Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique
Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible subst...
Saved in:
Published in | Journal of materials science & technology Vol. 60; pp. 21 - 26 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible substrate has intrinsic disadvantages including low-temperature tolerance and poor complementary metal-oxide-semiconductor (CMOS) compatibility, which limit the development of flexible electronics. The physical vapor deposition (PVD) fabrication process could prepare RRAM without requirement of further treatment, which greatly simplified preparation steps and reduced the production costs. On the other hand, forming process, as a common pre-programing operation in RRAM, increases the energy consumption and limits the application scenarios of RRAM. Here, a NiO-based forming-free RRAM with low set voltage was fabricated via full PVD technique. The flexible device exhibited reliable resistive switching characteristics under flat state even compressive and tensile states (R = 10 mm). The tunable multilevel resistance states (5 levels) could be obtained by controlling the compliance current. Besides, synaptic plasticities also were verified in this device. The flexible NiO-based RRAM shows great potential in wearable forming-free multibit memory and neuromorphic computing electronics. |
---|---|
AbstractList | Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible memristors could be used to mimic the bio-synapses for constructing high-efficient wearable neuromorphic computing system. However, the flexible substrate has intrinsic disadvantages including low-temperature tolerance and poor complementary metal-oxide-semiconductor (CMOS) compatibility, which limit the development of flexible electronics. The physical vapor deposition (PVD) fabrication process could prepare RRAM without requirement of further treatment, which greatly simplified preparation steps and reduced the production costs. On the other hand, forming process, as a common pre-programing operation in RRAM, increases the energy consumption and limits the application scenarios of RRAM. Here, a NiO-based forming-free RRAM with low set voltage was fabricated via full PVD technique. The flexible device exhibited reliable resistive switching characteristics under flat state even compressive and tensile states (R = 10 mm). The tunable multilevel resistance states (5 levels) could be obtained by controlling the compliance current. Besides, synaptic plasticities also were verified in this device. The flexible NiO-based RRAM shows great potential in wearable forming-free multibit memory and neuromorphic computing electronics. |
Author | Wang, Tian-Yu Sun, Qing-Qing Li, Qing-Xuan Chen, Lin Ding, Shi-Jin Zhang, David Wei Meng, Jia-Lin Zhu, Hao |
Author_xml | – sequence: 1 givenname: Tian-Yu surname: Wang fullname: Wang, Tian-Yu – sequence: 2 givenname: Jia-Lin surname: Meng fullname: Meng, Jia-Lin – sequence: 3 givenname: Qing-Xuan surname: Li fullname: Li, Qing-Xuan – sequence: 4 givenname: Lin surname: Chen fullname: Chen, Lin email: linchen@fudan.edu.cn – sequence: 5 givenname: Hao surname: Zhu fullname: Zhu, Hao – sequence: 6 givenname: Qing-Qing surname: Sun fullname: Sun, Qing-Qing email: qqsun@fudan.edu.cn – sequence: 7 givenname: Shi-Jin surname: Ding fullname: Ding, Shi-Jin – sequence: 8 givenname: David Wei surname: Zhang fullname: Zhang, David Wei |
BookMark | eNp9kM9OwzAMhyM0JMbgBTjlBVqcJk1biQsafyUkOADXqE2dLVPajDQd8PZ0ghOHnWzZ_n6Sv1My632PhFwwSBkweblJN90Q0wwySEGkkFdHZM4qwRLGZDabeoA8AQ7ZCTkdhg0AL_KynJP1nQ-d7VeJCYjUOPyyjUPaYRfsEH2gnzauaTe6aB3u0NH9sF5Np9OuxzH4zoft2mqqfbcd4xRFm29qRufoy_sNjajXvf0Y8Ywcm9oNeP5XF-Tt7vZ1-ZA8Pd8_Lq-fEs0BYiIMz5mR0ApTyyZvZZ2xohRYmLYC1oiMF7yQtZZFU8mW50Lkrc4bkBUrhcw4X5DyN1cHPwwBjdI21tH6PobaOsVA7Y2pjdobU3tjCoSajE1o9g_dBtvV4fswdPUL4fTUzmJQg7bYa2xtQB1V6-0h_AcvIok_ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_161012 crossref_primary_10_1016_j_jallcom_2022_166226 crossref_primary_10_1021_acsami_0c19028 crossref_primary_10_3390_electronics10243176 crossref_primary_10_1016_j_jmst_2021_08_012 crossref_primary_10_1039_D4CE00889H crossref_primary_10_1016_j_apsadv_2024_100675 crossref_primary_10_1016_j_tsf_2023_139842 crossref_primary_10_31857_S0544126923700242 crossref_primary_10_1016_j_jallcom_2022_164658 crossref_primary_10_3390_asi5050091 crossref_primary_10_1016_j_mtcomm_2021_102900 crossref_primary_10_1016_j_ceramint_2021_07_257 crossref_primary_10_1007_s13391_025_00555_x crossref_primary_10_1007_s42114_022_00599_9 crossref_primary_10_1063_5_0160109 crossref_primary_10_1109_TED_2022_3186965 crossref_primary_10_2139_ssrn_4002369 crossref_primary_10_1109_LED_2022_3211520 crossref_primary_10_1016_j_jallcom_2025_179114 crossref_primary_10_3390_nano11102684 crossref_primary_10_3390_electronics9122164 crossref_primary_10_1109_TIE_2022_3174294 crossref_primary_10_3390_ma16062317 crossref_primary_10_1088_1361_6528_ad2a01 crossref_primary_10_1088_1361_6528_ac0ac4 crossref_primary_10_1021_acssuschemeng_1c08227 crossref_primary_10_1021_acsanm_3c03397 crossref_primary_10_1021_acsanm_4c02194 crossref_primary_10_1002_adfm_202213762 crossref_primary_10_1109_TED_2021_3109849 crossref_primary_10_1016_j_sse_2024_108948 crossref_primary_10_1016_j_jcis_2024_04_222 crossref_primary_10_1021_acsaelm_3c00452 crossref_primary_10_1016_j_nanoen_2022_108018 crossref_primary_10_3389_fnano_2021_821687 crossref_primary_10_1515_ntrev_2023_0181 crossref_primary_10_3390_jlpea12010014 crossref_primary_10_3390_polym14152995 crossref_primary_10_1021_acs_jpclett_2c03850 crossref_primary_10_1016_j_jmst_2021_09_007 crossref_primary_10_1063_5_0073341 crossref_primary_10_3390_nano14181474 crossref_primary_10_1134_S1063739723700257 crossref_primary_10_1016_j_mtphys_2022_100650 crossref_primary_10_1021_acsaelm_3c00062 crossref_primary_10_1039_D0MH01730B crossref_primary_10_1007_s12598_024_03122_9 crossref_primary_10_1016_j_mtcomm_2023_105356 crossref_primary_10_1063_5_0237386 crossref_primary_10_1021_acsaelm_1c01219 crossref_primary_10_1360_SSI_2024_0078 crossref_primary_10_1088_1361_6528_ada9a3 crossref_primary_10_1109_TED_2022_3188601 crossref_primary_10_1016_j_jsamd_2024_100813 crossref_primary_10_1016_j_surfcoat_2022_128570 |
Cites_doi | 10.1038/s41565-019-0501-3 10.1016/j.nanoen.2018.06.080 10.1038/s41928-017-0006-8 10.1038/s41928-018-0021-4 10.1021/acsami.6b14566 10.1038/s41586-019-1677-2 10.1021/acsami.9b04443 10.1039/C9TC04880D 10.1021/acsami.9b01464 10.1038/s41565-018-0302-0 10.1039/C9TC06230K 10.1021/acsnano.6b08668 10.1021/acsami.8b16841 10.1002/aelm.201800876 10.1039/C9MH00468H 10.1039/C9NR06403F 10.1016/j.sse.2016.11.001 10.1038/s41928-018-0118-9 10.1021/acs.nanolett.9b05271 10.1021/acs.nanolett.8b01526 10.1109/LED.2018.2869095 10.1039/C9NR07456B 10.1039/C8NR09918A 10.1039/C9NR00747D 10.1021/cm300739y 10.1002/advs.201600435 10.1002/adma.200903203 10.1039/C8TC05489D 10.1039/C9NH00341J 10.1109/LED.2019.2921322 10.1039/C8TC04395G 10.1021/acsami.9b16499 10.1039/C9TC05392A 10.1007/s12274-017-1781-2 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmst.2020.04.059 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-1162 |
EndPage | 26 |
ExternalDocumentID | 10_1016_j_jmst_2020_04_059 S1005030220305429 |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 1B1 1~. 4.4 457 5GY 5VR 5VS 5XA 5XC 5XL 8P~ 92M 9D9 9DB AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CHBEP CW9 DU5 EBS EFJIC EFLBG FA0 FDB FIRID FNPLU FYGXN GBLVA J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OK1 P-8 P-9 P2P PC. Q-- Q38 R-B ROL RT2 S.. SDF SES SPC SPCBC SSM SSZ T5K T8R U1F U1G U5B U5L ~G- 92H 92I AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFUIB AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD HZ~ RIG SSH TCJ TGT |
ID | FETCH-LOGICAL-c300t-4f351f60d4fa6b5d6a21784e7fd901b4237376ac67b96d35445dc5b0691846233 |
IEDL.DBID | .~1 |
ISSN | 1005-0302 |
IngestDate | Tue Jul 01 02:20:01 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 23 02:45:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multilevel storage Forming-free Neuromorphic application Full PVD process Flexible memristor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4f351f60d4fa6b5d6a21784e7fd901b4237376ac67b96d35445dc5b0691846233 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmst_2020_04_059 crossref_primary_10_1016_j_jmst_2020_04_059 elsevier_sciencedirect_doi_10_1016_j_jmst_2020_04_059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-10 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials science & technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Meng, He, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib0115) 2020; 7 Srivastava, Thomas, Leung (bib0045) 2019; 11 Zou, Li, Zhang, Liang, Yang, Fan (bib0150) 2018; 51 Yan, Li, Zhou, Zhao, Wang, Wang, Zhang, Ren, Zhang, Chen, Lu, Zhou, Liu (bib0095) 2019; 11 Wang, He, Liu, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib0140) 2018; 10 Wang, Niu, Roy, Wang, Zhang, Wu, Zhai, Bai, Shi, Song, Song, Xie, Ye, Wenger, Meng, Ren (bib0200) 2019; 7 Wang, Wang, Yin, Sendeku, Zhang, Cheng, Wang, Li, Huang, He (bib0195) 2019; 11 Duan, Wang, Zhong, Song, Li (bib0050) 2017; 129 Yang, Han, Qian, Lv, Lin, Huang, Cheng (bib0175) 2019; 11 Park, Lee (bib0105) 2017; 9 Sheng, Graves, Kumar, Li, Buchanan, Zheng, Lam, Li, Strachan (bib0035) 2019; 5 Zhou, Ren, Wang, Sun, Duan, Song (bib0125) 2019; 6 Mao, Zhou, Ren, Yang, Chang, Lin, Chou, Zhang, Zhou, Han (bib0075) 2019; 7 Zhang, Ye, Zhou, Chen, Yang, Ding, Chen, Zhou, Zhou, Li, Han (bib0170) 2019; 29 Yang, Han, Qian, Cheng (bib0180) 2019; 5 Peck, Langell (bib0155) 2012; 24 Ding, Zeng, Zhou, Li, Zhou, Zhai, Zhou, Chen, Han (bib0090) 2019; 11 Wang, Cai, Pan, Wang, Lian, Zhuo, Xu, Cao, Pan, Wang, Liang, Yang, Wang, Miao (bib0185) 2018; 1 Shi, Liang, Yuan, Chen, Li, Hui, Yu, Yuan, Pop, Wong, Lanza (bib0205) 2018; 1 Lee, Kim, Song, Cho, Yoo, Ahn, Kang, Lee (bib0210) 2018; 28 Xiong, Zhu, Ye, Yu, Ren, Ge (bib0025) 2019; 5 Yan, Pei, Chen, Zhao, Zhou, Wang, Zhang, Wang, Li, Qin, Wang, Xiao, Zhao, Wang, Li, Ren, Liu, Zhou, Chen, Zhou (bib0020) 2019; 31 Zhao, Xiao, Zhou (bib0080) 2019; 30 Amoli, Kim, Kim, Choi, Koo, Kim (bib0130) 2019; 7 Kim, Song, Lee, Kim, Kim, Park, Kim, Kim, Hwang (bib0085) 2019; 11 Yoon, Ji, Lee, Hyon, Tour (bib0145) 2018; 4 Xia, Wang, Jiang, Li, Zhang, Xi, Gao, Xue, Mater (bib0160) 2019; 7 Yang, Choi, Kim, Kim, Park, Park (bib0040) 2019; 11 Wang, Meng, He, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib0165) 2019; 4 Zidan, Strachan, Lu (bib0010) 2018; 1 Cho, Kim, Song, Ji, Jo, Hwang, Jung, Lee (bib0190) 2010; 22 Wan, He, Nie, Shi, Wan (bib0065) 2018; 39 Dang, Wu, Sun, Zhao, Wang, Song, Yang, Ma, Wang, Hao (bib0100) 2019; 40 Nagareddy, Barnes, Zipoli, Lai, Alexeev, Craciun, Wright (bib0220) 2017; 11 Wang, Meng, Rao, He, Chen, Zhu, Sun, Ding, Bao, Zhou, Zhang (bib0070) 2020; 20 Zhou, Zhou, Chen, Choy, Wang, Zhang, Lin, Yu, Kang, Wong, Chai (bib0055) 2019; 14 Han, Hu, Wang, Zhou, Zeng, Ruan, Pan, Peng (bib0120) 2017; 4 Liu, Yang, Cao, Li, Yuan, Lei, Hu (bib0005) 2019; 31 Roy, Jaiswal, Panda (bib0060) 2019; 575 Pi, Li, Jiang, Xia, Xin, Yang, Xia (bib0015) 2019; 14 Chen, Yu, Jin, Li, Li, Li, Li, Zhao, Zhang, Dai, Yao (bib0215) 2020; 8 Jeong, Lee, Moon, Shin, Lu (bib0030) 2018; 18 Zhao, Zhou, Zhang, Wang, Zhang, Li, Zhao, Wang, Pei, Zhao, Xiao, Wang, Qin, Wang, Li, Ding, Yan, Wang, Ren, Liu, Yan (bib0110) 2019; 7 Yan, Zhou, Zhao, Liu, Wang, Yuan (bib0135) 2018; 11 Zhao (10.1016/j.jmst.2020.04.059_bib0110) 2019; 7 Zhou (10.1016/j.jmst.2020.04.059_bib0055) 2019; 14 Wang (10.1016/j.jmst.2020.04.059_bib0140) 2018; 10 Wang (10.1016/j.jmst.2020.04.059_bib0115) 2020; 7 Pi (10.1016/j.jmst.2020.04.059_bib0015) 2019; 14 Srivastava (10.1016/j.jmst.2020.04.059_bib0045) 2019; 11 Nagareddy (10.1016/j.jmst.2020.04.059_bib0220) 2017; 11 Han (10.1016/j.jmst.2020.04.059_bib0120) 2017; 4 Yoon (10.1016/j.jmst.2020.04.059_bib0145) 2018; 4 Liu (10.1016/j.jmst.2020.04.059_bib0005) 2019; 31 Zou (10.1016/j.jmst.2020.04.059_bib0150) 2018; 51 Roy (10.1016/j.jmst.2020.04.059_bib0060) 2019; 575 Peck (10.1016/j.jmst.2020.04.059_bib0155) 2012; 24 Duan (10.1016/j.jmst.2020.04.059_bib0050) 2017; 129 Wang (10.1016/j.jmst.2020.04.059_bib0070) 2020; 20 Yan (10.1016/j.jmst.2020.04.059_bib0135) 2018; 11 Cho (10.1016/j.jmst.2020.04.059_bib0190) 2010; 22 Zhao (10.1016/j.jmst.2020.04.059_bib0080) 2019; 30 Xia (10.1016/j.jmst.2020.04.059_bib0160) 2019; 7 Wang (10.1016/j.jmst.2020.04.059_bib0165) 2019; 4 Wang (10.1016/j.jmst.2020.04.059_bib0195) 2019; 11 Yan (10.1016/j.jmst.2020.04.059_bib0020) 2019; 31 Yang (10.1016/j.jmst.2020.04.059_bib0180) 2019; 5 Jeong (10.1016/j.jmst.2020.04.059_bib0030) 2018; 18 Dang (10.1016/j.jmst.2020.04.059_bib0100) 2019; 40 Zhang (10.1016/j.jmst.2020.04.059_bib0170) 2019; 29 Yang (10.1016/j.jmst.2020.04.059_bib0040) 2019; 11 Xiong (10.1016/j.jmst.2020.04.059_bib0025) 2019; 5 Yan (10.1016/j.jmst.2020.04.059_bib0095) 2019; 11 Lee (10.1016/j.jmst.2020.04.059_bib0210) 2018; 28 Kim (10.1016/j.jmst.2020.04.059_bib0085) 2019; 11 Park (10.1016/j.jmst.2020.04.059_bib0105) 2017; 9 Amoli (10.1016/j.jmst.2020.04.059_bib0130) 2019; 7 Yang (10.1016/j.jmst.2020.04.059_bib0175) 2019; 11 Zhou (10.1016/j.jmst.2020.04.059_bib0125) 2019; 6 Chen (10.1016/j.jmst.2020.04.059_bib0215) 2020; 8 Shi (10.1016/j.jmst.2020.04.059_bib0205) 2018; 1 Zidan (10.1016/j.jmst.2020.04.059_bib0010) 2018; 1 Sheng (10.1016/j.jmst.2020.04.059_bib0035) 2019; 5 Wang (10.1016/j.jmst.2020.04.059_bib0200) 2019; 7 Wan (10.1016/j.jmst.2020.04.059_bib0065) 2018; 39 Mao (10.1016/j.jmst.2020.04.059_bib0075) 2019; 7 Ding (10.1016/j.jmst.2020.04.059_bib0090) 2019; 11 Wang (10.1016/j.jmst.2020.04.059_bib0185) 2018; 1 |
References_xml | – volume: 11 start-page: 6453 year: 2019 end-page: 6461 ident: bib0040 publication-title: Nanoscale – volume: 20 start-page: 4111 year: 2020 end-page: 4120 ident: bib0070 publication-title: Nano Lett. – volume: 22 start-page: 1228 year: 2010 end-page: 1232 ident: bib0190 publication-title: Adv. Mater. – volume: 7 year: 2020 ident: bib0115 publication-title: Adv. Sci. – volume: 6 start-page: 1877 year: 2019 end-page: 1882 ident: bib0125 publication-title: Mater. Horizons – volume: 29 year: 2019 ident: bib0170 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 130 year: 2018 end-page: 136 ident: bib0185 publication-title: Nat. Electron. – volume: 24 start-page: 4483 year: 2012 end-page: 4490 ident: bib0155 publication-title: Chem. Mater. – volume: 7 start-page: 1298 year: 2019 end-page: 1306 ident: bib0110 publication-title: J. Mater. Chem. C – volume: 5 year: 2019 ident: bib0180 publication-title: Flexible Adv. Electron. Mater. – volume: 4 year: 2018 ident: bib0145 publication-title: Adv. Electron. Mater. – volume: 30 year: 2019 ident: bib0080 publication-title: Nanotechnology – volume: 4 start-page: 1293 year: 2019 end-page: 1301 ident: bib0165 publication-title: Nanoscale Horiz. – volume: 11 start-page: 7102 year: 2019 end-page: 7110 ident: bib0090 publication-title: Nanoscale – volume: 39 start-page: 1764 year: 2018 end-page: 1767 ident: bib0065 publication-title: IEEE Electron. Dev. Lett. – volume: 7 start-page: 12682 year: 2019 end-page: 12687 ident: bib0200 publication-title: J. Mater. Chem. C – volume: 11 start-page: 12647 year: 2019 end-page: 12655 ident: bib0175 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 20497 year: 2019 end-page: 20506 ident: bib0195 publication-title: Nanoscale – volume: 14 start-page: 776 year: 2019 end-page: 782 ident: bib0055 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 4447 year: 2018 end-page: 4453 ident: bib0030 publication-title: Nano Lett. – volume: 11 start-page: 18654 year: 2019 end-page: 18661 ident: bib0095 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 1265 year: 2019 end-page: 1268 ident: bib0100 publication-title: IEEE Electron Dev. Lett. – volume: 11 start-page: 1183 year: 2018 end-page: 1192 ident: bib0135 publication-title: J. Chen, Nano Res. – volume: 1 start-page: 458 year: 2018 end-page: 465 ident: bib0205 publication-title: Nat. Electron. – volume: 5 year: 2019 ident: bib0025 publication-title: Adv. Electron. Mater. – volume: 4 year: 2017 ident: bib0120 publication-title: Adv. Sci. – volume: 11 start-page: 18159 year: 2019 end-page: 18168 ident: bib0045 publication-title: Nanoscale – volume: 11 start-page: 47063 year: 2019 end-page: 47072 ident: bib0085 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 6207 year: 2017 end-page: 6212 ident: bib0105 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 349 year: 2018 end-page: 357 ident: bib0150 publication-title: Nano Energy – volume: 28 year: 2018 ident: bib0210 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 4729 year: 2019 end-page: 4733 ident: bib0160 publication-title: Chem. A – volume: 5 year: 2019 ident: bib0035 publication-title: Adv. Electron. Mater. – volume: 129 start-page: 210 year: 2017 end-page: 214 ident: bib0050 publication-title: Solid-State Electron. – volume: 10 start-page: 37345 year: 2018 end-page: 37352 ident: bib0140 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 22 year: 2018 end-page: 29 ident: bib0010 publication-title: Nat. Electron. – volume: 7 start-page: 1491 year: 2019 end-page: 1501 ident: bib0075 publication-title: J. Mater. Chem. C – volume: 14 start-page: 35 year: 2019 end-page: 39 ident: bib0015 publication-title: Nat. Nanotechnol. – volume: 31 year: 2019 ident: bib0005 publication-title: Adv. Mater. – volume: 31 year: 2019 ident: bib0020 publication-title: Adv. Mater. – volume: 575 start-page: 607 year: 2019 end-page: 617 ident: bib0060 publication-title: Nature – volume: 7 start-page: 14816 year: 2019 end-page: 14844 ident: bib0130 publication-title: J. Mater. Chem. C – volume: 8 start-page: 2178 year: 2020 end-page: 2185 ident: bib0215 publication-title: J. Mater. Chem. C – volume: 11 start-page: 3010 year: 2017 end-page: 3021 ident: bib0220 publication-title: ACS Nano – volume: 31 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0020 publication-title: Adv. Mater. – volume: 14 start-page: 776 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0055 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0501-3 – volume: 4 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0145 publication-title: Adv. Electron. Mater. – volume: 51 start-page: 349 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0150 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.080 – volume: 7 year: 2020 ident: 10.1016/j.jmst.2020.04.059_bib0115 publication-title: Adv. Sci. – volume: 1 start-page: 22 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0010 publication-title: Nat. Electron. doi: 10.1038/s41928-017-0006-8 – volume: 1 start-page: 130 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0185 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0021-4 – volume: 9 start-page: 6207 year: 2017 ident: 10.1016/j.jmst.2020.04.059_bib0105 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14566 – volume: 575 start-page: 607 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0060 publication-title: Nature doi: 10.1038/s41586-019-1677-2 – volume: 11 start-page: 18654 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0095 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04443 – volume: 5 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0025 publication-title: Adv. Electron. Mater. – volume: 7 start-page: 12682 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0200 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04880D – volume: 11 start-page: 12647 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0175 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01464 – volume: 14 start-page: 35 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0015 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0302-0 – volume: 8 start-page: 2178 year: 2020 ident: 10.1016/j.jmst.2020.04.059_bib0215 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06230K – volume: 11 start-page: 3010 year: 2017 ident: 10.1016/j.jmst.2020.04.059_bib0220 publication-title: ACS Nano doi: 10.1021/acsnano.6b08668 – volume: 29 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0170 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 37345 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0140 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16841 – volume: 31 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0005 publication-title: Adv. Mater. – volume: 30 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0080 publication-title: Nanotechnology – volume: 5 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0035 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800876 – volume: 6 start-page: 1877 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0125 publication-title: Mater. Horizons doi: 10.1039/C9MH00468H – volume: 11 start-page: 18159 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0045 publication-title: Nanoscale doi: 10.1039/C9NR06403F – volume: 129 start-page: 210 year: 2017 ident: 10.1016/j.jmst.2020.04.059_bib0050 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2016.11.001 – volume: 5 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0180 publication-title: Flexible Adv. Electron. Mater. – volume: 1 start-page: 458 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0205 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0118-9 – volume: 20 start-page: 4111 year: 2020 ident: 10.1016/j.jmst.2020.04.059_bib0070 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05271 – volume: 7 start-page: 4729 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0160 publication-title: Chem. A – volume: 18 start-page: 4447 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0030 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01526 – volume: 39 start-page: 1764 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0065 publication-title: IEEE Electron. Dev. Lett. doi: 10.1109/LED.2018.2869095 – volume: 11 start-page: 20497 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0195 publication-title: Nanoscale doi: 10.1039/C9NR07456B – volume: 11 start-page: 6453 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0040 publication-title: Nanoscale doi: 10.1039/C8NR09918A – volume: 11 start-page: 7102 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0090 publication-title: Nanoscale doi: 10.1039/C9NR00747D – volume: 24 start-page: 4483 year: 2012 ident: 10.1016/j.jmst.2020.04.059_bib0155 publication-title: Chem. Mater. doi: 10.1021/cm300739y – volume: 28 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0210 publication-title: Adv. Funct. Mater. – volume: 4 year: 2017 ident: 10.1016/j.jmst.2020.04.059_bib0120 publication-title: Adv. Sci. doi: 10.1002/advs.201600435 – volume: 22 start-page: 1228 year: 2010 ident: 10.1016/j.jmst.2020.04.059_bib0190 publication-title: Adv. Mater. doi: 10.1002/adma.200903203 – volume: 7 start-page: 1491 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0075 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC05489D – volume: 4 start-page: 1293 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0165 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00341J – volume: 40 start-page: 1265 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0100 publication-title: IEEE Electron Dev. Lett. doi: 10.1109/LED.2019.2921322 – volume: 7 start-page: 1298 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0110 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04395G – volume: 11 start-page: 47063 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0085 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16499 – volume: 7 start-page: 14816 year: 2019 ident: 10.1016/j.jmst.2020.04.059_bib0130 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05392A – volume: 11 start-page: 1183 year: 2018 ident: 10.1016/j.jmst.2020.04.059_bib0135 publication-title: J. Chen, Nano Res. doi: 10.1007/s12274-017-1781-2 |
SSID | ssj0037588 |
Score | 2.4758396 |
Snippet | Flexible resistive random access memory (RRAM) has shown great potential in wearable electronics. With tunable multilevel resistance states, flexible... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 21 |
SubjectTerms | Flexible memristor Forming-free Full PVD process Multilevel storage Neuromorphic application |
Title | Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique |
URI | https://dx.doi.org/10.1016/j.jmst.2020.04.059 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRg_BlBJT14M5P9aLtxJChBjcREMdyWtWsVwoAgHrz4t_tetyEmhoPXZm2Wr69fX5vvfSXkgocqEEq6jh-lkcMMrPQoMcxRgRZ-irLFBO87HvqiN2B3Qz6skE5ZC4OyyoL7c063bF20NAs0m_PRqPnkWS8TrBSFmAVaxQp2FmKUX32tZB4B5MN5ORyK1AJU89R_NF7j7B31lL5r7U7Rr_SvzWltw-nukd0iU6Tt_Gf2SUVPD8jOmn_gIXnrzlDK8uqYhdbUoLelnGia6cw6Biwo3rJSqxmcoDiIYiMQCIVMlVony2wGOI8UVfZxBxiKyk-KV_L08eWargxej8ige_Pc6TnF0wkAsusuAfSAe0a4KTOJkDwVCRw9IqZDk0ICIFELA8ySKBHKlkgDdORJFZeuaMGJDzKi4JhUp7OpPiFUGJ5wpQWTCiaOw3rm2mM6EiyBDVaHNeKVmMWq8BXH5y0mcSkgG8eIc4w4xy6LAecauVz1meeuGhu_5uVUxL9iIwba39Cv_s9-p2TbR-WKi2K_M1JdLj70OaQeS9mwsdUgW-3b-17_G8AC2a0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTwIxEMYbxIN6MD4j-OrBm1nZR9tdjgYlqEBMBMOt2Xa7CmGBIB68-Lc7sw_ExHjw2mw3m2_b6bT59RtCLrivPaGVbblBFFgshpkehDGztGeEGyG2GOJ5R6crWn12P-CDEmkUd2EQq8xjfxbT02idt9RyNWuz4bD25KReJnhTFMYshNU1ss5g-mIZg6vPJefhQUKc3YdDSs1DnKf6DXmNkjcEKl079TtFw9LfVqeVFae5Q7bzVJFeZ1-zS0pmske2VgwE98lrc4osy4sVz42hMZpbqrGhiUlSy4A5xWNWmkKDY6SDKDZCBKGQqtLUyjKZgtBDTXVa3QFeRdUHxTN5-vh8Q5cOrwek37ztNVpWXjsBVLbtBajucScWdsTiUCgeiRD2HgEzfhxBBqAQhoHQEmrhq7qIPLTkiTRXtqjDlg9SIu-QlCfTiTkiVMQ85NoIpjT8OQ4TmhuHmUCwEFZY41eIU2gmdW4sjvUtxrIgyEYSdZaos7SZBJ0r5HLZZ5bZavz5NC9-hfwxOCTE_T_6Vf_Z75xstHqdtmzfdR-OyaaLGIuN5N8JKS_m7-YU8pCFOkvH2RfaH9s7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forming-free+flexible+memristor+with+multilevel+storage+for+neuromorphic+computing+by+full+PVD+technique&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Wang%2C+Tian-Yu&rft.au=Meng%2C+Jia-Lin&rft.au=Li%2C+Qing-Xuan&rft.au=Chen%2C+Lin&rft.date=2021-01-10&rft.issn=1005-0302&rft.volume=60&rft.spage=21&rft.epage=26&rft_id=info:doi/10.1016%2Fj.jmst.2020.04.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmst_2020_04_059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon |