Improving the extracellular electron transfer of Shewanella oneidensis MR-1 for enhanced bioelectricity production from biomass hydrolysate
Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass industry. Shewanella oneidensis MR-1 is one of the most extensively studied model exoelectrogens in MFC. But it is still unclear whether this model...
Saved in:
Published in | RSC advances Vol. 7; no. 48; pp. 30488 - 30494 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass industry.
Shewanella oneidensis
MR-1 is one of the most extensively studied model exoelectrogens in MFC. But it is still unclear whether this model strain could generate bioelectricity from biomass or not. Here, a biomass hydrolysate MFC was constructed by using
S. oneidensis
MR-1 and electricity output was obtained from corn straw hydrolysate. More impressively, by promoting the extracellular electron transfer efficiency with electron shuttle addition and electrode modification using the vertically aligned polyaniline (PANI) nanowire array, the electricity output from biomass hydrolystate by
S. oneidensis
MR-1 was greatly improved and a high energy output was obtained,
i.e.
, ∼1260 mA m
−2
current output (∼7-fold increase over that of the control) and ∼660 mW m
−2
power output (∼37-fold increase over that of the control) were achieved. This work demonstrates that
S. oneidensis
MR-1 has great potential in electrical energy harvesting from biomass hydrolysate, which broadens the fuel spectrum of the model exoelectrogen (
S. oneidensis
MR-1) inoculated MFC and also provides a new opportunity for the biomass industry. |
---|---|
AbstractList | Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass industry.
Shewanella oneidensis
MR-1 is one of the most extensively studied model exoelectrogens in MFC. But it is still unclear whether this model strain could generate bioelectricity from biomass or not. Here, a biomass hydrolysate MFC was constructed by using
S. oneidensis
MR-1 and electricity output was obtained from corn straw hydrolysate. More impressively, by promoting the extracellular electron transfer efficiency with electron shuttle addition and electrode modification using the vertically aligned polyaniline (PANI) nanowire array, the electricity output from biomass hydrolystate by
S. oneidensis
MR-1 was greatly improved and a high energy output was obtained,
i.e.
, ∼1260 mA m
−2
current output (∼7-fold increase over that of the control) and ∼660 mW m
−2
power output (∼37-fold increase over that of the control) were achieved. This work demonstrates that
S. oneidensis
MR-1 has great potential in electrical energy harvesting from biomass hydrolysate, which broadens the fuel spectrum of the model exoelectrogen (
S. oneidensis
MR-1) inoculated MFC and also provides a new opportunity for the biomass industry. Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass industry. Shewanella oneidensis MR-1 is one of the most extensively studied model exoelectrogens in MFC. But it is still unclear whether this model strain could generate bioelectricity from biomass or not. Here, a biomass hydrolysate MFC was constructed by using S. oneidensis MR-1 and electricity output was obtained from corn straw hydrolysate. More impressively, by promoting the extracellular electron transfer efficiency with electron shuttle addition and electrode modification using the vertically aligned polyaniline (PANI) nanowire array, the electricity output from biomass hydrolystate by S. oneidensis MR-1 was greatly improved and a high energy output was obtained, i.e., ∼1260 mA m⁻² current output (∼7-fold increase over that of the control) and ∼660 mW m⁻² power output (∼37-fold increase over that of the control) were achieved. This work demonstrates that S. oneidensis MR-1 has great potential in electrical energy harvesting from biomass hydrolysate, which broadens the fuel spectrum of the model exoelectrogen (S. oneidensis MR-1) inoculated MFC and also provides a new opportunity for the biomass industry. |
Author | Gao, Lu Shen, Yu Yong, Yang-Chun Liao, Zhi-Hong Wang, Yan-Zhai Sun, Jian-Zhong |
Author_xml | – sequence: 1 givenname: Yan-Zhai surname: Wang fullname: Wang, Yan-Zhai organization: Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Yu surname: Shen fullname: Shen, Yu organization: College of Environment and Resources, Chongqing Technology and Business University, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 – sequence: 3 givenname: Lu surname: Gao fullname: Gao, Lu organization: Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China – sequence: 4 givenname: Zhi-Hong surname: Liao fullname: Liao, Zhi-Hong organization: Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Jian-Zhong surname: Sun fullname: Sun, Jian-Zhong organization: Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Yang-Chun orcidid: 0000-0003-1216-5163 surname: Yong fullname: Yong, Yang-Chun organization: Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China |
BookMark | eNptUNtKBDEMLaLguu6LX9BHEUbTTuf2KIs3UAQvz0OnTd3KTKvtrLrf4E_bZQVFzEtCck6Sc_bItvMOCTlgcMwgb07m1d0pCAblfItMOIgy41A227_qXTKL8RlSlAXjJZuQz6vhJfg3657ouECKH2OQCvt-2ctAsUc1Bu9oarpoMFBv6P0C36VLEEnTeavRRRvpzV3GqPGJ4xbSKdS0s37Dt8qOK5qu6KUabdpmgh_W40HGSBcrHXy_inLEfbJjZB9x9p2n5PH87GF-mV3fXlzNT68zlQOMWcFqBYhaFApAQaebhhuphOyqvNY1y7sKK-iqTtSlUVIa0QldNgIEl1BonU_J4WZv-ul1iXFsBxvXopMsv4wt50XOOTQ1T1DYQFXwMQY0bRIj1yqSJbZvGbRr69sf6xPl6A_lJdhBhtV_4C-KIYmX |
CitedBy_id | crossref_primary_10_1007_s11274_023_03582_8 crossref_primary_10_1016_j_fuel_2024_132697 crossref_primary_10_1002_er_4922 crossref_primary_10_1016_j_bioelechem_2020_107632 crossref_primary_10_1016_j_seta_2021_101572 crossref_primary_10_1016_j_cej_2023_145626 crossref_primary_10_1016_j_seta_2021_101696 crossref_primary_10_1016_j_ecmx_2024_100579 crossref_primary_10_3390_su151814029 crossref_primary_10_1016_j_scitotenv_2018_12_031 crossref_primary_10_3390_en18040970 crossref_primary_10_1016_j_jece_2021_106338 crossref_primary_10_1016_j_biortech_2023_129764 crossref_primary_10_1021_acsenergylett_7b00585 crossref_primary_10_1007_s12010_020_03469_6 crossref_primary_10_3390_catal12080810 crossref_primary_10_1016_j_fuel_2022_125056 crossref_primary_10_1186_s40643_021_00365_7 crossref_primary_10_1360_SSC_2024_0203 crossref_primary_10_1007_s11274_018_2576_7 crossref_primary_10_3390_en17092099 crossref_primary_10_1002_smm2_1267 crossref_primary_10_3390_fermentation7030169 crossref_primary_10_1099_acmi_0_000112 crossref_primary_10_3389_fbioe_2021_705414 |
Cites_doi | 10.1016/j.apenergy.2016.01.056 10.1073/pnas.0710525105 10.1021/es0605016 10.3390/ijms18010090 10.1016/j.biortech.2015.05.105 10.1016/j.watres.2015.05.012 10.1016/j.biortech.2014.06.092 10.1039/c1cc15874k 10.1016/0039-9140(91)80192-3 10.1016/j.biombioe.2011.09.026 10.1186/1754-6834-2-26 10.2166/wst.2016.059 10.1038/nrmicro1442 10.1186/1754-6834-7-49 10.1038/nnano.2007.147 10.1186/1754-6834-7-63 10.1002/anie.200804917 10.1021/nn700102s 10.1016/j.elecom.2012.03.002 10.1016/j.biortech.2009.10.017 10.1016/j.bios.2010.03.039 10.1002/anie.201407004 10.1038/srep05628 10.1021/sb500331x 10.1186/1754-6834-7-9 10.1016/j.bios.2011.08.032 10.1002/anie.201400463 10.1128/AEM.02240-08 10.1038/srep03568 10.1039/C3EE43106A 10.1016/j.biortech.2013.02.083 10.1016/j.bios.2016.08.037 10.1016/j.biortech.2013.07.091 10.1021/nn204656d 10.1016/j.biombioe.2010.08.006 10.1039/C6RA04734C 10.1126/science.1217412 10.1016/j.ijhydene.2015.07.049 10.1021/es404163g 10.1186/s13068-014-0152-4 10.30638/eemj.2016.203 10.1038/nrmicro2113 10.1016/j.bios.2011.07.050 10.1016/S0960-8524(01)00118-3 10.1016/j.biortech.2016.01.062 10.1039/c4nr01338g |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1039/C7RA04106C |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 30494 |
ExternalDocumentID | 10_1039_C7RA04106C |
GroupedDBID | 0-7 0R~ 53G AAEMU AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABJNI ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3G J3H J3I M~E O9- OK1 PGMZT R7C R7G RAOCF RCNCU RPM RPMJG RRC RSCEA RVUXY SLH YAE ZCN 7S9 L.6 |
ID | FETCH-LOGICAL-c300t-518c0eed45c00c0bd992fac4ab738d813b7e70b7b486fcaaf4b4d694042a05dd3 |
ISSN | 2046-2069 |
IngestDate | Fri Jul 11 08:10:11 EDT 2025 Tue Jul 01 03:31:22 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-518c0eed45c00c0bd992fac4ab738d813b7e70b7b486fcaaf4b4d694042a05dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1216-5163 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2017/ra/c7ra04106c |
PQID | 2253220982 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2253220982 crossref_citationtrail_10_1039_C7RA04106C crossref_primary_10_1039_C7RA04106C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | RSC advances |
PublicationYear | 2017 |
References | Logan (C7RA04106C-(cit2)/*[position()=1]) 2012; 337 Chandel (C7RA04106C-(cit20)/*[position()=1]) 2014; 7 Sun (C7RA04106C-(cit40)/*[position()=1]) 2017; 87 Peng (C7RA04106C-(cit45)/*[position()=1]) 2010; 25 Cheng (C7RA04106C-(cit4)/*[position()=1]) 2015; 81 Nakamura (C7RA04106C-(cit33)/*[position()=1]) 2009; 48 Zhang (C7RA04106C-(cit27)/*[position()=1]) 2014; 7 Qiao (C7RA04106C-(cit28)/*[position()=1]) 2008; 2 Okamoto (C7RA04106C-(cit35)/*[position()=1]) 2014; 4 Okamoto (C7RA04106C-(cit36)/*[position()=1]) 2014; 53 Yu (C7RA04106C-(cit31)/*[position()=1]) 2011; 47 Lovley (C7RA04106C-(cit16)/*[position()=1]) 2006; 4 Zhai (C7RA04106C-(cit24)/*[position()=1]) 2016; 73 Yong (C7RA04106C-(cit23)/*[position()=1]) 2012; 6 Zhang (C7RA04106C-(cit6)/*[position()=1]) 2009; 75 Wang (C7RA04106C-(cit37)/*[position()=1]) 2013; 3 Yuan (C7RA04106C-(cit38)/*[position()=1]) 2013; 47 Yu (C7RA04106C-(cit42)/*[position()=1]) 2017; 18 Zhou (C7RA04106C-(cit10)/*[position()=1]) 2011; 35 Wang (C7RA04106C-(cit5)/*[position()=1]) 2014; 7 Pant (C7RA04106C-(cit7)/*[position()=1]) 2010; 101 Mills (C7RA04106C-(cit17)/*[position()=1]) 2009; 2 Liao (C7RA04106C-(cit22)/*[position()=1]) 2015; 192 Logan (C7RA04106C-(cit1)/*[position()=1]) 2009; 7 Yong (C7RA04106C-(cit13)/*[position()=1]) 2012; 19 Cao (C7RA04106C-(cit21)/*[position()=1]) 2013; 136 Palys (C7RA04106C-(cit44)/*[position()=1]) 1991; 38 Li (C7RA04106C-(cit3)/*[position()=1]) 2014; 7 McKendry (C7RA04106C-(cit9)/*[position()=1]) 2002; 83 Pant (C7RA04106C-(cit29)/*[position()=1]) 2016; 15 Pasupuleti (C7RA04106C-(cit30)/*[position()=1]) 2015; 40 Pandey (C7RA04106C-(cit8)/*[position()=1]) 2016; 168 Lai (C7RA04106C-(cit39)/*[position()=1]) 2011; 28 Yong (C7RA04106C-(cit15)/*[position()=1]) 2014; 53 Thygesen (C7RA04106C-(cit12)/*[position()=1]) 2011; 35 Logan (C7RA04106C-(cit25)/*[position()=1]) 2006; 40 Wu (C7RA04106C-(cit11)/*[position()=1]) 2014; 169 Yong (C7RA04106C-(cit14)/*[position()=1]) 2011; 30 Marsili (C7RA04106C-(cit32)/*[position()=1]) 2008; 105 Novy (C7RA04106C-(cit18)/*[position()=1]) 2014; 7 Ding (C7RA04106C-(cit41)/*[position()=1]) 2014; 6 Sasaki (C7RA04106C-(cit19)/*[position()=1]) 2013; 147 Yang (C7RA04106C-(cit34)/*[position()=1]) 2015; 4 Kalathil (C7RA04106C-(cit43)/*[position()=1]) 2016; 6 Jablonska (C7RA04106C-(cit46)/*[position()=1]) 2016; 208 Chiou (C7RA04106C-(cit26)/*[position()=1]) 2007; 2 |
References_xml | – volume: 168 start-page: 706 year: 2016 ident: C7RA04106C-(cit8)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.056 – volume: 105 start-page: 3968 year: 2008 ident: C7RA04106C-(cit32)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0710525105 – volume: 40 start-page: 5181 year: 2006 ident: C7RA04106C-(cit25)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 18 start-page: 90 year: 2017 ident: C7RA04106C-(cit42)/*[position()=1] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18010090 – volume: 192 start-page: 831 year: 2015 ident: C7RA04106C-(cit22)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.105 – volume: 81 start-page: 72 year: 2015 ident: C7RA04106C-(cit4)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2015.05.012 – volume: 169 start-page: 119 year: 2014 ident: C7RA04106C-(cit11)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.092 – volume: 47 start-page: 12825 year: 2011 ident: C7RA04106C-(cit31)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc15874k – volume: 38 start-page: 723 year: 1991 ident: C7RA04106C-(cit44)/*[position()=1] publication-title: Talanta doi: 10.1016/0039-9140(91)80192-3 – volume: 35 start-page: 4732 year: 2011 ident: C7RA04106C-(cit12)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.09.026 – volume: 2 start-page: 26 year: 2009 ident: C7RA04106C-(cit17)/*[position()=1] publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-2-26 – volume: 73 start-page: 2176 year: 2016 ident: C7RA04106C-(cit24)/*[position()=1] publication-title: Water Sci. Technol. doi: 10.2166/wst.2016.059 – volume: 4 start-page: 497 year: 2006 ident: C7RA04106C-(cit16)/*[position()=1] publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1442 – volume: 7 start-page: 49 year: 2014 ident: C7RA04106C-(cit18)/*[position()=1] publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-49 – volume: 2 start-page: 354 year: 2007 ident: C7RA04106C-(cit26)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.147 – volume: 7 start-page: 63 year: 2014 ident: C7RA04106C-(cit20)/*[position()=1] publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-63 – volume: 48 start-page: 1606 year: 2009 ident: C7RA04106C-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804917 – volume: 2 start-page: 113 year: 2008 ident: C7RA04106C-(cit28)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn700102s – volume: 19 start-page: 13 year: 2012 ident: C7RA04106C-(cit13)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.03.002 – volume: 101 start-page: 1533 year: 2010 ident: C7RA04106C-(cit7)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.017 – volume: 25 start-page: 2530 year: 2010 ident: C7RA04106C-(cit45)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.03.039 – volume: 53 start-page: 10988 year: 2014 ident: C7RA04106C-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407004 – volume: 4 start-page: 5628 year: 2014 ident: C7RA04106C-(cit35)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep05628 – volume: 4 start-page: 815 year: 2015 ident: C7RA04106C-(cit34)/*[position()=1] publication-title: ACS Synth. Biol. doi: 10.1021/sb500331x – volume: 7 start-page: 9 year: 2014 ident: C7RA04106C-(cit5)/*[position()=1] publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-9 – volume: 30 start-page: 87 year: 2011 ident: C7RA04106C-(cit14)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.08.032 – volume: 53 start-page: 4480 year: 2014 ident: C7RA04106C-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400463 – volume: 75 start-page: 3389 year: 2009 ident: C7RA04106C-(cit6)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02240-08 – volume: 3 start-page: 3568 year: 2013 ident: C7RA04106C-(cit37)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03568 – volume: 7 start-page: 911 year: 2014 ident: C7RA04106C-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43106A – volume: 136 start-page: 176 year: 2013 ident: C7RA04106C-(cit21)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.02.083 – volume: 87 start-page: 195 year: 2017 ident: C7RA04106C-(cit40)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.08.037 – volume: 147 start-page: 84 year: 2013 ident: C7RA04106C-(cit19)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.091 – volume: 6 start-page: 2394 year: 2012 ident: C7RA04106C-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn204656d – volume: 35 start-page: 1 year: 2011 ident: C7RA04106C-(cit10)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2010.08.006 – volume: 6 start-page: 30582 year: 2016 ident: C7RA04106C-(cit43)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA04734C – volume: 337 start-page: 686 year: 2012 ident: C7RA04106C-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1217412 – volume: 40 start-page: 12424 year: 2015 ident: C7RA04106C-(cit30)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.07.049 – volume: 47 start-page: 14525 year: 2013 ident: C7RA04106C-(cit38)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es404163g – volume: 7 start-page: 152 year: 2014 ident: C7RA04106C-(cit27)/*[position()=1] publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-014-0152-4 – volume: 15 start-page: 1897 year: 2016 ident: C7RA04106C-(cit29)/*[position()=1] publication-title: Environ. Eng. Manage. J. doi: 10.30638/eemj.2016.203 – volume: 7 start-page: 375 year: 2009 ident: C7RA04106C-(cit1)/*[position()=1] publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2113 – volume: 28 start-page: 373 year: 2011 ident: C7RA04106C-(cit39)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.07.050 – volume: 83 start-page: 37 year: 2002 ident: C7RA04106C-(cit9)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00118-3 – volume: 208 start-page: 117 year: 2016 ident: C7RA04106C-(cit46)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.062 – volume: 6 start-page: 7866 year: 2014 ident: C7RA04106C-(cit41)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c4nr01338g |
SSID | ssj0000651261 |
Score | 2.29646 |
Snippet | Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 30488 |
SubjectTerms | bioelectricity bioenergy industry biomass corn straw electric power electricity generation electrodes electron transfer fuels hydrolysates microbial fuel cells nanowires polymers Shewanella oneidensis |
Title | Improving the extracellular electron transfer of Shewanella oneidensis MR-1 for enhanced bioelectricity production from biomass hydrolysate |
URI | https://www.proquest.com/docview/2253220982 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoAL4inaAjKCC6pSnNi7SY5VRLVCLYdtK9peIttJlEhVUm2zou1f6E_gzzJ-5UH3ULgkkRVHu55PM9-MxzMIfS5yoG1AOzwBYPGYLEAPUr_wwA_jImICbmpH9_DHbH7Cvp9OTyeT34OspVUrduXt2nMl_yNVGAO5qlOy_yDZ7qMwAM8gX7iChOH6IBn3EQGdmnHdLrkKxOvMUtffRjWBAGqa692AozL_xVViC99palXhqlb1SA4Xnm9Kf9elSQgQVWPmV1Kx9EtTFlZnJarjKOrMPpDunfImWzYXN1e8HSUULY4Sl1vQMfafNi59xmvvvORVF9mxp0POVl0mENfR24Nu4KAyI-dl5c0ba2ltoMIPB4EKrc8CcMVBfKYzy26-Zswq5HCAO1OG02pXqtTNwFSrLUK21g4QqsqoJuFijzBwepPe2rkd_r-MYJeaqDflaZz2cx-hxwH4IMHAXzdmHriSrsfb_QlX_pbGX_vpY8IztveaxBw_R8-s94H3DJReoElev0RPEtf07xW66yCFAVJ4BCnsIIUdpHBT4B5SuIcUVpDCACnsIIXHkMI9pLCCFLaQwgNIvUYn-9-Ok7ln-3V4khLSelM_kgQ4F5tKQiQRWRwHBZeMi5BGWeRTEeYhEaFg0ayQnBdMsGwWM7AbnEyzjL5BGzX81LcIA4MoZkICwyoiRgXwVCEkOCuKUmac8U30xS1qKm0xe9VT5SK9L79N9Kl799KUcFn71kcnmxTWXC0tLF6zukpBiYHVI3EUbD3oS9voaQ__d2ijXa7y98BcW_FBI-gPYbWdUw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+extracellular+electron+transfer+of+Shewanella+oneidensis+MR-1+for+enhanced+bioelectricity+production+from+biomass+hydrolysate&rft.jtitle=RSC+advances&rft.au=Wang%2C+Yan-Zhai&rft.au=Shen%2C+Yu&rft.au=Gao%2C+Lu&rft.au=Liao%2C+Zhi-Hong&rft.date=2017-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=7&rft.issue=48&rft.spage=30488&rft.epage=30494&rft_id=info:doi/10.1039%2FC7RA04106C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7RA04106C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |