A synchronization-induced cross-modal contrastive learning strategy for fault diagnosis of electromechanical systems under semi-supervised learning with current signal

Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them. Vibration signals exhibit distinct fault features, but their acquisition is subject to various limitations. Conversely, current signals, while...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 249; p. 123801
Main Authors Luo, Qinyuan, Chen, Jinglong, Zi, Yanyang, Xie, Jingsong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them. Vibration signals exhibit distinct fault features, but their acquisition is subject to various limitations. Conversely, current signals, while easily measurable, typically manifest weak fault features. Therefore, selecting a signal for fault diagnosis necessitates a trade-off among cost, performance, and feasibility. To overpass these obstacles and enable flexible fault diagnosis in complex environments, this paper presents a novel contrastive vibration-current (CVC) framework that leverages synchronization information from multiple modalities to enhance the performance of single-modality models, primarily the current model. This allows the choice of any signal for monitoring during the deployment phase. Specifically, we first preprocess current signals using Clarke transformation to highlight their fault information. Subsequently, the vibration model employs semi-supervised learning to make full use of labeled and unlabeled samples. Additionally, a noise-resistant augment Mean Teacher is incorporated to enhance the robustness of the vibration model. Then, using synchronization-induced cross-modal contrastive learning (SICMCL), vibration and current features are aligned. And at the decision level, the current model leverages pseudo-labels derived from vibration. The results of experiments demonstrate that CVC excels when relying solely on single-modal signals, owing to the effectiveness of SICMCL. Moreover, for the current model, SICMCL is more beneficial in improving performance than true labels.
AbstractList Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them. Vibration signals exhibit distinct fault features, but their acquisition is subject to various limitations. Conversely, current signals, while easily measurable, typically manifest weak fault features. Therefore, selecting a signal for fault diagnosis necessitates a trade-off among cost, performance, and feasibility. To overpass these obstacles and enable flexible fault diagnosis in complex environments, this paper presents a novel contrastive vibration-current (CVC) framework that leverages synchronization information from multiple modalities to enhance the performance of single-modality models, primarily the current model. This allows the choice of any signal for monitoring during the deployment phase. Specifically, we first preprocess current signals using Clarke transformation to highlight their fault information. Subsequently, the vibration model employs semi-supervised learning to make full use of labeled and unlabeled samples. Additionally, a noise-resistant augment Mean Teacher is incorporated to enhance the robustness of the vibration model. Then, using synchronization-induced cross-modal contrastive learning (SICMCL), vibration and current features are aligned. And at the decision level, the current model leverages pseudo-labels derived from vibration. The results of experiments demonstrate that CVC excels when relying solely on single-modal signals, owing to the effectiveness of SICMCL. Moreover, for the current model, SICMCL is more beneficial in improving performance than true labels.
ArticleNumber 123801
Author Chen, Jinglong
Zi, Yanyang
Luo, Qinyuan
Xie, Jingsong
Author_xml – sequence: 1
  givenname: Qinyuan
  orcidid: 0000-0003-3327-764X
  surname: Luo
  fullname: Luo, Qinyuan
  organization: State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
– sequence: 2
  givenname: Jinglong
  orcidid: 0000-0002-9805-9849
  surname: Chen
  fullname: Chen, Jinglong
  email: jlstrive2008@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
– sequence: 3
  givenname: Yanyang
  surname: Zi
  fullname: Zi, Yanyang
  organization: State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
– sequence: 4
  givenname: Jingsong
  surname: Xie
  fullname: Xie, Jingsong
  organization: School of Traffic & Transportation Engineering, Central South University, Changsha 410083, PR China
BookMark eNp9kM1q4zAUhUVpYdKfF5iVXsAZyZZlG7oppTMtFLpp10KRr5IbbKnoyimZF5rXHKcpXXTR1YUL3zmc75ydhhiAsZ9SLKWQ-td2CfRml6Uo1VKWVSvkCVvItqkK3XTVKVuIrm4KJRv1g50TbYWQjRDNgv274bQPbpNiwL82YwwFhn5y0HOXIlExxt4O3MWQk6WMO-AD2BQwrDnNrwzrPfcxcW-nIfMe7TpEQuLRcxjA5RRHcBsb0M0xtKcMI_Ep9JA4wYgFTa-Qdkhz4WfwG-YNd1NKEDInXAc7XLIzbweCq497wV5-3z3f3hePT38ebm8eC1cJkYu6dKJtpa1qra10Xa2F8p3WnVcKVKm6lbKrlQRdrryTlW4PxnoHtvcSJNTVBWuPue_rE3jjML97mcfiYKQwB-Fmaw7CzQE3R-EzWn5BXxOONu2_h66PEMyjdgjJkEMIs39Msz3TR_wO_w-hDKJc
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2024_10_024
crossref_primary_10_1016_j_eswa_2024_124406
crossref_primary_10_1016_j_engappai_2024_109358
crossref_primary_10_1016_j_knosys_2024_112863
Cites_doi 10.1016/j.measurement.2012.11.011
10.1109/TIA.2009.2031888
10.1016/j.eswa.2022.117754
10.1016/j.eswa.2022.118802
10.1016/j.measurement.2019.05.074
10.1016/j.eswa.2020.114022
10.1016/j.eswa.2021.114570
10.1016/j.ress.2022.108715
10.1016/j.knosys.2022.109437
10.1016/j.eswa.2023.121670
10.1016/j.ymssp.2020.107327
10.1109/TIM.2019.2933119
10.1109/TMECH.2019.2928967
10.1109/PHM-Qingdao46334.2019.8942903
10.36001/phme.2016.v3i1.1577
10.1016/j.isatra.2020.10.033
10.1109/TSMC.2017.2754287
10.1016/j.ress.2023.109256
10.1016/j.eswa.2018.04.025
10.3390/s22010011
10.1016/j.jmsy.2020.08.010
10.1016/j.eswa.2023.122178
10.1177/1687814021996915
10.1109/TII.2018.2874463
10.1016/j.ymssp.2020.106861
10.1109/TIM.2019.2925247
10.1016/j.isatra.2021.03.013
10.1007/s00521-021-06668-2
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.123801
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2024_123801
S0957417424006675
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-52c0881a3566a1c95604f9669f44e4249b4abb1e62bfc13682024dceadf1e1e53
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 22:54:17 EDT 2025
Tue Jul 01 01:51:18 EDT 2025
Sat May 11 15:32:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Multimodal sensors
Electromechanical systems
Convolutional neural network
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-52c0881a3566a1c95604f9669f44e4249b4abb1e62bfc13682024dceadf1e1e53
ORCID 0000-0003-3327-764X
0000-0002-9805-9849
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2024_123801
crossref_primary_10_1016_j_eswa_2024_123801
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ming, Shao, Cai, Liu (b0095) 2024; 238
Jin, Chen (b0070) 2021; 171
Oord, A. van den, Li, Y., & Vinyals, O. (2019). Representation Learning with Contrastive Predictive Coding.
Peng, Lu, Xie, Tao, Wang, Zhang (b0115) 2022; 1–1
Hu, Wu, Sun, Yan, Chen (b0060) 2021
Shao, Yan, Lu, Wang, Gao (b0140) 2020; 69
An, Zhang, Chai, Liu, Huang (b0010) 2023; 212
Xu, Feng, Yan, Sheng, Sun, Liu, Yan (b0190) 2023; 1–12
Gültekin, Çinar, Özkan, Yazıcı (b0050) 2022; 34
Rajabi, Saman Azari, Santini, Flammini (b0125) 2022; 206
Figueroa Barraza, López Droguett, Ramos Martins (b0045) 2024; 237
Rauber, da Silva Loca, Boldt, Rodrigues, Varejão (b0130) 2021; 167
Hoang, Kang (b0055) 2020; 69
Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu, H., & Wang, H. (2022).
Wang, Kao, Perng (b0165) 2021; 21
Wang, Fu, Zhang, Gao, Zhao (b0170) 2019; 24
Waide, Brunner (b0155) 2011
2579–2625. Scopus. http://jmlr.csail.mit.edu/papers/volume9/vandermaaten08a/vandermaaten08a.pdf.
Sangeetha, P., & s., h. (b0135) 2019; 15
Chen, Kornblith, Norouzi, Hinton (b0035) 2020
Li, Pang, Yang (b0080) 2019; 145
Basak, Tiwari, Das (b0020) 2006; 2006
Blodt, Regnier, Faucher (b0030) 2009; 45
Muniyappa, Sugumaran, Kumar (b0100) 2013; 46
Berredjem, Benidir (b0025) 2018; 108
Wan, Li, Fang, Yan, Hong, Li (b0160) 2023; 72
Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, Sutskever (b0120) 2021; arXiv:2103.00020
,
Wen, Gao, Li (b0175) 2019; 49
Zhang, Zou, Su, Tang, Kang, Xu, Liu, Fan (b0195) 2022; 252
Azamfar, Singh, Bravo-Imaz, Lee (b0015) 2020; 144
http://arxiv.org/abs/1807.03748.
Xia, Huang, Tao, Liu, Liu (b0185) 2023; 235
Wu, Zhang, Cheng, Peng (b0180) 2021; 149
Van Der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.
(arXiv:2012.15409). arXiv. http://arxiv.org/abs/2012.15409.
Park, Kim, Suh, Chae, Yoon, Youn (b0110) 2022; 226
Lessmeier, Kimotho, Zimmer, Sextro (b0075) 2016; 3
Long, Mou, Zhang, Zhang, Li (b0090) 2021; 61
Tao, Ren, Li, Guo, Liu, He, Zou (b0145) 2021; 110
AlShorman, Alkahatni, Masadeh, Irfan, Glowacz, Althobiani, Kozik, Glowacz (b0005) 2021; 13
Feng, Chen, Zhang, He, Xu, Zhou (b0040) 2022; 120
Jiang, G., Zhao, J., Jia, C., He, Q., Xie, P., & Meng, Z. (2019). Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach. 2019 Prognostics and System Health Management Conference (PHM-Qingdao), 1–6. https://doi.org/10.1109/PHM-Qingdao46334.2019.8942903.
Wang (10.1016/j.eswa.2024.123801_b0170) 2019; 24
Basak (10.1016/j.eswa.2024.123801_b0020) 2006; 2006
10.1016/j.eswa.2024.123801_b0065
Rajabi (10.1016/j.eswa.2024.123801_b0125) 2022; 206
Wu (10.1016/j.eswa.2024.123801_b0180) 2021; 149
Berredjem (10.1016/j.eswa.2024.123801_b0025) 2018; 108
10.1016/j.eswa.2024.123801_b0105
Waide (10.1016/j.eswa.2024.123801_b0155) 2011
Hoang (10.1016/j.eswa.2024.123801_b0055) 2020; 69
Azamfar (10.1016/j.eswa.2024.123801_b0015) 2020; 144
Figueroa Barraza (10.1016/j.eswa.2024.123801_b0045) 2024; 237
Wan (10.1016/j.eswa.2024.123801_b0160) 2023; 72
Xu (10.1016/j.eswa.2024.123801_b0190) 2023; 1–12
Shao (10.1016/j.eswa.2024.123801_b0140) 2020; 69
Jin (10.1016/j.eswa.2024.123801_b0070) 2021; 171
Muniyappa (10.1016/j.eswa.2024.123801_b0100) 2013; 46
Park (10.1016/j.eswa.2024.123801_b0110) 2022; 226
10.1016/j.eswa.2024.123801_b0150
Gültekin (10.1016/j.eswa.2024.123801_b0050) 2022; 34
Wang (10.1016/j.eswa.2024.123801_b0165) 2021; 21
Radford (10.1016/j.eswa.2024.123801_b0120) 2021; arXiv:2103.00020
Wen (10.1016/j.eswa.2024.123801_b0175) 2019; 49
Sangeetha (10.1016/j.eswa.2024.123801_b0135) 2019; 15
Zhang (10.1016/j.eswa.2024.123801_b0195) 2022; 252
An (10.1016/j.eswa.2024.123801_b0010) 2023; 212
Feng (10.1016/j.eswa.2024.123801_b0040) 2022; 120
Peng (10.1016/j.eswa.2024.123801_b0115) 2022; 1–1
Li (10.1016/j.eswa.2024.123801_b0080) 2019; 145
AlShorman (10.1016/j.eswa.2024.123801_b0005) 2021; 13
Lessmeier (10.1016/j.eswa.2024.123801_b0075) 2016; 3
Hu (10.1016/j.eswa.2024.123801_b0060) 2021
Blodt (10.1016/j.eswa.2024.123801_b0030) 2009; 45
10.1016/j.eswa.2024.123801_b0085
Chen (10.1016/j.eswa.2024.123801_b0035) 2020
Xia (10.1016/j.eswa.2024.123801_b0185) 2023; 235
Long (10.1016/j.eswa.2024.123801_b0090) 2021; 61
Tao (10.1016/j.eswa.2024.123801_b0145) 2021; 110
Ming (10.1016/j.eswa.2024.123801_b0095) 2024; 238
Rauber (10.1016/j.eswa.2024.123801_b0130) 2021; 167
References_xml – volume: arXiv:2103.00020
  start-page: arXiv
  year: 2021
  ident: b0120
  article-title: Learning transferable visual models from natural language
  publication-title: Supervision
– volume: 252
  year: 2022
  ident: b0195
  article-title: A class-aware supervised contrastive learning framework for imbalanced fault diagnosis
  publication-title: Knowledge-Based Systems
– volume: 171
  year: 2021
  ident: b0070
  article-title: An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification
  publication-title: Expert Systems with Applications
– reference: Van Der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.
– reference: (arXiv:2012.15409). arXiv. http://arxiv.org/abs/2012.15409.
– reference: Jiang, G., Zhao, J., Jia, C., He, Q., Xie, P., & Meng, Z. (2019). Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach. 2019 Prognostics and System Health Management Conference (PHM-Qingdao), 1–6. https://doi.org/10.1109/PHM-Qingdao46334.2019.8942903.
– reference: . http://arxiv.org/abs/1807.03748.
– reference: ,
– volume: 1–12
  year: 2023
  ident: b0190
  article-title: Cross-modal fusion convolutional neural networks with online soft label training strategy for mechanical fault diagnosis
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 108
  start-page: 134
  year: 2018
  end-page: 142
  ident: b0025
  article-title: Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and Similarity method
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 136
  year: 2019
  end-page: 144
  ident: b0175
  article-title: A new deep transfer Learning based on Sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 21
  start-page: Article 11
  year: 2021
  ident: b0165
  article-title: Fault diagnosis and fault frequency determination of permanent magnet synchronous motor based on deep Learning
  publication-title: Sensors
– volume: 72
  start-page: 1
  year: 2023
  end-page: 12
  ident: b0160
  article-title: Bearing fault diagnosis based on multisensor information coupling and attentional feature fusion
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 69
  start-page: 3325
  year: 2020
  end-page: 3333
  ident: b0055
  article-title: A motor current signal-based Bearing fault diagnosis using deep Learning and information fusion
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 1–1
  year: 2022
  ident: b0115
  article-title: Open-set fault diagnosis via supervised contrastive Learning with negative out-of-distribution data augmentation
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 45
  start-page: 1991
  year: 2009
  end-page: 2000
  ident: b0030
  article-title: Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current wigner distributions
  publication-title: IEEE Transactions on Industry Applications
– volume: 15
  start-page: 3492
  year: 2019
  end-page: 3501
  ident: b0135
  article-title: Rational-dilation wavelet transform based torque estimation from acoustic signals for fault diagnosis in a three-phase induction motor
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 24
  start-page: 2139
  year: 2019
  end-page: 2150
  ident: b0170
  article-title: Multilevel information fusion for induction motor fault diagnosis
  publication-title: IEEE/ASME Transactions on Mechatronics
– start-page: 1
  year: 2021
  end-page: 6
  ident: b0060
  article-title: Robust supervised contrastive Learning for fault diagnosis under different noises and conditions
  publication-title: 2021 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD)
– volume: 145
  start-page: 45
  year: 2019
  end-page: 54
  ident: b0080
  article-title: Motor current signal analysis using deep neural networks for planetary gear fault diagnosis
  publication-title: Measurement
– volume: 238
  year: 2024
  ident: b0095
  article-title: rgfc-Forest: An enhanced deep forest method towards small-sample fault diagnosis of electromechanical system
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 1250
  year: 2013
  end-page: 1256
  ident: b0100
  article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree
  publication-title: Measurement
– volume: 69
  start-page: 2658
  year: 2020
  end-page: 2669
  ident: b0140
  article-title: DCNN-based multi-signal induction motor fault diagnosis
  publication-title: IEEE Transactions on Instrumentation and Measurement
– reference: , 2579–2625. Scopus. http://jmlr.csail.mit.edu/papers/volume9/vandermaaten08a/vandermaaten08a.pdf.
– reference: Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu, H., & Wang, H. (2022).
– volume: 212
  year: 2023
  ident: b0010
  article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
  publication-title: Expert Systems with Applications
– volume: 13
  year: 2021
  ident: b0005
  article-title: Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study
  publication-title: Advances in Mechanical Engineering
– volume: 2006
  start-page: 3061
  year: 2006
  end-page: 3066
  ident: b0020
  article-title: Fault diagnosis and condition monitoring of electrical machines—A review
  publication-title: IEEE International Conference on Industrial Technology
– volume: 61
  start-page: 736
  year: 2021
  end-page: 745
  ident: b0090
  article-title: Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots
  publication-title: Journal of Manufacturing Systems
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b0035
  article-title: A simple framework for contrastive Learning of visual representations
  publication-title: Proceedings of the 37th International Conference on Machine Learning
– volume: 235
  year: 2023
  ident: b0185
  article-title: A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern
  publication-title: Reliability Engineering & System Safety
– volume: 226
  year: 2022
  ident: b0110
  article-title: A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map
  publication-title: Reliability Engineering & System Safety
– volume: 167
  year: 2021
  ident: b0130
  article-title: An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals
  publication-title: Expert Systems with Applications
– volume: 120
  start-page: 383
  year: 2022
  end-page: 401
  ident: b0040
  article-title: Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis
  publication-title: ISA Transactions
– reference: Oord, A. van den, Li, Y., & Vinyals, O. (2019). Representation Learning with Contrastive Predictive Coding.
– volume: 110
  start-page: 394
  year: 2021
  end-page: 412
  ident: b0145
  article-title: Bearing defect diagnosis based on semi-supervised kernel local fisher discriminant analysis using pseudo labels
  publication-title: ISA Transactions
– volume: 237
  year: 2024
  ident: b0045
  article-title: FS-SCF network: Neural network interpretability based on counterfactual generation and feature selection for fault diagnosis
  publication-title: Expert Systems with Applications
– year: 2011
  ident: b0155
  article-title: Energy-efficiency policy opportunities for electric motor-driven systems
  publication-title: International Energy Agency
– volume: 149
  year: 2021
  ident: b0180
  article-title: A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
  publication-title: Mechanical Systems and Signal Processing
– volume: 3
  start-page: Article 1
  year: 2016
  ident: b0075
  article-title: Condition monitoring of Bearing damage in electromechanical drive systems by using motor current signals of electric motors: A Benchmark data set for data-driven classification
  publication-title: PHM Society European Conference
– volume: 206
  year: 2022
  ident: b0125
  article-title: Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier
  publication-title: Expert Systems with Applications
– volume: 34
  start-page: 4803
  year: 2022
  end-page: 4812
  ident: b0050
  article-title: A novel deep learning approach for intelligent fault diagnosis applications based on time-frequency images
  publication-title: Neural Computing and Applications
– volume: 144
  year: 2020
  ident: b0015
  article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis
  publication-title: Mechanical Systems and Signal Processing
– volume: 46
  start-page: 1250
  year: 2013
  ident: 10.1016/j.eswa.2024.123801_b0100
  article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.11.011
– volume: arXiv:2103.00020
  start-page: arXiv
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0120
  article-title: Learning transferable visual models from natural language
  publication-title: Supervision
– ident: 10.1016/j.eswa.2024.123801_b0085
– volume: 45
  start-page: 1991
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2024.123801_b0030
  article-title: Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current wigner distributions
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/TIA.2009.2031888
– volume: 206
  year: 2022
  ident: 10.1016/j.eswa.2024.123801_b0125
  article-title: Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117754
– volume: 212
  year: 2023
  ident: 10.1016/j.eswa.2024.123801_b0010
  article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118802
– volume: 145
  start-page: 45
  year: 2019
  ident: 10.1016/j.eswa.2024.123801_b0080
  article-title: Motor current signal analysis using deep neural networks for planetary gear fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.074
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0130
  article-title: An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114022
– volume: 1–12
  year: 2023
  ident: 10.1016/j.eswa.2024.123801_b0190
  article-title: Cross-modal fusion convolutional neural networks with online soft label training strategy for mechanical fault diagnosis
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0060
  article-title: Robust supervised contrastive Learning for fault diagnosis under different noises and conditions
– volume: 171
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0070
  article-title: An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114570
– volume: 226
  year: 2022
  ident: 10.1016/j.eswa.2024.123801_b0110
  article-title: A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2022.108715
– volume: 252
  year: 2022
  ident: 10.1016/j.eswa.2024.123801_b0195
  article-title: A class-aware supervised contrastive learning framework for imbalanced fault diagnosis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109437
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.123801_b0045
  article-title: FS-SCF network: Neural network interpretability based on counterfactual generation and feature selection for fault diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121670
– volume: 149
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0180
  article-title: A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107327
– ident: 10.1016/j.eswa.2024.123801_b0150
– volume: 69
  start-page: 3325
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2024.123801_b0055
  article-title: A motor current signal-based Bearing fault diagnosis using deep Learning and information fusion
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2933119
– volume: 24
  start-page: 2139
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2024.123801_b0170
  article-title: Multilevel information fusion for induction motor fault diagnosis
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2019.2928967
– ident: 10.1016/j.eswa.2024.123801_b0065
  doi: 10.1109/PHM-Qingdao46334.2019.8942903
– volume: 3
  start-page: Article 1
  year: 2016
  ident: 10.1016/j.eswa.2024.123801_b0075
  article-title: Condition monitoring of Bearing damage in electromechanical drive systems by using motor current signals of electric motors: A Benchmark data set for data-driven classification
  publication-title: PHM Society European Conference
  doi: 10.36001/phme.2016.v3i1.1577
– volume: 110
  start-page: 394
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0145
  article-title: Bearing defect diagnosis based on semi-supervised kernel local fisher discriminant analysis using pseudo labels
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2020.10.033
– volume: 49
  start-page: 136
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2024.123801_b0175
  article-title: A new deep transfer Learning based on Sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2754287
– volume: 1–1
  year: 2022
  ident: 10.1016/j.eswa.2024.123801_b0115
  article-title: Open-set fault diagnosis via supervised contrastive Learning with negative out-of-distribution data augmentation
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 235
  year: 2023
  ident: 10.1016/j.eswa.2024.123801_b0185
  article-title: A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2023.109256
– volume: 108
  start-page: 134
  year: 2018
  ident: 10.1016/j.eswa.2024.123801_b0025
  article-title: Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and Similarity method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.04.025
– volume: 2006
  start-page: 3061
  year: 2006
  ident: 10.1016/j.eswa.2024.123801_b0020
  article-title: Fault diagnosis and condition monitoring of electrical machines—A review
  publication-title: IEEE International Conference on Industrial Technology
– year: 2011
  ident: 10.1016/j.eswa.2024.123801_b0155
  article-title: Energy-efficiency policy opportunities for electric motor-driven systems
  publication-title: International Energy Agency
– volume: 21
  start-page: Article 11
  issue: 11
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0165
  article-title: Fault diagnosis and fault frequency determination of permanent magnet synchronous motor based on deep Learning
  publication-title: Sensors
  doi: 10.3390/s22010011
– volume: 61
  start-page: 736
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0090
  article-title: Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.08.010
– volume: 238
  year: 2024
  ident: 10.1016/j.eswa.2024.123801_b0095
  article-title: rgfc-Forest: An enhanced deep forest method towards small-sample fault diagnosis of electromechanical system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122178
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.123801_b0160
  article-title: Bearing fault diagnosis based on multisensor information coupling and attentional feature fusion
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 13
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2024.123801_b0005
  article-title: Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study
  publication-title: Advances in Mechanical Engineering
  doi: 10.1177/1687814021996915
– volume: 15
  start-page: 3492
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2024.123801_b0135
  article-title: Rational-dilation wavelet transform based torque estimation from acoustic signals for fault diagnosis in a three-phase induction motor
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2874463
– volume: 144
  year: 2020
  ident: 10.1016/j.eswa.2024.123801_b0015
  article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.106861
– volume: 69
  start-page: 2658
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2024.123801_b0140
  article-title: DCNN-based multi-signal induction motor fault diagnosis
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2019.2925247
– volume: 120
  start-page: 383
  year: 2022
  ident: 10.1016/j.eswa.2024.123801_b0040
  article-title: Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2021.03.013
– ident: 10.1016/j.eswa.2024.123801_b0105
– volume: 34
  start-page: 4803
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2024.123801_b0050
  article-title: A novel deep learning approach for intelligent fault diagnosis applications based on time-frequency images
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06668-2
– start-page: 1597
  year: 2020
  ident: 10.1016/j.eswa.2024.123801_b0035
  article-title: A simple framework for contrastive Learning of visual representations
SSID ssj0017007
Score 2.4870133
Snippet Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123801
SubjectTerms Contrastive learning
Convolutional neural network
Electromechanical systems
Fault diagnosis
Multimodal sensors
Title A synchronization-induced cross-modal contrastive learning strategy for fault diagnosis of electromechanical systems under semi-supervised learning with current signal
URI https://dx.doi.org/10.1016/j.eswa.2024.123801
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7EXHIxJiZoTKQOuUm70zM9r-MikTUhXhLB29BP2bAv7F2Cl_yd_M1UTfcsiuBB5jRDP4aqmuqq4auvGPti8tZWePG6yTSXSuVcKyu4b3Pb2qytXY8m_HFVTa7lt5vyZoedD7UwBKtMvj_69N5bpyejJM3Rajod_cTgAI9DTO1kj9SkQnMpa7Lys79bmAfRz9WRb6_mNDoVzkSMlwt_iHsol2fowJvUGObJ4fTgwLnYZ3spUoRxfJm3bMct3rE3QxcGSB_lAfs3hnC_MD3Jbayp5Jhno8Ys9Lvw-dLiOj0mXQXybpBaRdxCiNy094ChK3i1ma3BRuzdNMDSQ2qSM3dUH0zqhMj8HIBqz-4guPmUh82KHE7ADbcL0-9dMJH7CQgjombv2fXF11_nE57aL3BTZNkaU1SDLkioAiM-JQwlUtJjdtR6KR1KvdVSaS1clWtvRFE1JEhr0DS9cMKVxQe2u1gu3CEDUXqX1xg9-spJ3TZNa11R2kwVmXXW6CMmBrl3JnGTU4uMWTeA0H53pKuOtuiiro7Y6XbOKjJzPDu6HNTZPbKvDo-OZ-Z9fOG8Y_aa7iIa7RPbXd9t3GcMX9b6pLfPE_ZqfPl9cvUfBK309g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALpTxEWyhzgBNyN3G8yebAoQKqLX1caKXegp9o0b5U76raS_8OP4A_yEzsrEBIPSBVuSWxnXgm84i--Yaxt0bUtsSDV4NMc6mU4FrZnPta2NpmdeVaNOHZeTm8lF-u-lcb7FdXC0OwymT7o01vrXU600u72ZuPRr2vGBygO8TUTrZIzQ5ZeeJWN5i3hQ_Hn1DI74Q4-nzxcchTawFuiixbYPpl8PPKVYHRjMoNJQnSY-RfeykdzlhrqbTOXSm0N3lRop8U0hrcdp-73FGrCLT7DySaC2qbcHC7xpUQ310VCf4qTo-XKnUiqMyFGyI7EvIAPcYgdaL5xxv-4eGOnrDHKTSFw_j222zDTZ-yra7tAyQr8Iz9PISwmpqWVTcWcXJM7FFFLLSr8MnM4jwtCF4FMqeQelN8hxDJcFeAsTJ4tRwvwEaw3yjAzEPqyjNxVJBM-gORajoAFbtdQ3CTEQ_LOVm4gAuuJ6b_yWAi2RQQKEWNn7PLexHKC7Y5nU3dSwZ53ztRYbjqSyd1PRjU1hV9m6kis84avcPybt8bk8jQqSfHuOlQbz8aklVDSzRRVjvs_XrMPFKB3Hl3vxNn85dCN-ir7hi3-5_j3rCHw4uz0-b0-Pxkjz2iKxEK94ptLq6X7jXGTgu93-oqsG_3_XH8BsouL-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synchronization-induced+cross-modal+contrastive+learning+strategy+for+fault+diagnosis+of+electromechanical+systems+under+semi-supervised+learning+with+current+signal&rft.jtitle=Expert+systems+with+applications&rft.au=Luo%2C+Qinyuan&rft.au=Chen%2C+Jinglong&rft.au=Zi%2C+Yanyang&rft.au=Xie%2C+Jingsong&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=249&rft_id=info:doi/10.1016%2Fj.eswa.2024.123801&rft.externalDocID=S0957417424006675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon