Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot
•A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization of MAACO is operated to find suitable parameter combination.•The MAACO is compared with several existing approaches based on several instanc...
Saved in:
Published in | Expert systems with applications Vol. 215; p. 119410 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2022.119410 |
Cover
Loading…
Abstract | •A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization of MAACO is operated to find suitable parameter combination.•The MAACO is compared with several existing approaches based on several instances.•Experimental results show the superiority of MAACO.
As the key point for auto-navigation of mobile robot, path planning is a research hotspot in the field of robot. Generally, the ant colony optimization algorithm (ACO) is one of the commonly used approaches aiming to solve the problem of path planning of mobile robot. Nevertheless, the traditional ACO has the shortcomings such as slow convergence speed, inefficiency and easily fall into local optimal values. Thus, a novel variant of ACO is proposed in this study. In detail, a new heuristic mechanism with orientation information is firstly introduced to add direction guidance during the iteration process, further to advance the convergence speed of algorithm. Secondly, an improved heuristic function is presented to enhance the purposiveness and reduce the number of turn times of planned path. Then, an improved state transition probability rule is introduced to improve the search efficiency significantly and increase the swarm diversity. Moreover, a new method for unevenly distributing initial pheromone concentration is proposed to avoid blind searching. After integrating the four improvements, the new variation of ACO called modified adaptive ant colony optimization algorithm (MAACO) is formed. Subsequently, parameter optimization of MAACO is carried out. For verifying the effectiveness of the proposed MAACO, a series of experiments are conducted based on five static space environment modes and one dynamic environment mode. Comparing with 13 existing approaches for solving the problem of path planning of mobile robot, including several variants of ACO and two commonly used algorithms (A* algorithm and Dijkstra algorithm), the experimental results demonstrate the merits of MAACO in terms of decreasing the path length, reducing the number of turn times, and promoting the convergence speed. In detail, in all the static simulation experiments, the proposed MAACO generates the shortest path length with a standard deviation of zero, and achieves the least number of turn times within the smallest convergence generation. In terms of the five experiments, the average number of reducing turn times is two with a generally reduction ratio of 22.2% compared with the best existing results. The obtained results of MAACO prove its practicality and high-efficiency for path planning. |
---|---|
AbstractList | •A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization of MAACO is operated to find suitable parameter combination.•The MAACO is compared with several existing approaches based on several instances.•Experimental results show the superiority of MAACO.
As the key point for auto-navigation of mobile robot, path planning is a research hotspot in the field of robot. Generally, the ant colony optimization algorithm (ACO) is one of the commonly used approaches aiming to solve the problem of path planning of mobile robot. Nevertheless, the traditional ACO has the shortcomings such as slow convergence speed, inefficiency and easily fall into local optimal values. Thus, a novel variant of ACO is proposed in this study. In detail, a new heuristic mechanism with orientation information is firstly introduced to add direction guidance during the iteration process, further to advance the convergence speed of algorithm. Secondly, an improved heuristic function is presented to enhance the purposiveness and reduce the number of turn times of planned path. Then, an improved state transition probability rule is introduced to improve the search efficiency significantly and increase the swarm diversity. Moreover, a new method for unevenly distributing initial pheromone concentration is proposed to avoid blind searching. After integrating the four improvements, the new variation of ACO called modified adaptive ant colony optimization algorithm (MAACO) is formed. Subsequently, parameter optimization of MAACO is carried out. For verifying the effectiveness of the proposed MAACO, a series of experiments are conducted based on five static space environment modes and one dynamic environment mode. Comparing with 13 existing approaches for solving the problem of path planning of mobile robot, including several variants of ACO and two commonly used algorithms (A* algorithm and Dijkstra algorithm), the experimental results demonstrate the merits of MAACO in terms of decreasing the path length, reducing the number of turn times, and promoting the convergence speed. In detail, in all the static simulation experiments, the proposed MAACO generates the shortest path length with a standard deviation of zero, and achieves the least number of turn times within the smallest convergence generation. In terms of the five experiments, the average number of reducing turn times is two with a generally reduction ratio of 22.2% compared with the best existing results. The obtained results of MAACO prove its practicality and high-efficiency for path planning. |
ArticleNumber | 119410 |
Author | Huang, Xiaodong Liu, Chao Cui, Junguo Xiao, Wensheng Wu, Lei |
Author_xml | – sequence: 1 givenname: Lei surname: Wu fullname: Wu, Lei email: wuleiupc@163.com organization: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China – sequence: 2 givenname: Xiaodong surname: Huang fullname: Huang, Xiaodong email: b22050013@s.upc.edu.cn organization: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China – sequence: 3 givenname: Junguo surname: Cui fullname: Cui, Junguo email: cuijunguo@upc.edu.cn organization: National Engineering Lab of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao 266580, China – sequence: 4 givenname: Chao surname: Liu fullname: Liu, Chao organization: National Engineering Lab of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao 266580, China – sequence: 5 givenname: Wensheng surname: Xiao fullname: Xiao, Wensheng organization: National Engineering Lab of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao 266580, China |
BookMark | eNp9kMlOwzAQQC1UJFrgBzj5BxLsrLbEBVVsUhEXOFuO7bRTJXawraLy9SSEE4eeRrO80cxboYV11iB0Q0lKCa1u96kJXzLNSJallPKCkjO0pKzOk6rm-QItCS_rpKB1cYFWIewJoTUh9RJ9vjoNLRiNpZZDhIPB0kasXOfsEbux0sO3jOAslt3WeYi7fpzQGGLAchg6UHO3dR4H1x3AbvEg4w4PnbR2ylyLe9dAZ7B3jYtX6LyVXTDXf_ESfTw-vK-fk83b08v6fpOonJCYlCWnFVW80JxrVhFTMsaqglPOSsNV2VRMq7yQknFNqrKSuWLF2MoapbPckPwSsXmv8i4Eb1qhIP7eGr2ETlAiJnViLyZ1YlInZnUjmv1DBw-99MfT0N0MmfGpAxgvggJjldHgjYpCOziF_wCJ_Yv8 |
CitedBy_id | crossref_primary_10_3390_machines11020167 crossref_primary_10_1109_ACCESS_2023_3337602 crossref_primary_10_3390_math11132983 crossref_primary_10_61112_jiens_1365282 crossref_primary_10_1007_s44196_024_00691_6 crossref_primary_10_3390_inventions9010005 crossref_primary_10_1016_j_knosys_2023_110540 crossref_primary_10_1177_17298806241278170 crossref_primary_10_1016_j_heliyon_2024_e37286 crossref_primary_10_1039_D4NR02910K crossref_primary_10_1016_j_eswa_2023_120070 crossref_primary_10_1016_j_cie_2024_110601 crossref_primary_10_1177_00202940241291282 crossref_primary_10_1016_j_engappai_2024_109866 crossref_primary_10_1007_s40430_024_04768_3 crossref_primary_10_3389_fnbot_2024_1406658 crossref_primary_10_3390_robotics14030032 crossref_primary_10_48084_etasr_7353 crossref_primary_10_1016_j_compeleceng_2023_108957 crossref_primary_10_1007_s11370_024_00566_x crossref_primary_10_1109_ACCESS_2025_3548326 crossref_primary_10_26599_JICV_2023_9210011 crossref_primary_10_1016_j_watres_2025_123165 crossref_primary_10_3390_electronics13173443 crossref_primary_10_1002_rob_22354 crossref_primary_10_2478_bipie_2023_0017 crossref_primary_10_3390_jmse12060939 crossref_primary_10_3390_electronics13050825 crossref_primary_10_1016_j_autcon_2024_105689 crossref_primary_10_3390_s23052804 crossref_primary_10_1016_j_jobe_2024_111725 crossref_primary_10_3389_fnbot_2024_1464572 crossref_primary_10_3934_math_2024587 crossref_primary_10_3390_pr11123302 crossref_primary_10_1016_j_asoc_2024_112433 crossref_primary_10_3390_biomimetics8020241 crossref_primary_10_1002_eng2_13035 crossref_primary_10_36930_40340518 crossref_primary_10_1007_s10462_023_10542_z crossref_primary_10_32604_cmes_2023_045096 crossref_primary_10_3934_mbe_2023846 crossref_primary_10_3390_biomimetics10020092 crossref_primary_10_1016_j_oceaneng_2024_117415 crossref_primary_10_1016_j_birob_2024_100206 crossref_primary_10_1007_s12008_025_02241_6 crossref_primary_10_1016_j_asoc_2023_111042 crossref_primary_10_1016_j_heliyon_2024_e27753 crossref_primary_10_1007_s10115_024_02179_3 crossref_primary_10_1007_s00500_023_09513_x crossref_primary_10_1016_j_asoc_2023_110868 crossref_primary_10_1007_s00500_024_10322_z crossref_primary_10_1016_j_cma_2024_117429 crossref_primary_10_1111_asj_13992 crossref_primary_10_3389_fnbot_2023_1269447 crossref_primary_10_1038_s41598_024_82471_y crossref_primary_10_7161_omuanajas_1394616 crossref_primary_10_1007_s10878_024_01233_8 crossref_primary_10_3390_app15031165 crossref_primary_10_1016_j_yofte_2023_103651 crossref_primary_10_1016_j_energy_2024_130417 crossref_primary_10_1109_JIOT_2024_3459918 crossref_primary_10_1007_s00500_025_10469_3 crossref_primary_10_1016_j_compag_2024_109696 crossref_primary_10_32604_cmc_2023_039883 crossref_primary_10_3390_s25051326 crossref_primary_10_1088_1361_6501_ad56b2 crossref_primary_10_3390_biomimetics9090552 crossref_primary_10_1016_j_jestch_2025_101950 crossref_primary_10_1016_j_eswa_2024_126123 crossref_primary_10_3390_agriculture14040622 crossref_primary_10_3390_s25061897 crossref_primary_10_3390_electronics12214462 crossref_primary_10_3390_sym15112048 crossref_primary_10_59782_aai_v1i3_314 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_3390_electronics13010188 crossref_primary_10_1109_ACCESS_2024_3451616 crossref_primary_10_1016_j_eswa_2023_121369 crossref_primary_10_3390_smartcities7060142 crossref_primary_10_1007_s11370_024_00525_6 crossref_primary_10_1016_j_eswa_2023_120433 crossref_primary_10_3390_math11071684 crossref_primary_10_1016_j_eswa_2023_122057 crossref_primary_10_3390_electronics13224491 crossref_primary_10_1016_j_compag_2024_108707 crossref_primary_10_3390_act12030133 crossref_primary_10_3390_fractalfract8030157 crossref_primary_10_1109_ACCESS_2023_3270802 crossref_primary_10_1016_j_rineng_2025_104234 crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_32604_cmc_2024_048402 crossref_primary_10_3934_mbe_2023768 crossref_primary_10_3390_s24247950 crossref_primary_10_55546_jmm_1291032 crossref_primary_10_1016_j_cosrev_2024_100651 crossref_primary_10_3390_drones7040257 crossref_primary_10_3390_math13050717 crossref_primary_10_1038_s41598_024_79420_0 crossref_primary_10_1088_1361_6501_adac02 crossref_primary_10_1063_5_0181605 crossref_primary_10_3390_math12121851 crossref_primary_10_1016_j_cogr_2024_02_001 crossref_primary_10_1142_S0129183124500839 crossref_primary_10_3390_electronics12163483 crossref_primary_10_1016_j_eswa_2023_121623 crossref_primary_10_1016_j_eswa_2023_122313 crossref_primary_10_1007_s00500_024_09935_1 crossref_primary_10_1007_s11370_023_00504_3 crossref_primary_10_3390_jmse11122245 crossref_primary_10_3390_agriculture14091473 |
Cites_doi | 10.12677/CSA.2021.114087 10.1007/s00366-016-0479-5 10.1155/2018/2163278 10.1016/j.knosys.2021.107526 10.1016/j.engappai.2017.08.012 10.3390/electronics10131605 10.1109/ACCESS.2021.3056651 10.4028/www.scientific.net/AMM.596.861 10.1016/j.cie.2021.107230 10.1007/s13344-021-0034-z 10.1109/MCI.2013.2264233 10.3390/jmse9060556 10.1016/j.knosys.2018.05.033 10.1155/2016/7672839 10.4028/www.scientific.net/AMM.198-199.1025 10.1016/j.knosys.2019.105201 10.3390/electronics10070853 10.1155/2021/8025730 10.3390/s20092515 10.1109/ACCESS.2022.3197628 10.3390/app11083605 10.1504/IJCSM.2021.114182 10.1016/j.trpro.2020.08.227 10.1016/j.eswa.2020.113425 10.1016/j.eswa.2015.02.033 10.1007/s00521-016-2631-y 10.1016/j.future.2021.03.007 10.3390/app11083417 10.1007/s00521-019-04172-2 10.1016/j.knosys.2020.105530 10.1109/ACCESS.2019.2949835 10.1016/j.eswa.2021.115445 10.1109/MCI.2006.329691 10.1109/3477.484436 10.1007/s11227-020-03303-0 10.1016/j.proeng.2014.12.098 10.1016/j.knosys.2019.05.015 10.1177/1729881418784221 10.1177/0954406215573600 10.1016/j.asoc.2019.01.036 10.3389/fnbot.2021.642733 10.1109/4235.585892 10.1080/01490419.2021.1906799 10.1016/j.cie.2020.106695 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2022.119410 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2022_119410 S0957417422024290 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-559161c94d99d860e58886491985e9c5b68dc34aa89d0656a3c8485e2bcd23e03 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:07 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Fri Feb 23 02:38:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heuristic function Path planning Pheromone updating Ant colony optimization algorithm State transition probability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-559161c94d99d860e58886491985e9c5b68dc34aa89d0656a3c8485e2bcd23e03 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_119410 crossref_primary_10_1016_j_eswa_2022_119410 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119410 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fountas, Vaxevanidis, Stergious, Benhadj-Djilali (b0085) 2016; 33 Wu, Tian, Zhang, Liu, Xiao, Yang (b0240) 2017; 66 Xie, Y., Peng, J., & Wu, Min. (2006). Study on evolutionary artificial potential field based path planning in Robocup. Computer Engineering and Applications, 42, 176-179. https://doi.org/1002-8331(2006)42:9<176:ZQJQRL>2.0.TX;2-Z. Deng, Li, Zhao, Wang, Gui (b0040) 2021; 183 Xi, Zhao, Xiao, Chen (b0270) 2020; 1682 Moayedi, Nguyen, Foong (b0170) 2019; 2019 Fadzli, Abdulkadir, Makhtar, Jamal (b0070) 2015 Feng, Lei, Wu, Song (b0080) 2019; 55 Wang, X.Y., Yang, L., Zhang, Y., & Meng, S., (2018). Robot path planning based on improved ant colony algorithm with potential field heuristic. Control and Decision, 33, 1775–1781. https://doi.org/1001-0920(2018)33:10<1775:JYGJSC>2.0.TX;2-L. Kim, D.H., Choi, Y.S., Kim, S.H., Wu, J., Yuan, C., Luo, LP., Lee, J.Y., & Han, C.S. (2015). Adaptive rapidly-exploring random tree for efficient path planning of high-degree-of-freedom articulated robots. Proceedings of the institution of mechanical engineers part C-Journal of mechanical engineering science, 229, 3361-3367. https://doi.org/10.1177/0954406215573600. Orozco-Rosas, Picos, Montiel (b0185) 2019; 7 Tao, Gao, Ren, Chen, Wang, Xiong, Jiang (b0215) 2021; 11 Huynh, Pham, Thang (b0115) 2019; 180 Luo, Wang, Zheng, He (b0150) 2020; 32 Pei, Z., & Chen, X. (2015). Improved ant colony algorithm and its application in obstacle avoidance for robot. CAAI Transactions on Intelligent Systems, 10, 90–96. https://doi.org/1673-4785(2015)10:1<90:GJYQSF>2.0.TX;2-R. Xiong, Zhou, Yang, Xiang, Ma (b0280) 2021; 15 Orozco-Rosas, Picos, Pantrigo, Montemayor, Cuesta-Infante (b0190) 2022; 10 Song, Q.S., Li, S.B., Yang, J., Bai, Q., Hu, J.J., Zhang, X.X., & Zhang, A.S., (2021). Intelligent Optimization Algorithm-Based Path Planning for a Mobile Robot. Computational Intelligence and Neuroscience, 2021. https://doi.org/ 10.1155/2021/8025730. Lyu, D.D., Chen, Z.W., Cai, Z.S., & Piao, S.H. (2021). Robot path planning by leveraging the graph-encorded Floyd algorithm. Future Generation computer Systems-The International Journal Of Escience, 122, 204-208. https://doi.org/ 10.1016/j.future.2021.03.007. Wu, Huang, Zhao, Lan (b0250) 2021; 1972 Xiong, Zhou, Lu, Zeng, Lian, Y, c.y. (b0275) 2020; 20 Li, Wei, Gao, Wang, Fan (b0135) 2020; 152 Qu, Gai, Zhang, Zhong (b0200) 2020; 194 Zhao, Cheng, Hao (b0305) 2016; 2016 Dorigo, Maniezzo, Colorni (b0060) 1996; 26 Duchon, Babinec, Kajan, Beno, Florek, Fico, Jurisica (b0065) 2014; 96 Dasari, Gupta (b0035) 2020; 48 Zhang, Li, Zhang, Wei, Zhang (b0295) 2021; 1941 Li, Li, Che (b0140) 2014; 596 Bayliss, Martins, do Leandro, Juan (b0020) 2020; 148 Wu, Chen, Chen, Zhong, Xie, Guo, Fujita (b0245) 2020; 196 Orozco-Rosas, U., Montiel, O., & Picos, K., (2019a). Mobile robot path planning using membrane evolutionary artificial potential field. Applied soft computing, 77, 236-251. https://doi.org/ 10.1016/j.asoc.2019.01.036. Chong, Chai, Li, Yao, Xiao, Guo (b0030) 2021; 44 Hassani, Maalej, Rekik (b0090) 2018; 2018 Yao, Liang, Li, Yu, Chen, Ni, Teng (b0285) 2021; 35 Dorigo, Gambardella (b0050) 1997; 1 Matez-Bandera, Monroy, Gonzalez-Jimenez (b0160) 2021 Ahmed, Pawase, Chang (b0015) 2021; 11 Zhao, Y.J., Zheng, Z., & Liu, Y. (2018). Survey on computational-intelligence-based UAV path planning. Knowledge-Based Systems, 158, 54-64. https://doi.org/10.1016/10.1016/j.knosys.2018.05.033. Takwa, Saoussen (b0210) 2021; 186 Liu, Yang, Geng, Gao (b0130) 2015; 46 Montiel, O., Orozco-Rosas, U., & Sepulveda, R., (2015). Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Systems With Applictions, 12,5177-5191. https://doi.org/ 10.1016/j.eswa.2015.02.033. Abhishek, Dayal (b0005) 2021; 179 Hsu, C.H., & Juang, C.H. (2013). Multi-Objective continuous Ant-Colony-Optimized FC for robot Wall-Following control [J]. Computational Intelligence Magazine IEEE, 2013, 8 (3): 28–40. https://doi.org/10.1109/MCI.2013.2264233. Wang, Tang (b0220) 2021; 233 Xiao, Tan, Wang (b0260) 2021; 10 Kathen, Flores, Reina (b0120) 2021; 10 Wang, Zhao (b0225) 2012; 198–199 Dorigo, Gambardella (b0055) 1996 Dorigo, Birattari, Stutzle (b0045) 2006; 1 Wei, J., Wang, J.J., Wang, J., Qin, C.X., & Mei, S.H., (2020). 3D path planning based on improved ant colony algorithm. Computer engineering and application, 56, 217-223. https://doi.org/1002-8331(2020)56:17<217:JYGJYQ>2.0.TX;2M. Xia, Sun, Xia (b0255) 2021; 9 Zhang, Xiong, Li, Du, Zhao (b0290) 2018; 15 Zhang, Pu, Si (b0300) 2021; 9 Chen, Guo, Yang, Wang, Liu (b0025) 2021; 77 Li, X.X., & Hu, P., (2021). Robot 3D Path Planning Algorithm Based on Improved Elitist Potential Field Ant Colony Algorithm. Computer Science and Application, 11, 849-858. https://doi.org/10.12677/CSA.2021.114087. Fatemidokht, Rafsanjani (b0075) 2018; 29 Miao, Chen, Yan, Wu (b0165) 2021; 156 Akshay, Himansh, Parsediya (b0010) 2016; 2016 Hui (b0110) 2021; 13 Holland (b0095) 2018; 8 Zhu, Y., You, X.M., Liu, S., & Yuan, W.H., (2018). Research for robot path planning problem based on improved ant colony system (ACS) algorithm. Computer engineering and application, 54, 129-134. https://doi.org/1002-8331(2018)54:19<129:JYGJYQ>2.0.TX;2-H. Huang, Zhu, Ding (b0105) 2014; 74 Zhang (10.1016/j.eswa.2022.119410_b0290) 2018; 15 Huynh (10.1016/j.eswa.2022.119410_b0115) 2019; 180 Hui (10.1016/j.eswa.2022.119410_b0110) 2021; 13 Fadzli (10.1016/j.eswa.2022.119410_b0070) 2015 Orozco-Rosas (10.1016/j.eswa.2022.119410_b0190) 2022; 10 Wang (10.1016/j.eswa.2022.119410_b0220) 2021; 233 10.1016/j.eswa.2022.119410_b0145 Zhang (10.1016/j.eswa.2022.119410_b0300) 2021; 9 10.1016/j.eswa.2022.119410_b0100 10.1016/j.eswa.2022.119410_b0265 Xia (10.1016/j.eswa.2022.119410_b0255) 2021; 9 10.1016/j.eswa.2022.119410_b0180 Dorigo (10.1016/j.eswa.2022.119410_b0050) 1997; 1 Dasari (10.1016/j.eswa.2022.119410_b0035) 2020; 48 Zhao (10.1016/j.eswa.2022.119410_b0305) 2016; 2016 Dorigo (10.1016/j.eswa.2022.119410_b0055) 1996 Bayliss (10.1016/j.eswa.2022.119410_b0020) 2020; 148 Xiong (10.1016/j.eswa.2022.119410_b0275) 2020; 20 Wu (10.1016/j.eswa.2022.119410_b0240) 2017; 66 Fountas (10.1016/j.eswa.2022.119410_b0085) 2016; 33 Luo (10.1016/j.eswa.2022.119410_b0150) 2020; 32 10.1016/j.eswa.2022.119410_b0310 10.1016/j.eswa.2022.119410_b0155 Duchon (10.1016/j.eswa.2022.119410_b0065) 2014; 96 Holland (10.1016/j.eswa.2022.119410_b0095) 2018; 8 10.1016/j.eswa.2022.119410_b0235 Tao (10.1016/j.eswa.2022.119410_b0215) 2021; 11 Fatemidokht (10.1016/j.eswa.2022.119410_b0075) 2018; 29 10.1016/j.eswa.2022.119410_b0315 Chen (10.1016/j.eswa.2022.119410_b0025) 2021; 77 10.1016/j.eswa.2022.119410_b0195 Wu (10.1016/j.eswa.2022.119410_b0245) 2020; 196 10.1016/j.eswa.2022.119410_b0230 Wu (10.1016/j.eswa.2022.119410_b0250) 2021; 1972 Chong (10.1016/j.eswa.2022.119410_b0030) 2021; 44 Huang (10.1016/j.eswa.2022.119410_b0105) 2014; 74 Deng (10.1016/j.eswa.2022.119410_b0040) 2021; 183 Moayedi (10.1016/j.eswa.2022.119410_b0170) 2019; 2019 Miao (10.1016/j.eswa.2022.119410_b0165) 2021; 156 Feng (10.1016/j.eswa.2022.119410_b0080) 2019; 55 10.1016/j.eswa.2022.119410_b0125 Yao (10.1016/j.eswa.2022.119410_b0285) 2021; 35 Wang (10.1016/j.eswa.2022.119410_b0225) 2012; 198–199 Matez-Bandera (10.1016/j.eswa.2022.119410_b0160) 2021 10.1016/j.eswa.2022.119410_b0205 Orozco-Rosas (10.1016/j.eswa.2022.119410_b0185) 2019; 7 Li (10.1016/j.eswa.2022.119410_b0135) 2020; 152 Zhang (10.1016/j.eswa.2022.119410_b0295) 2021; 1941 Xiong (10.1016/j.eswa.2022.119410_b0280) 2021; 15 Liu (10.1016/j.eswa.2022.119410_b0130) 2015; 46 Dorigo (10.1016/j.eswa.2022.119410_b0045) 2006; 1 Takwa (10.1016/j.eswa.2022.119410_b0210) 2021; 186 Qu (10.1016/j.eswa.2022.119410_b0200) 2020; 194 Akshay (10.1016/j.eswa.2022.119410_b0010) 2016; 2016 Dorigo (10.1016/j.eswa.2022.119410_b0060) 1996; 26 Ahmed (10.1016/j.eswa.2022.119410_b0015) 2021; 11 Kathen (10.1016/j.eswa.2022.119410_b0120) 2021; 10 Xiao (10.1016/j.eswa.2022.119410_b0260) 2021; 10 Hassani (10.1016/j.eswa.2022.119410_b0090) 2018; 2018 Li (10.1016/j.eswa.2022.119410_b0140) 2014; 596 Abhishek (10.1016/j.eswa.2022.119410_b0005) 2021; 179 Xi (10.1016/j.eswa.2022.119410_b0270) 2020; 1682 10.1016/j.eswa.2022.119410_b0175 |
References_xml | – volume: 198–199 start-page: 1025 year: 2012 end-page: 1029 ident: b0225 article-title: An evolutionary method of traditional artificial potential field publication-title: Applied Mechanics and Materials – volume: 2019 start-page: 1 year: 2019 end-page: 11 ident: b0170 article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network publication-title: Engineering with Computers – volume: 8 start-page: 1975 year: 2018 ident: b0095 article-title: Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence publication-title: Ann Arbor: University of Michigan Press – volume: 233 year: 2021 ident: b0220 article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey publication-title: Knowledge-Based Systems – reference: Hsu, C.H., & Juang, C.H. (2013). Multi-Objective continuous Ant-Colony-Optimized FC for robot Wall-Following control [J]. Computational Intelligence Magazine IEEE, 2013, 8 (3): 28–40. https://doi.org/10.1109/MCI.2013.2264233. – volume: 156 year: 2021 ident: b0165 article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm publication-title: Computers and Industrial Engineering – volume: 9 start-page: 556 year: 2021 ident: b0255 article-title: Multiple Task Assignment and Path Planning of a Multiple Unmanned Surface Vehicles System Based on Improved Self-Organizing Mapping and Improved Genetic Algorithm publication-title: Journal of Marine Science and Engineering – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b0045 article-title: Ant colony optimization: artificial ants as a computational intelligence technique publication-title: IEEE Computational Intelligence Magazine – volume: 1682 start-page: 012003 year: 2020 end-page: 012012 ident: b0270 article-title: Research on material allocation path based on hopfield neural network and simulated annealing hybrid algorithm publication-title: Journal of Physics: Conference Series – volume: 196 year: 2020 ident: b0245 article-title: The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method publication-title: Knowledge-Based Systems – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b0060 article-title: Ant system: Optimization by a colony of cooperating agent publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – reference: Xie, Y., Peng, J., & Wu, Min. (2006). Study on evolutionary artificial potential field based path planning in Robocup. Computer Engineering and Applications, 42, 176-179. https://doi.org/1002-8331(2006)42:9<176:ZQJQRL>2.0.TX;2-Z. – reference: Zhao, Y.J., Zheng, Z., & Liu, Y. (2018). Survey on computational-intelligence-based UAV path planning. Knowledge-Based Systems, 158, 54-64. https://doi.org/10.1016/10.1016/j.knosys.2018.05.033. – volume: 9 start-page: 24933 year: 2021 end-page: 24945 ident: b0300 article-title: An adaptive improved ant colony system based on population information entropy for path planning of mobile robot publication-title: IEEE Access – volume: 10 start-page: 84648 year: 2022 end-page: 84663 ident: b0190 article-title: Mobile robot path planning using a QAPF learning algorithm for known and unknown environments publication-title: IEEE ACCESS – volume: 148 year: 2020 ident: b0020 article-title: A Two-phase Local Search with a Discrete-event Heuristic for the Omnichannel Vehicle Routing Problem publication-title: Computers & Industrial Engineering – volume: 179 year: 2021 ident: b0005 article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain publication-title: Expert Systems with Applications – volume: 74 start-page: 999 year: 2014 end-page: 1012 ident: b0105 article-title: Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment publication-title: Journal of Intelligent & Robotic – volume: 11 start-page: 3605 year: 2021 ident: b0215 article-title: A mobile service robot global path planning method based on ant colony optimization and fuzzy control publication-title: Applied Sciences – volume: 44 start-page: 1 year: 2021 end-page: 15 ident: b0030 article-title: Automatic recognition of geomagnetic suitability areas for path planning of autonomous underwater vehicle publication-title: Marine Geodesy – volume: 2018 start-page: 2163278 year: 2018 ident: b0090 article-title: Robot path planning with avoiding obstacles in known environment using free segments and turning points algorithm publication-title: Mathematical Problems in Engineering – volume: 1941 year: 2021 ident: b0295 article-title: Multi-UAV cooperative Route planning based on decision variables and improved genetic algorithm publication-title: Journal of Physics: Conference Series – reference: Wang, X.Y., Yang, L., Zhang, Y., & Meng, S., (2018). Robot path planning based on improved ant colony algorithm with potential field heuristic. Control and Decision, 33, 1775–1781. https://doi.org/1001-0920(2018)33:10<1775:JYGJSC>2.0.TX;2-L. – start-page: 143 year: 2015 end-page: 146 ident: b0070 article-title: Robotic Indoor Path Planning Using Dijkstra's Algorithm with Multi-Layer Dictionaries publication-title: International Conference on Information Science & Security – volume: 7 start-page: 15687 year: 2019 end-page: 156803 ident: b0185 article-title: Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots publication-title: IEEE ACCESS – volume: 596 start-page: 861 year: 2014 end-page: 867 ident: b0140 article-title: Research on composite web services selection based on dijkstra algorithm publication-title: Applied Mechanics and Materials – volume: 35 start-page: 372 year: 2021 end-page: 383 ident: b0285 article-title: Path planning method based on D* lite algorithm for unmanned surface vehicles in complex environments publication-title: China Ocean Engineering – start-page: 656 year: 1996 end-page: 665 ident: b0055 article-title: A study of some properties of Ant-Q publication-title: International conference on parallel problem solving from nature – volume: 11 start-page: 3417 year: 2021 ident: b0015 article-title: Distributed 3-D Path Planning for Multi-UAVs with full area surveillance based on particle swarm optimization publication-title: Applied Sciences – volume: 48 start-page: 1987 year: 2020 end-page: 1997 ident: b0035 article-title: Application of fractal analysis in evaluation of urban road networks in small sized city of India: Case city of karimnagar publication-title: Transportation Research Procedia – volume: 2016 start-page: 7672839 year: 2016 ident: b0305 article-title: An improved ant colony algorithm for solving the path planning problem of the omnidirectional mobile vehicle publication-title: Mathematical Problems in Engineering – volume: 1 start-page: 53 year: 1997 end-page: 66 ident: b0050 article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem publication-title: IEEE Transactions on Evolutionary Computation – volume: 1972 start-page: 012080 year: 2021 end-page: 012090 ident: b0250 article-title: Urban traffic planning and traffic flow prediction based on ulchis gravity model and dijkstra algorithm publication-title: Journal of Physics: Conference Series – volume: 15 year: 2018 ident: b0290 article-title: Path planning for mobile robot based on modified rapidly exploring random tree method and neural network publication-title: International Journal of Advanced Robotic Systems – reference: Zhu, Y., You, X.M., Liu, S., & Yuan, W.H., (2018). Research for robot path planning problem based on improved ant colony system (ACS) algorithm. Computer engineering and application, 54, 129-134. https://doi.org/1002-8331(2018)54:19<129:JYGJYQ>2.0.TX;2-H. – volume: 29 start-page: 1127 year: 2018 end-page: 1137 ident: b0075 article-title: F-Ant: An effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks publication-title: Neural Computing and Applications – reference: Song, Q.S., Li, S.B., Yang, J., Bai, Q., Hu, J.J., Zhang, X.X., & Zhang, A.S., (2021). Intelligent Optimization Algorithm-Based Path Planning for a Mobile Robot. Computational Intelligence and Neuroscience, 2021. https://doi.org/ 10.1155/2021/8025730. – volume: 186 year: 2021 ident: b0210 article-title: A Simulated annealing-based recommender system for solving the tourist trip design problem publication-title: Expert Systems with Applications – volume: 33 start-page: 375 year: 2016 end-page: 391 ident: b0085 article-title: A virus-evolutionary multi-objective intelligent tool path optimization methodology for 5-axis sculptured surface CNC machining publication-title: Engineering With Computers – volume: 183 year: 2021 ident: b0040 article-title: Multi-obstacle path planning and optimization for mobile robot publication-title: Expert Systems with Applications – reference: Orozco-Rosas, U., Montiel, O., & Picos, K., (2019a). Mobile robot path planning using membrane evolutionary artificial potential field. Applied soft computing, 77, 236-251. https://doi.org/ 10.1016/j.asoc.2019.01.036. – volume: 10 start-page: 853 year: 2021 ident: b0260 article-title: A simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D reconstruction publication-title: Electronics – volume: 10 start-page: 1605 year: 2021 ident: b0120 article-title: An informative path planner for a swarm of asvs based on an enhanced PSO with gaussian surrogate model components intended for water monitoring applications publication-title: Electronics – volume: 77 start-page: 1958 year: 2021 end-page: 1975 ident: b0025 article-title: Research on navigation of bidirectional A* algorithm based on ant colony algorithm publication-title: The Journal of Supercomputing – volume: 194 year: 2020 ident: b0200 article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning publication-title: Knowledge-Based Systems – volume: 32 start-page: 1555 year: 2020 end-page: 1566 ident: b0150 article-title: Research on path planning of mobile robot based on improved ant colony algorithm publication-title: Neural Computing and Applications – year: 2021 ident: b0160 article-title: Efficient semantic place categorization by a robot through active line-of-sight selection publication-title: Knowledge-Based Systems – reference: Li, X.X., & Hu, P., (2021). Robot 3D Path Planning Algorithm Based on Improved Elitist Potential Field Ant Colony Algorithm. Computer Science and Application, 11, 849-858. https://doi.org/10.12677/CSA.2021.114087. – volume: 66 start-page: 1 year: 2017 end-page: 16 ident: b0240 article-title: An improved heuristic algorithm for 2D rectangle packing area minimization problems with central rectangles publication-title: Engineering Applications of Artificial Intelligence – reference: Montiel, O., Orozco-Rosas, U., & Sepulveda, R., (2015). Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Systems With Applictions, 12,5177-5191. https://doi.org/ 10.1016/j.eswa.2015.02.033. – volume: 15 year: 2021 ident: b0280 article-title: Mobile robot path planning based on time taboo ant colony optimization in dynamic environment publication-title: Frontiers in Neurorobotics – volume: 55 start-page: 35 year: 2019 end-page: 43 ident: b0080 article-title: Mobile robot path planning based on adaptive ant colony algorithm publication-title: Computer Engineering and Application – reference: Lyu, D.D., Chen, Z.W., Cai, Z.S., & Piao, S.H. (2021). Robot path planning by leveraging the graph-encorded Floyd algorithm. Future Generation computer Systems-The International Journal Of Escience, 122, 204-208. https://doi.org/ 10.1016/j.future.2021.03.007. – volume: 20 start-page: 2525 year: 2020 ident: b0275 article-title: Rapidly-exploring adaptive sampling tree*: A sample-based path-planning algorithm for unmanned marine vehicles information gathering in variable ocean environments publication-title: Sensors – volume: 180 start-page: 12 year: 2019 end-page: 25 ident: b0115 article-title: New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm publication-title: Knowledge-Based Systems – reference: Kim, D.H., Choi, Y.S., Kim, S.H., Wu, J., Yuan, C., Luo, LP., Lee, J.Y., & Han, C.S. (2015). Adaptive rapidly-exploring random tree for efficient path planning of high-degree-of-freedom articulated robots. Proceedings of the institution of mechanical engineers part C-Journal of mechanical engineering science, 229, 3361-3367. https://doi.org/10.1177/0954406215573600. – reference: Pei, Z., & Chen, X. (2015). Improved ant colony algorithm and its application in obstacle avoidance for robot. CAAI Transactions on Intelligent Systems, 10, 90–96. https://doi.org/1673-4785(2015)10:1<90:GJYQSF>2.0.TX;2-R. – volume: 13 start-page: 80 year: 2021 ident: b0110 article-title: Research on robot optimal path planning method based on improved ant colony algorithm publication-title: International Journal of Computing Science and Mathematics – volume: 96 start-page: 59 year: 2014 end-page: 69 ident: b0065 article-title: Path planning with modified a star algorithm for a mobile robot publication-title: Procedia Engineering – reference: Wei, J., Wang, J.J., Wang, J., Qin, C.X., & Mei, S.H., (2020). 3D path planning based on improved ant colony algorithm. Computer engineering and application, 56, 217-223. https://doi.org/1002-8331(2020)56:17<217:JYGJYQ>2.0.TX;2M. – volume: 152 year: 2020 ident: b0135 article-title: PQ-RRT*: An improved path planning algorithm for mobile robots publication-title: Expert Systems with Applications – volume: 2016 start-page: 144 year: 2016 end-page: 149 ident: b0010 article-title: Time-efficient A∗ algorithm for robot path planning publication-title: Procedia Technology – volume: 46 start-page: 18 year: 2015 end-page: 27 ident: b0130 article-title: Robot global path planning based on ant colony optimization with artificial potential field publication-title: Transactions of The Chinese Society of Agricultural Machinery – volume: 46 start-page: 18 year: 2015 ident: 10.1016/j.eswa.2022.119410_b0130 article-title: Robot global path planning based on ant colony optimization with artificial potential field publication-title: Transactions of The Chinese Society of Agricultural Machinery – volume: 1972 start-page: 012080 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0250 article-title: Urban traffic planning and traffic flow prediction based on ulchis gravity model and dijkstra algorithm publication-title: Journal of Physics: Conference Series – ident: 10.1016/j.eswa.2022.119410_b0265 – ident: 10.1016/j.eswa.2022.119410_b0145 doi: 10.12677/CSA.2021.114087 – volume: 33 start-page: 375 year: 2016 ident: 10.1016/j.eswa.2022.119410_b0085 article-title: A virus-evolutionary multi-objective intelligent tool path optimization methodology for 5-axis sculptured surface CNC machining publication-title: Engineering With Computers doi: 10.1007/s00366-016-0479-5 – volume: 2018 start-page: 2163278 year: 2018 ident: 10.1016/j.eswa.2022.119410_b0090 article-title: Robot path planning with avoiding obstacles in known environment using free segments and turning points algorithm publication-title: Mathematical Problems in Engineering doi: 10.1155/2018/2163278 – volume: 233 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0220 article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107526 – volume: 66 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2022.119410_b0240 article-title: An improved heuristic algorithm for 2D rectangle packing area minimization problems with central rectangles publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.08.012 – volume: 10 start-page: 1605 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0120 article-title: An informative path planner for a swarm of asvs based on an enhanced PSO with gaussian surrogate model components intended for water monitoring applications publication-title: Electronics doi: 10.3390/electronics10131605 – volume: 9 start-page: 24933 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0300 article-title: An adaptive improved ant colony system based on population information entropy for path planning of mobile robot publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056651 – volume: 596 start-page: 861 year: 2014 ident: 10.1016/j.eswa.2022.119410_b0140 article-title: Research on composite web services selection based on dijkstra algorithm publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.596.861 – volume: 156 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0165 article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2021.107230 – volume: 35 start-page: 372 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0285 article-title: Path planning method based on D* lite algorithm for unmanned surface vehicles in complex environments publication-title: China Ocean Engineering doi: 10.1007/s13344-021-0034-z – ident: 10.1016/j.eswa.2022.119410_b0100 doi: 10.1109/MCI.2013.2264233 – volume: 9 start-page: 556 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0255 article-title: Multiple Task Assignment and Path Planning of a Multiple Unmanned Surface Vehicles System Based on Improved Self-Organizing Mapping and Improved Genetic Algorithm publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse9060556 – ident: 10.1016/j.eswa.2022.119410_b0310 doi: 10.1016/j.knosys.2018.05.033 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2022.119410_b0170 article-title: Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network publication-title: Engineering with Computers – volume: 186 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0210 article-title: A Simulated annealing-based recommender system for solving the tourist trip design problem publication-title: Expert Systems with Applications – volume: 2016 start-page: 7672839 year: 2016 ident: 10.1016/j.eswa.2022.119410_b0305 article-title: An improved ant colony algorithm for solving the path planning problem of the omnidirectional mobile vehicle publication-title: Mathematical Problems in Engineering doi: 10.1155/2016/7672839 – volume: 198–199 start-page: 1025 year: 2012 ident: 10.1016/j.eswa.2022.119410_b0225 article-title: An evolutionary method of traditional artificial potential field publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.198-199.1025 – volume: 196 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0245 article-title: The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105201 – volume: 8 start-page: 1975 year: 2018 ident: 10.1016/j.eswa.2022.119410_b0095 article-title: Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence publication-title: Ann Arbor: University of Michigan Press – volume: 10 start-page: 853 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0260 article-title: A simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D reconstruction publication-title: Electronics doi: 10.3390/electronics10070853 – ident: 10.1016/j.eswa.2022.119410_b0205 doi: 10.1155/2021/8025730 – volume: 20 start-page: 2525 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0275 article-title: Rapidly-exploring adaptive sampling tree*: A sample-based path-planning algorithm for unmanned marine vehicles information gathering in variable ocean environments publication-title: Sensors doi: 10.3390/s20092515 – volume: 74 start-page: 999 year: 2014 ident: 10.1016/j.eswa.2022.119410_b0105 article-title: Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment publication-title: Journal of Intelligent & Robotic – volume: 10 start-page: 84648 year: 2022 ident: 10.1016/j.eswa.2022.119410_b0190 article-title: Mobile robot path planning using a QAPF learning algorithm for known and unknown environments publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2022.3197628 – volume: 11 start-page: 3605 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0215 article-title: A mobile service robot global path planning method based on ant colony optimization and fuzzy control publication-title: Applied Sciences doi: 10.3390/app11083605 – volume: 1941 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0295 article-title: Multi-UAV cooperative Route planning based on decision variables and improved genetic algorithm publication-title: Journal of Physics: Conference Series – start-page: 143 year: 2015 ident: 10.1016/j.eswa.2022.119410_b0070 article-title: Robotic Indoor Path Planning Using Dijkstra's Algorithm with Multi-Layer Dictionaries – start-page: 656 year: 1996 ident: 10.1016/j.eswa.2022.119410_b0055 article-title: A study of some properties of Ant-Q publication-title: International conference on parallel problem solving from nature – year: 2021 ident: 10.1016/j.eswa.2022.119410_b0160 article-title: Efficient semantic place categorization by a robot through active line-of-sight selection publication-title: Knowledge-Based Systems – volume: 13 start-page: 80 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0110 article-title: Research on robot optimal path planning method based on improved ant colony algorithm publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2021.114182 – volume: 48 start-page: 1987 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0035 article-title: Application of fractal analysis in evaluation of urban road networks in small sized city of India: Case city of karimnagar publication-title: Transportation Research Procedia doi: 10.1016/j.trpro.2020.08.227 – volume: 152 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0135 article-title: PQ-RRT*: An improved path planning algorithm for mobile robots publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113425 – ident: 10.1016/j.eswa.2022.119410_b0175 doi: 10.1016/j.eswa.2015.02.033 – volume: 29 start-page: 1127 year: 2018 ident: 10.1016/j.eswa.2022.119410_b0075 article-title: F-Ant: An effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2631-y – ident: 10.1016/j.eswa.2022.119410_b0155 doi: 10.1016/j.future.2021.03.007 – ident: 10.1016/j.eswa.2022.119410_b0315 – volume: 11 start-page: 3417 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0015 article-title: Distributed 3-D Path Planning for Multi-UAVs with full area surveillance based on particle swarm optimization publication-title: Applied Sciences doi: 10.3390/app11083417 – volume: 55 start-page: 35 year: 2019 ident: 10.1016/j.eswa.2022.119410_b0080 article-title: Mobile robot path planning based on adaptive ant colony algorithm publication-title: Computer Engineering and Application – volume: 32 start-page: 1555 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0150 article-title: Research on path planning of mobile robot based on improved ant colony algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04172-2 – volume: 194 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0200 article-title: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105530 – ident: 10.1016/j.eswa.2022.119410_b0230 – volume: 7 start-page: 15687 year: 2019 ident: 10.1016/j.eswa.2022.119410_b0185 article-title: Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2019.2949835 – volume: 183 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0040 article-title: Multi-obstacle path planning and optimization for mobile robot publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115445 – volume: 1 start-page: 28 year: 2006 ident: 10.1016/j.eswa.2022.119410_b0045 article-title: Ant colony optimization: artificial ants as a computational intelligence technique publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2006.329691 – volume: 26 start-page: 29 year: 1996 ident: 10.1016/j.eswa.2022.119410_b0060 article-title: Ant system: Optimization by a colony of cooperating agent publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/3477.484436 – volume: 77 start-page: 1958 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0025 article-title: Research on navigation of bidirectional A* algorithm based on ant colony algorithm publication-title: The Journal of Supercomputing doi: 10.1007/s11227-020-03303-0 – volume: 96 start-page: 59 year: 2014 ident: 10.1016/j.eswa.2022.119410_b0065 article-title: Path planning with modified a star algorithm for a mobile robot publication-title: Procedia Engineering doi: 10.1016/j.proeng.2014.12.098 – volume: 1682 start-page: 012003 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0270 article-title: Research on material allocation path based on hopfield neural network and simulated annealing hybrid algorithm publication-title: Journal of Physics: Conference Series – volume: 180 start-page: 12 year: 2019 ident: 10.1016/j.eswa.2022.119410_b0115 article-title: New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.05.015 – volume: 179 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0005 article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain publication-title: Expert Systems with Applications – volume: 15 year: 2018 ident: 10.1016/j.eswa.2022.119410_b0290 article-title: Path planning for mobile robot based on modified rapidly exploring random tree method and neural network publication-title: International Journal of Advanced Robotic Systems doi: 10.1177/1729881418784221 – ident: 10.1016/j.eswa.2022.119410_b0125 doi: 10.1177/0954406215573600 – ident: 10.1016/j.eswa.2022.119410_b0180 doi: 10.1016/j.asoc.2019.01.036 – ident: 10.1016/j.eswa.2022.119410_b0235 – volume: 2016 start-page: 144 issue: 23 year: 2016 ident: 10.1016/j.eswa.2022.119410_b0010 article-title: Time-efficient A∗ algorithm for robot path planning publication-title: Procedia Technology – volume: 15 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0280 article-title: Mobile robot path planning based on time taboo ant colony optimization in dynamic environment publication-title: Frontiers in Neurorobotics doi: 10.3389/fnbot.2021.642733 – volume: 1 start-page: 53 year: 1997 ident: 10.1016/j.eswa.2022.119410_b0050 article-title: Ant colony system: A cooperative learning approach to the traveling salesman problem publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585892 – volume: 44 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.119410_b0030 article-title: Automatic recognition of geomagnetic suitability areas for path planning of autonomous underwater vehicle publication-title: Marine Geodesy doi: 10.1080/01490419.2021.1906799 – volume: 148 year: 2020 ident: 10.1016/j.eswa.2022.119410_b0020 article-title: A Two-phase Local Search with a Discrete-event Heuristic for the Omnichannel Vehicle Routing Problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106695 – ident: 10.1016/j.eswa.2022.119410_b0195 |
SSID | ssj0017007 |
Score | 2.6996336 |
Snippet | •A novel variant of ACO called MAACO is proposed to solve mobile robot path planning.•The proposed MAACO includes four novel mechanisms.•Parameter optimization... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119410 |
SubjectTerms | Ant colony optimization algorithm Heuristic function Path planning Pheromone updating State transition probability |
Title | Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot |
URI | https://dx.doi.org/10.1016/j.eswa.2022.119410 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvHjxbcQHmYM3UynttuweCZGgBi5Kwq1pdxetAYpQY7z4252hW4KJ4eB1OpM0s7Mz37TzYOxaSZn43FWOkoY7XIWhg4QQL54QBhEHTwQ1OPcHYW_IH0bBqMI6ZS8MlVVa31_49JW3tpSG1WZjnqaNJwQHGA4xtfMozkjK2zlvkZXffq_LPGj8XKuYt9dyiNs2zhQ1Xmb5SbOHPA89h-TURftXcNoION0DtmeRIrSLlzlkFTM7YvvlFgawl_KYvfcznY4RSUKs4zl5L0BtAU2jnn1BhpSp7bWEePKSLdL8dYocGtJ8CRv_rwHhK6Al0hcGoEXFMLcLjSAbwzRL0H_AIkuy_IQNu3fPnZ5jFyk4ynfd3MGsAYGdklxLqUXomgDz3pDLphSBkSpIQqGVz-NYSI2QJIx9JTg-8hKlPd-4_imrzrKZOWOgYx8RHOZM2uc80EHC8Qw8rUQgvaZpuTXWLDUYKTtlnJZdTKKynOwtIq1HpPWo0HqN3axl5sWMja3cQXkw0S9LiTAIbJE7_6fcBdulFfNFtc4lq-aLD3OFQCRP6itLq7Od9v1jb_ADdvvcvA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDI4QHLbL3tPY04fdporSJiU5IjQE43EZSNyqNglbJ6AMOk3793PWFDFp4rCrG0uR49ifGz8IuZdCxD51pSOFpg6VQeAgIcCLx7lGxEFjbgqcB8OgM6ZPEzYpkVZRC2PSKq3tz236j7W2lJqVZm2ZJLVnBAfoDjG084yfERi3V0x3KlYmlWa31xluHhMabl41jesdw2BrZ_I0L73-NO2HPA-Nh6CmkPYv_7Tlc9pH5MCCRWjm-zkmJb04IYfFIAaw9_KUvA9SlUwRTEKkoqUxYIACA9OQevEFKVLmttwSotlLukqy1zmuUJBka9h6wgZEsIDKaH4ygJlVDEs70wjSKczTGE0IrNI4zc7IuP04anUcO0vBkb7rZg4GDojtpKBKCMUDVzMMfQMq6oIzLSSLA66kT6OIC4WoJIh8ySl-8mKpPF-7_jkpL9KFviCgIh9BHIZNyqeUKRZTPAZPSc6EV9cNt0rqhQRDaRuNm3kXs7DIKHsLjdRDI_Uwl3qVPGx4lnmbjZ2rWXEw4S9lCdEP7OC7_CffHdnrjAb9sN8d9q7Ivpk4nyfvXJNytvrQN4hLsvjW6t03EuTfbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+adaptive+ant+colony+optimization+algorithm+and+its+application+for+solving+path+planning+of+mobile+robot&rft.jtitle=Expert+systems+with+applications&rft.au=Wu%2C+Lei&rft.au=Huang%2C+Xiaodong&rft.au=Cui%2C+Junguo&rft.au=Liu%2C+Chao&rft.date=2023-04-01&rft.issn=0957-4174&rft.volume=215&rft.spage=119410&rft_id=info:doi/10.1016%2Fj.eswa.2022.119410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_119410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |