A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network
•The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in decision-making.•Fog computing paradigm is used to decentralize cloud based centralized security mechanism, thus data analysis and security related c...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 164; pp. 55 - 68 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in decision-making.•Fog computing paradigm is used to decentralize cloud based centralized security mechanism, thus data analysis and security related concerns are handled at edge of networks.•A distributed IDS is designed using fog computing to detect DDoS attacks against memory pool in blockchain-enabled IoT network.•To evaluate the proposed detection system two well-known machine learning algorithms, random forest and XGBoost are used in distributed architecture.•An actual IoT based BoT-IoT dataset is used to analyze the performance of the model. As it contains various recent Botnet related attacks such as DoS, DDoS, theft.•Different evaluation metrics such as accuracy, detection rate, false alarm rate, and precision are used to thoroughly investigate performance of the proposed.
The Internet of Things (IoT) is emerging as a new technology for the development of various critical applications. However, these applications are still working on centralized storage architecture and have various key challenges like privacy, security, and single point of failure. Recently, the blockchain technology has emerged as a backbone for the IoT-based application development. The blockchain can be leveraged to solve privacy, security, and single point of failure (third-part dependency) issues of IoT applications. The integration of blockchain with IoT can benefit both individual and society. However, 2017 Distributed Denial of Service (DDoS) attack on mining pool exposed the critical fault-lines among blockchain-enabled IoT network. Moreover, this application generates huge amount of data. Machine Learning (ML) gives complete autonomy in big data analysis, capabilities of decision making and therefore is used as an analytical tool. Thus, in order to address above challenges, this paper proposes a novel distributed Intrusion Detection System (IDS) using fog computing to detect DDoS attacks against mining pool in blockchain-enabled IoT Network. The performance is evaluated by training Random Forest (RF) and an optimized gradient tree boosting system (XGBoost) on distributed fog nodes. The proposed model effectiveness is assessed using an actual IoT-based dataset i.e., BoT-IoT, which includes most recent attacks found in blockchain-enabled IoT network. The results indicate, for binary attack-detection XGBoost outperforms whereas for multi-attack detection Random Forest outperforms. Overall on distributed fog nodes RF takes less time for training and testing compared to XGBoost. |
---|---|
AbstractList | •The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in decision-making.•Fog computing paradigm is used to decentralize cloud based centralized security mechanism, thus data analysis and security related concerns are handled at edge of networks.•A distributed IDS is designed using fog computing to detect DDoS attacks against memory pool in blockchain-enabled IoT network.•To evaluate the proposed detection system two well-known machine learning algorithms, random forest and XGBoost are used in distributed architecture.•An actual IoT based BoT-IoT dataset is used to analyze the performance of the model. As it contains various recent Botnet related attacks such as DoS, DDoS, theft.•Different evaluation metrics such as accuracy, detection rate, false alarm rate, and precision are used to thoroughly investigate performance of the proposed.
The Internet of Things (IoT) is emerging as a new technology for the development of various critical applications. However, these applications are still working on centralized storage architecture and have various key challenges like privacy, security, and single point of failure. Recently, the blockchain technology has emerged as a backbone for the IoT-based application development. The blockchain can be leveraged to solve privacy, security, and single point of failure (third-part dependency) issues of IoT applications. The integration of blockchain with IoT can benefit both individual and society. However, 2017 Distributed Denial of Service (DDoS) attack on mining pool exposed the critical fault-lines among blockchain-enabled IoT network. Moreover, this application generates huge amount of data. Machine Learning (ML) gives complete autonomy in big data analysis, capabilities of decision making and therefore is used as an analytical tool. Thus, in order to address above challenges, this paper proposes a novel distributed Intrusion Detection System (IDS) using fog computing to detect DDoS attacks against mining pool in blockchain-enabled IoT Network. The performance is evaluated by training Random Forest (RF) and an optimized gradient tree boosting system (XGBoost) on distributed fog nodes. The proposed model effectiveness is assessed using an actual IoT-based dataset i.e., BoT-IoT, which includes most recent attacks found in blockchain-enabled IoT network. The results indicate, for binary attack-detection XGBoost outperforms whereas for multi-attack detection Random Forest outperforms. Overall on distributed fog nodes RF takes less time for training and testing compared to XGBoost. |
Author | Kumar, Randhir Garg, Sahil Kumar, Prabhat Tripathi, Rakesh Gupta, Govind P. Hassan, Mohammad Mehedi |
Author_xml | – sequence: 1 givenname: Randhir surname: Kumar fullname: Kumar, Randhir email: rkumar.phd2018.it@nitrr.ac.in organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India – sequence: 2 givenname: Prabhat orcidid: 0000-0002-0723-0752 surname: Kumar fullname: Kumar, Prabhat email: pkumar.phd2019.it@nitrr.ac.in organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India – sequence: 3 givenname: Rakesh surname: Tripathi fullname: Tripathi, Rakesh email: rtripathi.it@nitrr.ac.in organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India – sequence: 4 givenname: Govind P. orcidid: 0000-0002-0456-1572 surname: Gupta fullname: Gupta, Govind P. email: gpgupta.it@nitrr.ac.in organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India – sequence: 5 givenname: Sahil surname: Garg fullname: Garg, Sahil email: sahil.garg@ieee.org organization: Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada – sequence: 6 givenname: Mohammad Mehedi surname: Hassan fullname: Hassan, Mohammad Mehedi email: mmhassan@ksu.edu.sa organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia |
BookMark | eNp9kMtqwzAQRUVpoUnaH-jKP2B3JPkhQzch6SMQ6KLZC1kaUzmJFSSlJX9fm2TVRVZzGTgX7pmS2971SMgThYwCLZ-7rDsYnTFgLAOaAYcbMqFQlymIXNySCVQ5TytOi3syDaEDoLSoxISoeWJsiN42x4gmsX30x2BdnxiMqOOYwilE3CfRXX7Jcum-EhWj0tswEEmzc3qrv5XtU-xVsxt6Vm6T9Bh_nd8-kLtW7QI-Xu6MbN5eN4uPdP35vlrM16nmADHNsW21YroAaESJHKGpc9aUouWtaTWreVVwXQljWI2qFYrxYThXtNYiV4bPCDvXau9C8NjKg7d75U-SghwdyU6OjuToSAKVg6MBEv8gbaMaV0ev7O46-nJGcdj0Y9HLoC32Go31gyRpnL2G_wEKAoZr |
CitedBy_id | crossref_primary_10_1007_s10660_023_09702_8 crossref_primary_10_1016_j_asej_2024_102860 crossref_primary_10_1109_ACCESS_2024_3352502 crossref_primary_10_1049_blc2_12025 crossref_primary_10_1016_j_dss_2024_114253 crossref_primary_10_1007_s11042_024_18842_4 crossref_primary_10_1007_s12083_022_01336_1 crossref_primary_10_1109_ACCESS_2023_3346320 crossref_primary_10_1145_3597210 crossref_primary_10_3390_fi16090324 crossref_primary_10_48084_etasr_7384 crossref_primary_10_1016_j_jpdc_2024_104934 crossref_primary_10_1109_ACCESS_2023_3256277 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_1007_s11042_024_20059_4 crossref_primary_10_1155_2022_3747302 crossref_primary_10_1007_s10922_024_09875_z crossref_primary_10_1016_j_rineng_2024_103882 crossref_primary_10_1016_j_iot_2023_101021 crossref_primary_10_1016_j_iot_2024_101307 crossref_primary_10_1016_j_procs_2022_10_124 crossref_primary_10_1007_s10586_024_04638_6 crossref_primary_10_1007_s10586_024_04422_6 crossref_primary_10_1016_j_jisa_2025_103972 crossref_primary_10_1007_s10489_023_05176_1 crossref_primary_10_3390_electronics11233892 crossref_primary_10_1007_s11042_024_19695_7 crossref_primary_10_1109_ACCESS_2024_3371992 crossref_primary_10_3390_s24144591 crossref_primary_10_1016_j_procs_2024_05_048 crossref_primary_10_1109_MNET_001_2200523 crossref_primary_10_3390_electronics13122370 crossref_primary_10_1155_2023_8068038 crossref_primary_10_1109_ACCESS_2024_3443202 crossref_primary_10_32604_iasc_2023_037673 crossref_primary_10_1007_s42979_024_02725_4 crossref_primary_10_3390_jsan13060073 crossref_primary_10_32604_cmc_2023_045588 crossref_primary_10_1007_s00521_024_10136_y crossref_primary_10_1145_3664287 crossref_primary_10_1007_s12083_024_01684_0 crossref_primary_10_1155_2022_8477260 crossref_primary_10_1016_j_compeleceng_2025_110226 crossref_primary_10_1109_ACCESS_2022_3200165 crossref_primary_10_1109_ACCESS_2024_3481496 crossref_primary_10_1080_19393555_2025_2477484 crossref_primary_10_3233_JIFS_230831 crossref_primary_10_1109_JIOT_2023_3321299 crossref_primary_10_1007_s11227_024_06822_2 crossref_primary_10_32604_cmc_2024_048099 crossref_primary_10_3390_math11081887 crossref_primary_10_4274_tjo_galenos_2023_24280 crossref_primary_10_3390_electronics13081416 crossref_primary_10_3390_electronics14050922 crossref_primary_10_1109_TSC_2022_3192166 crossref_primary_10_3390_fi16060200 crossref_primary_10_1007_s10115_024_02273_6 crossref_primary_10_3390_s23125644 crossref_primary_10_48084_etasr_5992 crossref_primary_10_1371_journal_pone_0290694 crossref_primary_10_32604_cmc_2023_036217 crossref_primary_10_1109_ACCESS_2023_3303087 crossref_primary_10_1109_TCE_2023_3327136 crossref_primary_10_3390_s23198044 crossref_primary_10_3390_technologies13020055 crossref_primary_10_1016_j_cosrev_2024_100697 crossref_primary_10_3390_electronics12183911 crossref_primary_10_1109_COMST_2022_3204702 crossref_primary_10_3390_fi15050174 crossref_primary_10_1002_nem_2295 crossref_primary_10_3390_app13095427 crossref_primary_10_1016_j_dajour_2023_100206 crossref_primary_10_1155_2022_6967938 crossref_primary_10_1016_j_comnet_2022_109154 crossref_primary_10_1016_j_jpdc_2022_09_014 crossref_primary_10_1109_ACCESS_2024_3473289 crossref_primary_10_1016_j_iot_2024_101215 crossref_primary_10_1109_ACCESS_2024_3413076 crossref_primary_10_1109_TII_2023_3240586 crossref_primary_10_1016_j_teler_2024_100130 crossref_primary_10_1109_ACCESS_2025_3551627 |
Cites_doi | 10.1016/j.comcom.2021.09.029 10.1016/j.comnet.2021.107819 10.1109/TNSE.2021.3059881 10.1016/j.inffus.2020.08.003 10.1016/j.future.2021.01.022 10.1007/s12652-020-02696-3 10.1016/j.jpdc.2021.02.022 10.1109/JIOT.2021.3119639 10.4018/IJISP.2021040105 10.1109/IOTM.0001.2000191 10.1007/s13369-020-05181-3 10.1109/TITS.2021.3122368 10.1016/j.sysarc.2020.101954 10.1016/j.future.2019.05.041 10.1109/JIOT.2020.3002255 10.1177/1550147719888109 10.1109/ACCESS.2021.3049564 10.3103/S0146411621020085 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpdc.2022.01.030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1096-0848 |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_jpdc_2022_01_030 S0743731522000351 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4effca2c500b86e3e0b942b68f3fdfc293753c78dd29eaf8a230163a19c84ad3 |
IEDL.DBID | .~1 |
ISSN | 0743-7315 |
IngestDate | Tue Jul 01 03:20:51 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Fri Feb 23 02:40:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fog computing Mining pool DDoS attacks Intrusion detection system Blockchain Internet of things (IoT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4effca2c500b86e3e0b942b68f3fdfc293753c78dd29eaf8a230163a19c84ad3 |
ORCID | 0000-0002-0723-0752 0000-0002-0456-1572 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_jpdc_2022_01_030 crossref_citationtrail_10_1016_j_jpdc_2022_01_030 elsevier_sciencedirect_doi_10_1016_j_jpdc_2022_01_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kumar, Kumar, Srivastava, Gupta, Tripathi, Gadekallu, Xiong (br0080) 2021 Kumar, Kumar, Tripathi, Gupta, Gadekallu, Srivastava (br0120) 2021; 187 Kumar, Tripathi, Marchang, Srivastava, Gadekallu, Xiong (br0240) 2021; 152 Javed, u. Rehman, Khan, Alazab, G (br0280) 2021; 8 Latif, Wen, Iwendi, Li-li, Mohsin, Han, Band (br0070) 2022; 181 ur Rehman, Khaliq, Imtiaz, Rasool, Shafiq, Javed, Jalil, Bashir (br0290) 2021; 118 Apostolaki, Zohar, Vanbever (br0160) 2017 Kumar, Kumar, Tripathi, Gupta, Kumar (br0150) 2021 Kumar, Tripathi, Gupta (br0030) 2021 Kumar, Tripathi (br0060) 2021; 15 Bastiaan (br0350) 2015 Karame, Androulaki, Capkun (br0360) 2012 Kumar, Gupta, Tripathi, Garg, Hassan (br0230) 2021 Vasek, Thornton, Moore (br0380) 2014 Anthi, Williams, Burnap Pulse (br0400) 2018 Kumar, Gupta, Tripathi (br0180) 2021; 46 Kumar, Tripathi (br0210) 2021; 32 Mothukuri, Khare, Parizi, Pouriyeh, Dehghantanha, Srivastava (br0020) 2021 Kumar, Kumar, Tripathi, Gupta, Garg, Hassan (br0220) 2021 Bakhsh, Alghamdi, Alsemmeari, Hassan (br0390) 2019; 15 Kaushal (br0110) 2016; 2 Shabbir, Shabbir, Iwendi, Javed, Rizwan, Herencsar, Lin (br0050) 2021; 9 Kumar, Kumar, Tripathi, Gupta, Kumar, Hassan (br0140) 2021 Kumar, Kumar, Gupta, Tripathi (br0130) 2021; 32 Kumar, Tripathi (br0250) 2021 Woo (br0200) 2017 Eyal, Sirer (br0300) 2014 Kwon, Kim, Son, Vasserman, Kim (br0330) 2017 Eyal, Sirer (br0340) Kumar, Gupta, Tripathi (br0100) 2021; 12 Shafiq, Tian, Bashir, Du, Guizani (br0310) 2021; 8 B, Deepa, Pham, Nguyen, M, G, Pathirana, Dobre (br0270) 2021; 4 Kumar, Kumar, Gupta, Tripathi, Srivastava (br0190) 2022 M. Saad, J. Choi, D. Nyang, J. Kim, A. Mohaisen, Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions, IEEE Syst. J. Gadekallu, Pham, Nguyen, Maddikunta, Deepa, Prabadevi, Pathirana, Zhao, Hwang (br0260) 2022; 9 Rosenfeld (br0320) Kumar, Gupta, Tripathi (br0010) 2021; 55 Belhadi, Djenouri, Srivastava, Djenouri, Lin, Fortino (br0040) 2021; 65 Koroniotis, Moustafa, Sitnikova, Turnbull (br0410) 2019; 100 Kumar, Gupta, Tripathi (br0090) 2021; 115 Kumar, Gupta, Tripathi (br0170) 2021 Shabbir (10.1016/j.jpdc.2022.01.030_br0050) 2021; 9 Vasek (10.1016/j.jpdc.2022.01.030_br0380) 2014 Mothukuri (10.1016/j.jpdc.2022.01.030_br0020) 2021 Kwon (10.1016/j.jpdc.2022.01.030_br0330) 2017 Latif (10.1016/j.jpdc.2022.01.030_br0070) 2022; 181 Kumar (10.1016/j.jpdc.2022.01.030_br0100) 2021; 12 Kumar (10.1016/j.jpdc.2022.01.030_br0010) 2021; 55 Kumar (10.1016/j.jpdc.2022.01.030_br0120) 2021; 187 Bastiaan (10.1016/j.jpdc.2022.01.030_br0350) Apostolaki (10.1016/j.jpdc.2022.01.030_br0160) 2017 Kumar (10.1016/j.jpdc.2022.01.030_br0210) 2021; 32 Kaushal (10.1016/j.jpdc.2022.01.030_br0110) 2016; 2 Koroniotis (10.1016/j.jpdc.2022.01.030_br0410) 2019; 100 Kumar (10.1016/j.jpdc.2022.01.030_br0220) 2021 Kumar (10.1016/j.jpdc.2022.01.030_br0240) 2021; 152 Kumar (10.1016/j.jpdc.2022.01.030_br0080) 2021 Javed (10.1016/j.jpdc.2022.01.030_br0280) 2021; 8 Kumar (10.1016/j.jpdc.2022.01.030_br0230) 2021 Kumar (10.1016/j.jpdc.2022.01.030_br0250) 2021 Kumar (10.1016/j.jpdc.2022.01.030_br0140) 2021 Kumar (10.1016/j.jpdc.2022.01.030_br0060) 2021; 15 Kumar (10.1016/j.jpdc.2022.01.030_br0170) 2021 Kumar (10.1016/j.jpdc.2022.01.030_br0150) 2021 Bakhsh (10.1016/j.jpdc.2022.01.030_br0390) 2019; 15 Gadekallu (10.1016/j.jpdc.2022.01.030_br0260) 2022; 9 Kumar (10.1016/j.jpdc.2022.01.030_br0090) 2021; 115 Kumar (10.1016/j.jpdc.2022.01.030_br0190) 2022 Shafiq (10.1016/j.jpdc.2022.01.030_br0310) 2021; 8 Eyal (10.1016/j.jpdc.2022.01.030_br0340) Kumar (10.1016/j.jpdc.2022.01.030_br0180) 2021; 46 Kumar (10.1016/j.jpdc.2022.01.030_br0030) 2021 Woo (10.1016/j.jpdc.2022.01.030_br0200) 10.1016/j.jpdc.2022.01.030_br0370 Kumar (10.1016/j.jpdc.2022.01.030_br0130) 2021; 32 Belhadi (10.1016/j.jpdc.2022.01.030_br0040) 2021; 65 ur Rehman (10.1016/j.jpdc.2022.01.030_br0290) 2021; 118 B (10.1016/j.jpdc.2022.01.030_br0270) 2021; 4 Anthi (10.1016/j.jpdc.2022.01.030_br0400) 2018 Eyal (10.1016/j.jpdc.2022.01.030_br0300) 2014 Karame (10.1016/j.jpdc.2022.01.030_br0360) 2012 Rosenfeld (10.1016/j.jpdc.2022.01.030_br0320) |
References_xml | – start-page: 906 year: 2012 end-page: 917 ident: br0360 article-title: Double-spending fast payments in bitcoin publication-title: Proceedings of the 2012 ACM Conference on Computer and Communications Security – start-page: 37 year: 2021 end-page: 42 ident: br0030 article-title: P2IDF: A Privacy-Preserving Based Intrusion Detection Framework for Software Defined Internet of Things-Fog (SDIoT-Fog) – ident: br0320 article-title: Analysis of bitcoin pooled mining reward systems – start-page: 1 year: 2022 ident: br0190 article-title: P2tif: a blockchain and deep learning framework for privacy-preserved threat intelligence in industrial iot publication-title: IEEE Trans. Ind. Inform. – volume: 118 start-page: 453 year: 2021 end-page: 466 ident: br0290 article-title: Diddos: an approach for detection and identification of distributed denial of service (ddos) cyberattacks using gated recurrent units (gru) publication-title: Future Gener. Comput. Syst. – volume: 12 start-page: 9555 year: 2021 end-page: 9572 ident: br0100 article-title: A distributed ensemble design based intrusion detection system using fog computing to protect the Internet of things networks publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 152 start-page: 128 year: 2021 end-page: 143 ident: br0240 article-title: A secured distributed detection system based on ipfs and blockchain for industrial image and video data security publication-title: J. Parallel Distrib. Comput. – start-page: 195 year: 2017 end-page: 209 ident: br0330 article-title: Be selfish and avoid dilemmas: fork after withholding (faw) attacks on bitcoin publication-title: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security – volume: 32 year: 2021 ident: br0130 article-title: A distributed framework for detecting ddos attacks in smart contract-based blockchain-iot systems by leveraging fog computing publication-title: Trans. Emerg. Telecommun. Technol. – volume: 8 start-page: 3242 year: 2021 end-page: 3254 ident: br0310 article-title: Corrauc: a malicious bot-iot traffic detection method in iot network using machine-learning techniques publication-title: IEEE Int. Things J. – volume: 4 start-page: 102 year: 2021 end-page: 108 ident: br0270 article-title: Toward blockchain for edge-of-things: a new paradigm, opportunities, and future directions publication-title: IEEE Int. Things Mag. – ident: br0340 article-title: How to disincentivize large bitcoin mining pools – volume: 65 start-page: 13 year: 2021 end-page: 20 ident: br0040 article-title: Deep learning for pedestrian collective behavior analysis in smart cities: a model of group trajectory outlier detection publication-title: Inf. Fusion – start-page: 57 year: 2014 end-page: 71 ident: br0380 article-title: Empirical analysis of denial-of-service attacks in the bitcoin ecosystem publication-title: International Conference on Financial Cryptography and Data Security – volume: 100 start-page: 779 year: 2019 end-page: 796 ident: br0410 article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset publication-title: Future Gener. Comput. Syst. – volume: 55 start-page: 137 year: 2021 end-page: 147 ident: br0010 article-title: Design of anomaly-based intrusion detection system using fog computing for iot network publication-title: Autom. Control Comput. Sci. – volume: 181 start-page: 274 year: 2022 end-page: 283 ident: br0070 article-title: Ai-empowered, blockchain and sdn integrated security architecture for iot network of cyber physical systems publication-title: Comput. Commun. – start-page: 91 year: 2021 end-page: 116 ident: br0250 article-title: Large-scale data storage scheme in blockchain ledger using ipfs and nosql publication-title: Large-Scale Data Streaming, Processing, and Blockchain Security – start-page: 1 year: 2021 ident: br0080 article-title: Ppsf: a privacy-preserving and secure framework using blockchain-based machine-learning for iot-driven smart cities publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 2 start-page: 944 year: 2016 end-page: 946 ident: br0110 article-title: Bitcoin: vulnerabilities and attacks publication-title: Imp. J. Interdiscip. Res. – volume: 8 start-page: 1456 year: 2021 end-page: 1466 ident: br0280 article-title: Canintelliids: detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru publication-title: IEEE Trans. Netw. Sci. Eng. – year: 2017 ident: br0200 article-title: Charts: determining the ideal block size for bitcoin – year: 2015 ident: br0350 article-title: Preventing the 51%-attack: a stochastic analysis of two phase proof of work in bitcoin – volume: 9 start-page: 964 year: 2022 end-page: 988 ident: br0260 article-title: Blockchain for edge of things: applications, opportunities, and challenges publication-title: IEEE Int. Things J. – start-page: 375 year: 2017 end-page: 392 ident: br0160 article-title: Hijacking bitcoin: routing attacks on cryptocurrencies publication-title: 2017 IEEE Symposium on Security and Privacy (SP) – start-page: 1 year: 2021 ident: br0020 article-title: Federated learning-based anomaly detection for iot security attacks publication-title: IEEE Int. Things J. – start-page: 1 year: 2021 end-page: 12 ident: br0150 article-title: P2sf-iov: a privacy-preservation-based secured framework for Internet of vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2018 end-page: 4 ident: br0400 article-title: An adaptive intrusion detection for the Internet of things publication-title: Living in the Internet of Things: Cybersecurity of the IoT - 2018 – start-page: 1 year: 2021 end-page: 10 ident: br0230 article-title: Dltif: deep learning-driven cyber threat intelligence modeling and identification framework in iot-enabled maritime transportation systems publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 15 year: 2019 ident: br0390 article-title: An adaptive intrusion detection and prevention system for Internet of things publication-title: Int. J. Distrib. Sens. Netw. – volume: 115 year: 2021 ident: br0090 article-title: Tp2sf: a trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning publication-title: J. Syst. Archit. – volume: 46 start-page: 3749 year: 2021 end-page: 3778 ident: br0180 article-title: Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for iot networks publication-title: Arab. J. Sci. Eng. – volume: 9 start-page: 8820 year: 2021 end-page: 8834 ident: br0050 article-title: Enhancing security of health information using modular encryption standard in mobile cloud computing publication-title: IEEE Access – start-page: 1 year: 2021 end-page: 12 ident: br0140 article-title: A privacy-preserving-based secure framework using blockchain-enabled deep-learning in cooperative intelligent transport system publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 15 start-page: 87 year: 2021 end-page: 112 ident: br0060 article-title: Data provenance and access control rules for ownership transfer using blockchain publication-title: Int. J. Inf. Secur. Priv. (IJISP) – start-page: 436 year: 2014 end-page: 454 ident: br0300 article-title: Majority is not enough: bitcoin mining is vulnerable publication-title: International Conference on Financial Cryptography and Data Security – volume: 32 year: 2021 ident: br0210 article-title: Dbtp2sf: a deep blockchain-based trustworthy privacy-preserving secured framework in industrial Internet of things systems publication-title: Trans. Emerg. Telecommun. Technol. – start-page: 1 year: 2021 ident: br0170 article-title: Pefl: deep privacy-encoding based federated learning framework for smart agriculture publication-title: IEEE MICRO – start-page: 1 year: 2021 ident: br0220 article-title: Bdtwin: an integrated framework for enhancing security and privacy in cybertwin-driven automotive industrial Internet of things publication-title: IEEE Int. Things J. – reference: M. Saad, J. Choi, D. Nyang, J. Kim, A. Mohaisen, Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions, IEEE Syst. J. – volume: 187 year: 2021 ident: br0120 article-title: Sp2f: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles publication-title: Comput. Netw. – volume: 181 start-page: 274 year: 2022 ident: 10.1016/j.jpdc.2022.01.030_br0070 article-title: Ai-empowered, blockchain and sdn integrated security architecture for iot network of cyber physical systems publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.09.029 – volume: 187 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0120 article-title: Sp2f: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.107819 – ident: 10.1016/j.jpdc.2022.01.030_br0350 – volume: 8 start-page: 1456 issue: 2 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0280 article-title: Canintelliids: detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2021.3059881 – volume: 65 start-page: 13 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0040 article-title: Deep learning for pedestrian collective behavior analysis in smart cities: a model of group trajectory outlier detection publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.08.003 – start-page: 195 year: 2017 ident: 10.1016/j.jpdc.2022.01.030_br0330 article-title: Be selfish and avoid dilemmas: fork after withholding (faw) attacks on bitcoin – volume: 32 issue: 4 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0210 article-title: Dbtp2sf: a deep blockchain-based trustworthy privacy-preserving secured framework in industrial Internet of things systems publication-title: Trans. Emerg. Telecommun. Technol. – volume: 118 start-page: 453 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0290 article-title: Diddos: an approach for detection and identification of distributed denial of service (ddos) cyberattacks using gated recurrent units (gru) publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.01.022 – start-page: 906 year: 2012 ident: 10.1016/j.jpdc.2022.01.030_br0360 article-title: Double-spending fast payments in bitcoin – volume: 12 start-page: 9555 issue: 10 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0100 article-title: A distributed ensemble design based intrusion detection system using fog computing to protect the Internet of things networks publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02696-3 – volume: 32 issue: 6 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0130 article-title: A distributed framework for detecting ddos attacks in smart contract-based blockchain-iot systems by leveraging fog computing publication-title: Trans. Emerg. Telecommun. Technol. – start-page: 91 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0250 article-title: Large-scale data storage scheme in blockchain ledger using ipfs and nosql – volume: 152 start-page: 128 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0240 article-title: A secured distributed detection system based on ipfs and blockchain for industrial image and video data security publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2021.02.022 – start-page: 1 year: 2018 ident: 10.1016/j.jpdc.2022.01.030_br0400 article-title: An adaptive intrusion detection for the Internet of things – start-page: 436 year: 2014 ident: 10.1016/j.jpdc.2022.01.030_br0300 article-title: Majority is not enough: bitcoin mining is vulnerable – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0170 article-title: Pefl: deep privacy-encoding based federated learning framework for smart agriculture publication-title: IEEE MICRO – volume: 9 start-page: 964 issue: 2 year: 2022 ident: 10.1016/j.jpdc.2022.01.030_br0260 article-title: Blockchain for edge of things: applications, opportunities, and challenges publication-title: IEEE Int. Things J. doi: 10.1109/JIOT.2021.3119639 – volume: 15 start-page: 87 issue: 2 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0060 article-title: Data provenance and access control rules for ownership transfer using blockchain publication-title: Int. J. Inf. Secur. Priv. (IJISP) doi: 10.4018/IJISP.2021040105 – volume: 4 start-page: 102 issue: 2 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0270 article-title: Toward blockchain for edge-of-things: a new paradigm, opportunities, and future directions publication-title: IEEE Int. Things Mag. doi: 10.1109/IOTM.0001.2000191 – ident: 10.1016/j.jpdc.2022.01.030_br0370 – ident: 10.1016/j.jpdc.2022.01.030_br0340 – volume: 2 start-page: 944 issue: 7 year: 2016 ident: 10.1016/j.jpdc.2022.01.030_br0110 article-title: Bitcoin: vulnerabilities and attacks publication-title: Imp. J. Interdiscip. Res. – start-page: 37 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0030 – start-page: 57 year: 2014 ident: 10.1016/j.jpdc.2022.01.030_br0380 article-title: Empirical analysis of denial-of-service attacks in the bitcoin ecosystem – volume: 46 start-page: 3749 issue: 4 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0180 article-title: Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for iot networks publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-05181-3 – ident: 10.1016/j.jpdc.2022.01.030_br0200 – start-page: 375 year: 2017 ident: 10.1016/j.jpdc.2022.01.030_br0160 article-title: Hijacking bitcoin: routing attacks on cryptocurrencies – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0150 article-title: P2sf-iov: a privacy-preservation-based secured framework for Internet of vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3122368 – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0020 article-title: Federated learning-based anomaly detection for iot security attacks publication-title: IEEE Int. Things J. – volume: 115 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0090 article-title: Tp2sf: a trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2020.101954 – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0140 article-title: A privacy-preserving-based secure framework using blockchain-enabled deep-learning in cooperative intelligent transport system publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3122368 – volume: 100 start-page: 779 year: 2019 ident: 10.1016/j.jpdc.2022.01.030_br0410 article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.05.041 – volume: 8 start-page: 3242 issue: 5 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0310 article-title: Corrauc: a malicious bot-iot traffic detection method in iot network using machine-learning techniques publication-title: IEEE Int. Things J. doi: 10.1109/JIOT.2020.3002255 – volume: 15 issue: 11 year: 2019 ident: 10.1016/j.jpdc.2022.01.030_br0390 article-title: An adaptive intrusion detection and prevention system for Internet of things publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147719888109 – volume: 9 start-page: 8820 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0050 article-title: Enhancing security of health information using modular encryption standard in mobile cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049564 – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0220 article-title: Bdtwin: an integrated framework for enhancing security and privacy in cybertwin-driven automotive industrial Internet of things publication-title: IEEE Int. Things J. – volume: 55 start-page: 137 issue: 2 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0010 article-title: Design of anomaly-based intrusion detection system using fog computing for iot network publication-title: Autom. Control Comput. Sci. doi: 10.3103/S0146411621020085 – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0230 article-title: Dltif: deep learning-driven cyber threat intelligence modeling and identification framework in iot-enabled maritime transportation systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3122368 – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2022.01.030_br0080 article-title: Ppsf: a privacy-preserving and secure framework using blockchain-based machine-learning for iot-driven smart cities publication-title: IEEE Trans. Netw. Sci. Eng. – start-page: 1 year: 2022 ident: 10.1016/j.jpdc.2022.01.030_br0190 article-title: P2tif: a blockchain and deep learning framework for privacy-preserved threat intelligence in industrial iot publication-title: IEEE Trans. Ind. Inform. – ident: 10.1016/j.jpdc.2022.01.030_br0320 |
SSID | ssj0011578 |
Score | 2.6316493 |
Snippet | •The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 55 |
SubjectTerms | Blockchain DDoS attacks Fog computing Internet of things (IoT) Intrusion detection system Mining pool |
Title | A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network |
URI | https://dx.doi.org/10.1016/j.jpdc.2022.01.030 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENhdqx8xqrlqoF0aVF6hb5FdGCkg6Z-e34YqcCCXVgjOWTrLN9d1a-7zuE7jk1Rkob_UJtuH2gRDqAKj-IojjhcRQqRoEo_DqPp2_8eRWtOmjUcmEAVuljv4vpTbT2IwPvzcF2vR4sIPklzOaf0P0PAwY7T-CUP37tYB6gJZO2Upww2xNnHMZrs9UgYxiGjXQnIKH_Sk4_Es7kBB35ShEP3WJOUceUZ-i47cKA_aU8R2KINajfQuMqo_G6BBqF9TbWpm5wViV2cs24rvwYHo-rBRZ1DQR7a4GlTWkf6l2sy8A0ZCqNZ9USlw4jfoGWk6flaBr4xgmBYoTUATdFoUSoIkJkGhtmiMx4KOO0YIUulM3w9pGiklTrMDOiSIV9h9i6TNBMpVxodom6ZVWaK4RjpmnBkpQIEOYSJCtiGhNJlL26SjPaQ7R1WK68qDj0tvjMW_TYJgcn5-DknNDcOrmHHnY2WyepsXd21O5D_utg5Dbm77G7_qfdDTqEL4cGu0Vdu2fmztYdtew3B6uPDoazl-n8G4Sh1v0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW3ybg56kbpq03e7Bg7jKrq-LK3gLaZLiqnQXLIgXf5S_0Jk2FQXxIHhNO6WdCfNN6DffAOxFoXNZhtlPWBfhASW2AVX5QRwn7SiJhZEhNQpfXSe92-j8Lr6bgPemF4ZolT731zm9ytZ-peW92RoPh60bAr-2RPwR9f8wz6y8cK8veG57Pup3Mcj7QpydDk56gR8tEBjJeRlELs-NFibmPEsTJx3POpHIkjSXuc0NYiCW8aadWis6TuepxkodKxcddkwaaSvxsZMwHWG2oKkJh2-ftBLSrkkb6U96O9-oU3PKHsaWZBOFqKRCiXn9Exh-AbizBZjzlSk7rj9-ESZcsQTzzdQH5pPAMuhjZkltlwZlOcuGBbVtYHSZdWXF6ypYLQ_NypFfY93u6IbpsqSGfrRgGULoo7nXwyJwVfOWZf3RgBU1J30FBv_hzVWYKkaFWwOWSBvmsp1yTUJgmnfyJEx4xg2mCmNluA5h4zBlvIg5zdJ4Ug1b7UGRkxU5WfFQoZPX4eDTZlxLePx6d9zEQX3biAox5he7jT_a7cJMb3B1qS771xebMEtXaibaFkxh_Nw21jxltlNtMgbqnzf1B7udExg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+intrusion+detection+system+to+detect+DDoS+attacks+in+blockchain-enabled+IoT+network&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Kumar%2C+Randhir&rft.au=Kumar%2C+Prabhat&rft.au=Tripathi%2C+Rakesh&rft.au=Gupta%2C+Govind+P.&rft.date=2022-06-01&rft.issn=0743-7315&rft.volume=164&rft.spage=55&rft.epage=68&rft_id=info:doi/10.1016%2Fj.jpdc.2022.01.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2022_01_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |