Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement

This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 94; pp. 138 - 146
Main Authors Raad, Bhagwan Ram, Nigam, Kaushal, Sharma, Dheeraj, Kondekar, P.N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this. •Bandgap engineering improves ON-state current and suppresses the ambipolar behaviour.•Further, device performance is enhanced by work function engineering and gate dielectric engineering with bandgap engineering.•Optimization of the work function engineering is performed for improving device performance.
AbstractList This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this. •Bandgap engineering improves ON-state current and suppresses the ambipolar behaviour.•Further, device performance is enhanced by work function engineering and gate dielectric engineering with bandgap engineering.•Optimization of the work function engineering is performed for improving device performance.
Author Sharma, Dheeraj
Raad, Bhagwan Ram
Nigam, Kaushal
Kondekar, P.N.
Author_xml – sequence: 1
  givenname: Bhagwan Ram
  surname: Raad
  fullname: Raad, Bhagwan Ram
  email: bhagwanramraad@gmail.com
– sequence: 2
  givenname: Kaushal
  surname: Nigam
  fullname: Nigam, Kaushal
  email: kaushalnigam3@gmail.com
– sequence: 3
  givenname: Dheeraj
  surname: Sharma
  fullname: Sharma, Dheeraj
  email: dheeraj24482@gmail.com
– sequence: 4
  givenname: P.N.
  surname: Kondekar
  fullname: Kondekar, P.N.
  email: pnkondekar@iiitdmj.ac.in
BookMark eNp9kE1OwzAQRi1UJNrCBVj5ACTYiRMnEhuE-JOQYAFry7XHZUriVI5pxRG4NS5lxaIbf9bMPFvzZmTiBw-EnHOWc8bry1U-rnvMi3TPmchTHJEpZ22dlbWUEzJlUrRZzcr6hMzGccUYawWXU_L9AsENodfeAEW_gTHiUkccPB0cXWhvl3p9QVMJaJ-OgLqj2yF8UPfpze9cmtn3LUIHJgY0FPwSPUAAS1_vbl_pFuM7tbDB9EuADvUCO4xfFPt1GDbQg4-n5NjpboSzv5yTt0TePGRPz_ePN9dPmSkZi5lwBXesEI1eLFxbyCotVTVGF5VtGyFqoyWYQsoaGuaMbTmrBVTS8sqWjdOinJNi_64JwzgGcGodsNfhS3GmdjLVSu1kqp1MxYRKkaDmH2Qw_mqKQWN3GL3ao5CW2iAENRqEpNtiSLaUHfAQ_gNBxZXL
CitedBy_id crossref_primary_10_1016_j_spmi_2017_10_012
crossref_primary_10_1007_s12633_022_01765_w
crossref_primary_10_1007_s12633_022_02101_y
crossref_primary_10_1007_s12633_024_02987_w
crossref_primary_10_3390_mi12101232
crossref_primary_10_1109_JEDS_2020_3020920
crossref_primary_10_1007_s12633_020_00506_1
crossref_primary_10_1080_00207217_2017_1409807
crossref_primary_10_1007_s12633_019_00330_2
crossref_primary_10_1007_s10825_020_01497_3
crossref_primary_10_1007_s12633_021_01614_2
crossref_primary_10_1109_TED_2017_2724560
crossref_primary_10_1016_j_spmi_2017_03_059
crossref_primary_10_1088_1361_6641_ab7e02
crossref_primary_10_4028_www_scientific_net_JNanoR_57_68
crossref_primary_10_1049_iet_cds_2019_0053
crossref_primary_10_1007_s10825_021_01686_8
crossref_primary_10_1016_j_micrna_2025_208084
crossref_primary_10_1063_1_5040536
crossref_primary_10_1016_j_spmi_2018_12_016
crossref_primary_10_1088_1361_6641_abcdf9
crossref_primary_10_1016_j_mejo_2019_02_004
crossref_primary_10_1109_TNB_2024_3386586
crossref_primary_10_1016_j_microrel_2022_114512
crossref_primary_10_3390_mi11110960
crossref_primary_10_1088_1361_6641_aba823
crossref_primary_10_1149_2162_8777_ac1478
crossref_primary_10_1149_2162_8777_ad9400
crossref_primary_10_3390_mi10060424
crossref_primary_10_1002_mmce_22579
crossref_primary_10_1109_TNB_2022_3174266
crossref_primary_10_1016_j_mee_2019_111043
crossref_primary_10_1142_S0217979222502289
crossref_primary_10_1109_TNANO_2020_3012772
crossref_primary_10_1149_2162_8777_accaa7
crossref_primary_10_1016_j_micrna_2023_207629
crossref_primary_10_1109_TED_2017_2755507
crossref_primary_10_1088_1361_6641_ad689d
crossref_primary_10_3390_coatings10030278
crossref_primary_10_1109_TNANO_2020_2993565
crossref_primary_10_1007_s00339_020_04065_5
crossref_primary_10_1007_s40089_018_0250_6
crossref_primary_10_1016_j_spmi_2018_03_002
crossref_primary_10_1016_j_mejo_2021_105102
crossref_primary_10_1049_mnl_2018_5075
crossref_primary_10_1016_j_spmi_2019_04_006
crossref_primary_10_1186_s11671_021_03561_8
crossref_primary_10_1007_s10825_017_1032_5
crossref_primary_10_1007_s12633_020_00882_8
crossref_primary_10_3390_electronics8050574
crossref_primary_10_1007_s11664_024_11519_6
crossref_primary_10_1049_iet_cds_2018_5111
crossref_primary_10_1063_5_0024864
crossref_primary_10_1080_00207217_2020_1793400
crossref_primary_10_1007_s12633_019_00371_7
crossref_primary_10_1016_j_spmi_2017_03_037
crossref_primary_10_1016_j_spmi_2016_09_029
crossref_primary_10_1049_mnl_2018_5548
crossref_primary_10_1007_s00339_022_06017_7
crossref_primary_10_1109_JSEN_2020_3027031
crossref_primary_10_1007_s12633_020_00665_1
crossref_primary_10_1016_j_mseb_2024_117456
crossref_primary_10_1007_s12633_022_02112_9
crossref_primary_10_1016_j_matpr_2022_09_449
crossref_primary_10_1007_s00339_020_03615_1
crossref_primary_10_1016_j_spmi_2016_11_045
crossref_primary_10_32604_cmc_2023_033828
crossref_primary_10_1007_s11664_019_07335_y
crossref_primary_10_1007_s12633_021_01113_4
crossref_primary_10_1109_TED_2016_2600621
crossref_primary_10_1007_s00339_018_2237_6
crossref_primary_10_1149_2162_8777_ad0d9c
crossref_primary_10_1007_s12633_023_02330_9
crossref_primary_10_1016_j_mejo_2024_106116
crossref_primary_10_1007_s00339_019_2614_9
crossref_primary_10_1049_mnl_2018_5675
crossref_primary_10_1088_1402_4896_ad7b8b
crossref_primary_10_1109_TED_2017_2730922
Cites_doi 10.1109/LED.2007.901273
10.1016/j.sse.2005.01.010
10.1038/nature10679
10.1088/0268-1242/28/5/052001
10.1109/55.974809
10.1109/TED.2010.2093142
10.1143/JJAP.43.4073
10.1063/1.2748366
10.1109/TED.2008.2008375
10.1109/LED.2011.2164512
10.1109/LED.2009.2018127
10.1109/TED.2007.899389
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2016.04.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
EndPage 146
ExternalDocumentID 10_1016_j_spmi_2016_04_016
S0749603616301598
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-4f21f0248abbf927560358ca25d98446ca7ec2776e80fcd91064e57d15d38fa43
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 01:35:02 EDT 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Bandgap engineering
Gate dielectric engineering
Gate material work function engineering
Band to band tunneling (BTBT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4f21f0248abbf927560358ca25d98446ca7ec2776e80fcd91064e57d15d38fa43
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_spmi_2016_04_016
crossref_citationtrail_10_1016_j_spmi_2016_04_016
elsevier_sciencedirect_doi_10_1016_j_spmi_2016_04_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, kam, Liu (bib10) Jun.2009
Ionescu, Riel (bib2) Nov. 2011; 479
Cui, Liang, Wang, Xu (bib13) 2012; 2
Boucart, Riess, Ionescu (bib8) Jun. 2009; 30
(bib11) 2008
Toh, Wang, Samudra, Yeo (bib6) Jun. 2007; 90
Ye, Wilk, Yang, Chu, Ng, Bude (bib12) May 2005; 49
Bhuwalka, Schulze, Eisele (bib4) Jul. 2004; 43
Boucart, Ionescu (bib5) Jul. 2007; 54
Sakurai (bib1) Oct. 2004; E87-C
Lee, Jang, Choi1 (bib15) 2013; 28
Saurabh, Kumar (bib16) Feb. 2011; 58
Lin, Lu, Ranade, King, Hu (bib14) Jan. 2002; 23
Choi, Park, Lee, Liu (bib3) Aug. 2007; 28
Shih, Chien (bib9) Nov. 2011; 32
Schlosser, Bhuwalka, Sauter, Zilbaur, Sulima, Eisele (bib7) Jan. 2009; 56
Lee (10.1016/j.spmi.2016.04.016_bib15) 2013; 28
Saurabh (10.1016/j.spmi.2016.04.016_bib16) 2011; 58
(10.1016/j.spmi.2016.04.016_bib11) 2008
Lin (10.1016/j.spmi.2016.04.016_bib14) 2002; 23
Cui (10.1016/j.spmi.2016.04.016_bib13) 2012; 2
Ye (10.1016/j.spmi.2016.04.016_bib12) 2005; 49
Choi (10.1016/j.spmi.2016.04.016_bib3) 2007; 28
Toh (10.1016/j.spmi.2016.04.016_bib6) 2007; 90
Ionescu (10.1016/j.spmi.2016.04.016_bib2) 2011; 479
Kim (10.1016/j.spmi.2016.04.016_bib10) 2009
Sakurai (10.1016/j.spmi.2016.04.016_bib1) 2004; E87-C
Schlosser (10.1016/j.spmi.2016.04.016_bib7) 2009; 56
Boucart (10.1016/j.spmi.2016.04.016_bib8) 2009; 30
Shih (10.1016/j.spmi.2016.04.016_bib9) 2011; 32
Bhuwalka (10.1016/j.spmi.2016.04.016_bib4) 2004; 43
Boucart (10.1016/j.spmi.2016.04.016_bib5) 2007; 54
References_xml – volume: 479
  start-page: 329
  year: Nov. 2011
  end-page: 337
  ident: bib2
  article-title: Field-effect transistors as energy efficient electronic switches
  publication-title: Nature
– start-page: 178
  year: Jun.2009
  end-page: 179
  ident: bib10
  article-title: Germanium-source tunnel field effect transistors with recorded high I
  publication-title: VLSI Symp. Tech. Dig.
– volume: 43
  start-page: 4073
  year: Jul. 2004
  end-page: 4078
  ident: bib4
  article-title: Performance enhancement of vetical tunnel field-effect transistor with SiGe in the δp+ layer
  publication-title: Jpn. J. Appl. Phys.
– volume: 30
  start-page: 656658
  year: Jun. 2009
  ident: bib8
  article-title: Lateral strain profile as key technology booster for all-silicon tunnel FETs
  publication-title: IEEE Electron. Device Lett.
– volume: 56
  start-page: 100
  year: Jan. 2009
  end-page: 108
  ident: bib7
  article-title: Fringing-induced drain current improvement in the tunnel field effect transistor with high-κ gate dielectrics
  publication-title: IEEE Trans. Electron. Devices
– volume: 28
  start-page: 052001
  year: 2013
  ident: bib15
  article-title: Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors
  publication-title: Semicond. Sci. Technol.
– volume: 23
  start-page: 49
  year: Jan. 2002
  end-page: 51
  ident: bib14
  article-title: An adjustable work function technology using Mo gate for CMOS devices
  publication-title: IEEE Electron Device Lett.
– volume: 90
  year: Jun. 2007
  ident: bib6
  article-title: Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 743
  year: Aug. 2007
  end-page: 745
  ident: bib3
  article-title: Tunneling field-effect transistor (TFETs) with subthreshold swing(ss) less than 60mV/Dec
  publication-title: IEEE Electron. Device Lett.
– volume: 54
  start-page: 1725
  year: Jul. 2007
  end-page: 1733
  ident: bib5
  article-title: Double-gate tunnel TFET with high-κ gate dielectric
  publication-title: IEEE Trans. Electron. Devices
– year: 2008
  ident: bib11
  publication-title: Atlas Users Manual: Device Simulation Software
– volume: E87-C
  start-page: 429
  year: Oct. 2004
  end-page: 436
  ident: bib1
  article-title: Tunnel perspectives of low-power VLSIs
  publication-title: IEICE Trans. Electron.
– volume: 2
  year: 2012
  ident: bib13
  article-title: Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering
  publication-title: J. Appl. Phys. AIP Adv.
– volume: 32
  start-page: 14981500
  year: Nov. 2011
  ident: bib9
  article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction
  publication-title: IEEE Electron. Device Lett.
– volume: 58
  start-page: 404
  year: Feb. 2011
  end-page: 410
  ident: bib16
  article-title: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor
  publication-title: IEEE Trans. Electron. Devices
– volume: 49
  start-page: 790
  year: May 2005
  end-page: 794
  ident: bib12
  article-title: Improvement of GaAs metalsemiconductor field-effect transistor drainsource breakdown voltage by oxide surface passivation grown by atomic layer deposition
  publication-title: Solid State Electron.
– volume: 28
  start-page: 743
  issue: 8
  year: 2007
  ident: 10.1016/j.spmi.2016.04.016_bib3
  article-title: Tunneling field-effect transistor (TFETs) with subthreshold swing(ss) less than 60mV/Dec
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2007.901273
– volume: 2
  year: 2012
  ident: 10.1016/j.spmi.2016.04.016_bib13
  article-title: Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering
  publication-title: J. Appl. Phys. AIP Adv.
– volume: 49
  start-page: 790
  issue: 5
  year: 2005
  ident: 10.1016/j.spmi.2016.04.016_bib12
  article-title: Improvement of GaAs metalsemiconductor field-effect transistor drainsource breakdown voltage by oxide surface passivation grown by atomic layer deposition
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2005.01.010
– volume: 479
  start-page: 329
  issue: 7373
  year: 2011
  ident: 10.1016/j.spmi.2016.04.016_bib2
  article-title: Field-effect transistors as energy efficient electronic switches
  publication-title: Nature
  doi: 10.1038/nature10679
– volume: 28
  start-page: 052001
  issue: 5
  year: 2013
  ident: 10.1016/j.spmi.2016.04.016_bib15
  article-title: Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/5/052001
– start-page: 178
  year: 2009
  ident: 10.1016/j.spmi.2016.04.016_bib10
  article-title: Germanium-source tunnel field effect transistors with recorded high ION/IOFF
  publication-title: VLSI Symp. Tech. Dig.
– volume: E87-C
  start-page: 429
  issue: 4
  year: 2004
  ident: 10.1016/j.spmi.2016.04.016_bib1
  article-title: Tunnel perspectives of low-power VLSIs
  publication-title: IEICE Trans. Electron.
– volume: 23
  start-page: 49
  issue: 1
  year: 2002
  ident: 10.1016/j.spmi.2016.04.016_bib14
  article-title: An adjustable work function technology using Mo gate for CMOS devices
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/55.974809
– volume: 58
  start-page: 404
  issue: 2
  year: 2011
  ident: 10.1016/j.spmi.2016.04.016_bib16
  article-title: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/TED.2010.2093142
– year: 2008
  ident: 10.1016/j.spmi.2016.04.016_bib11
– volume: 43
  start-page: 4073
  issue: 7A
  year: 2004
  ident: 10.1016/j.spmi.2016.04.016_bib4
  article-title: Performance enhancement of vetical tunnel field-effect transistor with SiGe in the δp+ layer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.43.4073
– volume: 90
  issue: 26
  year: 2007
  ident: 10.1016/j.spmi.2016.04.016_bib6
  article-title: Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2748366
– volume: 56
  start-page: 100
  issue: 1
  year: 2009
  ident: 10.1016/j.spmi.2016.04.016_bib7
  article-title: Fringing-induced drain current improvement in the tunnel field effect transistor with high-κ gate dielectrics
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/TED.2008.2008375
– volume: 32
  start-page: 14981500
  issue: 11
  year: 2011
  ident: 10.1016/j.spmi.2016.04.016_bib9
  article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2011.2164512
– volume: 30
  start-page: 656658
  issue: 6
  year: 2009
  ident: 10.1016/j.spmi.2016.04.016_bib8
  article-title: Lateral strain profile as key technology booster for all-silicon tunnel FETs
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2009.2018127
– volume: 54
  start-page: 1725
  issue: 7
  year: 2007
  ident: 10.1016/j.spmi.2016.04.016_bib5
  article-title: Double-gate tunnel TFET with high-κ gate dielectric
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/TED.2007.899389
SSID ssj0009417
Score 2.069808
Snippet This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 138
SubjectTerms Band to band tunneling (BTBT)
Bandgap engineering
Gate dielectric engineering
Gate material work function engineering
Title Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement
URI https://dx.doi.org/10.1016/j.spmi.2016.04.016
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IT6wv9uBNYzfZ3TyOUpSqKIIt9LbsKxKpaWnrwYt3_7U7m8QqSA-eQpJZCDvDzGT2m28QOjU2kVoxGsTEWTAzWRioxEYBsS44WkuT3EC_8_1D3O2z2wEfLKFO0wsDsMra91c-3Xvr-km73s32uCjaTy74ufSbxi6jcDEtg4ZfxhKw8ouPOcwjY37qLggHIF03zlQYr-n4tQB4V-zpTmHm-V_B6UfAud5EG3WmiC-rj9lCS7bcRmudZkDbNlr16E093UGfj3P4Py7mzBmjEo9yrGRpnuX4HEPFDLsM1RsdBkQWhrDm5ZxM9d4U1WScQmNbcxVag3vXVz0MNVtsLPgWPLHDoqL4fseFL0z4OuMu6jvJTjeoZywEmhIyC1gehTnwmkml8gy44AnlqZYRN1nqfhW1TKyOkiS2Kcm1U6VLYSxPTMgNTXPJ6B5aLkel3UeYUzhdVkxzKVnMVapIqChRUGVVeRS3UNhsrtA1ATnMwRiKBmn2IkAhAhQiCBPu0kJn32vGFf3GQmne6Ez8MiLh4sOCdQf_XHeI1uGuQo4doeXZ5M0euxxlpk68EZ6glcubu-7DF7qU6Hw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReEBQQLS8f4ARhndjO48ABFaotfQiJrdSbiR9BqdrsqrsI9dJ7fw9_kBnHYUFCPSD1FCm2o3hmMjOefDMD8NL5orZGiiTnKMHSVWliCp8l3KNx9F4UjaN854PDfHwkPx2r4xX4OeTCEKwy6v5epwdtHe-MIjVHs7YdfUHjh-63yNGjQJtWlRFZuecvfuC5bf5u9wMy-VWW7XycbI-T2FogsYLzRSKbLG2onFdtTFNRCXQuVGnrTLmqxBOSrQtvs6LIfckbiztAy-1V4VLlRNnUUuBzb8FtieqC2ia8vVziSioZ2vzS2yX0ejFTpweVzWdnLeHJ8lBflZqs_8sa_mHhdu7B3eiasvf97u_Diu82YG176Ai3AXcCXNTOH8DV52W-AWuXpTqmHZs2zNSd-1bP3jAK0TF0iYOUM4KAMbKjYR7O6cdd27fiaS3zsTiid2yC9GQUJGbOkzJj5_607WuKX7A2REJCYPMhHN0I5R_Bajft_GNgStDvbCOtqmuZK1ManhrBDYV1TZPlm5AOxNU2VjynxhuneoC2nWhiiCaGaC41Xjbh9e81s77ex7Wz1cAz_ZfUajRI16zb-s91L2BtPDnY1_u7h3tPYJ1GetjaU1hdnH_3z9BBWpjnQSAZfL3pL-AX9EMjOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+investigation+of+bandgap%2C+gate+material+work+function+and+gate+dielectric+engineered+TFET+with+device+reliability+improvement&rft.jtitle=Superlattices+and+microstructures&rft.au=Raad%2C+Bhagwan+Ram&rft.au=Nigam%2C+Kaushal&rft.au=Sharma%2C+Dheeraj&rft.au=Kondekar%2C+P.N.&rft.date=2016-06-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=94&rft.spage=138&rft.epage=146&rft_id=info:doi/10.1016%2Fj.spmi.2016.04.016&rft.externalDocID=S0749603616301598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon