Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique

Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible subst...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 60; pp. 21 - 26
Main Authors Wang, Tian-Yu, Meng, Jia-Lin, Li, Qing-Xuan, Chen, Lin, Zhu, Hao, Sun, Qing-Qing, Ding, Shi-Jin, Zhang, David Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible substrate has intrinsic disadvantages including low-temperature tolerance and poor complementary metal-oxide-semiconductor (CMOS) compatibility, which limit the development of flexible electronics. The physical vapor deposition (PVD) fabrication process could prepare RRAM without requirement of further treatment, which greatly simplified preparation steps and reduced the production costs. On the other hand, forming process, as a common pre-programing operation in RRAM, increases the energy consumption and limits the application scenarios of RRAM. Here, a NiO-based forming-free RRAM with low set voltage was fabricated via full PVD technique. The flexible device exhibited reliable resistive switching characteristics under flat state even compressive and tensile states (R = 10 mm). The tunable multilevel resistance states (5 levels) could be obtained by controlling the compliance current. Besides, synaptic plasticities also were verified in this device. The flexible NiO-based RRAM shows great potential in wearable forming-free multibit memory and neuromorphic computing electronics.
AbstractList Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible substrate has intrinsic disadvantages including low-temperature tolerance and poor complementary metal-oxide-semiconductor (CMOS) compatibility, which limit the development of flexible electronics. The physical vapor deposition (PVD) fabrication process could prepare RRAM without requirement of further treatment, which greatly simplified preparation steps and reduced the production costs. On the other hand, forming process, as a common pre-programing operation in RRAM, increases the energy consumption and limits the application scenarios of RRAM. Here, a NiO-based forming-free RRAM with low set voltage was fabricated via full PVD technique. The flexible device exhibited reliable resistive switching characteristics under flat state even compressive and tensile states (R = 10 mm). The tunable multilevel resistance states (5 levels) could be obtained by controlling the compliance current. Besides, synaptic plasticities also were verified in this device. The flexible NiO-based RRAM shows great potential in wearable forming-free multibit memory and neuromorphic computing electronics.
Author Wang, Tian-Yu
Sun, Qing-Qing
Li, Qing-Xuan
Chen, Lin
Ding, Shi-Jin
Zhang, David Wei
Meng, Jia-Lin
Zhu, Hao
Author_xml – sequence: 1
  givenname: Tian-Yu
  surname: Wang
  fullname: Wang, Tian-Yu
– sequence: 2
  givenname: Jia-Lin
  surname: Meng
  fullname: Meng, Jia-Lin
– sequence: 3
  givenname: Qing-Xuan
  surname: Li
  fullname: Li, Qing-Xuan
– sequence: 4
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  email: linchen@fudan.edu.cn
– sequence: 5
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
– sequence: 6
  givenname: Qing-Qing
  surname: Sun
  fullname: Sun, Qing-Qing
  email: qqsun@fudan.edu.cn
– sequence: 7
  givenname: Shi-Jin
  surname: Ding
  fullname: Ding, Shi-Jin
– sequence: 8
  givenname: David Wei
  surname: Zhang
  fullname: Zhang, David Wei
BookMark eNp9kM9OwzAMhyM0JMbgBTjlBVqcJk1biQsafyUkOADXqE2dLVPajDQd8PZ0ghOHnWzZ_n6Sv1My632PhFwwSBkweblJN90Q0wwySEGkkFdHZM4qwRLGZDabeoA8AQ7ZCTkdhg0AL_KynJP1nQ-d7VeJCYjUOPyyjUPaYRfsEH2gnzauaTe6aB3u0NH9sF5Np9OuxzH4zoft2mqqfbcd4xRFm29qRufoy_sNjajXvf0Y8Ywcm9oNeP5XF-Tt7vZ1-ZA8Pd8_Lq-fEs0BYiIMz5mR0ApTyyZvZZ2xohRYmLYC1oiMF7yQtZZFU8mW50Lkrc4bkBUrhcw4X5DyN1cHPwwBjdI21tH6PobaOsVA7Y2pjdobU3tjCoSajE1o9g_dBtvV4fswdPUL4fTUzmJQg7bYa2xtQB1V6-0h_AcvIok_
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_161012
crossref_primary_10_1016_j_jallcom_2022_166226
crossref_primary_10_1021_acsami_0c19028
crossref_primary_10_3390_electronics10243176
crossref_primary_10_1016_j_jmst_2021_08_012
crossref_primary_10_1039_D4CE00889H
crossref_primary_10_1016_j_apsadv_2024_100675
crossref_primary_10_1016_j_tsf_2023_139842
crossref_primary_10_31857_S0544126923700242
crossref_primary_10_1016_j_jallcom_2022_164658
crossref_primary_10_3390_asi5050091
crossref_primary_10_1016_j_mtcomm_2021_102900
crossref_primary_10_1016_j_ceramint_2021_07_257
crossref_primary_10_1007_s13391_025_00555_x
crossref_primary_10_1007_s42114_022_00599_9
crossref_primary_10_1063_5_0160109
crossref_primary_10_1109_TED_2022_3186965
crossref_primary_10_2139_ssrn_4002369
crossref_primary_10_1109_LED_2022_3211520
crossref_primary_10_1016_j_jallcom_2025_179114
crossref_primary_10_3390_nano11102684
crossref_primary_10_3390_electronics9122164
crossref_primary_10_1109_TIE_2022_3174294
crossref_primary_10_3390_ma16062317
crossref_primary_10_1088_1361_6528_ad2a01
crossref_primary_10_1088_1361_6528_ac0ac4
crossref_primary_10_1021_acssuschemeng_1c08227
crossref_primary_10_1021_acsanm_3c03397
crossref_primary_10_1021_acsanm_4c02194
crossref_primary_10_1002_adfm_202213762
crossref_primary_10_1109_TED_2021_3109849
crossref_primary_10_1016_j_sse_2024_108948
crossref_primary_10_1016_j_jcis_2024_04_222
crossref_primary_10_1021_acsaelm_3c00452
crossref_primary_10_1016_j_nanoen_2022_108018
crossref_primary_10_3389_fnano_2021_821687
crossref_primary_10_1515_ntrev_2023_0181
crossref_primary_10_3390_jlpea12010014
crossref_primary_10_3390_polym14152995
crossref_primary_10_1021_acs_jpclett_2c03850
crossref_primary_10_1016_j_jmst_2021_09_007
crossref_primary_10_1063_5_0073341
crossref_primary_10_3390_nano14181474
crossref_primary_10_1134_S1063739723700257
crossref_primary_10_1016_j_mtphys_2022_100650
crossref_primary_10_1021_acsaelm_3c00062
crossref_primary_10_1039_D0MH01730B
crossref_primary_10_1007_s12598_024_03122_9
crossref_primary_10_1016_j_mtcomm_2023_105356
crossref_primary_10_1063_5_0237386
crossref_primary_10_1021_acsaelm_1c01219
crossref_primary_10_1360_SSI_2024_0078
crossref_primary_10_1088_1361_6528_ada9a3
crossref_primary_10_1109_TED_2022_3188601
crossref_primary_10_1016_j_jsamd_2024_100813
crossref_primary_10_1016_j_surfcoat_2022_128570
Cites_doi 10.1038/s41565-019-0501-3
10.1016/j.nanoen.2018.06.080
10.1038/s41928-017-0006-8
10.1038/s41928-018-0021-4
10.1021/acsami.6b14566
10.1038/s41586-019-1677-2
10.1021/acsami.9b04443
10.1039/C9TC04880D
10.1021/acsami.9b01464
10.1038/s41565-018-0302-0
10.1039/C9TC06230K
10.1021/acsnano.6b08668
10.1021/acsami.8b16841
10.1002/aelm.201800876
10.1039/C9MH00468H
10.1039/C9NR06403F
10.1016/j.sse.2016.11.001
10.1038/s41928-018-0118-9
10.1021/acs.nanolett.9b05271
10.1021/acs.nanolett.8b01526
10.1109/LED.2018.2869095
10.1039/C9NR07456B
10.1039/C8NR09918A
10.1039/C9NR00747D
10.1021/cm300739y
10.1002/advs.201600435
10.1002/adma.200903203
10.1039/C8TC05489D
10.1039/C9NH00341J
10.1109/LED.2019.2921322
10.1039/C8TC04395G
10.1021/acsami.9b16499
10.1039/C9TC05392A
10.1007/s12274-017-1781-2
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.jmst.2020.04.059
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-1162
EndPage 26
ExternalDocumentID 10_1016_j_jmst_2020_04_059
S1005030220305429
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
1B1
1~.
4.4
457
5GY
5VR
5VS
5XA
5XC
5XL
8P~
92M
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CW9
DU5
EBS
EFJIC
EFLBG
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDF
SES
SPC
SPCBC
SSM
SSZ
T5K
T8R
U1F
U1G
U5B
U5L
~G-
92H
92I
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFUIB
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
HZ~
RIG
SSH
TCJ
TGT
ID FETCH-LOGICAL-c300t-4f351f60d4fa6b5d6a21784e7fd901b4237376ac67b96d35445dc5b0691846233
IEDL.DBID .~1
ISSN 1005-0302
IngestDate Tue Jul 01 02:20:01 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multilevel storage
Forming-free
Neuromorphic application
Full PVD process
Flexible memristor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4f351f60d4fa6b5d6a21784e7fd901b4237376ac67b96d35445dc5b0691846233
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_jmst_2020_04_059
crossref_primary_10_1016_j_jmst_2020_04_059
elsevier_sciencedirect_doi_10_1016_j_jmst_2020_04_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of materials science & technology
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Meng, He, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib0115) 2020; 7
Srivastava, Thomas, Leung (bib0045) 2019; 11
Zou, Li, Zhang, Liang, Yang, Fan (bib0150) 2018; 51
Yan, Li, Zhou, Zhao, Wang, Wang, Zhang, Ren, Zhang, Chen, Lu, Zhou, Liu (bib0095) 2019; 11
Wang, He, Liu, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib0140) 2018; 10
Wang, Niu, Roy, Wang, Zhang, Wu, Zhai, Bai, Shi, Song, Song, Xie, Ye, Wenger, Meng, Ren (bib0200) 2019; 7
Wang, Wang, Yin, Sendeku, Zhang, Cheng, Wang, Li, Huang, He (bib0195) 2019; 11
Duan, Wang, Zhong, Song, Li (bib0050) 2017; 129
Yang, Han, Qian, Lv, Lin, Huang, Cheng (bib0175) 2019; 11
Park, Lee (bib0105) 2017; 9
Sheng, Graves, Kumar, Li, Buchanan, Zheng, Lam, Li, Strachan (bib0035) 2019; 5
Zhou, Ren, Wang, Sun, Duan, Song (bib0125) 2019; 6
Mao, Zhou, Ren, Yang, Chang, Lin, Chou, Zhang, Zhou, Han (bib0075) 2019; 7
Zhang, Ye, Zhou, Chen, Yang, Ding, Chen, Zhou, Zhou, Li, Han (bib0170) 2019; 29
Yang, Han, Qian, Cheng (bib0180) 2019; 5
Peck, Langell (bib0155) 2012; 24
Ding, Zeng, Zhou, Li, Zhou, Zhai, Zhou, Chen, Han (bib0090) 2019; 11
Wang, Cai, Pan, Wang, Lian, Zhuo, Xu, Cao, Pan, Wang, Liang, Yang, Wang, Miao (bib0185) 2018; 1
Shi, Liang, Yuan, Chen, Li, Hui, Yu, Yuan, Pop, Wong, Lanza (bib0205) 2018; 1
Lee, Kim, Song, Cho, Yoo, Ahn, Kang, Lee (bib0210) 2018; 28
Xiong, Zhu, Ye, Yu, Ren, Ge (bib0025) 2019; 5
Yan, Pei, Chen, Zhao, Zhou, Wang, Zhang, Wang, Li, Qin, Wang, Xiao, Zhao, Wang, Li, Ren, Liu, Zhou, Chen, Zhou (bib0020) 2019; 31
Zhao, Xiao, Zhou (bib0080) 2019; 30
Amoli, Kim, Kim, Choi, Koo, Kim (bib0130) 2019; 7
Kim, Song, Lee, Kim, Kim, Park, Kim, Kim, Hwang (bib0085) 2019; 11
Yoon, Ji, Lee, Hyon, Tour (bib0145) 2018; 4
Xia, Wang, Jiang, Li, Zhang, Xi, Gao, Xue, Mater (bib0160) 2019; 7
Yang, Choi, Kim, Kim, Park, Park (bib0040) 2019; 11
Wang, Meng, He, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib0165) 2019; 4
Zidan, Strachan, Lu (bib0010) 2018; 1
Cho, Kim, Song, Ji, Jo, Hwang, Jung, Lee (bib0190) 2010; 22
Wan, He, Nie, Shi, Wan (bib0065) 2018; 39
Dang, Wu, Sun, Zhao, Wang, Song, Yang, Ma, Wang, Hao (bib0100) 2019; 40
Nagareddy, Barnes, Zipoli, Lai, Alexeev, Craciun, Wright (bib0220) 2017; 11
Wang, Meng, Rao, He, Chen, Zhu, Sun, Ding, Bao, Zhou, Zhang (bib0070) 2020; 20
Zhou, Zhou, Chen, Choy, Wang, Zhang, Lin, Yu, Kang, Wong, Chai (bib0055) 2019; 14
Han, Hu, Wang, Zhou, Zeng, Ruan, Pan, Peng (bib0120) 2017; 4
Liu, Yang, Cao, Li, Yuan, Lei, Hu (bib0005) 2019; 31
Roy, Jaiswal, Panda (bib0060) 2019; 575
Pi, Li, Jiang, Xia, Xin, Yang, Xia (bib0015) 2019; 14
Chen, Yu, Jin, Li, Li, Li, Li, Zhao, Zhang, Dai, Yao (bib0215) 2020; 8
Jeong, Lee, Moon, Shin, Lu (bib0030) 2018; 18
Zhao, Zhou, Zhang, Wang, Zhang, Li, Zhao, Wang, Pei, Zhao, Xiao, Wang, Qin, Wang, Li, Ding, Yan, Wang, Ren, Liu, Yan (bib0110) 2019; 7
Yan, Zhou, Zhao, Liu, Wang, Yuan (bib0135) 2018; 11
Zhao (10.1016/j.jmst.2020.04.059_bib0110) 2019; 7
Zhou (10.1016/j.jmst.2020.04.059_bib0055) 2019; 14
Wang (10.1016/j.jmst.2020.04.059_bib0140) 2018; 10
Wang (10.1016/j.jmst.2020.04.059_bib0115) 2020; 7
Pi (10.1016/j.jmst.2020.04.059_bib0015) 2019; 14
Srivastava (10.1016/j.jmst.2020.04.059_bib0045) 2019; 11
Nagareddy (10.1016/j.jmst.2020.04.059_bib0220) 2017; 11
Han (10.1016/j.jmst.2020.04.059_bib0120) 2017; 4
Yoon (10.1016/j.jmst.2020.04.059_bib0145) 2018; 4
Liu (10.1016/j.jmst.2020.04.059_bib0005) 2019; 31
Zou (10.1016/j.jmst.2020.04.059_bib0150) 2018; 51
Roy (10.1016/j.jmst.2020.04.059_bib0060) 2019; 575
Peck (10.1016/j.jmst.2020.04.059_bib0155) 2012; 24
Duan (10.1016/j.jmst.2020.04.059_bib0050) 2017; 129
Wang (10.1016/j.jmst.2020.04.059_bib0070) 2020; 20
Yan (10.1016/j.jmst.2020.04.059_bib0135) 2018; 11
Cho (10.1016/j.jmst.2020.04.059_bib0190) 2010; 22
Zhao (10.1016/j.jmst.2020.04.059_bib0080) 2019; 30
Xia (10.1016/j.jmst.2020.04.059_bib0160) 2019; 7
Wang (10.1016/j.jmst.2020.04.059_bib0165) 2019; 4
Wang (10.1016/j.jmst.2020.04.059_bib0195) 2019; 11
Yan (10.1016/j.jmst.2020.04.059_bib0020) 2019; 31
Yang (10.1016/j.jmst.2020.04.059_bib0180) 2019; 5
Jeong (10.1016/j.jmst.2020.04.059_bib0030) 2018; 18
Dang (10.1016/j.jmst.2020.04.059_bib0100) 2019; 40
Zhang (10.1016/j.jmst.2020.04.059_bib0170) 2019; 29
Yang (10.1016/j.jmst.2020.04.059_bib0040) 2019; 11
Xiong (10.1016/j.jmst.2020.04.059_bib0025) 2019; 5
Yan (10.1016/j.jmst.2020.04.059_bib0095) 2019; 11
Lee (10.1016/j.jmst.2020.04.059_bib0210) 2018; 28
Kim (10.1016/j.jmst.2020.04.059_bib0085) 2019; 11
Park (10.1016/j.jmst.2020.04.059_bib0105) 2017; 9
Amoli (10.1016/j.jmst.2020.04.059_bib0130) 2019; 7
Yang (10.1016/j.jmst.2020.04.059_bib0175) 2019; 11
Zhou (10.1016/j.jmst.2020.04.059_bib0125) 2019; 6
Chen (10.1016/j.jmst.2020.04.059_bib0215) 2020; 8
Shi (10.1016/j.jmst.2020.04.059_bib0205) 2018; 1
Zidan (10.1016/j.jmst.2020.04.059_bib0010) 2018; 1
Sheng (10.1016/j.jmst.2020.04.059_bib0035) 2019; 5
Wang (10.1016/j.jmst.2020.04.059_bib0200) 2019; 7
Wan (10.1016/j.jmst.2020.04.059_bib0065) 2018; 39
Mao (10.1016/j.jmst.2020.04.059_bib0075) 2019; 7
Ding (10.1016/j.jmst.2020.04.059_bib0090) 2019; 11
Wang (10.1016/j.jmst.2020.04.059_bib0185) 2018; 1
References_xml – volume: 11
  start-page: 6453
  year: 2019
  end-page: 6461
  ident: bib0040
  publication-title: Nanoscale
– volume: 20
  start-page: 4111
  year: 2020
  end-page: 4120
  ident: bib0070
  publication-title: Nano Lett.
– volume: 22
  start-page: 1228
  year: 2010
  end-page: 1232
  ident: bib0190
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  ident: bib0115
  publication-title: Adv. Sci.
– volume: 6
  start-page: 1877
  year: 2019
  end-page: 1882
  ident: bib0125
  publication-title: Mater. Horizons
– volume: 29
  year: 2019
  ident: bib0170
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 130
  year: 2018
  end-page: 136
  ident: bib0185
  publication-title: Nat. Electron.
– volume: 24
  start-page: 4483
  year: 2012
  end-page: 4490
  ident: bib0155
  publication-title: Chem. Mater.
– volume: 7
  start-page: 1298
  year: 2019
  end-page: 1306
  ident: bib0110
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2019
  ident: bib0180
  publication-title: Flexible Adv. Electron. Mater.
– volume: 4
  year: 2018
  ident: bib0145
  publication-title: Adv. Electron. Mater.
– volume: 30
  year: 2019
  ident: bib0080
  publication-title: Nanotechnology
– volume: 4
  start-page: 1293
  year: 2019
  end-page: 1301
  ident: bib0165
  publication-title: Nanoscale Horiz.
– volume: 11
  start-page: 7102
  year: 2019
  end-page: 7110
  ident: bib0090
  publication-title: Nanoscale
– volume: 39
  start-page: 1764
  year: 2018
  end-page: 1767
  ident: bib0065
  publication-title: IEEE Electron. Dev. Lett.
– volume: 7
  start-page: 12682
  year: 2019
  end-page: 12687
  ident: bib0200
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 12647
  year: 2019
  end-page: 12655
  ident: bib0175
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 20497
  year: 2019
  end-page: 20506
  ident: bib0195
  publication-title: Nanoscale
– volume: 14
  start-page: 776
  year: 2019
  end-page: 782
  ident: bib0055
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 4447
  year: 2018
  end-page: 4453
  ident: bib0030
  publication-title: Nano Lett.
– volume: 11
  start-page: 18654
  year: 2019
  end-page: 18661
  ident: bib0095
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 1265
  year: 2019
  end-page: 1268
  ident: bib0100
  publication-title: IEEE Electron Dev. Lett.
– volume: 11
  start-page: 1183
  year: 2018
  end-page: 1192
  ident: bib0135
  publication-title: J. Chen, Nano Res.
– volume: 1
  start-page: 458
  year: 2018
  end-page: 465
  ident: bib0205
  publication-title: Nat. Electron.
– volume: 5
  year: 2019
  ident: bib0025
  publication-title: Adv. Electron. Mater.
– volume: 4
  year: 2017
  ident: bib0120
  publication-title: Adv. Sci.
– volume: 11
  start-page: 18159
  year: 2019
  end-page: 18168
  ident: bib0045
  publication-title: Nanoscale
– volume: 11
  start-page: 47063
  year: 2019
  end-page: 47072
  ident: bib0085
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 6207
  year: 2017
  end-page: 6212
  ident: bib0105
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 349
  year: 2018
  end-page: 357
  ident: bib0150
  publication-title: Nano Energy
– volume: 28
  year: 2018
  ident: bib0210
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 4729
  year: 2019
  end-page: 4733
  ident: bib0160
  publication-title: Chem. A
– volume: 5
  year: 2019
  ident: bib0035
  publication-title: Adv. Electron. Mater.
– volume: 129
  start-page: 210
  year: 2017
  end-page: 214
  ident: bib0050
  publication-title: Solid-State Electron.
– volume: 10
  start-page: 37345
  year: 2018
  end-page: 37352
  ident: bib0140
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 22
  year: 2018
  end-page: 29
  ident: bib0010
  publication-title: Nat. Electron.
– volume: 7
  start-page: 1491
  year: 2019
  end-page: 1501
  ident: bib0075
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 35
  year: 2019
  end-page: 39
  ident: bib0015
  publication-title: Nat. Nanotechnol.
– volume: 31
  year: 2019
  ident: bib0005
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  ident: bib0020
  publication-title: Adv. Mater.
– volume: 575
  start-page: 607
  year: 2019
  end-page: 617
  ident: bib0060
  publication-title: Nature
– volume: 7
  start-page: 14816
  year: 2019
  end-page: 14844
  ident: bib0130
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 2178
  year: 2020
  end-page: 2185
  ident: bib0215
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 3010
  year: 2017
  end-page: 3021
  ident: bib0220
  publication-title: ACS Nano
– volume: 31
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0020
  publication-title: Adv. Mater.
– volume: 14
  start-page: 776
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0055
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0501-3
– volume: 4
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0145
  publication-title: Adv. Electron. Mater.
– volume: 51
  start-page: 349
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0150
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.080
– volume: 7
  year: 2020
  ident: 10.1016/j.jmst.2020.04.059_bib0115
  publication-title: Adv. Sci.
– volume: 1
  start-page: 22
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0010
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0006-8
– volume: 1
  start-page: 130
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0185
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0021-4
– volume: 9
  start-page: 6207
  year: 2017
  ident: 10.1016/j.jmst.2020.04.059_bib0105
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14566
– volume: 575
  start-page: 607
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0060
  publication-title: Nature
  doi: 10.1038/s41586-019-1677-2
– volume: 11
  start-page: 18654
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0095
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04443
– volume: 5
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0025
  publication-title: Adv. Electron. Mater.
– volume: 7
  start-page: 12682
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0200
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04880D
– volume: 11
  start-page: 12647
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0175
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01464
– volume: 14
  start-page: 35
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0015
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0302-0
– volume: 8
  start-page: 2178
  year: 2020
  ident: 10.1016/j.jmst.2020.04.059_bib0215
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06230K
– volume: 11
  start-page: 3010
  year: 2017
  ident: 10.1016/j.jmst.2020.04.059_bib0220
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08668
– volume: 29
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0170
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 37345
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0140
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16841
– volume: 31
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0005
  publication-title: Adv. Mater.
– volume: 30
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0080
  publication-title: Nanotechnology
– volume: 5
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0035
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800876
– volume: 6
  start-page: 1877
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0125
  publication-title: Mater. Horizons
  doi: 10.1039/C9MH00468H
– volume: 11
  start-page: 18159
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0045
  publication-title: Nanoscale
  doi: 10.1039/C9NR06403F
– volume: 129
  start-page: 210
  year: 2017
  ident: 10.1016/j.jmst.2020.04.059_bib0050
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2016.11.001
– volume: 5
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0180
  publication-title: Flexible Adv. Electron. Mater.
– volume: 1
  start-page: 458
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0205
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0118-9
– volume: 20
  start-page: 4111
  year: 2020
  ident: 10.1016/j.jmst.2020.04.059_bib0070
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05271
– volume: 7
  start-page: 4729
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0160
  publication-title: Chem. A
– volume: 18
  start-page: 4447
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0030
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01526
– volume: 39
  start-page: 1764
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0065
  publication-title: IEEE Electron. Dev. Lett.
  doi: 10.1109/LED.2018.2869095
– volume: 11
  start-page: 20497
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0195
  publication-title: Nanoscale
  doi: 10.1039/C9NR07456B
– volume: 11
  start-page: 6453
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0040
  publication-title: Nanoscale
  doi: 10.1039/C8NR09918A
– volume: 11
  start-page: 7102
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0090
  publication-title: Nanoscale
  doi: 10.1039/C9NR00747D
– volume: 24
  start-page: 4483
  year: 2012
  ident: 10.1016/j.jmst.2020.04.059_bib0155
  publication-title: Chem. Mater.
  doi: 10.1021/cm300739y
– volume: 28
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0210
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2017
  ident: 10.1016/j.jmst.2020.04.059_bib0120
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600435
– volume: 22
  start-page: 1228
  year: 2010
  ident: 10.1016/j.jmst.2020.04.059_bib0190
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903203
– volume: 7
  start-page: 1491
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0075
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC05489D
– volume: 4
  start-page: 1293
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0165
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00341J
– volume: 40
  start-page: 1265
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0100
  publication-title: IEEE Electron Dev. Lett.
  doi: 10.1109/LED.2019.2921322
– volume: 7
  start-page: 1298
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0110
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04395G
– volume: 11
  start-page: 47063
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0085
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16499
– volume: 7
  start-page: 14816
  year: 2019
  ident: 10.1016/j.jmst.2020.04.059_bib0130
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05392A
– volume: 11
  start-page: 1183
  year: 2018
  ident: 10.1016/j.jmst.2020.04.059_bib0135
  publication-title: J. Chen, Nano Res.
  doi: 10.1007/s12274-017-1781-2
SSID ssj0037588
Score 2.4758396
Snippet Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Flexible memristor
Forming-free
Full PVD process
Multilevel storage
Neuromorphic application
Title Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique
URI https://dx.doi.org/10.1016/j.jmst.2020.04.059
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRg_BlBJT14M5P9aLtxJChBjcREMdyWtWsVwoAgHrz4t_tetyEmhoPXZm2Wr69fX5vvfSXkgocqEEq6jh-lkcMMrPQoMcxRgRZ-irLFBO87HvqiN2B3Qz6skE5ZC4OyyoL7c063bF20NAs0m_PRqPnkWS8TrBSFmAVaxQp2FmKUX32tZB4B5MN5ORyK1AJU89R_NF7j7B31lL5r7U7Rr_SvzWltw-nukd0iU6Tt_Gf2SUVPD8jOmn_gIXnrzlDK8uqYhdbUoLelnGia6cw6Biwo3rJSqxmcoDiIYiMQCIVMlVony2wGOI8UVfZxBxiKyk-KV_L08eWargxej8ige_Pc6TnF0wkAsusuAfSAe0a4KTOJkDwVCRw9IqZDk0ICIFELA8ySKBHKlkgDdORJFZeuaMGJDzKi4JhUp7OpPiFUGJ5wpQWTCiaOw3rm2mM6EiyBDVaHNeKVmMWq8BXH5y0mcSkgG8eIc4w4xy6LAecauVz1meeuGhu_5uVUxL9iIwba39Cv_s9-p2TbR-WKi2K_M1JdLj70OaQeS9mwsdUgW-3b-17_G8AC2a0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTwIxEMYbxIN6MD4j-OrBm1nZR9tdjgYlqEBMBMOt2Xa7CmGBIB68-Lc7sw_ExHjw2mw3m2_b6bT59RtCLrivPaGVbblBFFgshpkehDGztGeEGyG2GOJ5R6crWn12P-CDEmkUd2EQq8xjfxbT02idt9RyNWuz4bD25KReJnhTFMYshNU1ss5g-mIZg6vPJefhQUKc3YdDSs1DnKf6DXmNkjcEKl079TtFw9LfVqeVFae5Q7bzVJFeZ1-zS0pmske2VgwE98lrc4osy4sVz42hMZpbqrGhiUlSy4A5xWNWmkKDY6SDKDZCBKGQqtLUyjKZgtBDTXVa3QFeRdUHxTN5-vh8Q5cOrwek37ztNVpWXjsBVLbtBajucScWdsTiUCgeiRD2HgEzfhxBBqAQhoHQEmrhq7qIPLTkiTRXtqjDlg9SIu-QlCfTiTkiVMQ85NoIpjT8OQ4TmhuHmUCwEFZY41eIU2gmdW4sjvUtxrIgyEYSdZaos7SZBJ0r5HLZZ5bZavz5NC9-hfwxOCTE_T_6Vf_Z75xstHqdtmzfdR-OyaaLGIuN5N8JKS_m7-YU8pCFOkvH2RfaH9s7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forming-free+flexible+memristor+with+multilevel+storage+for+neuromorphic+computing+by+full+PVD+technique&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Wang%2C+Tian-Yu&rft.au=Meng%2C+Jia-Lin&rft.au=Li%2C+Qing-Xuan&rft.au=Chen%2C+Lin&rft.date=2021-01-10&rft.issn=1005-0302&rft.volume=60&rft.spage=21&rft.epage=26&rft_id=info:doi/10.1016%2Fj.jmst.2020.04.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmst_2020_04_059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon