119410&rft_id=info:doi/10.1016%2Fj.eswa.2022.119410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_119410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon