Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs
In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the...
Saved in:
Published in | Applied and computational harmonic analysis Vol. 60; pp. 123 - 175 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-5203 1096-603X |
DOI | 10.1016/j.acha.2022.02.004 |
Cover
Loading…
Abstract | In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the same as the pointwise consistency rates for graph Laplacians. In particular, for an optimal choice of the graph connectivity ε, our results show that the eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-Beltrami operator at a rate of O(n−1/(m+4)), up to log factors, where m is the manifold dimension and n is the number of vertices in the graph. Our approach is general and allows us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs. We also present the results of numerical experiments analyzing convergence rates on the two dimensional sphere. |
---|---|
AbstractList | In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the same as the pointwise consistency rates for graph Laplacians. In particular, for an optimal choice of the graph connectivity ε, our results show that the eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-Beltrami operator at a rate of O(n−1/(m+4)), up to log factors, where m is the manifold dimension and n is the number of vertices in the graph. Our approach is general and allows us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs. We also present the results of numerical experiments analyzing convergence rates on the two dimensional sphere. |
Author | García Trillos, Nicolás Calder, Jeff |
Author_xml | – sequence: 1 givenname: Jeff surname: Calder fullname: Calder, Jeff email: jcalder@umn.edu organization: School of Mathematics, University of Minnesota, United States of America – sequence: 2 givenname: Nicolás orcidid: 0000-0002-7711-5901 surname: García Trillos fullname: García Trillos, Nicolás email: nicolasgarcia@stat.wisc.edu organization: Department of Statistics, University of Wisconsin-Madison, United States of America |
BookMark | eNp9kM1qwzAMgM3oYG23F9jJL5BOjp2kgV1G2U-hdJcVdjOOrbTuUjvYobAH22vsmZasO-1QEEhI-gT6JmTkvENCbhnMGLD8bj9TeqdmKaTpDPoAcUHGDMo8yYG_j4Y650mWAr8ikxj3AIyJrByTzfLQBn9EQ2OLuguqodq7I4YtOo00qA4jrX2g26DaHV2ptlHaKhepd_T7K_ltR6qcoR_Jen1ai9fkslZNxJu_PCWbp8e3xUuyen1eLh5WieYAXZIJMKzQgs2xMgyrQuTKFLrohykIyEpT11WFhjMsSmYYYM5FXWXznNelYYpPSXq6q4OPMWAt22APKnxKBnIQI_dyECMHMRL6ANFD83-Qtp3qrHf9-7Y5j96fUOyfOloMMmo7iDI29Pak8fYc_gMbR4G4 |
CitedBy_id | crossref_primary_10_1016_j_acha_2022_09_003 crossref_primary_10_1093_imaiai_iaae031 crossref_primary_10_1109_TSP_2024_3392360 crossref_primary_10_1093_imanum_drac048 crossref_primary_10_1137_23M1559087 crossref_primary_10_1007_s43670_023_00075_5 crossref_primary_10_1016_j_ijcce_2022_10_002 crossref_primary_10_1002_aaai_12210 crossref_primary_10_1093_imaiai_iaae026 crossref_primary_10_1109_TSP_2024_3378379 crossref_primary_10_1016_j_acha_2024_101635 crossref_primary_10_1007_s00526_024_02721_9 crossref_primary_10_1007_s10208_025_09696_9 crossref_primary_10_3150_23_BEJ1685 crossref_primary_10_1007_s40687_022_00371_x crossref_primary_10_1016_j_acha_2022_06_003 crossref_primary_10_1214_24_AAP2052 crossref_primary_10_1098_rsos_230898 crossref_primary_10_1137_22M1531981 crossref_primary_10_1146_annurev_statistics_040522_115238 |
Cites_doi | 10.1073/pnas.0500334102 10.1007/978-1-4757-2201-7 10.1137/17M1134214 10.1137/18M1188999 10.1088/1361-6544/aae949 10.1016/j.acha.2006.03.004 10.1214/17-EJS1253 10.1016/j.acha.2016.09.003 10.1214/13-AOS1189 10.1137/18M1199241 10.1007/s00440-014-0583-7 10.1137/17M115222X 10.1007/s11222-007-9033-z 10.4171/jst/83 10.1016/j.tcs.2009.01.009 10.1214/009053607000000640 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.acha.2022.02.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1096-603X |
EndPage | 175 |
ExternalDocumentID | 10_1016_j_acha_2022_02_004 S1063520322000227 |
GrantInformation_xml | – fundername: NSF grantid: DMS 1912802 funderid: https://doi.org/10.13039/100000001 – fundername: NSF-DMS grantid: 1713691 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-540d17c418ebd1eb746ad7c7300204059dffbbed31e791d10e634fb5863f9d1a3 |
IEDL.DBID | .~1 |
ISSN | 1063-5203 |
IngestDate | Tue Jul 01 03:49:06 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Fri Feb 23 02:40:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Discrete to continuum Graph Laplacian Spectral convergence Rates of convergence Laplace-Beltrami operator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-540d17c418ebd1eb746ad7c7300204059dffbbed31e791d10e634fb5863f9d1a3 |
ORCID | 0000-0002-7711-5901 |
PageCount | 53 |
ParticipantIDs | crossref_primary_10_1016_j_acha_2022_02_004 crossref_citationtrail_10_1016_j_acha_2022_02_004 elsevier_sciencedirect_doi_10_1016_j_acha_2022_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied and computational harmonic analysis |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Calder (br0080) 2018; 32 Boucheron, Lugosi, Massart (br0060) 2013 Hoffmann, Hosseini, Oberai, Stuart (br0340) 2019 Zhu, Ghahramani, Lafferty (br0560) 2003 Calder, Slepčev, Thorpe (br0120) 2020 Calder, Slepčev (br0110) 2019 N. García Trillos, F. Hoffmann, B. Hosseini, Geometric structure of graph Laplacian embeddings, preprint, 2019. Hoffmann, Hosseini, Ren, Stuart (br0350) 2019 Zhu, Lafferty, Ghahramani (br0570) 2003 Giné, Koltchinskii (br0300) 2006; vol. 51 Wang, Sharpnack, Smola, Tibshirani (br0530) 2016; 17 Maier, Hein, von Luxburg (br0390) 2009; 410 Belkin, Niyogi (br0030) 2005 Müller, Penrose (br0400) 2019 Tibshirani (br0490) 2014; 42 Rosasco, Villa, Mosci, Santoro, Verri (br0430) 2013; 14 Yuan, Calder, Osting (br0540) 2020 Ng, Jordan, Weiss (br0410) 2002 Belkin, Niyogi (br0020) 2002 García Trillos, Gerlach, Hein, Slepčev (br0220) 2019 Calder (br0090) 2019; 1 Kirichenko, van Zanten (br0360) 2017; 11 Shi (br0440) 2015 Lei (br0370) 2018 Penrose (br0420) 2003; vol. 5 Coifman, Lafon, Lee, Maggioni, Nadler, Warner, Zucker (br0160) 2005; 102 García Trillos, Slepčev, Von Brecht, Laurent, Bresson (br0280) 2016; 17 Singer, Wu (br0460) 2017; 6 Flores, Calder, Lerman (br0190) 2019 Dunlop, Slepčev, Stuart, Thorpe (br0180) 2019 García Trillos, Kaplan, Samakhoana, Sanz-Alonso (br0240) 2017 Singer (br0450) 2006; 21 Chapelle, Scholkopf, Zien (br0140) 2006 von Luxburg (br0510) 2007; 17 Zelnik-Manor, Perona (br0550) 2005 Burago, Ivanov, Kurylev (br0070) 2014; 4 Ando, Zhang (br0010) 2006 Hein, Audibert, von Luxburg (br0320) 2007; 8 Belkin, Niyogi, Sindhwani (br0040) 2006; 7 García Trillos (br0210) 2019; 1 García Trillos, Slepčev (br0270) 2018; 45 Slepcev, Thorpe (br0470) 2019; 51 Cheng, Wu (br0150) 2020 Ting, Huang, Jordan (br0500) 2010 do Carmo (br0170) 1992 Calder, Cook, Thorpe, Slepčev (br0100) 2020 Hebey (br0310) 1996 von Luxburg, Belkin, Bousquet (br0520) 2008; 36 Gilbarg, Trudinger (br0290) 2015 Smola, Kondor (br0480) 2003 Caroccia, Chambolle, Slepěv (br0130) 2019 García Trillos, Murray (br0250) 2019 Bertozzi, Luo, Stuart, Zygalakis (br0050) 2018; 6 Fournier, Guillin (br0200) 2015; 162 LeVeque (br0380) 2007 Hein, Audibert, Von Luxburg (br0330) 2005 García Trillos, Sanz-Alonso, Yang (br0260) 2019; 20 Calder (10.1016/j.acha.2022.02.004_br0080) 2018; 32 Ng (10.1016/j.acha.2022.02.004_br0410) 2002 Smola (10.1016/j.acha.2022.02.004_br0480) 2003 Burago (10.1016/j.acha.2022.02.004_br0070) 2014; 4 Ando (10.1016/j.acha.2022.02.004_br0010) 2006 Belkin (10.1016/j.acha.2022.02.004_br0040) 2006; 7 Tibshirani (10.1016/j.acha.2022.02.004_br0490) 2014; 42 Hoffmann (10.1016/j.acha.2022.02.004_br0350) Zelnik-Manor (10.1016/j.acha.2022.02.004_br0550) 2005 Bertozzi (10.1016/j.acha.2022.02.004_br0050) 2018; 6 Penrose (10.1016/j.acha.2022.02.004_br0420) 2003; vol. 5 García Trillos (10.1016/j.acha.2022.02.004_br0280) 2016; 17 Caroccia (10.1016/j.acha.2022.02.004_br0130) Hein (10.1016/j.acha.2022.02.004_br0330) 2005 Cheng (10.1016/j.acha.2022.02.004_br0150) 2020 Fournier (10.1016/j.acha.2022.02.004_br0200) 2015; 162 García Trillos (10.1016/j.acha.2022.02.004_br0240) Giné (10.1016/j.acha.2022.02.004_br0300) 2006; vol. 51 Calder (10.1016/j.acha.2022.02.004_br0090) 2019; 1 Gilbarg (10.1016/j.acha.2022.02.004_br0290) 2015 von Luxburg (10.1016/j.acha.2022.02.004_br0510) 2007; 17 Zhu (10.1016/j.acha.2022.02.004_br0570) 2003 Slepcev (10.1016/j.acha.2022.02.004_br0470) 2019; 51 Singer (10.1016/j.acha.2022.02.004_br0460) 2017; 6 Calder (10.1016/j.acha.2022.02.004_br0100) 2020 García Trillos (10.1016/j.acha.2022.02.004_br0260) 2019; 20 Belkin (10.1016/j.acha.2022.02.004_br0030) 2005 LeVeque (10.1016/j.acha.2022.02.004_br0380) 2007 Shi (10.1016/j.acha.2022.02.004_br0440) Calder (10.1016/j.acha.2022.02.004_br0110) 2019 Hoffmann (10.1016/j.acha.2022.02.004_br0340) Singer (10.1016/j.acha.2022.02.004_br0450) 2006; 21 Chapelle (10.1016/j.acha.2022.02.004_br0140) 2006 García Trillos (10.1016/j.acha.2022.02.004_br0220) 2019 Hebey (10.1016/j.acha.2022.02.004_br0310) 1996 Kirichenko (10.1016/j.acha.2022.02.004_br0360) 2017; 11 Müller (10.1016/j.acha.2022.02.004_br0400) 2019 Hein (10.1016/j.acha.2022.02.004_br0320) 2007; 8 Rosasco (10.1016/j.acha.2022.02.004_br0430) 2013; 14 Wang (10.1016/j.acha.2022.02.004_br0530) 2016; 17 Coifman (10.1016/j.acha.2022.02.004_br0160) 2005; 102 García Trillos (10.1016/j.acha.2022.02.004_br0250) García Trillos (10.1016/j.acha.2022.02.004_br0210) 2019; 1 Zhu (10.1016/j.acha.2022.02.004_br0560) 2003 Ting (10.1016/j.acha.2022.02.004_br0500) 2010 Maier (10.1016/j.acha.2022.02.004_br0390) 2009; 410 Dunlop (10.1016/j.acha.2022.02.004_br0180) 2019 Boucheron (10.1016/j.acha.2022.02.004_br0060) 2013 Belkin (10.1016/j.acha.2022.02.004_br0020) 2002 Flores (10.1016/j.acha.2022.02.004_br0190) Calder (10.1016/j.acha.2022.02.004_br0120) García Trillos (10.1016/j.acha.2022.02.004_br0270) 2018; 45 von Luxburg (10.1016/j.acha.2022.02.004_br0520) 2008; 36 Yuan (10.1016/j.acha.2022.02.004_br0540) do Carmo (10.1016/j.acha.2022.02.004_br0170) 1992 10.1016/j.acha.2022.02.004_br0230 Lei (10.1016/j.acha.2022.02.004_br0370) |
References_xml | – start-page: 470 year: 2005 end-page: 485 ident: br0330 article-title: From graphs to manifolds–weak and strong pointwise consistency of graph Laplacians publication-title: International Conference on Computational Learning Theory – volume: 410 start-page: 1749 year: 2009 end-page: 1764 ident: br0390 article-title: Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters publication-title: Theor. Comput. Sci. – year: 1992 ident: br0170 article-title: Riemannian Geometry publication-title: Mathematics: Theory & Applications – volume: 8 start-page: 1325 year: 2007 end-page: 1368 ident: br0320 article-title: Graph Laplacians and their convergence on random neighborhood graphs publication-title: J. Mach. Learn. Res. – year: 2006 ident: br0140 article-title: Semi-Supervised Learning – volume: 17 start-page: 3651 year: 2016 end-page: 3691 ident: br0530 article-title: Trend filtering on graphs publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 1 year: 2019 end-page: 37 ident: br0260 article-title: Local regularization of noisy point clouds: improved global geometric estimates and data analysis publication-title: J. Mach. Learn. Res. – year: 2018 ident: br0370 article-title: Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces – year: 2019 ident: br0110 article-title: Properly-weighted graph Laplacian for semi-supervised learning publication-title: Special Issue on Optimization in Data Science – start-page: 849 year: 2002 end-page: 856 ident: br0410 article-title: On spectral clustering: analysis and an algorithm publication-title: Advances in Neural Information Processing Systems – volume: 4 start-page: 675 year: 2014 end-page: 714 ident: br0070 article-title: A graph discretization of the Laplace-Beltrami operator publication-title: J. Spectr. Theory – volume: 102 start-page: 7426 year: 2005 end-page: 7431 ident: br0160 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc. Natl. Acad. Sci. – volume: 45 start-page: 239 year: 2018 end-page: 281 ident: br0270 article-title: A variational approach to the consistency of spectral clustering publication-title: Appl. Comput. Harmon. Anal. – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: br0510 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. – volume: 32 year: 2018 ident: br0080 article-title: The game theoretic p-Laplacian and semi-supervised learning with few labels publication-title: Nonlinearity – volume: vol. 5 year: 2003 ident: br0420 article-title: Random Geometric Graphs publication-title: Oxford Studies in Probability – volume: 1 start-page: 780 year: 2019 end-page: 812 ident: br0090 article-title: Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data publication-title: SIAM J. Math. Data Sci. – year: 2019 ident: br0340 article-title: Spectral analysis of weighted Laplacians arising in data clustering – volume: 6 start-page: 568 year: 2018 end-page: 595 ident: br0050 article-title: Uncertainty quantification in graph-based classification of high dimensional data publication-title: SIAM/ASA J. Uncertain. Quantificat. – year: 2019 ident: br0220 article-title: Spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace Beltrami operator publication-title: Found. Comput. Math. – start-page: 25 year: 2006 end-page: 32 ident: br0010 article-title: Learning on graph with Laplacian regularization publication-title: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS'06 – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: br0040 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – year: 2017 ident: br0240 article-title: On the consistency of graph-based Bayesian learning and the scalability of sampling algorithms – year: 2010 ident: br0500 article-title: An analysis of the convergence of graph Laplacians publication-title: International Conference on Machine Learning (ICML) – start-page: 1601 year: 2005 end-page: 1608 ident: br0550 article-title: Self-tuning spectral clustering publication-title: Advances in Neural Information Processing Systems – year: 2020 ident: br0120 article-title: Rates of convergence for Laplacian semi-supervised learning with low labelling rates – year: 2019 ident: br0180 article-title: Large data and zero noise limits of graph-based semi-supervised learning algorithms publication-title: Appl. Comput. Harmon. Anal. – year: 2019 ident: br0130 article-title: Mumford-Shah functionals on graphs and their asymptotics – year: 2019 ident: br0190 article-title: Algorithms for Lp-based semi-supervised learning on graphs – year: 1996 ident: br0310 article-title: Sobolev Spaces on Riemannian Manifolds – volume: 36 start-page: 555 year: 2008 end-page: 586 ident: br0520 article-title: Consistency of spectral clustering publication-title: Ann. Stat. – start-page: 486 year: 2005 end-page: 500 ident: br0030 article-title: Towards a theoretical foundation for Laplacian-based manifold methods publication-title: International Conference on Computational Learning Theory – reference: N. García Trillos, F. Hoffmann, B. Hosseini, Geometric structure of graph Laplacian embeddings, preprint, 2019. – start-page: 585 year: 2002 end-page: 591 ident: br0020 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in Neural Information Processing Systems – year: 2013 ident: br0060 article-title: Concentration Inequalities: A Nonasymptotic Theory of Independence – volume: 162 start-page: 707 year: 2015 end-page: 738 ident: br0200 article-title: On the rate of convergence in Wasserstein distance of the empirical measure publication-title: Probab. Theory Relat. Fields – volume: 11 start-page: 891 year: 2017 end-page: 915 ident: br0360 article-title: Estimating a smooth function on a large graph by Bayesian Laplacian regularisation publication-title: Electron. J. Stat. – year: 2003 ident: br0570 article-title: Semi-supervised learning: from Gaussian fields to Gaussian processes – year: 2019 ident: br0350 article-title: Consistency of semi-supervised learning algorithms on graphs: probit and one-hot methods – volume: 21 start-page: 128 year: 2006 end-page: 134 ident: br0450 article-title: From graph to manifold Laplacian: the convergence rate publication-title: Appl. Comput. Harmon. Anal. – volume: 6 start-page: 58 year: 2017 end-page: 123 ident: br0460 article-title: Spectral convergence of the connection Laplacian from random samples publication-title: Inf. Inference – volume: 51 start-page: 2085 year: 2019 end-page: 2120 ident: br0470 article-title: Analysis of p-Laplacian regularization in semisupervised learning publication-title: SIAM J. Math. Anal. – year: 2015 ident: br0290 article-title: Elliptic Partial Differential Equations of Second Order – year: 2019 ident: br0400 article-title: Optimal Cheeger cuts and bisections of random geometric graphs publication-title: Ann. Appl. Probab. – volume: vol. 51 start-page: 238 year: 2006 end-page: 259 ident: br0300 article-title: Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results publication-title: High Dimensional Probability – volume: 17 start-page: 6268 year: 2016 end-page: 6313 ident: br0280 article-title: Consistency of Cheeger and ratio graph cuts publication-title: J. Mach. Learn. Res. – start-page: 144 year: 2003 end-page: 158 ident: br0480 article-title: Kernels and regularization on graphs publication-title: Learning Theory and Kernel Machines – volume: 1 start-page: 93 year: 2019 end-page: 120 ident: br0210 article-title: Variational limits of k-nn graph-based functionals on data clouds publication-title: SIAM J. Math. Data Sci. – year: 2019 ident: br0250 article-title: A maximum principle argument for the uniform convergence of graph Laplacian regressors – year: 2015 ident: br0440 article-title: Convergence of Laplacian spectra from random samples – year: 2020 ident: br0540 article-title: A continuum limit for the PageRank algorithm – volume: 14 start-page: 1665 year: 2013 end-page: 1714 ident: br0430 article-title: Nonparametric sparsity and regularization publication-title: J. Mach. Learn. Res. – start-page: 912 year: 2003 end-page: 919 ident: br0560 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proceedings of the 20th International Conference on Machine Learning (ICML-03) – year: 2007 ident: br0380 article-title: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems – year: 2020 ident: br0150 article-title: Convergence of Graph Laplacian with knn Self-Tuned Kernels – year: 2020 ident: br0100 article-title: Poisson learning: graph based semi-supervised learning at very low label rates publication-title: International Conference on Machine Learning (ICML) – volume: 42 start-page: 285 year: 2014 end-page: 323 ident: br0490 article-title: Adaptive piecewise polynomial estimation via trend filtering publication-title: Ann. Stat. – volume: 102 start-page: 7426 issue: 21 year: 2005 ident: 10.1016/j.acha.2022.02.004_br0160 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0500334102 – year: 1992 ident: 10.1016/j.acha.2022.02.004_br0170 article-title: Riemannian Geometry doi: 10.1007/978-1-4757-2201-7 – volume: 6 start-page: 568 issue: 2 year: 2018 ident: 10.1016/j.acha.2022.02.004_br0050 article-title: Uncertainty quantification in graph-based classification of high dimensional data publication-title: SIAM/ASA J. Uncertain. Quantificat. doi: 10.1137/17M1134214 – ident: 10.1016/j.acha.2022.02.004_br0540 – volume: 1 start-page: 93 issue: 1 year: 2019 ident: 10.1016/j.acha.2022.02.004_br0210 article-title: Variational limits of k-nn graph-based functionals on data clouds publication-title: SIAM J. Math. Data Sci. doi: 10.1137/18M1188999 – volume: 32 issue: 1 year: 2018 ident: 10.1016/j.acha.2022.02.004_br0080 article-title: The game theoretic p-Laplacian and semi-supervised learning with few labels publication-title: Nonlinearity doi: 10.1088/1361-6544/aae949 – start-page: 912 year: 2003 ident: 10.1016/j.acha.2022.02.004_br0560 article-title: Semi-supervised learning using Gaussian fields and harmonic functions – volume: 21 start-page: 128 issue: 1 year: 2006 ident: 10.1016/j.acha.2022.02.004_br0450 article-title: From graph to manifold Laplacian: the convergence rate publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.03.004 – start-page: 1601 year: 2005 ident: 10.1016/j.acha.2022.02.004_br0550 article-title: Self-tuning spectral clustering – volume: 11 start-page: 891 issue: 1 year: 2017 ident: 10.1016/j.acha.2022.02.004_br0360 article-title: Estimating a smooth function on a large graph by Bayesian Laplacian regularisation publication-title: Electron. J. Stat. doi: 10.1214/17-EJS1253 – volume: 45 start-page: 239 issue: 2 year: 2018 ident: 10.1016/j.acha.2022.02.004_br0270 article-title: A variational approach to the consistency of spectral clustering publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.09.003 – volume: 17 start-page: 6268 issue: 1 year: 2016 ident: 10.1016/j.acha.2022.02.004_br0280 article-title: Consistency of Cheeger and ratio graph cuts publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.acha.2022.02.004_br0440 – ident: 10.1016/j.acha.2022.02.004_br0230 – volume: 42 start-page: 285 issue: 1 year: 2014 ident: 10.1016/j.acha.2022.02.004_br0490 article-title: Adaptive piecewise polynomial estimation via trend filtering publication-title: Ann. Stat. doi: 10.1214/13-AOS1189 – ident: 10.1016/j.acha.2022.02.004_br0130 – volume: 14 start-page: 1665 issue: 1 year: 2013 ident: 10.1016/j.acha.2022.02.004_br0430 article-title: Nonparametric sparsity and regularization publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.acha.2022.02.004_br0060 – volume: 20 start-page: 1 issue: 136 year: 2019 ident: 10.1016/j.acha.2022.02.004_br0260 article-title: Local regularization of noisy point clouds: improved global geometric estimates and data analysis publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.acha.2022.02.004_br0250 – ident: 10.1016/j.acha.2022.02.004_br0370 – ident: 10.1016/j.acha.2022.02.004_br0240 – volume: 1 start-page: 780 issue: 4 year: 2019 ident: 10.1016/j.acha.2022.02.004_br0090 article-title: Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data publication-title: SIAM J. Math. Data Sci. doi: 10.1137/18M1199241 – volume: 162 start-page: 707 issue: 3–4 year: 2015 ident: 10.1016/j.acha.2022.02.004_br0200 article-title: On the rate of convergence in Wasserstein distance of the empirical measure publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-014-0583-7 – ident: 10.1016/j.acha.2022.02.004_br0120 – year: 2020 ident: 10.1016/j.acha.2022.02.004_br0100 article-title: Poisson learning: graph based semi-supervised learning at very low label rates – volume: 51 start-page: 2085 issue: 3 year: 2019 ident: 10.1016/j.acha.2022.02.004_br0470 article-title: Analysis of p-Laplacian regularization in semisupervised learning publication-title: SIAM J. Math. Anal. doi: 10.1137/17M115222X – year: 1996 ident: 10.1016/j.acha.2022.02.004_br0310 – volume: 6 start-page: 58 issue: 1 year: 2017 ident: 10.1016/j.acha.2022.02.004_br0460 article-title: Spectral convergence of the connection Laplacian from random samples publication-title: Inf. Inference – year: 2007 ident: 10.1016/j.acha.2022.02.004_br0380 – volume: 17 start-page: 3651 issue: 1 year: 2016 ident: 10.1016/j.acha.2022.02.004_br0530 article-title: Trend filtering on graphs publication-title: J. Mach. Learn. Res. – start-page: 25 year: 2006 ident: 10.1016/j.acha.2022.02.004_br0010 article-title: Learning on graph with Laplacian regularization – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.acha.2022.02.004_br0510 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – year: 2010 ident: 10.1016/j.acha.2022.02.004_br0500 article-title: An analysis of the convergence of graph Laplacians – volume: 8 start-page: 1325 issue: Jun year: 2007 ident: 10.1016/j.acha.2022.02.004_br0320 article-title: Graph Laplacians and their convergence on random neighborhood graphs publication-title: J. Mach. Learn. Res. – year: 2003 ident: 10.1016/j.acha.2022.02.004_br0570 – year: 2015 ident: 10.1016/j.acha.2022.02.004_br0290 – ident: 10.1016/j.acha.2022.02.004_br0350 – start-page: 486 year: 2005 ident: 10.1016/j.acha.2022.02.004_br0030 article-title: Towards a theoretical foundation for Laplacian-based manifold methods – start-page: 470 year: 2005 ident: 10.1016/j.acha.2022.02.004_br0330 article-title: From graphs to manifolds–weak and strong pointwise consistency of graph Laplacians – volume: 4 start-page: 675 issue: 4 year: 2014 ident: 10.1016/j.acha.2022.02.004_br0070 article-title: A graph discretization of the Laplace-Beltrami operator publication-title: J. Spectr. Theory doi: 10.4171/jst/83 – volume: 410 start-page: 1749 issue: 19 year: 2009 ident: 10.1016/j.acha.2022.02.004_br0390 article-title: Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2009.01.009 – start-page: 585 year: 2002 ident: 10.1016/j.acha.2022.02.004_br0020 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – volume: 7 start-page: 2399 issue: Nov year: 2006 ident: 10.1016/j.acha.2022.02.004_br0040 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – start-page: 144 year: 2003 ident: 10.1016/j.acha.2022.02.004_br0480 article-title: Kernels and regularization on graphs – year: 2019 ident: 10.1016/j.acha.2022.02.004_br0220 article-title: Spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace Beltrami operator publication-title: Found. Comput. Math. – volume: 36 start-page: 555 issue: 2 year: 2008 ident: 10.1016/j.acha.2022.02.004_br0520 article-title: Consistency of spectral clustering publication-title: Ann. Stat. doi: 10.1214/009053607000000640 – year: 2019 ident: 10.1016/j.acha.2022.02.004_br0180 article-title: Large data and zero noise limits of graph-based semi-supervised learning algorithms publication-title: Appl. Comput. Harmon. Anal. – volume: vol. 5 year: 2003 ident: 10.1016/j.acha.2022.02.004_br0420 article-title: Random Geometric Graphs – start-page: 849 year: 2002 ident: 10.1016/j.acha.2022.02.004_br0410 article-title: On spectral clustering: analysis and an algorithm – ident: 10.1016/j.acha.2022.02.004_br0340 – ident: 10.1016/j.acha.2022.02.004_br0190 – year: 2020 ident: 10.1016/j.acha.2022.02.004_br0150 – year: 2019 ident: 10.1016/j.acha.2022.02.004_br0110 article-title: Properly-weighted graph Laplacian for semi-supervised learning publication-title: Appl. Math. Optim. – volume: vol. 51 start-page: 238 year: 2006 ident: 10.1016/j.acha.2022.02.004_br0300 article-title: Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results – year: 2019 ident: 10.1016/j.acha.2022.02.004_br0400 article-title: Optimal Cheeger cuts and bisections of random geometric graphs publication-title: Ann. Appl. Probab. – year: 2006 ident: 10.1016/j.acha.2022.02.004_br0140 |
SSID | ssj0011459 |
Score | 2.5993733 |
Snippet | In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123 |
SubjectTerms | Discrete to continuum Graph Laplacian Laplace-Beltrami operator Rates of convergence Spectral convergence |
Title | Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs |
URI | https://dx.doi.org/10.1016/j.acha.2022.02.004 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9hs3jmWYqnW9qAWewv7xKqkpalX_5V_w9_kzCYtFaQHIRB2mYEwmczObr75hpBLA1HP903icMFggxKEvsNNwp3Uk4mJIsRh4B_dwTDqjYK7cTiukc6yFgZhlVXsL2O6jdbVTKuyZms2mbQeYTMD2YMLHmlZXLCiHNnrwKevP1cwD0j3bcM0FHZQuiqcKTFeXL4g95Dnlbydwd-L09qC090ju1WmSNvlw-yTms4PyM4afyCMBivS1eKQjMoDAq2oLZ-cg7LFlNvySk2RE6KgkKNSS1JN7zniscA7CjrN6feXY6cLynNF35zhsBQrjsioe_PU6TlV1wRH-q67QKSDYrEMWKKFYlrEQcRVLJGX3oMvNkyVMUJo5TMdp0wxV0d-YESYRL5JFeP-Mann01yfEKriRHBPhWGsYNckIbeRSmpPGJlwpnXSIGxprkxWlOLY2eI9W2LHXjM0cYYmzly43KBBrlY6s5JQY6N0uHwL2S-3yCDib9A7_afeGdnGUQkiOyf1xfxDX0DWsRBN61ZNstW-7feGeO8_PPd_AONi2AU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw_eJDSbbF7HUiypbXOxhd7CPrEqaWnqT_Nv-JvczaNUkB6EXLKZgTCZzM7ufvMNwIPSUc91VWhRhvUChXiuRVVIrcjhofJ9g8MwJ7rjxI-n5HnmzRrQq2thDKyyiv1lTC-idTXSqazZWc7nnRe9mNHZg609smBxCfagZdipSBNa3cEwTjaHCZgUPdOMvGUUqtqZEuZF-auhH3KckrqT_D0_bc05_WM4qpJF1C3f5wQaMjuFwy0KQX033vCu5mcwLfcIpEBFBeVKKxew8qLCUiJDC5EjnaaigqcajaiBZGkHydEiQ99fVjGcI5oJ9G4lSSmWn8O0_zTpxVbVOMHirm2vDdhB4IATHEomsGQB8akIuKGmd_RP60VCKcakcLEMIiywLX2XKOaFvqsigal7Ac1skclLQCIIGXWE5wVCL5y4Tm-44NJhiocUSxm2AdfmSnnFKm6aW3ykNXzsLTUmTo2JU1tfNmnD40ZnWXJq7JT26q-Q_vKMVAf9HXpX_9S7h_14Mh6lo0EyvIYD86TElN1Ac736lLc6CVmzu8rJfgCQWtkT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+spectral+convergence+rates+for+graph+Laplacians+on+%CE%B5-graphs+and+k-NN+graphs&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Calder%2C+Jeff&rft.au=Garc%C3%ADa+Trillos%2C+Nicol%C3%A1s&rft.date=2022-09-01&rft.issn=1063-5203&rft.volume=60&rft.spage=123&rft.epage=175&rft_id=info:doi/10.1016%2Fj.acha.2022.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2022_02_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |