Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs

In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the...

Full description

Saved in:
Bibliographic Details
Published inApplied and computational harmonic analysis Vol. 60; pp. 123 - 175
Main Authors Calder, Jeff, García Trillos, Nicolás
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1063-5203
1096-603X
DOI10.1016/j.acha.2022.02.004

Cover

Loading…
Abstract In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the same as the pointwise consistency rates for graph Laplacians. In particular, for an optimal choice of the graph connectivity ε, our results show that the eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-Beltrami operator at a rate of O(n−1/(m+4)), up to log factors, where m is the manifold dimension and n is the number of vertices in the graph. Our approach is general and allows us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs. We also present the results of numerical experiments analyzing convergence rates on the two dimensional sphere.
AbstractList In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the same as the pointwise consistency rates for graph Laplacians. In particular, for an optimal choice of the graph connectivity ε, our results show that the eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-Beltrami operator at a rate of O(n−1/(m+4)), up to log factors, where m is the manifold dimension and n is the number of vertices in the graph. Our approach is general and allows us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs. We also present the results of numerical experiments analyzing convergence rates on the two dimensional sphere.
Author García Trillos, Nicolás
Calder, Jeff
Author_xml – sequence: 1
  givenname: Jeff
  surname: Calder
  fullname: Calder, Jeff
  email: jcalder@umn.edu
  organization: School of Mathematics, University of Minnesota, United States of America
– sequence: 2
  givenname: Nicolás
  orcidid: 0000-0002-7711-5901
  surname: García Trillos
  fullname: García Trillos, Nicolás
  email: nicolasgarcia@stat.wisc.edu
  organization: Department of Statistics, University of Wisconsin-Madison, United States of America
BookMark eNp9kM1qwzAMgM3oYG23F9jJL5BOjp2kgV1G2U-hdJcVdjOOrbTuUjvYobAH22vsmZasO-1QEEhI-gT6JmTkvENCbhnMGLD8bj9TeqdmKaTpDPoAcUHGDMo8yYG_j4Y650mWAr8ikxj3AIyJrByTzfLQBn9EQ2OLuguqodq7I4YtOo00qA4jrX2g26DaHV2ptlHaKhepd_T7K_ltR6qcoR_Jen1ai9fkslZNxJu_PCWbp8e3xUuyen1eLh5WieYAXZIJMKzQgs2xMgyrQuTKFLrohykIyEpT11WFhjMsSmYYYM5FXWXznNelYYpPSXq6q4OPMWAt22APKnxKBnIQI_dyECMHMRL6ANFD83-Qtp3qrHf9-7Y5j96fUOyfOloMMmo7iDI29Pak8fYc_gMbR4G4
CitedBy_id crossref_primary_10_1016_j_acha_2022_09_003
crossref_primary_10_1093_imaiai_iaae031
crossref_primary_10_1109_TSP_2024_3392360
crossref_primary_10_1093_imanum_drac048
crossref_primary_10_1137_23M1559087
crossref_primary_10_1007_s43670_023_00075_5
crossref_primary_10_1016_j_ijcce_2022_10_002
crossref_primary_10_1002_aaai_12210
crossref_primary_10_1093_imaiai_iaae026
crossref_primary_10_1109_TSP_2024_3378379
crossref_primary_10_1016_j_acha_2024_101635
crossref_primary_10_1007_s00526_024_02721_9
crossref_primary_10_1007_s10208_025_09696_9
crossref_primary_10_3150_23_BEJ1685
crossref_primary_10_1007_s40687_022_00371_x
crossref_primary_10_1016_j_acha_2022_06_003
crossref_primary_10_1214_24_AAP2052
crossref_primary_10_1098_rsos_230898
crossref_primary_10_1137_22M1531981
crossref_primary_10_1146_annurev_statistics_040522_115238
Cites_doi 10.1073/pnas.0500334102
10.1007/978-1-4757-2201-7
10.1137/17M1134214
10.1137/18M1188999
10.1088/1361-6544/aae949
10.1016/j.acha.2006.03.004
10.1214/17-EJS1253
10.1016/j.acha.2016.09.003
10.1214/13-AOS1189
10.1137/18M1199241
10.1007/s00440-014-0583-7
10.1137/17M115222X
10.1007/s11222-007-9033-z
10.4171/jst/83
10.1016/j.tcs.2009.01.009
10.1214/009053607000000640
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.acha.2022.02.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 175
ExternalDocumentID 10_1016_j_acha_2022_02_004
S1063520322000227
GrantInformation_xml – fundername: NSF
  grantid: DMS 1912802
  funderid: https://doi.org/10.13039/100000001
– fundername: NSF-DMS
  grantid: 1713691
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-540d17c418ebd1eb746ad7c7300204059dffbbed31e791d10e634fb5863f9d1a3
IEDL.DBID .~1
ISSN 1063-5203
IngestDate Tue Jul 01 03:49:06 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Fri Feb 23 02:40:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discrete to continuum
Graph Laplacian
Spectral convergence
Rates of convergence
Laplace-Beltrami operator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-540d17c418ebd1eb746ad7c7300204059dffbbed31e791d10e634fb5863f9d1a3
ORCID 0000-0002-7711-5901
PageCount 53
ParticipantIDs crossref_primary_10_1016_j_acha_2022_02_004
crossref_citationtrail_10_1016_j_acha_2022_02_004
elsevier_sciencedirect_doi_10_1016_j_acha_2022_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Calder (br0080) 2018; 32
Boucheron, Lugosi, Massart (br0060) 2013
Hoffmann, Hosseini, Oberai, Stuart (br0340) 2019
Zhu, Ghahramani, Lafferty (br0560) 2003
Calder, Slepčev, Thorpe (br0120) 2020
Calder, Slepčev (br0110) 2019
N. García Trillos, F. Hoffmann, B. Hosseini, Geometric structure of graph Laplacian embeddings, preprint, 2019.
Hoffmann, Hosseini, Ren, Stuart (br0350) 2019
Zhu, Lafferty, Ghahramani (br0570) 2003
Giné, Koltchinskii (br0300) 2006; vol. 51
Wang, Sharpnack, Smola, Tibshirani (br0530) 2016; 17
Maier, Hein, von Luxburg (br0390) 2009; 410
Belkin, Niyogi (br0030) 2005
Müller, Penrose (br0400) 2019
Tibshirani (br0490) 2014; 42
Rosasco, Villa, Mosci, Santoro, Verri (br0430) 2013; 14
Yuan, Calder, Osting (br0540) 2020
Ng, Jordan, Weiss (br0410) 2002
Belkin, Niyogi (br0020) 2002
García Trillos, Gerlach, Hein, Slepčev (br0220) 2019
Calder (br0090) 2019; 1
Kirichenko, van Zanten (br0360) 2017; 11
Shi (br0440) 2015
Lei (br0370) 2018
Penrose (br0420) 2003; vol. 5
Coifman, Lafon, Lee, Maggioni, Nadler, Warner, Zucker (br0160) 2005; 102
García Trillos, Slepčev, Von Brecht, Laurent, Bresson (br0280) 2016; 17
Singer, Wu (br0460) 2017; 6
Flores, Calder, Lerman (br0190) 2019
Dunlop, Slepčev, Stuart, Thorpe (br0180) 2019
García Trillos, Kaplan, Samakhoana, Sanz-Alonso (br0240) 2017
Singer (br0450) 2006; 21
Chapelle, Scholkopf, Zien (br0140) 2006
von Luxburg (br0510) 2007; 17
Zelnik-Manor, Perona (br0550) 2005
Burago, Ivanov, Kurylev (br0070) 2014; 4
Ando, Zhang (br0010) 2006
Hein, Audibert, von Luxburg (br0320) 2007; 8
Belkin, Niyogi, Sindhwani (br0040) 2006; 7
García Trillos (br0210) 2019; 1
García Trillos, Slepčev (br0270) 2018; 45
Slepcev, Thorpe (br0470) 2019; 51
Cheng, Wu (br0150) 2020
Ting, Huang, Jordan (br0500) 2010
do Carmo (br0170) 1992
Calder, Cook, Thorpe, Slepčev (br0100) 2020
Hebey (br0310) 1996
von Luxburg, Belkin, Bousquet (br0520) 2008; 36
Gilbarg, Trudinger (br0290) 2015
Smola, Kondor (br0480) 2003
Caroccia, Chambolle, Slepěv (br0130) 2019
García Trillos, Murray (br0250) 2019
Bertozzi, Luo, Stuart, Zygalakis (br0050) 2018; 6
Fournier, Guillin (br0200) 2015; 162
LeVeque (br0380) 2007
Hein, Audibert, Von Luxburg (br0330) 2005
García Trillos, Sanz-Alonso, Yang (br0260) 2019; 20
Calder (10.1016/j.acha.2022.02.004_br0080) 2018; 32
Ng (10.1016/j.acha.2022.02.004_br0410) 2002
Smola (10.1016/j.acha.2022.02.004_br0480) 2003
Burago (10.1016/j.acha.2022.02.004_br0070) 2014; 4
Ando (10.1016/j.acha.2022.02.004_br0010) 2006
Belkin (10.1016/j.acha.2022.02.004_br0040) 2006; 7
Tibshirani (10.1016/j.acha.2022.02.004_br0490) 2014; 42
Hoffmann (10.1016/j.acha.2022.02.004_br0350)
Zelnik-Manor (10.1016/j.acha.2022.02.004_br0550) 2005
Bertozzi (10.1016/j.acha.2022.02.004_br0050) 2018; 6
Penrose (10.1016/j.acha.2022.02.004_br0420) 2003; vol. 5
García Trillos (10.1016/j.acha.2022.02.004_br0280) 2016; 17
Caroccia (10.1016/j.acha.2022.02.004_br0130)
Hein (10.1016/j.acha.2022.02.004_br0330) 2005
Cheng (10.1016/j.acha.2022.02.004_br0150) 2020
Fournier (10.1016/j.acha.2022.02.004_br0200) 2015; 162
García Trillos (10.1016/j.acha.2022.02.004_br0240)
Giné (10.1016/j.acha.2022.02.004_br0300) 2006; vol. 51
Calder (10.1016/j.acha.2022.02.004_br0090) 2019; 1
Gilbarg (10.1016/j.acha.2022.02.004_br0290) 2015
von Luxburg (10.1016/j.acha.2022.02.004_br0510) 2007; 17
Zhu (10.1016/j.acha.2022.02.004_br0570) 2003
Slepcev (10.1016/j.acha.2022.02.004_br0470) 2019; 51
Singer (10.1016/j.acha.2022.02.004_br0460) 2017; 6
Calder (10.1016/j.acha.2022.02.004_br0100) 2020
García Trillos (10.1016/j.acha.2022.02.004_br0260) 2019; 20
Belkin (10.1016/j.acha.2022.02.004_br0030) 2005
LeVeque (10.1016/j.acha.2022.02.004_br0380) 2007
Shi (10.1016/j.acha.2022.02.004_br0440)
Calder (10.1016/j.acha.2022.02.004_br0110) 2019
Hoffmann (10.1016/j.acha.2022.02.004_br0340)
Singer (10.1016/j.acha.2022.02.004_br0450) 2006; 21
Chapelle (10.1016/j.acha.2022.02.004_br0140) 2006
García Trillos (10.1016/j.acha.2022.02.004_br0220) 2019
Hebey (10.1016/j.acha.2022.02.004_br0310) 1996
Kirichenko (10.1016/j.acha.2022.02.004_br0360) 2017; 11
Müller (10.1016/j.acha.2022.02.004_br0400) 2019
Hein (10.1016/j.acha.2022.02.004_br0320) 2007; 8
Rosasco (10.1016/j.acha.2022.02.004_br0430) 2013; 14
Wang (10.1016/j.acha.2022.02.004_br0530) 2016; 17
Coifman (10.1016/j.acha.2022.02.004_br0160) 2005; 102
García Trillos (10.1016/j.acha.2022.02.004_br0250)
García Trillos (10.1016/j.acha.2022.02.004_br0210) 2019; 1
Zhu (10.1016/j.acha.2022.02.004_br0560) 2003
Ting (10.1016/j.acha.2022.02.004_br0500) 2010
Maier (10.1016/j.acha.2022.02.004_br0390) 2009; 410
Dunlop (10.1016/j.acha.2022.02.004_br0180) 2019
Boucheron (10.1016/j.acha.2022.02.004_br0060) 2013
Belkin (10.1016/j.acha.2022.02.004_br0020) 2002
Flores (10.1016/j.acha.2022.02.004_br0190)
Calder (10.1016/j.acha.2022.02.004_br0120)
García Trillos (10.1016/j.acha.2022.02.004_br0270) 2018; 45
von Luxburg (10.1016/j.acha.2022.02.004_br0520) 2008; 36
Yuan (10.1016/j.acha.2022.02.004_br0540)
do Carmo (10.1016/j.acha.2022.02.004_br0170) 1992
10.1016/j.acha.2022.02.004_br0230
Lei (10.1016/j.acha.2022.02.004_br0370)
References_xml – start-page: 470
  year: 2005
  end-page: 485
  ident: br0330
  article-title: From graphs to manifolds–weak and strong pointwise consistency of graph Laplacians
  publication-title: International Conference on Computational Learning Theory
– volume: 410
  start-page: 1749
  year: 2009
  end-page: 1764
  ident: br0390
  article-title: Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters
  publication-title: Theor. Comput. Sci.
– year: 1992
  ident: br0170
  article-title: Riemannian Geometry
  publication-title: Mathematics: Theory & Applications
– volume: 8
  start-page: 1325
  year: 2007
  end-page: 1368
  ident: br0320
  article-title: Graph Laplacians and their convergence on random neighborhood graphs
  publication-title: J. Mach. Learn. Res.
– year: 2006
  ident: br0140
  article-title: Semi-Supervised Learning
– volume: 17
  start-page: 3651
  year: 2016
  end-page: 3691
  ident: br0530
  article-title: Trend filtering on graphs
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 37
  ident: br0260
  article-title: Local regularization of noisy point clouds: improved global geometric estimates and data analysis
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: br0370
  article-title: Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces
– year: 2019
  ident: br0110
  article-title: Properly-weighted graph Laplacian for semi-supervised learning
  publication-title: Special Issue on Optimization in Data Science
– start-page: 849
  year: 2002
  end-page: 856
  ident: br0410
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 4
  start-page: 675
  year: 2014
  end-page: 714
  ident: br0070
  article-title: A graph discretization of the Laplace-Beltrami operator
  publication-title: J. Spectr. Theory
– volume: 102
  start-page: 7426
  year: 2005
  end-page: 7431
  ident: br0160
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc. Natl. Acad. Sci.
– volume: 45
  start-page: 239
  year: 2018
  end-page: 281
  ident: br0270
  article-title: A variational approach to the consistency of spectral clustering
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: br0510
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– volume: 32
  year: 2018
  ident: br0080
  article-title: The game theoretic p-Laplacian and semi-supervised learning with few labels
  publication-title: Nonlinearity
– volume: vol. 5
  year: 2003
  ident: br0420
  article-title: Random Geometric Graphs
  publication-title: Oxford Studies in Probability
– volume: 1
  start-page: 780
  year: 2019
  end-page: 812
  ident: br0090
  article-title: Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data
  publication-title: SIAM J. Math. Data Sci.
– year: 2019
  ident: br0340
  article-title: Spectral analysis of weighted Laplacians arising in data clustering
– volume: 6
  start-page: 568
  year: 2018
  end-page: 595
  ident: br0050
  article-title: Uncertainty quantification in graph-based classification of high dimensional data
  publication-title: SIAM/ASA J. Uncertain. Quantificat.
– year: 2019
  ident: br0220
  article-title: Spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace Beltrami operator
  publication-title: Found. Comput. Math.
– start-page: 25
  year: 2006
  end-page: 32
  ident: br0010
  article-title: Learning on graph with Laplacian regularization
  publication-title: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS'06
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: br0040
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: br0240
  article-title: On the consistency of graph-based Bayesian learning and the scalability of sampling algorithms
– year: 2010
  ident: br0500
  article-title: An analysis of the convergence of graph Laplacians
  publication-title: International Conference on Machine Learning (ICML)
– start-page: 1601
  year: 2005
  end-page: 1608
  ident: br0550
  article-title: Self-tuning spectral clustering
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: br0120
  article-title: Rates of convergence for Laplacian semi-supervised learning with low labelling rates
– year: 2019
  ident: br0180
  article-title: Large data and zero noise limits of graph-based semi-supervised learning algorithms
  publication-title: Appl. Comput. Harmon. Anal.
– year: 2019
  ident: br0130
  article-title: Mumford-Shah functionals on graphs and their asymptotics
– year: 2019
  ident: br0190
  article-title: Algorithms for Lp-based semi-supervised learning on graphs
– year: 1996
  ident: br0310
  article-title: Sobolev Spaces on Riemannian Manifolds
– volume: 36
  start-page: 555
  year: 2008
  end-page: 586
  ident: br0520
  article-title: Consistency of spectral clustering
  publication-title: Ann. Stat.
– start-page: 486
  year: 2005
  end-page: 500
  ident: br0030
  article-title: Towards a theoretical foundation for Laplacian-based manifold methods
  publication-title: International Conference on Computational Learning Theory
– reference: N. García Trillos, F. Hoffmann, B. Hosseini, Geometric structure of graph Laplacian embeddings, preprint, 2019.
– start-page: 585
  year: 2002
  end-page: 591
  ident: br0020
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  ident: br0060
  article-title: Concentration Inequalities: A Nonasymptotic Theory of Independence
– volume: 162
  start-page: 707
  year: 2015
  end-page: 738
  ident: br0200
  article-title: On the rate of convergence in Wasserstein distance of the empirical measure
  publication-title: Probab. Theory Relat. Fields
– volume: 11
  start-page: 891
  year: 2017
  end-page: 915
  ident: br0360
  article-title: Estimating a smooth function on a large graph by Bayesian Laplacian regularisation
  publication-title: Electron. J. Stat.
– year: 2003
  ident: br0570
  article-title: Semi-supervised learning: from Gaussian fields to Gaussian processes
– year: 2019
  ident: br0350
  article-title: Consistency of semi-supervised learning algorithms on graphs: probit and one-hot methods
– volume: 21
  start-page: 128
  year: 2006
  end-page: 134
  ident: br0450
  article-title: From graph to manifold Laplacian: the convergence rate
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 6
  start-page: 58
  year: 2017
  end-page: 123
  ident: br0460
  article-title: Spectral convergence of the connection Laplacian from random samples
  publication-title: Inf. Inference
– volume: 51
  start-page: 2085
  year: 2019
  end-page: 2120
  ident: br0470
  article-title: Analysis of p-Laplacian regularization in semisupervised learning
  publication-title: SIAM J. Math. Anal.
– year: 2015
  ident: br0290
  article-title: Elliptic Partial Differential Equations of Second Order
– year: 2019
  ident: br0400
  article-title: Optimal Cheeger cuts and bisections of random geometric graphs
  publication-title: Ann. Appl. Probab.
– volume: vol. 51
  start-page: 238
  year: 2006
  end-page: 259
  ident: br0300
  article-title: Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results
  publication-title: High Dimensional Probability
– volume: 17
  start-page: 6268
  year: 2016
  end-page: 6313
  ident: br0280
  article-title: Consistency of Cheeger and ratio graph cuts
  publication-title: J. Mach. Learn. Res.
– start-page: 144
  year: 2003
  end-page: 158
  ident: br0480
  article-title: Kernels and regularization on graphs
  publication-title: Learning Theory and Kernel Machines
– volume: 1
  start-page: 93
  year: 2019
  end-page: 120
  ident: br0210
  article-title: Variational limits of k-nn graph-based functionals on data clouds
  publication-title: SIAM J. Math. Data Sci.
– year: 2019
  ident: br0250
  article-title: A maximum principle argument for the uniform convergence of graph Laplacian regressors
– year: 2015
  ident: br0440
  article-title: Convergence of Laplacian spectra from random samples
– year: 2020
  ident: br0540
  article-title: A continuum limit for the PageRank algorithm
– volume: 14
  start-page: 1665
  year: 2013
  end-page: 1714
  ident: br0430
  article-title: Nonparametric sparsity and regularization
  publication-title: J. Mach. Learn. Res.
– start-page: 912
  year: 2003
  end-page: 919
  ident: br0560
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proceedings of the 20th International Conference on Machine Learning (ICML-03)
– year: 2007
  ident: br0380
  article-title: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
– year: 2020
  ident: br0150
  article-title: Convergence of Graph Laplacian with knn Self-Tuned Kernels
– year: 2020
  ident: br0100
  article-title: Poisson learning: graph based semi-supervised learning at very low label rates
  publication-title: International Conference on Machine Learning (ICML)
– volume: 42
  start-page: 285
  year: 2014
  end-page: 323
  ident: br0490
  article-title: Adaptive piecewise polynomial estimation via trend filtering
  publication-title: Ann. Stat.
– volume: 102
  start-page: 7426
  issue: 21
  year: 2005
  ident: 10.1016/j.acha.2022.02.004_br0160
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0500334102
– year: 1992
  ident: 10.1016/j.acha.2022.02.004_br0170
  article-title: Riemannian Geometry
  doi: 10.1007/978-1-4757-2201-7
– volume: 6
  start-page: 568
  issue: 2
  year: 2018
  ident: 10.1016/j.acha.2022.02.004_br0050
  article-title: Uncertainty quantification in graph-based classification of high dimensional data
  publication-title: SIAM/ASA J. Uncertain. Quantificat.
  doi: 10.1137/17M1134214
– ident: 10.1016/j.acha.2022.02.004_br0540
– volume: 1
  start-page: 93
  issue: 1
  year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0210
  article-title: Variational limits of k-nn graph-based functionals on data clouds
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M1188999
– volume: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.acha.2022.02.004_br0080
  article-title: The game theoretic p-Laplacian and semi-supervised learning with few labels
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aae949
– start-page: 912
  year: 2003
  ident: 10.1016/j.acha.2022.02.004_br0560
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
– volume: 21
  start-page: 128
  issue: 1
  year: 2006
  ident: 10.1016/j.acha.2022.02.004_br0450
  article-title: From graph to manifold Laplacian: the convergence rate
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.03.004
– start-page: 1601
  year: 2005
  ident: 10.1016/j.acha.2022.02.004_br0550
  article-title: Self-tuning spectral clustering
– volume: 11
  start-page: 891
  issue: 1
  year: 2017
  ident: 10.1016/j.acha.2022.02.004_br0360
  article-title: Estimating a smooth function on a large graph by Bayesian Laplacian regularisation
  publication-title: Electron. J. Stat.
  doi: 10.1214/17-EJS1253
– volume: 45
  start-page: 239
  issue: 2
  year: 2018
  ident: 10.1016/j.acha.2022.02.004_br0270
  article-title: A variational approach to the consistency of spectral clustering
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.09.003
– volume: 17
  start-page: 6268
  issue: 1
  year: 2016
  ident: 10.1016/j.acha.2022.02.004_br0280
  article-title: Consistency of Cheeger and ratio graph cuts
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.acha.2022.02.004_br0440
– ident: 10.1016/j.acha.2022.02.004_br0230
– volume: 42
  start-page: 285
  issue: 1
  year: 2014
  ident: 10.1016/j.acha.2022.02.004_br0490
  article-title: Adaptive piecewise polynomial estimation via trend filtering
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1189
– ident: 10.1016/j.acha.2022.02.004_br0130
– volume: 14
  start-page: 1665
  issue: 1
  year: 2013
  ident: 10.1016/j.acha.2022.02.004_br0430
  article-title: Nonparametric sparsity and regularization
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.acha.2022.02.004_br0060
– volume: 20
  start-page: 1
  issue: 136
  year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0260
  article-title: Local regularization of noisy point clouds: improved global geometric estimates and data analysis
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.acha.2022.02.004_br0250
– ident: 10.1016/j.acha.2022.02.004_br0370
– ident: 10.1016/j.acha.2022.02.004_br0240
– volume: 1
  start-page: 780
  issue: 4
  year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0090
  article-title: Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M1199241
– volume: 162
  start-page: 707
  issue: 3–4
  year: 2015
  ident: 10.1016/j.acha.2022.02.004_br0200
  article-title: On the rate of convergence in Wasserstein distance of the empirical measure
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-014-0583-7
– ident: 10.1016/j.acha.2022.02.004_br0120
– year: 2020
  ident: 10.1016/j.acha.2022.02.004_br0100
  article-title: Poisson learning: graph based semi-supervised learning at very low label rates
– volume: 51
  start-page: 2085
  issue: 3
  year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0470
  article-title: Analysis of p-Laplacian regularization in semisupervised learning
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M115222X
– year: 1996
  ident: 10.1016/j.acha.2022.02.004_br0310
– volume: 6
  start-page: 58
  issue: 1
  year: 2017
  ident: 10.1016/j.acha.2022.02.004_br0460
  article-title: Spectral convergence of the connection Laplacian from random samples
  publication-title: Inf. Inference
– year: 2007
  ident: 10.1016/j.acha.2022.02.004_br0380
– volume: 17
  start-page: 3651
  issue: 1
  year: 2016
  ident: 10.1016/j.acha.2022.02.004_br0530
  article-title: Trend filtering on graphs
  publication-title: J. Mach. Learn. Res.
– start-page: 25
  year: 2006
  ident: 10.1016/j.acha.2022.02.004_br0010
  article-title: Learning on graph with Laplacian regularization
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.acha.2022.02.004_br0510
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– year: 2010
  ident: 10.1016/j.acha.2022.02.004_br0500
  article-title: An analysis of the convergence of graph Laplacians
– volume: 8
  start-page: 1325
  issue: Jun
  year: 2007
  ident: 10.1016/j.acha.2022.02.004_br0320
  article-title: Graph Laplacians and their convergence on random neighborhood graphs
  publication-title: J. Mach. Learn. Res.
– year: 2003
  ident: 10.1016/j.acha.2022.02.004_br0570
– year: 2015
  ident: 10.1016/j.acha.2022.02.004_br0290
– ident: 10.1016/j.acha.2022.02.004_br0350
– start-page: 486
  year: 2005
  ident: 10.1016/j.acha.2022.02.004_br0030
  article-title: Towards a theoretical foundation for Laplacian-based manifold methods
– start-page: 470
  year: 2005
  ident: 10.1016/j.acha.2022.02.004_br0330
  article-title: From graphs to manifolds–weak and strong pointwise consistency of graph Laplacians
– volume: 4
  start-page: 675
  issue: 4
  year: 2014
  ident: 10.1016/j.acha.2022.02.004_br0070
  article-title: A graph discretization of the Laplace-Beltrami operator
  publication-title: J. Spectr. Theory
  doi: 10.4171/jst/83
– volume: 410
  start-page: 1749
  issue: 19
  year: 2009
  ident: 10.1016/j.acha.2022.02.004_br0390
  article-title: Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2009.01.009
– start-page: 585
  year: 2002
  ident: 10.1016/j.acha.2022.02.004_br0020
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– volume: 7
  start-page: 2399
  issue: Nov
  year: 2006
  ident: 10.1016/j.acha.2022.02.004_br0040
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– start-page: 144
  year: 2003
  ident: 10.1016/j.acha.2022.02.004_br0480
  article-title: Kernels and regularization on graphs
– year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0220
  article-title: Spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace Beltrami operator
  publication-title: Found. Comput. Math.
– volume: 36
  start-page: 555
  issue: 2
  year: 2008
  ident: 10.1016/j.acha.2022.02.004_br0520
  article-title: Consistency of spectral clustering
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000640
– year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0180
  article-title: Large data and zero noise limits of graph-based semi-supervised learning algorithms
  publication-title: Appl. Comput. Harmon. Anal.
– volume: vol. 5
  year: 2003
  ident: 10.1016/j.acha.2022.02.004_br0420
  article-title: Random Geometric Graphs
– start-page: 849
  year: 2002
  ident: 10.1016/j.acha.2022.02.004_br0410
  article-title: On spectral clustering: analysis and an algorithm
– ident: 10.1016/j.acha.2022.02.004_br0340
– ident: 10.1016/j.acha.2022.02.004_br0190
– year: 2020
  ident: 10.1016/j.acha.2022.02.004_br0150
– year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0110
  article-title: Properly-weighted graph Laplacian for semi-supervised learning
  publication-title: Appl. Math. Optim.
– volume: vol. 51
  start-page: 238
  year: 2006
  ident: 10.1016/j.acha.2022.02.004_br0300
  article-title: Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results
– year: 2019
  ident: 10.1016/j.acha.2022.02.004_br0400
  article-title: Optimal Cheeger cuts and bisections of random geometric graphs
  publication-title: Ann. Appl. Probab.
– year: 2006
  ident: 10.1016/j.acha.2022.02.004_br0140
SSID ssj0011459
Score 2.5993733
Snippet In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123
SubjectTerms Discrete to continuum
Graph Laplacian
Laplace-Beltrami operator
Rates of convergence
Spectral convergence
Title Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs
URI https://dx.doi.org/10.1016/j.acha.2022.02.004
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9hs3jmWYqnW9qAWewv7xKqkpalX_5V_w9_kzCYtFaQHIRB2mYEwmczObr75hpBLA1HP903icMFggxKEvsNNwp3Uk4mJIsRh4B_dwTDqjYK7cTiukc6yFgZhlVXsL2O6jdbVTKuyZms2mbQeYTMD2YMLHmlZXLCiHNnrwKevP1cwD0j3bcM0FHZQuiqcKTFeXL4g95Dnlbydwd-L09qC090ju1WmSNvlw-yTms4PyM4afyCMBivS1eKQjMoDAq2oLZ-cg7LFlNvySk2RE6KgkKNSS1JN7zniscA7CjrN6feXY6cLynNF35zhsBQrjsioe_PU6TlV1wRH-q67QKSDYrEMWKKFYlrEQcRVLJGX3oMvNkyVMUJo5TMdp0wxV0d-YESYRL5JFeP-Mann01yfEKriRHBPhWGsYNckIbeRSmpPGJlwpnXSIGxprkxWlOLY2eI9W2LHXjM0cYYmzly43KBBrlY6s5JQY6N0uHwL2S-3yCDib9A7_afeGdnGUQkiOyf1xfxDX0DWsRBN61ZNstW-7feGeO8_PPd_AONi2AU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw_eJDSbbF7HUiypbXOxhd7CPrEqaWnqT_Nv-JvczaNUkB6EXLKZgTCZzM7ufvMNwIPSUc91VWhRhvUChXiuRVVIrcjhofJ9g8MwJ7rjxI-n5HnmzRrQq2thDKyyiv1lTC-idTXSqazZWc7nnRe9mNHZg609smBxCfagZdipSBNa3cEwTjaHCZgUPdOMvGUUqtqZEuZF-auhH3KckrqT_D0_bc05_WM4qpJF1C3f5wQaMjuFwy0KQX033vCu5mcwLfcIpEBFBeVKKxew8qLCUiJDC5EjnaaigqcajaiBZGkHydEiQ99fVjGcI5oJ9G4lSSmWn8O0_zTpxVbVOMHirm2vDdhB4IATHEomsGQB8akIuKGmd_RP60VCKcakcLEMIiywLX2XKOaFvqsigal7Ac1skclLQCIIGXWE5wVCL5y4Tm-44NJhiocUSxm2AdfmSnnFKm6aW3ykNXzsLTUmTo2JU1tfNmnD40ZnWXJq7JT26q-Q_vKMVAf9HXpX_9S7h_14Mh6lo0EyvIYD86TElN1Ac736lLc6CVmzu8rJfgCQWtkT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+spectral+convergence+rates+for+graph+Laplacians+on+%CE%B5-graphs+and+k-NN+graphs&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Calder%2C+Jeff&rft.au=Garc%C3%ADa+Trillos%2C+Nicol%C3%A1s&rft.date=2022-09-01&rft.issn=1063-5203&rft.volume=60&rft.spage=123&rft.epage=175&rft_id=info:doi/10.1016%2Fj.acha.2022.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2022_02_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon