A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network

•The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in decision-making.•Fog computing paradigm is used to decentralize cloud based centralized security mechanism, thus data analysis and security related c...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 164; pp. 55 - 68
Main Authors Kumar, Randhir, Kumar, Prabhat, Tripathi, Rakesh, Gupta, Govind P., Garg, Sahil, Hassan, Mohammad Mehedi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in decision-making.•Fog computing paradigm is used to decentralize cloud based centralized security mechanism, thus data analysis and security related concerns are handled at edge of networks.•A distributed IDS is designed using fog computing to detect DDoS attacks against memory pool in blockchain-enabled IoT network.•To evaluate the proposed detection system two well-known machine learning algorithms, random forest and XGBoost are used in distributed architecture.•An actual IoT based BoT-IoT dataset is used to analyze the performance of the model. As it contains various recent Botnet related attacks such as DoS, DDoS, theft.•Different evaluation metrics such as accuracy, detection rate, false alarm rate, and precision are used to thoroughly investigate performance of the proposed. The Internet of Things (IoT) is emerging as a new technology for the development of various critical applications. However, these applications are still working on centralized storage architecture and have various key challenges like privacy, security, and single point of failure. Recently, the blockchain technology has emerged as a backbone for the IoT-based application development. The blockchain can be leveraged to solve privacy, security, and single point of failure (third-part dependency) issues of IoT applications. The integration of blockchain with IoT can benefit both individual and society. However, 2017 Distributed Denial of Service (DDoS) attack on mining pool exposed the critical fault-lines among blockchain-enabled IoT network. Moreover, this application generates huge amount of data. Machine Learning (ML) gives complete autonomy in big data analysis, capabilities of decision making and therefore is used as an analytical tool. Thus, in order to address above challenges, this paper proposes a novel distributed Intrusion Detection System (IDS) using fog computing to detect DDoS attacks against mining pool in blockchain-enabled IoT Network. The performance is evaluated by training Random Forest (RF) and an optimized gradient tree boosting system (XGBoost) on distributed fog nodes. The proposed model effectiveness is assessed using an actual IoT-based dataset i.e., BoT-IoT, which includes most recent attacks found in blockchain-enabled IoT network. The results indicate, for binary attack-detection XGBoost outperforms whereas for multi-attack detection Random Forest outperforms. Overall on distributed fog nodes RF takes less time for training and testing compared to XGBoost.
AbstractList •The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in decision-making.•Fog computing paradigm is used to decentralize cloud based centralized security mechanism, thus data analysis and security related concerns are handled at edge of networks.•A distributed IDS is designed using fog computing to detect DDoS attacks against memory pool in blockchain-enabled IoT network.•To evaluate the proposed detection system two well-known machine learning algorithms, random forest and XGBoost are used in distributed architecture.•An actual IoT based BoT-IoT dataset is used to analyze the performance of the model. As it contains various recent Botnet related attacks such as DoS, DDoS, theft.•Different evaluation metrics such as accuracy, detection rate, false alarm rate, and precision are used to thoroughly investigate performance of the proposed. The Internet of Things (IoT) is emerging as a new technology for the development of various critical applications. However, these applications are still working on centralized storage architecture and have various key challenges like privacy, security, and single point of failure. Recently, the blockchain technology has emerged as a backbone for the IoT-based application development. The blockchain can be leveraged to solve privacy, security, and single point of failure (third-part dependency) issues of IoT applications. The integration of blockchain with IoT can benefit both individual and society. However, 2017 Distributed Denial of Service (DDoS) attack on mining pool exposed the critical fault-lines among blockchain-enabled IoT network. Moreover, this application generates huge amount of data. Machine Learning (ML) gives complete autonomy in big data analysis, capabilities of decision making and therefore is used as an analytical tool. Thus, in order to address above challenges, this paper proposes a novel distributed Intrusion Detection System (IDS) using fog computing to detect DDoS attacks against mining pool in blockchain-enabled IoT Network. The performance is evaluated by training Random Forest (RF) and an optimized gradient tree boosting system (XGBoost) on distributed fog nodes. The proposed model effectiveness is assessed using an actual IoT-based dataset i.e., BoT-IoT, which includes most recent attacks found in blockchain-enabled IoT network. The results indicate, for binary attack-detection XGBoost outperforms whereas for multi-attack detection Random Forest outperforms. Overall on distributed fog nodes RF takes less time for training and testing compared to XGBoost.
Author Kumar, Randhir
Garg, Sahil
Kumar, Prabhat
Tripathi, Rakesh
Gupta, Govind P.
Hassan, Mohammad Mehedi
Author_xml – sequence: 1
  givenname: Randhir
  surname: Kumar
  fullname: Kumar, Randhir
  email: rkumar.phd2018.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India
– sequence: 2
  givenname: Prabhat
  orcidid: 0000-0002-0723-0752
  surname: Kumar
  fullname: Kumar, Prabhat
  email: pkumar.phd2019.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India
– sequence: 3
  givenname: Rakesh
  surname: Tripathi
  fullname: Tripathi, Rakesh
  email: rtripathi.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India
– sequence: 4
  givenname: Govind P.
  orcidid: 0000-0002-0456-1572
  surname: Gupta
  fullname: Gupta, Govind P.
  email: gpgupta.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology, CG, Raipur-492010, India
– sequence: 5
  givenname: Sahil
  surname: Garg
  fullname: Garg, Sahil
  email: sahil.garg@ieee.org
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
– sequence: 6
  givenname: Mohammad Mehedi
  surname: Hassan
  fullname: Hassan, Mohammad Mehedi
  email: mmhassan@ksu.edu.sa
  organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
BookMark eNp9kMtqwzAQRUVpoUnaH-jKP2B3JPkhQzch6SMQ6KLZC1kaUzmJFSSlJX9fm2TVRVZzGTgX7pmS2971SMgThYwCLZ-7rDsYnTFgLAOaAYcbMqFQlymIXNySCVQ5TytOi3syDaEDoLSoxISoeWJsiN42x4gmsX30x2BdnxiMqOOYwilE3CfRXX7Jcum-EhWj0tswEEmzc3qrv5XtU-xVsxt6Vm6T9Bh_nd8-kLtW7QI-Xu6MbN5eN4uPdP35vlrM16nmADHNsW21YroAaESJHKGpc9aUouWtaTWreVVwXQljWI2qFYrxYThXtNYiV4bPCDvXau9C8NjKg7d75U-SghwdyU6OjuToSAKVg6MBEv8gbaMaV0ev7O46-nJGcdj0Y9HLoC32Go31gyRpnL2G_wEKAoZr
CitedBy_id crossref_primary_10_1007_s10660_023_09702_8
crossref_primary_10_1016_j_asej_2024_102860
crossref_primary_10_1109_ACCESS_2024_3352502
crossref_primary_10_1049_blc2_12025
crossref_primary_10_1016_j_dss_2024_114253
crossref_primary_10_1007_s11042_024_18842_4
crossref_primary_10_1007_s12083_022_01336_1
crossref_primary_10_1109_ACCESS_2023_3346320
crossref_primary_10_1145_3597210
crossref_primary_10_3390_fi16090324
crossref_primary_10_48084_etasr_7384
crossref_primary_10_1016_j_jpdc_2024_104934
crossref_primary_10_1109_ACCESS_2023_3256277
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_1007_s11042_024_20059_4
crossref_primary_10_1155_2022_3747302
crossref_primary_10_1007_s10922_024_09875_z
crossref_primary_10_1016_j_rineng_2024_103882
crossref_primary_10_1016_j_iot_2023_101021
crossref_primary_10_1016_j_iot_2024_101307
crossref_primary_10_1016_j_procs_2022_10_124
crossref_primary_10_1007_s10586_024_04638_6
crossref_primary_10_1007_s10586_024_04422_6
crossref_primary_10_1016_j_jisa_2025_103972
crossref_primary_10_1007_s10489_023_05176_1
crossref_primary_10_3390_electronics11233892
crossref_primary_10_1007_s11042_024_19695_7
crossref_primary_10_1109_ACCESS_2024_3371992
crossref_primary_10_3390_s24144591
crossref_primary_10_1016_j_procs_2024_05_048
crossref_primary_10_1109_MNET_001_2200523
crossref_primary_10_3390_electronics13122370
crossref_primary_10_1155_2023_8068038
crossref_primary_10_1109_ACCESS_2024_3443202
crossref_primary_10_32604_iasc_2023_037673
crossref_primary_10_1007_s42979_024_02725_4
crossref_primary_10_3390_jsan13060073
crossref_primary_10_32604_cmc_2023_045588
crossref_primary_10_1007_s00521_024_10136_y
crossref_primary_10_1145_3664287
crossref_primary_10_1007_s12083_024_01684_0
crossref_primary_10_1155_2022_8477260
crossref_primary_10_1016_j_compeleceng_2025_110226
crossref_primary_10_1109_ACCESS_2022_3200165
crossref_primary_10_1109_ACCESS_2024_3481496
crossref_primary_10_1080_19393555_2025_2477484
crossref_primary_10_3233_JIFS_230831
crossref_primary_10_1109_JIOT_2023_3321299
crossref_primary_10_1007_s11227_024_06822_2
crossref_primary_10_32604_cmc_2024_048099
crossref_primary_10_3390_math11081887
crossref_primary_10_4274_tjo_galenos_2023_24280
crossref_primary_10_3390_electronics13081416
crossref_primary_10_3390_electronics14050922
crossref_primary_10_1109_TSC_2022_3192166
crossref_primary_10_3390_fi16060200
crossref_primary_10_1007_s10115_024_02273_6
crossref_primary_10_3390_s23125644
crossref_primary_10_48084_etasr_5992
crossref_primary_10_1371_journal_pone_0290694
crossref_primary_10_32604_cmc_2023_036217
crossref_primary_10_1109_ACCESS_2023_3303087
crossref_primary_10_1109_TCE_2023_3327136
crossref_primary_10_3390_s23198044
crossref_primary_10_3390_technologies13020055
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_3390_electronics12183911
crossref_primary_10_1109_COMST_2022_3204702
crossref_primary_10_3390_fi15050174
crossref_primary_10_1002_nem_2295
crossref_primary_10_3390_app13095427
crossref_primary_10_1016_j_dajour_2023_100206
crossref_primary_10_1155_2022_6967938
crossref_primary_10_1016_j_comnet_2022_109154
crossref_primary_10_1016_j_jpdc_2022_09_014
crossref_primary_10_1109_ACCESS_2024_3473289
crossref_primary_10_1016_j_iot_2024_101215
crossref_primary_10_1109_ACCESS_2024_3413076
crossref_primary_10_1109_TII_2023_3240586
crossref_primary_10_1016_j_teler_2024_100130
crossref_primary_10_1109_ACCESS_2025_3551627
Cites_doi 10.1016/j.comcom.2021.09.029
10.1016/j.comnet.2021.107819
10.1109/TNSE.2021.3059881
10.1016/j.inffus.2020.08.003
10.1016/j.future.2021.01.022
10.1007/s12652-020-02696-3
10.1016/j.jpdc.2021.02.022
10.1109/JIOT.2021.3119639
10.4018/IJISP.2021040105
10.1109/IOTM.0001.2000191
10.1007/s13369-020-05181-3
10.1109/TITS.2021.3122368
10.1016/j.sysarc.2020.101954
10.1016/j.future.2019.05.041
10.1109/JIOT.2020.3002255
10.1177/1550147719888109
10.1109/ACCESS.2021.3049564
10.3103/S0146411621020085
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2022.01.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 68
ExternalDocumentID 10_1016_j_jpdc_2022_01_030
S0743731522000351
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-4effca2c500b86e3e0b942b68f3fdfc293753c78dd29eaf8a230163a19c84ad3
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Tue Jul 01 03:20:51 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Fri Feb 23 02:40:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fog computing
Mining pool
DDoS attacks
Intrusion detection system
Blockchain
Internet of things (IoT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4effca2c500b86e3e0b942b68f3fdfc293753c78dd29eaf8a230163a19c84ad3
ORCID 0000-0002-0723-0752
0000-0002-0456-1572
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jpdc_2022_01_030
crossref_citationtrail_10_1016_j_jpdc_2022_01_030
elsevier_sciencedirect_doi_10_1016_j_jpdc_2022_01_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kumar, Kumar, Srivastava, Gupta, Tripathi, Gadekallu, Xiong (br0080) 2021
Kumar, Kumar, Tripathi, Gupta, Gadekallu, Srivastava (br0120) 2021; 187
Kumar, Tripathi, Marchang, Srivastava, Gadekallu, Xiong (br0240) 2021; 152
Javed, u. Rehman, Khan, Alazab, G (br0280) 2021; 8
Latif, Wen, Iwendi, Li-li, Mohsin, Han, Band (br0070) 2022; 181
ur Rehman, Khaliq, Imtiaz, Rasool, Shafiq, Javed, Jalil, Bashir (br0290) 2021; 118
Apostolaki, Zohar, Vanbever (br0160) 2017
Kumar, Kumar, Tripathi, Gupta, Kumar (br0150) 2021
Kumar, Tripathi, Gupta (br0030) 2021
Kumar, Tripathi (br0060) 2021; 15
Bastiaan (br0350) 2015
Karame, Androulaki, Capkun (br0360) 2012
Kumar, Gupta, Tripathi, Garg, Hassan (br0230) 2021
Vasek, Thornton, Moore (br0380) 2014
Anthi, Williams, Burnap Pulse (br0400) 2018
Kumar, Gupta, Tripathi (br0180) 2021; 46
Kumar, Tripathi (br0210) 2021; 32
Mothukuri, Khare, Parizi, Pouriyeh, Dehghantanha, Srivastava (br0020) 2021
Kumar, Kumar, Tripathi, Gupta, Garg, Hassan (br0220) 2021
Bakhsh, Alghamdi, Alsemmeari, Hassan (br0390) 2019; 15
Kaushal (br0110) 2016; 2
Shabbir, Shabbir, Iwendi, Javed, Rizwan, Herencsar, Lin (br0050) 2021; 9
Kumar, Kumar, Tripathi, Gupta, Kumar, Hassan (br0140) 2021
Kumar, Kumar, Gupta, Tripathi (br0130) 2021; 32
Kumar, Tripathi (br0250) 2021
Woo (br0200) 2017
Eyal, Sirer (br0300) 2014
Kwon, Kim, Son, Vasserman, Kim (br0330) 2017
Eyal, Sirer (br0340)
Kumar, Gupta, Tripathi (br0100) 2021; 12
Shafiq, Tian, Bashir, Du, Guizani (br0310) 2021; 8
B, Deepa, Pham, Nguyen, M, G, Pathirana, Dobre (br0270) 2021; 4
Kumar, Kumar, Gupta, Tripathi, Srivastava (br0190) 2022
M. Saad, J. Choi, D. Nyang, J. Kim, A. Mohaisen, Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions, IEEE Syst. J.
Gadekallu, Pham, Nguyen, Maddikunta, Deepa, Prabadevi, Pathirana, Zhao, Hwang (br0260) 2022; 9
Rosenfeld (br0320)
Kumar, Gupta, Tripathi (br0010) 2021; 55
Belhadi, Djenouri, Srivastava, Djenouri, Lin, Fortino (br0040) 2021; 65
Koroniotis, Moustafa, Sitnikova, Turnbull (br0410) 2019; 100
Kumar, Gupta, Tripathi (br0090) 2021; 115
Kumar, Gupta, Tripathi (br0170) 2021
Shabbir (10.1016/j.jpdc.2022.01.030_br0050) 2021; 9
Vasek (10.1016/j.jpdc.2022.01.030_br0380) 2014
Mothukuri (10.1016/j.jpdc.2022.01.030_br0020) 2021
Kwon (10.1016/j.jpdc.2022.01.030_br0330) 2017
Latif (10.1016/j.jpdc.2022.01.030_br0070) 2022; 181
Kumar (10.1016/j.jpdc.2022.01.030_br0100) 2021; 12
Kumar (10.1016/j.jpdc.2022.01.030_br0010) 2021; 55
Kumar (10.1016/j.jpdc.2022.01.030_br0120) 2021; 187
Bastiaan (10.1016/j.jpdc.2022.01.030_br0350)
Apostolaki (10.1016/j.jpdc.2022.01.030_br0160) 2017
Kumar (10.1016/j.jpdc.2022.01.030_br0210) 2021; 32
Kaushal (10.1016/j.jpdc.2022.01.030_br0110) 2016; 2
Koroniotis (10.1016/j.jpdc.2022.01.030_br0410) 2019; 100
Kumar (10.1016/j.jpdc.2022.01.030_br0220) 2021
Kumar (10.1016/j.jpdc.2022.01.030_br0240) 2021; 152
Kumar (10.1016/j.jpdc.2022.01.030_br0080) 2021
Javed (10.1016/j.jpdc.2022.01.030_br0280) 2021; 8
Kumar (10.1016/j.jpdc.2022.01.030_br0230) 2021
Kumar (10.1016/j.jpdc.2022.01.030_br0250) 2021
Kumar (10.1016/j.jpdc.2022.01.030_br0140) 2021
Kumar (10.1016/j.jpdc.2022.01.030_br0060) 2021; 15
Kumar (10.1016/j.jpdc.2022.01.030_br0170) 2021
Kumar (10.1016/j.jpdc.2022.01.030_br0150) 2021
Bakhsh (10.1016/j.jpdc.2022.01.030_br0390) 2019; 15
Gadekallu (10.1016/j.jpdc.2022.01.030_br0260) 2022; 9
Kumar (10.1016/j.jpdc.2022.01.030_br0090) 2021; 115
Kumar (10.1016/j.jpdc.2022.01.030_br0190) 2022
Shafiq (10.1016/j.jpdc.2022.01.030_br0310) 2021; 8
Eyal (10.1016/j.jpdc.2022.01.030_br0340)
Kumar (10.1016/j.jpdc.2022.01.030_br0180) 2021; 46
Kumar (10.1016/j.jpdc.2022.01.030_br0030) 2021
Woo (10.1016/j.jpdc.2022.01.030_br0200)
10.1016/j.jpdc.2022.01.030_br0370
Kumar (10.1016/j.jpdc.2022.01.030_br0130) 2021; 32
Belhadi (10.1016/j.jpdc.2022.01.030_br0040) 2021; 65
ur Rehman (10.1016/j.jpdc.2022.01.030_br0290) 2021; 118
B (10.1016/j.jpdc.2022.01.030_br0270) 2021; 4
Anthi (10.1016/j.jpdc.2022.01.030_br0400) 2018
Eyal (10.1016/j.jpdc.2022.01.030_br0300) 2014
Karame (10.1016/j.jpdc.2022.01.030_br0360) 2012
Rosenfeld (10.1016/j.jpdc.2022.01.030_br0320)
References_xml – start-page: 906
  year: 2012
  end-page: 917
  ident: br0360
  article-title: Double-spending fast payments in bitcoin
  publication-title: Proceedings of the 2012 ACM Conference on Computer and Communications Security
– start-page: 37
  year: 2021
  end-page: 42
  ident: br0030
  article-title: P2IDF: A Privacy-Preserving Based Intrusion Detection Framework for Software Defined Internet of Things-Fog (SDIoT-Fog)
– ident: br0320
  article-title: Analysis of bitcoin pooled mining reward systems
– start-page: 1
  year: 2022
  ident: br0190
  article-title: P2tif: a blockchain and deep learning framework for privacy-preserved threat intelligence in industrial iot
  publication-title: IEEE Trans. Ind. Inform.
– volume: 118
  start-page: 453
  year: 2021
  end-page: 466
  ident: br0290
  article-title: Diddos: an approach for detection and identification of distributed denial of service (ddos) cyberattacks using gated recurrent units (gru)
  publication-title: Future Gener. Comput. Syst.
– volume: 12
  start-page: 9555
  year: 2021
  end-page: 9572
  ident: br0100
  article-title: A distributed ensemble design based intrusion detection system using fog computing to protect the Internet of things networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 152
  start-page: 128
  year: 2021
  end-page: 143
  ident: br0240
  article-title: A secured distributed detection system based on ipfs and blockchain for industrial image and video data security
  publication-title: J. Parallel Distrib. Comput.
– start-page: 195
  year: 2017
  end-page: 209
  ident: br0330
  article-title: Be selfish and avoid dilemmas: fork after withholding (faw) attacks on bitcoin
  publication-title: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
– volume: 32
  year: 2021
  ident: br0130
  article-title: A distributed framework for detecting ddos attacks in smart contract-based blockchain-iot systems by leveraging fog computing
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 8
  start-page: 3242
  year: 2021
  end-page: 3254
  ident: br0310
  article-title: Corrauc: a malicious bot-iot traffic detection method in iot network using machine-learning techniques
  publication-title: IEEE Int. Things J.
– volume: 4
  start-page: 102
  year: 2021
  end-page: 108
  ident: br0270
  article-title: Toward blockchain for edge-of-things: a new paradigm, opportunities, and future directions
  publication-title: IEEE Int. Things Mag.
– ident: br0340
  article-title: How to disincentivize large bitcoin mining pools
– volume: 65
  start-page: 13
  year: 2021
  end-page: 20
  ident: br0040
  article-title: Deep learning for pedestrian collective behavior analysis in smart cities: a model of group trajectory outlier detection
  publication-title: Inf. Fusion
– start-page: 57
  year: 2014
  end-page: 71
  ident: br0380
  article-title: Empirical analysis of denial-of-service attacks in the bitcoin ecosystem
  publication-title: International Conference on Financial Cryptography and Data Security
– volume: 100
  start-page: 779
  year: 2019
  end-page: 796
  ident: br0410
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
– volume: 55
  start-page: 137
  year: 2021
  end-page: 147
  ident: br0010
  article-title: Design of anomaly-based intrusion detection system using fog computing for iot network
  publication-title: Autom. Control Comput. Sci.
– volume: 181
  start-page: 274
  year: 2022
  end-page: 283
  ident: br0070
  article-title: Ai-empowered, blockchain and sdn integrated security architecture for iot network of cyber physical systems
  publication-title: Comput. Commun.
– start-page: 91
  year: 2021
  end-page: 116
  ident: br0250
  article-title: Large-scale data storage scheme in blockchain ledger using ipfs and nosql
  publication-title: Large-Scale Data Streaming, Processing, and Blockchain Security
– start-page: 1
  year: 2021
  ident: br0080
  article-title: Ppsf: a privacy-preserving and secure framework using blockchain-based machine-learning for iot-driven smart cities
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 2
  start-page: 944
  year: 2016
  end-page: 946
  ident: br0110
  article-title: Bitcoin: vulnerabilities and attacks
  publication-title: Imp. J. Interdiscip. Res.
– volume: 8
  start-page: 1456
  year: 2021
  end-page: 1466
  ident: br0280
  article-title: Canintelliids: detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru
  publication-title: IEEE Trans. Netw. Sci. Eng.
– year: 2017
  ident: br0200
  article-title: Charts: determining the ideal block size for bitcoin
– year: 2015
  ident: br0350
  article-title: Preventing the 51%-attack: a stochastic analysis of two phase proof of work in bitcoin
– volume: 9
  start-page: 964
  year: 2022
  end-page: 988
  ident: br0260
  article-title: Blockchain for edge of things: applications, opportunities, and challenges
  publication-title: IEEE Int. Things J.
– start-page: 375
  year: 2017
  end-page: 392
  ident: br0160
  article-title: Hijacking bitcoin: routing attacks on cryptocurrencies
  publication-title: 2017 IEEE Symposium on Security and Privacy (SP)
– start-page: 1
  year: 2021
  ident: br0020
  article-title: Federated learning-based anomaly detection for iot security attacks
  publication-title: IEEE Int. Things J.
– start-page: 1
  year: 2021
  end-page: 12
  ident: br0150
  article-title: P2sf-iov: a privacy-preservation-based secured framework for Internet of vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 2018
  end-page: 4
  ident: br0400
  article-title: An adaptive intrusion detection for the Internet of things
  publication-title: Living in the Internet of Things: Cybersecurity of the IoT - 2018
– start-page: 1
  year: 2021
  end-page: 10
  ident: br0230
  article-title: Dltif: deep learning-driven cyber threat intelligence modeling and identification framework in iot-enabled maritime transportation systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 15
  year: 2019
  ident: br0390
  article-title: An adaptive intrusion detection and prevention system for Internet of things
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 115
  year: 2021
  ident: br0090
  article-title: Tp2sf: a trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning
  publication-title: J. Syst. Archit.
– volume: 46
  start-page: 3749
  year: 2021
  end-page: 3778
  ident: br0180
  article-title: Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for iot networks
  publication-title: Arab. J. Sci. Eng.
– volume: 9
  start-page: 8820
  year: 2021
  end-page: 8834
  ident: br0050
  article-title: Enhancing security of health information using modular encryption standard in mobile cloud computing
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 12
  ident: br0140
  article-title: A privacy-preserving-based secure framework using blockchain-enabled deep-learning in cooperative intelligent transport system
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 15
  start-page: 87
  year: 2021
  end-page: 112
  ident: br0060
  article-title: Data provenance and access control rules for ownership transfer using blockchain
  publication-title: Int. J. Inf. Secur. Priv. (IJISP)
– start-page: 436
  year: 2014
  end-page: 454
  ident: br0300
  article-title: Majority is not enough: bitcoin mining is vulnerable
  publication-title: International Conference on Financial Cryptography and Data Security
– volume: 32
  year: 2021
  ident: br0210
  article-title: Dbtp2sf: a deep blockchain-based trustworthy privacy-preserving secured framework in industrial Internet of things systems
  publication-title: Trans. Emerg. Telecommun. Technol.
– start-page: 1
  year: 2021
  ident: br0170
  article-title: Pefl: deep privacy-encoding based federated learning framework for smart agriculture
  publication-title: IEEE MICRO
– start-page: 1
  year: 2021
  ident: br0220
  article-title: Bdtwin: an integrated framework for enhancing security and privacy in cybertwin-driven automotive industrial Internet of things
  publication-title: IEEE Int. Things J.
– reference: M. Saad, J. Choi, D. Nyang, J. Kim, A. Mohaisen, Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions, IEEE Syst. J.
– volume: 187
  year: 2021
  ident: br0120
  article-title: Sp2f: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles
  publication-title: Comput. Netw.
– volume: 181
  start-page: 274
  year: 2022
  ident: 10.1016/j.jpdc.2022.01.030_br0070
  article-title: Ai-empowered, blockchain and sdn integrated security architecture for iot network of cyber physical systems
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.09.029
– volume: 187
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0120
  article-title: Sp2f: a secured privacy-preserving framework for smart agricultural unmanned aerial vehicles
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107819
– ident: 10.1016/j.jpdc.2022.01.030_br0350
– volume: 8
  start-page: 1456
  issue: 2
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0280
  article-title: Canintelliids: detecting in-vehicle intrusion attacks on a controller area network using cnn and attention-based gru
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3059881
– volume: 65
  start-page: 13
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0040
  article-title: Deep learning for pedestrian collective behavior analysis in smart cities: a model of group trajectory outlier detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.08.003
– start-page: 195
  year: 2017
  ident: 10.1016/j.jpdc.2022.01.030_br0330
  article-title: Be selfish and avoid dilemmas: fork after withholding (faw) attacks on bitcoin
– volume: 32
  issue: 4
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0210
  article-title: Dbtp2sf: a deep blockchain-based trustworthy privacy-preserving secured framework in industrial Internet of things systems
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 118
  start-page: 453
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0290
  article-title: Diddos: an approach for detection and identification of distributed denial of service (ddos) cyberattacks using gated recurrent units (gru)
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.01.022
– start-page: 906
  year: 2012
  ident: 10.1016/j.jpdc.2022.01.030_br0360
  article-title: Double-spending fast payments in bitcoin
– volume: 12
  start-page: 9555
  issue: 10
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0100
  article-title: A distributed ensemble design based intrusion detection system using fog computing to protect the Internet of things networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02696-3
– volume: 32
  issue: 6
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0130
  article-title: A distributed framework for detecting ddos attacks in smart contract-based blockchain-iot systems by leveraging fog computing
  publication-title: Trans. Emerg. Telecommun. Technol.
– start-page: 91
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0250
  article-title: Large-scale data storage scheme in blockchain ledger using ipfs and nosql
– volume: 152
  start-page: 128
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0240
  article-title: A secured distributed detection system based on ipfs and blockchain for industrial image and video data security
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2021.02.022
– start-page: 1
  year: 2018
  ident: 10.1016/j.jpdc.2022.01.030_br0400
  article-title: An adaptive intrusion detection for the Internet of things
– start-page: 436
  year: 2014
  ident: 10.1016/j.jpdc.2022.01.030_br0300
  article-title: Majority is not enough: bitcoin mining is vulnerable
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0170
  article-title: Pefl: deep privacy-encoding based federated learning framework for smart agriculture
  publication-title: IEEE MICRO
– volume: 9
  start-page: 964
  issue: 2
  year: 2022
  ident: 10.1016/j.jpdc.2022.01.030_br0260
  article-title: Blockchain for edge of things: applications, opportunities, and challenges
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2021.3119639
– volume: 15
  start-page: 87
  issue: 2
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0060
  article-title: Data provenance and access control rules for ownership transfer using blockchain
  publication-title: Int. J. Inf. Secur. Priv. (IJISP)
  doi: 10.4018/IJISP.2021040105
– volume: 4
  start-page: 102
  issue: 2
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0270
  article-title: Toward blockchain for edge-of-things: a new paradigm, opportunities, and future directions
  publication-title: IEEE Int. Things Mag.
  doi: 10.1109/IOTM.0001.2000191
– ident: 10.1016/j.jpdc.2022.01.030_br0370
– ident: 10.1016/j.jpdc.2022.01.030_br0340
– volume: 2
  start-page: 944
  issue: 7
  year: 2016
  ident: 10.1016/j.jpdc.2022.01.030_br0110
  article-title: Bitcoin: vulnerabilities and attacks
  publication-title: Imp. J. Interdiscip. Res.
– start-page: 37
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0030
– start-page: 57
  year: 2014
  ident: 10.1016/j.jpdc.2022.01.030_br0380
  article-title: Empirical analysis of denial-of-service attacks in the bitcoin ecosystem
– volume: 46
  start-page: 3749
  issue: 4
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0180
  article-title: Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for iot networks
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-05181-3
– ident: 10.1016/j.jpdc.2022.01.030_br0200
– start-page: 375
  year: 2017
  ident: 10.1016/j.jpdc.2022.01.030_br0160
  article-title: Hijacking bitcoin: routing attacks on cryptocurrencies
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0150
  article-title: P2sf-iov: a privacy-preservation-based secured framework for Internet of vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3122368
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0020
  article-title: Federated learning-based anomaly detection for iot security attacks
  publication-title: IEEE Int. Things J.
– volume: 115
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0090
  article-title: Tp2sf: a trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2020.101954
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0140
  article-title: A privacy-preserving-based secure framework using blockchain-enabled deep-learning in cooperative intelligent transport system
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3122368
– volume: 100
  start-page: 779
  year: 2019
  ident: 10.1016/j.jpdc.2022.01.030_br0410
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– volume: 8
  start-page: 3242
  issue: 5
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0310
  article-title: Corrauc: a malicious bot-iot traffic detection method in iot network using machine-learning techniques
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2020.3002255
– volume: 15
  issue: 11
  year: 2019
  ident: 10.1016/j.jpdc.2022.01.030_br0390
  article-title: An adaptive intrusion detection and prevention system for Internet of things
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147719888109
– volume: 9
  start-page: 8820
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0050
  article-title: Enhancing security of health information using modular encryption standard in mobile cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049564
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0220
  article-title: Bdtwin: an integrated framework for enhancing security and privacy in cybertwin-driven automotive industrial Internet of things
  publication-title: IEEE Int. Things J.
– volume: 55
  start-page: 137
  issue: 2
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0010
  article-title: Design of anomaly-based intrusion detection system using fog computing for iot network
  publication-title: Autom. Control Comput. Sci.
  doi: 10.3103/S0146411621020085
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0230
  article-title: Dltif: deep learning-driven cyber threat intelligence modeling and identification framework in iot-enabled maritime transportation systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3122368
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2022.01.030_br0080
  article-title: Ppsf: a privacy-preserving and secure framework using blockchain-based machine-learning for iot-driven smart cities
  publication-title: IEEE Trans. Netw. Sci. Eng.
– start-page: 1
  year: 2022
  ident: 10.1016/j.jpdc.2022.01.030_br0190
  article-title: P2tif: a blockchain and deep learning framework for privacy-preserved threat intelligence in industrial iot
  publication-title: IEEE Trans. Ind. Inform.
– ident: 10.1016/j.jpdc.2022.01.030_br0320
SSID ssj0011578
Score 2.6316493
Snippet •The devices and sensors in blockchain-enabled IoT network produce a lot of data, so AI is applied as analytical tool to provide consistent results in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms Blockchain
DDoS attacks
Fog computing
Internet of things (IoT)
Intrusion detection system
Mining pool
Title A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network
URI https://dx.doi.org/10.1016/j.jpdc.2022.01.030
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENhdqx8xqrlqoF0aVF6hb5FdGCkg6Z-e34YqcCCXVgjOWTrLN9d1a-7zuE7jk1Rkob_UJtuH2gRDqAKj-IojjhcRQqRoEo_DqPp2_8eRWtOmjUcmEAVuljv4vpTbT2IwPvzcF2vR4sIPklzOaf0P0PAwY7T-CUP37tYB6gJZO2Upww2xNnHMZrs9UgYxiGjXQnIKH_Sk4_Es7kBB35ShEP3WJOUceUZ-i47cKA_aU8R2KINajfQuMqo_G6BBqF9TbWpm5wViV2cs24rvwYHo-rBRZ1DQR7a4GlTWkf6l2sy8A0ZCqNZ9USlw4jfoGWk6flaBr4xgmBYoTUATdFoUSoIkJkGhtmiMx4KOO0YIUulM3w9pGiklTrMDOiSIV9h9i6TNBMpVxodom6ZVWaK4RjpmnBkpQIEOYSJCtiGhNJlL26SjPaQ7R1WK68qDj0tvjMW_TYJgcn5-DknNDcOrmHHnY2WyepsXd21O5D_utg5Dbm77G7_qfdDTqEL4cGu0Vdu2fmztYdtew3B6uPDoazl-n8G4Sh1v0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW3ybg56kbpq03e7Bg7jKrq-LK3gLaZLiqnQXLIgXf5S_0Jk2FQXxIHhNO6WdCfNN6DffAOxFoXNZhtlPWBfhASW2AVX5QRwn7SiJhZEhNQpfXSe92-j8Lr6bgPemF4ZolT731zm9ytZ-peW92RoPh60bAr-2RPwR9f8wz6y8cK8veG57Pup3Mcj7QpydDk56gR8tEBjJeRlELs-NFibmPEsTJx3POpHIkjSXuc0NYiCW8aadWis6TuepxkodKxcddkwaaSvxsZMwHWG2oKkJh2-ftBLSrkkb6U96O9-oU3PKHsaWZBOFqKRCiXn9Exh-AbizBZjzlSk7rj9-ESZcsQTzzdQH5pPAMuhjZkltlwZlOcuGBbVtYHSZdWXF6ypYLQ_NypFfY93u6IbpsqSGfrRgGULoo7nXwyJwVfOWZf3RgBU1J30FBv_hzVWYKkaFWwOWSBvmsp1yTUJgmnfyJEx4xg2mCmNluA5h4zBlvIg5zdJ4Ug1b7UGRkxU5WfFQoZPX4eDTZlxLePx6d9zEQX3biAox5he7jT_a7cJMb3B1qS771xebMEtXaibaFkxh_Nw21jxltlNtMgbqnzf1B7udExg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distributed+intrusion+detection+system+to+detect+DDoS+attacks+in+blockchain-enabled+IoT+network&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Kumar%2C+Randhir&rft.au=Kumar%2C+Prabhat&rft.au=Tripathi%2C+Rakesh&rft.au=Gupta%2C+Govind+P.&rft.date=2022-06-01&rft.issn=0743-7315&rft.volume=164&rft.spage=55&rft.epage=68&rft_id=info:doi/10.1016%2Fj.jpdc.2022.01.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2022_01_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon