Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement
This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band...
Saved in:
Published in | Superlattices and microstructures Vol. 94; pp. 138 - 146 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.
•Bandgap engineering improves ON-state current and suppresses the ambipolar behaviour.•Further, device performance is enhanced by work function engineering and gate dielectric engineering with bandgap engineering.•Optimization of the work function engineering is performed for improving device performance. |
---|---|
AbstractList | This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.
•Bandgap engineering improves ON-state current and suppresses the ambipolar behaviour.•Further, device performance is enhanced by work function engineering and gate dielectric engineering with bandgap engineering.•Optimization of the work function engineering is performed for improving device performance. |
Author | Sharma, Dheeraj Raad, Bhagwan Ram Nigam, Kaushal Kondekar, P.N. |
Author_xml | – sequence: 1 givenname: Bhagwan Ram surname: Raad fullname: Raad, Bhagwan Ram email: bhagwanramraad@gmail.com – sequence: 2 givenname: Kaushal surname: Nigam fullname: Nigam, Kaushal email: kaushalnigam3@gmail.com – sequence: 3 givenname: Dheeraj surname: Sharma fullname: Sharma, Dheeraj email: dheeraj24482@gmail.com – sequence: 4 givenname: P.N. surname: Kondekar fullname: Kondekar, P.N. email: pnkondekar@iiitdmj.ac.in |
BookMark | eNp9kE1OwzAQRi1UJNrCBVj5ACTYiRMnEhuE-JOQYAFry7XHZUriVI5pxRG4NS5lxaIbf9bMPFvzZmTiBw-EnHOWc8bry1U-rnvMi3TPmchTHJEpZ22dlbWUEzJlUrRZzcr6hMzGccUYawWXU_L9AsENodfeAEW_gTHiUkccPB0cXWhvl3p9QVMJaJ-OgLqj2yF8UPfpze9cmtn3LUIHJgY0FPwSPUAAS1_vbl_pFuM7tbDB9EuADvUCO4xfFPt1GDbQg4-n5NjpboSzv5yTt0TePGRPz_ePN9dPmSkZi5lwBXesEI1eLFxbyCotVTVGF5VtGyFqoyWYQsoaGuaMbTmrBVTS8sqWjdOinJNi_64JwzgGcGodsNfhS3GmdjLVSu1kqp1MxYRKkaDmH2Qw_mqKQWN3GL3ao5CW2iAENRqEpNtiSLaUHfAQ_gNBxZXL |
CitedBy_id | crossref_primary_10_1016_j_spmi_2017_10_012 crossref_primary_10_1007_s12633_022_01765_w crossref_primary_10_1007_s12633_022_02101_y crossref_primary_10_1007_s12633_024_02987_w crossref_primary_10_3390_mi12101232 crossref_primary_10_1109_JEDS_2020_3020920 crossref_primary_10_1007_s12633_020_00506_1 crossref_primary_10_1080_00207217_2017_1409807 crossref_primary_10_1007_s12633_019_00330_2 crossref_primary_10_1007_s10825_020_01497_3 crossref_primary_10_1007_s12633_021_01614_2 crossref_primary_10_1109_TED_2017_2724560 crossref_primary_10_1016_j_spmi_2017_03_059 crossref_primary_10_1088_1361_6641_ab7e02 crossref_primary_10_4028_www_scientific_net_JNanoR_57_68 crossref_primary_10_1049_iet_cds_2019_0053 crossref_primary_10_1007_s10825_021_01686_8 crossref_primary_10_1016_j_micrna_2025_208084 crossref_primary_10_1063_1_5040536 crossref_primary_10_1016_j_spmi_2018_12_016 crossref_primary_10_1088_1361_6641_abcdf9 crossref_primary_10_1016_j_mejo_2019_02_004 crossref_primary_10_1109_TNB_2024_3386586 crossref_primary_10_1016_j_microrel_2022_114512 crossref_primary_10_3390_mi11110960 crossref_primary_10_1088_1361_6641_aba823 crossref_primary_10_1149_2162_8777_ac1478 crossref_primary_10_1149_2162_8777_ad9400 crossref_primary_10_3390_mi10060424 crossref_primary_10_1002_mmce_22579 crossref_primary_10_1109_TNB_2022_3174266 crossref_primary_10_1016_j_mee_2019_111043 crossref_primary_10_1142_S0217979222502289 crossref_primary_10_1109_TNANO_2020_3012772 crossref_primary_10_1149_2162_8777_accaa7 crossref_primary_10_1016_j_micrna_2023_207629 crossref_primary_10_1109_TED_2017_2755507 crossref_primary_10_1088_1361_6641_ad689d crossref_primary_10_3390_coatings10030278 crossref_primary_10_1109_TNANO_2020_2993565 crossref_primary_10_1007_s00339_020_04065_5 crossref_primary_10_1007_s40089_018_0250_6 crossref_primary_10_1016_j_spmi_2018_03_002 crossref_primary_10_1016_j_mejo_2021_105102 crossref_primary_10_1049_mnl_2018_5075 crossref_primary_10_1016_j_spmi_2019_04_006 crossref_primary_10_1186_s11671_021_03561_8 crossref_primary_10_1007_s10825_017_1032_5 crossref_primary_10_1007_s12633_020_00882_8 crossref_primary_10_3390_electronics8050574 crossref_primary_10_1007_s11664_024_11519_6 crossref_primary_10_1049_iet_cds_2018_5111 crossref_primary_10_1063_5_0024864 crossref_primary_10_1080_00207217_2020_1793400 crossref_primary_10_1007_s12633_019_00371_7 crossref_primary_10_1016_j_spmi_2017_03_037 crossref_primary_10_1016_j_spmi_2016_09_029 crossref_primary_10_1049_mnl_2018_5548 crossref_primary_10_1007_s00339_022_06017_7 crossref_primary_10_1109_JSEN_2020_3027031 crossref_primary_10_1007_s12633_020_00665_1 crossref_primary_10_1016_j_mseb_2024_117456 crossref_primary_10_1007_s12633_022_02112_9 crossref_primary_10_1016_j_matpr_2022_09_449 crossref_primary_10_1007_s00339_020_03615_1 crossref_primary_10_1016_j_spmi_2016_11_045 crossref_primary_10_32604_cmc_2023_033828 crossref_primary_10_1007_s11664_019_07335_y crossref_primary_10_1007_s12633_021_01113_4 crossref_primary_10_1109_TED_2016_2600621 crossref_primary_10_1007_s00339_018_2237_6 crossref_primary_10_1149_2162_8777_ad0d9c crossref_primary_10_1007_s12633_023_02330_9 crossref_primary_10_1016_j_mejo_2024_106116 crossref_primary_10_1007_s00339_019_2614_9 crossref_primary_10_1049_mnl_2018_5675 crossref_primary_10_1088_1402_4896_ad7b8b crossref_primary_10_1109_TED_2017_2730922 |
Cites_doi | 10.1109/LED.2007.901273 10.1016/j.sse.2005.01.010 10.1038/nature10679 10.1088/0268-1242/28/5/052001 10.1109/55.974809 10.1109/TED.2010.2093142 10.1143/JJAP.43.4073 10.1063/1.2748366 10.1109/TED.2008.2008375 10.1109/LED.2011.2164512 10.1109/LED.2009.2018127 10.1109/TED.2007.899389 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2016.04.016 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 146 |
ExternalDocumentID | 10_1016_j_spmi_2016_04_016 S0749603616301598 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4f21f0248abbf927560358ca25d98446ca7ec2776e80fcd91064e57d15d38fa43 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 01:35:02 EDT 2025 Fri Feb 23 02:28:10 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Bandgap engineering Gate dielectric engineering Gate material work function engineering Band to band tunneling (BTBT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4f21f0248abbf927560358ca25d98446ca7ec2776e80fcd91064e57d15d38fa43 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2016_04_016 crossref_citationtrail_10_1016_j_spmi_2016_04_016 elsevier_sciencedirect_doi_10_1016_j_spmi_2016_04_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 2016-06-00 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kim, kam, Liu (bib10) Jun.2009 Ionescu, Riel (bib2) Nov. 2011; 479 Cui, Liang, Wang, Xu (bib13) 2012; 2 Boucart, Riess, Ionescu (bib8) Jun. 2009; 30 (bib11) 2008 Toh, Wang, Samudra, Yeo (bib6) Jun. 2007; 90 Ye, Wilk, Yang, Chu, Ng, Bude (bib12) May 2005; 49 Bhuwalka, Schulze, Eisele (bib4) Jul. 2004; 43 Boucart, Ionescu (bib5) Jul. 2007; 54 Sakurai (bib1) Oct. 2004; E87-C Lee, Jang, Choi1 (bib15) 2013; 28 Saurabh, Kumar (bib16) Feb. 2011; 58 Lin, Lu, Ranade, King, Hu (bib14) Jan. 2002; 23 Choi, Park, Lee, Liu (bib3) Aug. 2007; 28 Shih, Chien (bib9) Nov. 2011; 32 Schlosser, Bhuwalka, Sauter, Zilbaur, Sulima, Eisele (bib7) Jan. 2009; 56 Lee (10.1016/j.spmi.2016.04.016_bib15) 2013; 28 Saurabh (10.1016/j.spmi.2016.04.016_bib16) 2011; 58 (10.1016/j.spmi.2016.04.016_bib11) 2008 Lin (10.1016/j.spmi.2016.04.016_bib14) 2002; 23 Cui (10.1016/j.spmi.2016.04.016_bib13) 2012; 2 Ye (10.1016/j.spmi.2016.04.016_bib12) 2005; 49 Choi (10.1016/j.spmi.2016.04.016_bib3) 2007; 28 Toh (10.1016/j.spmi.2016.04.016_bib6) 2007; 90 Ionescu (10.1016/j.spmi.2016.04.016_bib2) 2011; 479 Kim (10.1016/j.spmi.2016.04.016_bib10) 2009 Sakurai (10.1016/j.spmi.2016.04.016_bib1) 2004; E87-C Schlosser (10.1016/j.spmi.2016.04.016_bib7) 2009; 56 Boucart (10.1016/j.spmi.2016.04.016_bib8) 2009; 30 Shih (10.1016/j.spmi.2016.04.016_bib9) 2011; 32 Bhuwalka (10.1016/j.spmi.2016.04.016_bib4) 2004; 43 Boucart (10.1016/j.spmi.2016.04.016_bib5) 2007; 54 |
References_xml | – volume: 479 start-page: 329 year: Nov. 2011 end-page: 337 ident: bib2 article-title: Field-effect transistors as energy efficient electronic switches publication-title: Nature – start-page: 178 year: Jun.2009 end-page: 179 ident: bib10 article-title: Germanium-source tunnel field effect transistors with recorded high I publication-title: VLSI Symp. Tech. Dig. – volume: 43 start-page: 4073 year: Jul. 2004 end-page: 4078 ident: bib4 article-title: Performance enhancement of vetical tunnel field-effect transistor with SiGe in the δp+ layer publication-title: Jpn. J. Appl. Phys. – volume: 30 start-page: 656658 year: Jun. 2009 ident: bib8 article-title: Lateral strain profile as key technology booster for all-silicon tunnel FETs publication-title: IEEE Electron. Device Lett. – volume: 56 start-page: 100 year: Jan. 2009 end-page: 108 ident: bib7 article-title: Fringing-induced drain current improvement in the tunnel field effect transistor with high-κ gate dielectrics publication-title: IEEE Trans. Electron. Devices – volume: 28 start-page: 052001 year: 2013 ident: bib15 article-title: Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors publication-title: Semicond. Sci. Technol. – volume: 23 start-page: 49 year: Jan. 2002 end-page: 51 ident: bib14 article-title: An adjustable work function technology using Mo gate for CMOS devices publication-title: IEEE Electron Device Lett. – volume: 90 year: Jun. 2007 ident: bib6 article-title: Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization publication-title: Appl. Phys. Lett. – volume: 28 start-page: 743 year: Aug. 2007 end-page: 745 ident: bib3 article-title: Tunneling field-effect transistor (TFETs) with subthreshold swing(ss) less than 60mV/Dec publication-title: IEEE Electron. Device Lett. – volume: 54 start-page: 1725 year: Jul. 2007 end-page: 1733 ident: bib5 article-title: Double-gate tunnel TFET with high-κ gate dielectric publication-title: IEEE Trans. Electron. Devices – year: 2008 ident: bib11 publication-title: Atlas Users Manual: Device Simulation Software – volume: E87-C start-page: 429 year: Oct. 2004 end-page: 436 ident: bib1 article-title: Tunnel perspectives of low-power VLSIs publication-title: IEICE Trans. Electron. – volume: 2 year: 2012 ident: bib13 article-title: Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering publication-title: J. Appl. Phys. AIP Adv. – volume: 32 start-page: 14981500 year: Nov. 2011 ident: bib9 article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction publication-title: IEEE Electron. Device Lett. – volume: 58 start-page: 404 year: Feb. 2011 end-page: 410 ident: bib16 article-title: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor publication-title: IEEE Trans. Electron. Devices – volume: 49 start-page: 790 year: May 2005 end-page: 794 ident: bib12 article-title: Improvement of GaAs metalsemiconductor field-effect transistor drainsource breakdown voltage by oxide surface passivation grown by atomic layer deposition publication-title: Solid State Electron. – volume: 28 start-page: 743 issue: 8 year: 2007 ident: 10.1016/j.spmi.2016.04.016_bib3 article-title: Tunneling field-effect transistor (TFETs) with subthreshold swing(ss) less than 60mV/Dec publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2007.901273 – volume: 2 year: 2012 ident: 10.1016/j.spmi.2016.04.016_bib13 article-title: Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering publication-title: J. Appl. Phys. AIP Adv. – volume: 49 start-page: 790 issue: 5 year: 2005 ident: 10.1016/j.spmi.2016.04.016_bib12 article-title: Improvement of GaAs metalsemiconductor field-effect transistor drainsource breakdown voltage by oxide surface passivation grown by atomic layer deposition publication-title: Solid State Electron. doi: 10.1016/j.sse.2005.01.010 – volume: 479 start-page: 329 issue: 7373 year: 2011 ident: 10.1016/j.spmi.2016.04.016_bib2 article-title: Field-effect transistors as energy efficient electronic switches publication-title: Nature doi: 10.1038/nature10679 – volume: 28 start-page: 052001 issue: 5 year: 2013 ident: 10.1016/j.spmi.2016.04.016_bib15 article-title: Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/28/5/052001 – start-page: 178 year: 2009 ident: 10.1016/j.spmi.2016.04.016_bib10 article-title: Germanium-source tunnel field effect transistors with recorded high ION/IOFF publication-title: VLSI Symp. Tech. Dig. – volume: E87-C start-page: 429 issue: 4 year: 2004 ident: 10.1016/j.spmi.2016.04.016_bib1 article-title: Tunnel perspectives of low-power VLSIs publication-title: IEICE Trans. Electron. – volume: 23 start-page: 49 issue: 1 year: 2002 ident: 10.1016/j.spmi.2016.04.016_bib14 article-title: An adjustable work function technology using Mo gate for CMOS devices publication-title: IEEE Electron Device Lett. doi: 10.1109/55.974809 – volume: 58 start-page: 404 issue: 2 year: 2011 ident: 10.1016/j.spmi.2016.04.016_bib16 article-title: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2010.2093142 – year: 2008 ident: 10.1016/j.spmi.2016.04.016_bib11 – volume: 43 start-page: 4073 issue: 7A year: 2004 ident: 10.1016/j.spmi.2016.04.016_bib4 article-title: Performance enhancement of vetical tunnel field-effect transistor with SiGe in the δp+ layer publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.4073 – volume: 90 issue: 26 year: 2007 ident: 10.1016/j.spmi.2016.04.016_bib6 article-title: Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization publication-title: Appl. Phys. Lett. doi: 10.1063/1.2748366 – volume: 56 start-page: 100 issue: 1 year: 2009 ident: 10.1016/j.spmi.2016.04.016_bib7 article-title: Fringing-induced drain current improvement in the tunnel field effect transistor with high-κ gate dielectrics publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2008.2008375 – volume: 32 start-page: 14981500 issue: 11 year: 2011 ident: 10.1016/j.spmi.2016.04.016_bib9 article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2011.2164512 – volume: 30 start-page: 656658 issue: 6 year: 2009 ident: 10.1016/j.spmi.2016.04.016_bib8 article-title: Lateral strain profile as key technology booster for all-silicon tunnel FETs publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2009.2018127 – volume: 54 start-page: 1725 issue: 7 year: 2007 ident: 10.1016/j.spmi.2016.04.016_bib5 article-title: Double-gate tunnel TFET with high-κ gate dielectric publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2007.899389 |
SSID | ssj0009417 |
Score | 2.069808 |
Snippet | This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 138 |
SubjectTerms | Band to band tunneling (BTBT) Bandgap engineering Gate dielectric engineering Gate material work function engineering |
Title | Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement |
URI | https://dx.doi.org/10.1016/j.spmi.2016.04.016 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IT6wv9uBNYzfZ3TyOUpSqKIIt9LbsKxKpaWnrwYt3_7U7m8QqSA-eQpJZCDvDzGT2m28QOjU2kVoxGsTEWTAzWRioxEYBsS44WkuT3EC_8_1D3O2z2wEfLKFO0wsDsMra91c-3Xvr-km73s32uCjaTy74ufSbxi6jcDEtg4ZfxhKw8ouPOcwjY37qLggHIF03zlQYr-n4tQB4V-zpTmHm-V_B6UfAud5EG3WmiC-rj9lCS7bcRmudZkDbNlr16E093UGfj3P4Py7mzBmjEo9yrGRpnuX4HEPFDLsM1RsdBkQWhrDm5ZxM9d4U1WScQmNbcxVag3vXVz0MNVtsLPgWPLHDoqL4fseFL0z4OuMu6jvJTjeoZywEmhIyC1gehTnwmkml8gy44AnlqZYRN1nqfhW1TKyOkiS2Kcm1U6VLYSxPTMgNTXPJ6B5aLkel3UeYUzhdVkxzKVnMVapIqChRUGVVeRS3UNhsrtA1ATnMwRiKBmn2IkAhAhQiCBPu0kJn32vGFf3GQmne6Ez8MiLh4sOCdQf_XHeI1uGuQo4doeXZ5M0euxxlpk68EZ6glcubu-7DF7qU6Hw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReEBQQLS8f4ARhndjO48ABFaotfQiJrdSbiR9BqdrsqrsI9dJ7fw9_kBnHYUFCPSD1FCm2o3hmMjOefDMD8NL5orZGiiTnKMHSVWliCp8l3KNx9F4UjaN854PDfHwkPx2r4xX4OeTCEKwy6v5epwdtHe-MIjVHs7YdfUHjh-63yNGjQJtWlRFZuecvfuC5bf5u9wMy-VWW7XycbI-T2FogsYLzRSKbLG2onFdtTFNRCXQuVGnrTLmqxBOSrQtvs6LIfckbiztAy-1V4VLlRNnUUuBzb8FtieqC2ia8vVziSioZ2vzS2yX0ejFTpweVzWdnLeHJ8lBflZqs_8sa_mHhdu7B3eiasvf97u_Diu82YG176Ai3AXcCXNTOH8DV52W-AWuXpTqmHZs2zNSd-1bP3jAK0TF0iYOUM4KAMbKjYR7O6cdd27fiaS3zsTiid2yC9GQUJGbOkzJj5_607WuKX7A2REJCYPMhHN0I5R_Bajft_GNgStDvbCOtqmuZK1ManhrBDYV1TZPlm5AOxNU2VjynxhuneoC2nWhiiCaGaC41Xjbh9e81s77ex7Wz1cAz_ZfUajRI16zb-s91L2BtPDnY1_u7h3tPYJ1GetjaU1hdnH_3z9BBWpjnQSAZfL3pL-AX9EMjOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+investigation+of+bandgap%2C+gate+material+work+function+and+gate+dielectric+engineered+TFET+with+device+reliability+improvement&rft.jtitle=Superlattices+and+microstructures&rft.au=Raad%2C+Bhagwan+Ram&rft.au=Nigam%2C+Kaushal&rft.au=Sharma%2C+Dheeraj&rft.au=Kondekar%2C+P.N.&rft.date=2016-06-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=94&rft.spage=138&rft.epage=146&rft_id=info:doi/10.1016%2Fj.spmi.2016.04.016&rft.externalDocID=S0749603616301598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |