A synchronization-induced cross-modal contrastive learning strategy for fault diagnosis of electromechanical systems under semi-supervised learning with current signal
Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them. Vibration signals exhibit distinct fault features, but their acquisition is subject to various limitations. Conversely, current signals, while...
Saved in:
Published in | Expert systems with applications Vol. 249; p. 123801 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them. Vibration signals exhibit distinct fault features, but their acquisition is subject to various limitations. Conversely, current signals, while easily measurable, typically manifest weak fault features. Therefore, selecting a signal for fault diagnosis necessitates a trade-off among cost, performance, and feasibility. To overpass these obstacles and enable flexible fault diagnosis in complex environments, this paper presents a novel contrastive vibration-current (CVC) framework that leverages synchronization information from multiple modalities to enhance the performance of single-modality models, primarily the current model. This allows the choice of any signal for monitoring during the deployment phase. Specifically, we first preprocess current signals using Clarke transformation to highlight their fault information. Subsequently, the vibration model employs semi-supervised learning to make full use of labeled and unlabeled samples. Additionally, a noise-resistant augment Mean Teacher is incorporated to enhance the robustness of the vibration model. Then, using synchronization-induced cross-modal contrastive learning (SICMCL), vibration and current features are aligned. And at the decision level, the current model leverages pseudo-labels derived from vibration. The results of experiments demonstrate that CVC excels when relying solely on single-modal signals, owing to the effectiveness of SICMCL. Moreover, for the current model, SICMCL is more beneficial in improving performance than true labels. |
---|---|
AbstractList | Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them. Vibration signals exhibit distinct fault features, but their acquisition is subject to various limitations. Conversely, current signals, while easily measurable, typically manifest weak fault features. Therefore, selecting a signal for fault diagnosis necessitates a trade-off among cost, performance, and feasibility. To overpass these obstacles and enable flexible fault diagnosis in complex environments, this paper presents a novel contrastive vibration-current (CVC) framework that leverages synchronization information from multiple modalities to enhance the performance of single-modality models, primarily the current model. This allows the choice of any signal for monitoring during the deployment phase. Specifically, we first preprocess current signals using Clarke transformation to highlight their fault information. Subsequently, the vibration model employs semi-supervised learning to make full use of labeled and unlabeled samples. Additionally, a noise-resistant augment Mean Teacher is incorporated to enhance the robustness of the vibration model. Then, using synchronization-induced cross-modal contrastive learning (SICMCL), vibration and current features are aligned. And at the decision level, the current model leverages pseudo-labels derived from vibration. The results of experiments demonstrate that CVC excels when relying solely on single-modal signals, owing to the effectiveness of SICMCL. Moreover, for the current model, SICMCL is more beneficial in improving performance than true labels. |
ArticleNumber | 123801 |
Author | Chen, Jinglong Zi, Yanyang Luo, Qinyuan Xie, Jingsong |
Author_xml | – sequence: 1 givenname: Qinyuan orcidid: 0000-0003-3327-764X surname: Luo fullname: Luo, Qinyuan organization: State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China – sequence: 2 givenname: Jinglong orcidid: 0000-0002-9805-9849 surname: Chen fullname: Chen, Jinglong email: jlstrive2008@mail.xjtu.edu.cn organization: State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China – sequence: 3 givenname: Yanyang surname: Zi fullname: Zi, Yanyang organization: State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China – sequence: 4 givenname: Jingsong surname: Xie fullname: Xie, Jingsong organization: School of Traffic & Transportation Engineering, Central South University, Changsha 410083, PR China |
BookMark | eNp9kM1q4zAUhUVpYdKfF5iVXsAZyZZlG7oppTMtFLpp10KRr5IbbKnoyimZF5rXHKcpXXTR1YUL3zmc75ydhhiAsZ9SLKWQ-td2CfRml6Uo1VKWVSvkCVvItqkK3XTVKVuIrm4KJRv1g50TbYWQjRDNgv274bQPbpNiwL82YwwFhn5y0HOXIlExxt4O3MWQk6WMO-AD2BQwrDnNrwzrPfcxcW-nIfMe7TpEQuLRcxjA5RRHcBsb0M0xtKcMI_Ep9JA4wYgFTa-Qdkhz4WfwG-YNd1NKEDInXAc7XLIzbweCq497wV5-3z3f3hePT38ebm8eC1cJkYu6dKJtpa1qra10Xa2F8p3WnVcKVKm6lbKrlQRdrryTlW4PxnoHtvcSJNTVBWuPue_rE3jjML97mcfiYKQwB-Fmaw7CzQE3R-EzWn5BXxOONu2_h66PEMyjdgjJkEMIs39Msz3TR_wO_w-hDKJc |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2024_10_024 crossref_primary_10_1016_j_eswa_2024_124406 crossref_primary_10_1016_j_engappai_2024_109358 crossref_primary_10_1016_j_knosys_2024_112863 |
Cites_doi | 10.1016/j.measurement.2012.11.011 10.1109/TIA.2009.2031888 10.1016/j.eswa.2022.117754 10.1016/j.eswa.2022.118802 10.1016/j.measurement.2019.05.074 10.1016/j.eswa.2020.114022 10.1016/j.eswa.2021.114570 10.1016/j.ress.2022.108715 10.1016/j.knosys.2022.109437 10.1016/j.eswa.2023.121670 10.1016/j.ymssp.2020.107327 10.1109/TIM.2019.2933119 10.1109/TMECH.2019.2928967 10.1109/PHM-Qingdao46334.2019.8942903 10.36001/phme.2016.v3i1.1577 10.1016/j.isatra.2020.10.033 10.1109/TSMC.2017.2754287 10.1016/j.ress.2023.109256 10.1016/j.eswa.2018.04.025 10.3390/s22010011 10.1016/j.jmsy.2020.08.010 10.1016/j.eswa.2023.122178 10.1177/1687814021996915 10.1109/TII.2018.2874463 10.1016/j.ymssp.2020.106861 10.1109/TIM.2019.2925247 10.1016/j.isatra.2021.03.013 10.1007/s00521-021-06668-2 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.123801 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2024_123801 S0957417424006675 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-52c0881a3566a1c95604f9669f44e4249b4abb1e62bfc13682024dceadf1e1e53 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Apr 24 22:54:17 EDT 2025 Tue Jul 01 01:51:18 EDT 2025 Sat May 11 15:32:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Multimodal sensors Electromechanical systems Convolutional neural network Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-52c0881a3566a1c95604f9669f44e4249b4abb1e62bfc13682024dceadf1e1e53 |
ORCID | 0000-0003-3327-764X 0000-0002-9805-9849 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2024_123801 crossref_primary_10_1016_j_eswa_2024_123801 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ming, Shao, Cai, Liu (b0095) 2024; 238 Jin, Chen (b0070) 2021; 171 Oord, A. van den, Li, Y., & Vinyals, O. (2019). Representation Learning with Contrastive Predictive Coding. Peng, Lu, Xie, Tao, Wang, Zhang (b0115) 2022; 1–1 Hu, Wu, Sun, Yan, Chen (b0060) 2021 Shao, Yan, Lu, Wang, Gao (b0140) 2020; 69 An, Zhang, Chai, Liu, Huang (b0010) 2023; 212 Xu, Feng, Yan, Sheng, Sun, Liu, Yan (b0190) 2023; 1–12 Gültekin, Çinar, Özkan, Yazıcı (b0050) 2022; 34 Rajabi, Saman Azari, Santini, Flammini (b0125) 2022; 206 Figueroa Barraza, López Droguett, Ramos Martins (b0045) 2024; 237 Rauber, da Silva Loca, Boldt, Rodrigues, Varejão (b0130) 2021; 167 Hoang, Kang (b0055) 2020; 69 Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu, H., & Wang, H. (2022). Wang, Kao, Perng (b0165) 2021; 21 Wang, Fu, Zhang, Gao, Zhao (b0170) 2019; 24 Waide, Brunner (b0155) 2011 2579–2625. Scopus. http://jmlr.csail.mit.edu/papers/volume9/vandermaaten08a/vandermaaten08a.pdf. Sangeetha, P., & s., h. (b0135) 2019; 15 Chen, Kornblith, Norouzi, Hinton (b0035) 2020 Li, Pang, Yang (b0080) 2019; 145 Basak, Tiwari, Das (b0020) 2006; 2006 Blodt, Regnier, Faucher (b0030) 2009; 45 Muniyappa, Sugumaran, Kumar (b0100) 2013; 46 Berredjem, Benidir (b0025) 2018; 108 Wan, Li, Fang, Yan, Hong, Li (b0160) 2023; 72 Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, Sutskever (b0120) 2021; arXiv:2103.00020 , Wen, Gao, Li (b0175) 2019; 49 Zhang, Zou, Su, Tang, Kang, Xu, Liu, Fan (b0195) 2022; 252 Azamfar, Singh, Bravo-Imaz, Lee (b0015) 2020; 144 http://arxiv.org/abs/1807.03748. Xia, Huang, Tao, Liu, Liu (b0185) 2023; 235 Wu, Zhang, Cheng, Peng (b0180) 2021; 149 Van Der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. (arXiv:2012.15409). arXiv. http://arxiv.org/abs/2012.15409. Park, Kim, Suh, Chae, Yoon, Youn (b0110) 2022; 226 Lessmeier, Kimotho, Zimmer, Sextro (b0075) 2016; 3 Long, Mou, Zhang, Zhang, Li (b0090) 2021; 61 Tao, Ren, Li, Guo, Liu, He, Zou (b0145) 2021; 110 AlShorman, Alkahatni, Masadeh, Irfan, Glowacz, Althobiani, Kozik, Glowacz (b0005) 2021; 13 Feng, Chen, Zhang, He, Xu, Zhou (b0040) 2022; 120 Jiang, G., Zhao, J., Jia, C., He, Q., Xie, P., & Meng, Z. (2019). Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach. 2019 Prognostics and System Health Management Conference (PHM-Qingdao), 1–6. https://doi.org/10.1109/PHM-Qingdao46334.2019.8942903. Wang (10.1016/j.eswa.2024.123801_b0170) 2019; 24 Basak (10.1016/j.eswa.2024.123801_b0020) 2006; 2006 10.1016/j.eswa.2024.123801_b0065 Rajabi (10.1016/j.eswa.2024.123801_b0125) 2022; 206 Wu (10.1016/j.eswa.2024.123801_b0180) 2021; 149 Berredjem (10.1016/j.eswa.2024.123801_b0025) 2018; 108 10.1016/j.eswa.2024.123801_b0105 Waide (10.1016/j.eswa.2024.123801_b0155) 2011 Hoang (10.1016/j.eswa.2024.123801_b0055) 2020; 69 Azamfar (10.1016/j.eswa.2024.123801_b0015) 2020; 144 Figueroa Barraza (10.1016/j.eswa.2024.123801_b0045) 2024; 237 Wan (10.1016/j.eswa.2024.123801_b0160) 2023; 72 Xu (10.1016/j.eswa.2024.123801_b0190) 2023; 1–12 Shao (10.1016/j.eswa.2024.123801_b0140) 2020; 69 Jin (10.1016/j.eswa.2024.123801_b0070) 2021; 171 Muniyappa (10.1016/j.eswa.2024.123801_b0100) 2013; 46 Park (10.1016/j.eswa.2024.123801_b0110) 2022; 226 10.1016/j.eswa.2024.123801_b0150 Gültekin (10.1016/j.eswa.2024.123801_b0050) 2022; 34 Wang (10.1016/j.eswa.2024.123801_b0165) 2021; 21 Radford (10.1016/j.eswa.2024.123801_b0120) 2021; arXiv:2103.00020 Wen (10.1016/j.eswa.2024.123801_b0175) 2019; 49 Sangeetha (10.1016/j.eswa.2024.123801_b0135) 2019; 15 Zhang (10.1016/j.eswa.2024.123801_b0195) 2022; 252 An (10.1016/j.eswa.2024.123801_b0010) 2023; 212 Feng (10.1016/j.eswa.2024.123801_b0040) 2022; 120 Peng (10.1016/j.eswa.2024.123801_b0115) 2022; 1–1 Li (10.1016/j.eswa.2024.123801_b0080) 2019; 145 AlShorman (10.1016/j.eswa.2024.123801_b0005) 2021; 13 Lessmeier (10.1016/j.eswa.2024.123801_b0075) 2016; 3 Hu (10.1016/j.eswa.2024.123801_b0060) 2021 Blodt (10.1016/j.eswa.2024.123801_b0030) 2009; 45 10.1016/j.eswa.2024.123801_b0085 Chen (10.1016/j.eswa.2024.123801_b0035) 2020 Xia (10.1016/j.eswa.2024.123801_b0185) 2023; 235 Long (10.1016/j.eswa.2024.123801_b0090) 2021; 61 Tao (10.1016/j.eswa.2024.123801_b0145) 2021; 110 Ming (10.1016/j.eswa.2024.123801_b0095) 2024; 238 Rauber (10.1016/j.eswa.2024.123801_b0130) 2021; 167 |
References_xml | – volume: arXiv:2103.00020 start-page: arXiv year: 2021 ident: b0120 article-title: Learning transferable visual models from natural language publication-title: Supervision – volume: 252 year: 2022 ident: b0195 article-title: A class-aware supervised contrastive learning framework for imbalanced fault diagnosis publication-title: Knowledge-Based Systems – volume: 171 year: 2021 ident: b0070 article-title: An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification publication-title: Expert Systems with Applications – reference: Van Der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. – reference: (arXiv:2012.15409). arXiv. http://arxiv.org/abs/2012.15409. – reference: Jiang, G., Zhao, J., Jia, C., He, Q., Xie, P., & Meng, Z. (2019). Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach. 2019 Prognostics and System Health Management Conference (PHM-Qingdao), 1–6. https://doi.org/10.1109/PHM-Qingdao46334.2019.8942903. – reference: . http://arxiv.org/abs/1807.03748. – reference: , – volume: 1–12 year: 2023 ident: b0190 article-title: Cross-modal fusion convolutional neural networks with online soft label training strategy for mechanical fault diagnosis publication-title: IEEE Transactions on Industrial Informatics – volume: 108 start-page: 134 year: 2018 end-page: 142 ident: b0025 article-title: Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and Similarity method publication-title: Expert Systems with Applications – volume: 49 start-page: 136 year: 2019 end-page: 144 ident: b0175 article-title: A new deep transfer Learning based on Sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 21 start-page: Article 11 year: 2021 ident: b0165 article-title: Fault diagnosis and fault frequency determination of permanent magnet synchronous motor based on deep Learning publication-title: Sensors – volume: 72 start-page: 1 year: 2023 end-page: 12 ident: b0160 article-title: Bearing fault diagnosis based on multisensor information coupling and attentional feature fusion publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 69 start-page: 3325 year: 2020 end-page: 3333 ident: b0055 article-title: A motor current signal-based Bearing fault diagnosis using deep Learning and information fusion publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 1–1 year: 2022 ident: b0115 article-title: Open-set fault diagnosis via supervised contrastive Learning with negative out-of-distribution data augmentation publication-title: IEEE Transactions on Industrial Informatics – volume: 45 start-page: 1991 year: 2009 end-page: 2000 ident: b0030 article-title: Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current wigner distributions publication-title: IEEE Transactions on Industry Applications – volume: 15 start-page: 3492 year: 2019 end-page: 3501 ident: b0135 article-title: Rational-dilation wavelet transform based torque estimation from acoustic signals for fault diagnosis in a three-phase induction motor publication-title: IEEE Transactions on Industrial Informatics – volume: 24 start-page: 2139 year: 2019 end-page: 2150 ident: b0170 article-title: Multilevel information fusion for induction motor fault diagnosis publication-title: IEEE/ASME Transactions on Mechatronics – start-page: 1 year: 2021 end-page: 6 ident: b0060 article-title: Robust supervised contrastive Learning for fault diagnosis under different noises and conditions publication-title: 2021 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD) – volume: 145 start-page: 45 year: 2019 end-page: 54 ident: b0080 article-title: Motor current signal analysis using deep neural networks for planetary gear fault diagnosis publication-title: Measurement – volume: 238 year: 2024 ident: b0095 article-title: rgfc-Forest: An enhanced deep forest method towards small-sample fault diagnosis of electromechanical system publication-title: Expert Systems with Applications – volume: 46 start-page: 1250 year: 2013 end-page: 1256 ident: b0100 article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree publication-title: Measurement – volume: 69 start-page: 2658 year: 2020 end-page: 2669 ident: b0140 article-title: DCNN-based multi-signal induction motor fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement – reference: , 2579–2625. Scopus. http://jmlr.csail.mit.edu/papers/volume9/vandermaaten08a/vandermaaten08a.pdf. – reference: Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu, J., Wu, H., & Wang, H. (2022). – volume: 212 year: 2023 ident: b0010 article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions publication-title: Expert Systems with Applications – volume: 13 year: 2021 ident: b0005 article-title: Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study publication-title: Advances in Mechanical Engineering – volume: 2006 start-page: 3061 year: 2006 end-page: 3066 ident: b0020 article-title: Fault diagnosis and condition monitoring of electrical machines—A review publication-title: IEEE International Conference on Industrial Technology – volume: 61 start-page: 736 year: 2021 end-page: 745 ident: b0090 article-title: Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots publication-title: Journal of Manufacturing Systems – start-page: 1597 year: 2020 end-page: 1607 ident: b0035 article-title: A simple framework for contrastive Learning of visual representations publication-title: Proceedings of the 37th International Conference on Machine Learning – volume: 235 year: 2023 ident: b0185 article-title: A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern publication-title: Reliability Engineering & System Safety – volume: 226 year: 2022 ident: b0110 article-title: A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map publication-title: Reliability Engineering & System Safety – volume: 167 year: 2021 ident: b0130 article-title: An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals publication-title: Expert Systems with Applications – volume: 120 start-page: 383 year: 2022 end-page: 401 ident: b0040 article-title: Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis publication-title: ISA Transactions – reference: Oord, A. van den, Li, Y., & Vinyals, O. (2019). Representation Learning with Contrastive Predictive Coding. – volume: 110 start-page: 394 year: 2021 end-page: 412 ident: b0145 article-title: Bearing defect diagnosis based on semi-supervised kernel local fisher discriminant analysis using pseudo labels publication-title: ISA Transactions – volume: 237 year: 2024 ident: b0045 article-title: FS-SCF network: Neural network interpretability based on counterfactual generation and feature selection for fault diagnosis publication-title: Expert Systems with Applications – year: 2011 ident: b0155 article-title: Energy-efficiency policy opportunities for electric motor-driven systems publication-title: International Energy Agency – volume: 149 year: 2021 ident: b0180 article-title: A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery publication-title: Mechanical Systems and Signal Processing – volume: 3 start-page: Article 1 year: 2016 ident: b0075 article-title: Condition monitoring of Bearing damage in electromechanical drive systems by using motor current signals of electric motors: A Benchmark data set for data-driven classification publication-title: PHM Society European Conference – volume: 206 year: 2022 ident: b0125 article-title: Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier publication-title: Expert Systems with Applications – volume: 34 start-page: 4803 year: 2022 end-page: 4812 ident: b0050 article-title: A novel deep learning approach for intelligent fault diagnosis applications based on time-frequency images publication-title: Neural Computing and Applications – volume: 144 year: 2020 ident: b0015 article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis publication-title: Mechanical Systems and Signal Processing – volume: 46 start-page: 1250 year: 2013 ident: 10.1016/j.eswa.2024.123801_b0100 article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree publication-title: Measurement doi: 10.1016/j.measurement.2012.11.011 – volume: arXiv:2103.00020 start-page: arXiv year: 2021 ident: 10.1016/j.eswa.2024.123801_b0120 article-title: Learning transferable visual models from natural language publication-title: Supervision – ident: 10.1016/j.eswa.2024.123801_b0085 – volume: 45 start-page: 1991 issue: 6 year: 2009 ident: 10.1016/j.eswa.2024.123801_b0030 article-title: Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current wigner distributions publication-title: IEEE Transactions on Industry Applications doi: 10.1109/TIA.2009.2031888 – volume: 206 year: 2022 ident: 10.1016/j.eswa.2024.123801_b0125 article-title: Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117754 – volume: 212 year: 2023 ident: 10.1016/j.eswa.2024.123801_b0010 article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118802 – volume: 145 start-page: 45 year: 2019 ident: 10.1016/j.eswa.2024.123801_b0080 article-title: Motor current signal analysis using deep neural networks for planetary gear fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2019.05.074 – volume: 167 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0130 article-title: An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114022 – volume: 1–12 year: 2023 ident: 10.1016/j.eswa.2024.123801_b0190 article-title: Cross-modal fusion convolutional neural networks with online soft label training strategy for mechanical fault diagnosis publication-title: IEEE Transactions on Industrial Informatics – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0060 article-title: Robust supervised contrastive Learning for fault diagnosis under different noises and conditions – volume: 171 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0070 article-title: An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114570 – volume: 226 year: 2022 ident: 10.1016/j.eswa.2024.123801_b0110 article-title: A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2022.108715 – volume: 252 year: 2022 ident: 10.1016/j.eswa.2024.123801_b0195 article-title: A class-aware supervised contrastive learning framework for imbalanced fault diagnosis publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109437 – volume: 237 year: 2024 ident: 10.1016/j.eswa.2024.123801_b0045 article-title: FS-SCF network: Neural network interpretability based on counterfactual generation and feature selection for fault diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121670 – volume: 149 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0180 article-title: A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107327 – ident: 10.1016/j.eswa.2024.123801_b0150 – volume: 69 start-page: 3325 issue: 6 year: 2020 ident: 10.1016/j.eswa.2024.123801_b0055 article-title: A motor current signal-based Bearing fault diagnosis using deep Learning and information fusion publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2019.2933119 – volume: 24 start-page: 2139 issue: 5 year: 2019 ident: 10.1016/j.eswa.2024.123801_b0170 article-title: Multilevel information fusion for induction motor fault diagnosis publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2019.2928967 – ident: 10.1016/j.eswa.2024.123801_b0065 doi: 10.1109/PHM-Qingdao46334.2019.8942903 – volume: 3 start-page: Article 1 year: 2016 ident: 10.1016/j.eswa.2024.123801_b0075 article-title: Condition monitoring of Bearing damage in electromechanical drive systems by using motor current signals of electric motors: A Benchmark data set for data-driven classification publication-title: PHM Society European Conference doi: 10.36001/phme.2016.v3i1.1577 – volume: 110 start-page: 394 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0145 article-title: Bearing defect diagnosis based on semi-supervised kernel local fisher discriminant analysis using pseudo labels publication-title: ISA Transactions doi: 10.1016/j.isatra.2020.10.033 – volume: 49 start-page: 136 issue: 1 year: 2019 ident: 10.1016/j.eswa.2024.123801_b0175 article-title: A new deep transfer Learning based on Sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2754287 – volume: 1–1 year: 2022 ident: 10.1016/j.eswa.2024.123801_b0115 article-title: Open-set fault diagnosis via supervised contrastive Learning with negative out-of-distribution data augmentation publication-title: IEEE Transactions on Industrial Informatics – volume: 235 year: 2023 ident: 10.1016/j.eswa.2024.123801_b0185 article-title: A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2023.109256 – volume: 108 start-page: 134 year: 2018 ident: 10.1016/j.eswa.2024.123801_b0025 article-title: Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and Similarity method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.04.025 – volume: 2006 start-page: 3061 year: 2006 ident: 10.1016/j.eswa.2024.123801_b0020 article-title: Fault diagnosis and condition monitoring of electrical machines—A review publication-title: IEEE International Conference on Industrial Technology – year: 2011 ident: 10.1016/j.eswa.2024.123801_b0155 article-title: Energy-efficiency policy opportunities for electric motor-driven systems publication-title: International Energy Agency – volume: 21 start-page: Article 11 issue: 11 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0165 article-title: Fault diagnosis and fault frequency determination of permanent magnet synchronous motor based on deep Learning publication-title: Sensors doi: 10.3390/s22010011 – volume: 61 start-page: 736 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0090 article-title: Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.08.010 – volume: 238 year: 2024 ident: 10.1016/j.eswa.2024.123801_b0095 article-title: rgfc-Forest: An enhanced deep forest method towards small-sample fault diagnosis of electromechanical system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122178 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.123801_b0160 article-title: Bearing fault diagnosis based on multisensor information coupling and attentional feature fusion publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 13 issue: 2 year: 2021 ident: 10.1016/j.eswa.2024.123801_b0005 article-title: Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study publication-title: Advances in Mechanical Engineering doi: 10.1177/1687814021996915 – volume: 15 start-page: 3492 issue: 6 year: 2019 ident: 10.1016/j.eswa.2024.123801_b0135 article-title: Rational-dilation wavelet transform based torque estimation from acoustic signals for fault diagnosis in a three-phase induction motor publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2874463 – volume: 144 year: 2020 ident: 10.1016/j.eswa.2024.123801_b0015 article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.106861 – volume: 69 start-page: 2658 issue: 6 year: 2020 ident: 10.1016/j.eswa.2024.123801_b0140 article-title: DCNN-based multi-signal induction motor fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2019.2925247 – volume: 120 start-page: 383 year: 2022 ident: 10.1016/j.eswa.2024.123801_b0040 article-title: Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis publication-title: ISA Transactions doi: 10.1016/j.isatra.2021.03.013 – ident: 10.1016/j.eswa.2024.123801_b0105 – volume: 34 start-page: 4803 issue: 6 year: 2022 ident: 10.1016/j.eswa.2024.123801_b0050 article-title: A novel deep learning approach for intelligent fault diagnosis applications based on time-frequency images publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06668-2 – start-page: 1597 year: 2020 ident: 10.1016/j.eswa.2024.123801_b0035 article-title: A simple framework for contrastive Learning of visual representations |
SSID | ssj0017007 |
Score | 2.4870133 |
Snippet | Electromechanical systems is widely employed in the manufacturing industry, with fault diagnosis being critical for ensuring the reliable operation of them.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123801 |
SubjectTerms | Contrastive learning Convolutional neural network Electromechanical systems Fault diagnosis Multimodal sensors |
Title | A synchronization-induced cross-modal contrastive learning strategy for fault diagnosis of electromechanical systems under semi-supervised learning with current signal |
URI | https://dx.doi.org/10.1016/j.eswa.2024.123801 |
Volume | 249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG7EXHIxJiZoTKQOuUm70zM9r-MikTUhXhLB29BP2bAv7F2Cl_yd_M1UTfcsiuBB5jRDP4aqmuqq4auvGPti8tZWePG6yTSXSuVcKyu4b3Pb2qytXY8m_HFVTa7lt5vyZoedD7UwBKtMvj_69N5bpyejJM3Rajod_cTgAI9DTO1kj9SkQnMpa7Lys79bmAfRz9WRb6_mNDoVzkSMlwt_iHsol2fowJvUGObJ4fTgwLnYZ3spUoRxfJm3bMct3rE3QxcGSB_lAfs3hnC_MD3Jbayp5Jhno8Ys9Lvw-dLiOj0mXQXybpBaRdxCiNy094ChK3i1ma3BRuzdNMDSQ2qSM3dUH0zqhMj8HIBqz-4guPmUh82KHE7ADbcL0-9dMJH7CQgjombv2fXF11_nE57aL3BTZNkaU1SDLkioAiM-JQwlUtJjdtR6KR1KvdVSaS1clWtvRFE1JEhr0DS9cMKVxQe2u1gu3CEDUXqX1xg9-spJ3TZNa11R2kwVmXXW6CMmBrl3JnGTU4uMWTeA0H53pKuOtuiiro7Y6XbOKjJzPDu6HNTZPbKvDo-OZ-Z9fOG8Y_aa7iIa7RPbXd9t3GcMX9b6pLfPE_ZqfPl9cvUfBK309g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALpTxEWyhzgBNyN3G8yebAoQKqLX1caKXegp9o0b5U76raS_8OP4A_yEzsrEBIPSBVuSWxnXgm84i--Yaxt0bUtsSDV4NMc6mU4FrZnPta2NpmdeVaNOHZeTm8lF-u-lcb7FdXC0OwymT7o01vrXU600u72ZuPRr2vGBygO8TUTrZIzQ5ZeeJWN5i3hQ_Hn1DI74Q4-nzxcchTawFuiixbYPpl8PPKVYHRjMoNJQnSY-RfeykdzlhrqbTOXSm0N3lRop8U0hrcdp-73FGrCLT7DySaC2qbcHC7xpUQ310VCf4qTo-XKnUiqMyFGyI7EvIAPcYgdaL5xxv-4eGOnrDHKTSFw_j222zDTZ-yra7tAyQr8Iz9PISwmpqWVTcWcXJM7FFFLLSr8MnM4jwtCF4FMqeQelN8hxDJcFeAsTJ4tRwvwEaw3yjAzEPqyjNxVJBM-gORajoAFbtdQ3CTEQ_LOVm4gAuuJ6b_yWAi2RQQKEWNn7PLexHKC7Y5nU3dSwZ53ztRYbjqSyd1PRjU1hV9m6kis84avcPybt8bk8jQqSfHuOlQbz8aklVDSzRRVjvs_XrMPFKB3Hl3vxNn85dCN-ir7hi3-5_j3rCHw4uz0-b0-Pxkjz2iKxEK94ptLq6X7jXGTgu93-oqsG_3_XH8BsouL-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synchronization-induced+cross-modal+contrastive+learning+strategy+for+fault+diagnosis+of+electromechanical+systems+under+semi-supervised+learning+with+current+signal&rft.jtitle=Expert+systems+with+applications&rft.au=Luo%2C+Qinyuan&rft.au=Chen%2C+Jinglong&rft.au=Zi%2C+Yanyang&rft.au=Xie%2C+Jingsong&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=249&rft_id=info:doi/10.1016%2Fj.eswa.2024.123801&rft.externalDocID=S0957417424006675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |