An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets

Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard machine learning techniques on imbalanced datasets is the synthetic generation of minority samples. In this paper, a detailed, empirical compar...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 83; p. 105662
Main Author Kovács, György
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard machine learning techniques on imbalanced datasets is the synthetic generation of minority samples. In this paper, a detailed, empirical comparison of 85 variants of minority oversampling techniques is presented and discussed involving 104 imbalanced datasets for evaluation. The goal of the work is to set a new baseline in the field, determine the oversampling principles leading to the best results under general circumstances, and also give guidance to practitioners on which techniques to use with certain types of datasets. •The best performing oversamplers are identified through empirical evaluation.•The best performing principles are identified through empirical evaluation.•The top performers were found to depend slightly on characteristics of datasets.
AbstractList Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard machine learning techniques on imbalanced datasets is the synthetic generation of minority samples. In this paper, a detailed, empirical comparison of 85 variants of minority oversampling techniques is presented and discussed involving 104 imbalanced datasets for evaluation. The goal of the work is to set a new baseline in the field, determine the oversampling principles leading to the best results under general circumstances, and also give guidance to practitioners on which techniques to use with certain types of datasets. •The best performing oversamplers are identified through empirical evaluation.•The best performing principles are identified through empirical evaluation.•The top performers were found to depend slightly on characteristics of datasets.
ArticleNumber 105662
Author Kovács, György
Author_xml – sequence: 1
  givenname: György
  orcidid: 0000-0003-1736-0988
  surname: Kovács
  fullname: Kovács, György
  email: gyuriofkovacs@gmail.com
  organization: Analytical Minds Ltd., 4933, Beregsurány, Árpád street 5, Hungary
BookMark eNp90M9rwyAUwHEZHazt9g_s5D-QTk1qE9illP2Cwi7bWV70pbMkmqkt9L9fsu60Q0_qg4_wvjMycd4hIfecLTjj8mG_gOj1QjBeDYOllOKKTHm5ElklSz4Z7ktZZkVVyBsyi3HPBlSJckri2lHsehushpZq3_UQbPSOgjMUj9AeINnh6RvaWeeDTSfqjxgidH1r3Y4m1F_Ofh8w0lHRFsIOqTt0NYZR2a6GFpxGQw0kiJjiLbluoI1493fOyefz08fmNdu-v7xt1ttM54ylrMBSSmmaWgtRMy3zyhRMIG_k0qCAGo0UwDAHY2qUK1wBCOCVLqBgTDCTz4k4_6uDjzFgo_pgOwgnxZkas6m9GrOpMZs6ZxtQ-Q9pm34bpAC2vUwfzxSHpY4Wg4ra4ri6DaiTMt5e4j8T_Y5o
CitedBy_id crossref_primary_10_1093_jamia_ocab048
crossref_primary_10_1186_s40537_025_01119_4
crossref_primary_10_1016_j_knosys_2022_108295
crossref_primary_10_1007_s11071_021_06504_1
crossref_primary_10_1016_j_patcog_2023_110138
crossref_primary_10_1016_j_eswa_2025_126728
crossref_primary_10_1080_0952813X_2022_2120087
crossref_primary_10_1016_j_eswa_2023_122409
crossref_primary_10_1016_j_neunet_2024_107107
crossref_primary_10_1109_ACCESS_2023_3321666
crossref_primary_10_1016_j_ins_2024_121054
crossref_primary_10_1016_j_asoc_2023_110952
crossref_primary_10_1371_journal_pone_0243907
crossref_primary_10_3390_sym13020194
crossref_primary_10_1016_j_eswa_2023_120102
crossref_primary_10_1007_s42979_024_02695_7
crossref_primary_10_1080_01605682_2025_2450060
crossref_primary_10_1016_j_advengsoft_2024_103802
crossref_primary_10_1109_TKDE_2022_3171706
crossref_primary_10_3390_computers11050073
crossref_primary_10_1016_j_jclepro_2024_142909
crossref_primary_10_1016_j_cie_2023_109556
crossref_primary_10_1016_j_knosys_2022_108445
crossref_primary_10_3390_s23042333
crossref_primary_10_1007_s00521_022_07347_6
crossref_primary_10_1016_j_jsr_2025_02_018
crossref_primary_10_1016_j_knosys_2023_110646
crossref_primary_10_1016_j_mlwa_2024_100597
crossref_primary_10_1016_j_patcog_2023_110002
crossref_primary_10_1007_s00357_024_09474_2
crossref_primary_10_3390_axioms11110607
crossref_primary_10_3390_ijerph182312806
crossref_primary_10_1007_s10207_023_00663_5
crossref_primary_10_1016_j_cmpb_2022_107011
crossref_primary_10_1016_j_eswa_2021_115492
crossref_primary_10_1007_s10489_020_01805_1
crossref_primary_10_3390_jcp3040032
crossref_primary_10_1002_int_22557
crossref_primary_10_1007_s13042_022_01662_z
crossref_primary_10_1007_s11518_022_5545_5
crossref_primary_10_1186_s40537_022_00578_3
crossref_primary_10_1007_s10489_025_06236_4
crossref_primary_10_1109_ACCESS_2021_3108450
crossref_primary_10_1111_acer_15271
crossref_primary_10_1016_j_future_2023_09_011
crossref_primary_10_1186_s12874_024_02341_z
crossref_primary_10_1016_j_knosys_2021_107269
crossref_primary_10_1109_ACCESS_2021_3083421
crossref_primary_10_1016_j_patcog_2021_108114
crossref_primary_10_1016_j_aap_2021_106422
crossref_primary_10_1016_j_patcog_2022_108992
crossref_primary_10_1007_s10462_022_10150_3
crossref_primary_10_1186_s12874_023_01920_w
crossref_primary_10_1109_ACCESS_2023_3329560
crossref_primary_10_1002_sam_11672
crossref_primary_10_1007_s00464_023_09955_2
crossref_primary_10_1016_j_asoc_2024_112677
crossref_primary_10_3390_sym12030482
crossref_primary_10_1016_j_eswa_2023_119735
crossref_primary_10_1016_j_neucom_2023_126544
crossref_primary_10_3390_nano10040708
crossref_primary_10_1155_2021_5520990
crossref_primary_10_1016_j_asoc_2025_112718
crossref_primary_10_1016_j_imu_2023_101361
crossref_primary_10_3389_fgene_2021_642282
crossref_primary_10_1007_s10994_023_06326_9
crossref_primary_10_1109_ACCESS_2024_3381536
crossref_primary_10_1016_j_frl_2024_106316
crossref_primary_10_3390_environments11110250
crossref_primary_10_1007_s11042_021_11552_1
crossref_primary_10_1038_s41598_024_62585_z
crossref_primary_10_3390_drones9010002
crossref_primary_10_1109_ACCESS_2022_3185227
crossref_primary_10_1007_s00521_024_09676_0
crossref_primary_10_1109_TKDE_2022_3179381
crossref_primary_10_1145_3579050
crossref_primary_10_3390_info14010054
crossref_primary_10_1016_j_knosys_2022_109233
crossref_primary_10_17671_gazibtd_1019015
crossref_primary_10_1007_s40747_024_01399_y
crossref_primary_10_1007_s10462_024_10724_3
crossref_primary_10_1109_TR_2022_3214519
crossref_primary_10_1145_3689627
crossref_primary_10_1177_15353702231220665
crossref_primary_10_1016_j_eswa_2023_122593
crossref_primary_10_1016_j_iswa_2024_200357
crossref_primary_10_1016_j_ejor_2022_06_060
crossref_primary_10_1007_s10639_023_12007_w
crossref_primary_10_1016_j_eswa_2024_124863
crossref_primary_10_1080_1206212X_2024_2409989
crossref_primary_10_3390_app13053177
crossref_primary_10_1038_s41467_024_55240_8
crossref_primary_10_1016_j_knosys_2022_109902
crossref_primary_10_1007_s10844_022_00763_z
crossref_primary_10_1016_j_compbiomed_2022_105466
crossref_primary_10_1016_j_asoc_2024_111841
crossref_primary_10_1007_s11227_023_05829_5
crossref_primary_10_3390_healthcare10071293
crossref_primary_10_3390_s24072201
crossref_primary_10_1016_j_inffus_2022_08_017
crossref_primary_10_3390_drones7060370
crossref_primary_10_1109_TR_2021_3138448
crossref_primary_10_1016_j_knosys_2020_106462
crossref_primary_10_1016_j_neunet_2025_107131
crossref_primary_10_1155_2021_7555587
crossref_primary_10_1007_s00521_022_07828_8
crossref_primary_10_1007_s13042_021_01321_9
crossref_primary_10_1109_ACCESS_2024_3520159
crossref_primary_10_1109_TAI_2022_3196283
crossref_primary_10_1016_j_procs_2020_09_097
crossref_primary_10_3758_s13428_022_01939_9
crossref_primary_10_4018_JDM_321739
crossref_primary_10_1016_j_artmed_2020_101987
crossref_primary_10_1016_j_eswa_2021_115297
crossref_primary_10_1016_j_inpa_2022_04_001
crossref_primary_10_1016_j_eswa_2021_116213
crossref_primary_10_1007_s13204_021_02063_4
crossref_primary_10_1007_s10278_024_01012_1
crossref_primary_10_1007_s00500_021_06532_4
crossref_primary_10_1016_j_knosys_2022_108919
crossref_primary_10_1016_j_asoc_2022_108618
crossref_primary_10_1016_j_asoc_2020_106238
crossref_primary_10_1016_j_ins_2022_12_029
crossref_primary_10_31571_saintek_v13i1_4002
crossref_primary_10_1007_s41870_024_02120_5
crossref_primary_10_1109_ACCESS_2024_3516369
crossref_primary_10_1016_j_ifacol_2024_07_213
crossref_primary_10_1016_j_neucom_2020_08_060
crossref_primary_10_1109_ACCESS_2023_3279732
crossref_primary_10_1016_j_asoc_2024_111267
crossref_primary_10_1080_03610918_2024_2447451
crossref_primary_10_1111_exsy_13591
crossref_primary_10_1002_aisy_202300006
crossref_primary_10_1016_j_trc_2024_104642
crossref_primary_10_1080_03772063_2024_2304002
crossref_primary_10_1007_s10044_022_01129_5
crossref_primary_10_1016_j_neucom_2025_129896
crossref_primary_10_1109_ACCESS_2024_3435670
crossref_primary_10_3390_app14219747
crossref_primary_10_1016_j_eswa_2023_121696
crossref_primary_10_1109_TSMC_2023_3335241
crossref_primary_10_1109_ACCESS_2020_3023949
crossref_primary_10_1016_j_ijdrr_2024_104667
crossref_primary_10_1016_j_knosys_2023_110665
crossref_primary_10_1093_bioinformatics_btac649
crossref_primary_10_1109_ACCESS_2022_3169512
crossref_primary_10_1109_ACCESS_2024_3376423
crossref_primary_10_3233_IDT_230331
crossref_primary_10_1016_j_compbiomed_2022_105639
crossref_primary_10_1109_ACCESS_2020_2983003
crossref_primary_10_1177_09287329241295874
crossref_primary_10_3390_cancers15112898
crossref_primary_10_1016_j_eswa_2019_113026
crossref_primary_10_1016_j_asoc_2024_111376
crossref_primary_10_3390_math12040534
crossref_primary_10_1016_j_compeleceng_2022_108236
crossref_primary_10_1016_j_bspc_2022_104538
crossref_primary_10_3390_electronics11020228
crossref_primary_10_1080_08839514_2025_2468534
crossref_primary_10_3390_f14091697
crossref_primary_10_1016_j_asoc_2024_111659
crossref_primary_10_1016_j_knosys_2024_112236
crossref_primary_10_1007_s10994_024_06563_6
crossref_primary_10_1007_s11771_024_5579_6
crossref_primary_10_1016_j_compag_2023_107787
Cites_doi 10.1109/DAS.2008.74
10.1016/j.eswa.2015.10.031
10.1016/j.ins.2014.08.051
10.1016/j.eswa.2017.09.030
10.1109/ICACSIS.2014.7065849
10.1109/IJCNN.2013.6707035
10.5391/IJFIS.2017.17.4.229
10.1109/ITAB.2008.4570642
10.1371/journal.pone.0107676
10.1007/s13369-016-2179-2
10.1109/ICACCI.2017.8125820
10.1142/S0218001415510040
10.1016/j.neucom.2016.10.041
10.1109/IIKI.2014.14
10.1016/j.neucom.2013.01.050
10.1007/s00521-014-1780-0
10.1016/j.ins.2017.04.046
10.1016/j.patcog.2011.02.019
10.1016/j.eswa.2017.03.073
10.1007/978-3-319-90050-6_15
10.1109/ICPR.2014.245
10.1109/ISDA.2011.6121689
10.1016/j.neucom.2016.12.036
10.1109/KSE.2015.24
10.1109/WAINA.2010.40
10.1613/jair.1.11192
10.1007/978-3-642-20847-8_29
10.1145/1007730.1007735
10.1016/j.patcog.2016.08.023
10.1016/j.engappai.2015.10.009
10.1007/978-3-642-37456-2_25
10.1109/ICMLA.2015.58
10.1016/j.inffus.2017.03.007
10.1007/s10489-011-0287-y
10.1109/ICCAS.2010.5669889
10.1145/2431211.2431215
10.1142/S0218213013500085
10.1109/ICPR.2014.258
10.1109/CIDM.2011.5949434
10.1109/TKDE.2014.2324567
10.1016/j.artmed.2005.03.002
10.1016/j.neucom.2012.08.018
10.1613/jair.953
10.1016/j.dss.2012.01.016
10.1145/2857546.2857648
10.1016/j.eswa.2016.09.010
10.1007/s10115-011-0465-6
10.1007/s10618-012-0295-5
10.1109/SSD.2015.7348093
10.1016/j.ins.2013.09.038
10.1109/CEC.2015.7256954
10.1198/10618600152418584
10.1016/j.neucom.2014.02.006
10.1007/978-3-642-20847-8_27
10.1109/TKDE.2012.232
10.1007/s13748-012-0027-5
10.1109/TKDE.2015.2458858
10.1515/amcs-2017-0050
10.1109/ISCIT.2013.6645923
10.1109/ICCKE.2014.6993409
10.1016/j.inffus.2013.12.003
10.1007/978-3-642-01307-2_43
10.1016/j.procs.2013.05.336
10.1109/ISCBI.2015.12
10.1145/1497577.1497578
10.1016/j.ins.2018.06.056
10.1016/j.ins.2013.07.007
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105662
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105662
S1568494619304429
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-4e8666dfbc22b0c639d402e1f65de2abed62a0e3addbe67e7aa2a19c4a40020d3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:03 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Fri Feb 23 02:49:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Minority oversampling
SMOTE
Imbalanced learning
SMOTE variants
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4e8666dfbc22b0c639d402e1f65de2abed62a0e3addbe67e7aa2a19c4a40020d3
ORCID 0000-0003-1736-0988
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_105662
crossref_citationtrail_10_1016_j_asoc_2019_105662
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dheeru, Karra Taniskidou (b108) 2017
Lopez, Fernandez, Herrera (b16) 2014; 257
Wang, Sun, Zhong (b4) 2016; 31
Zhang, Wang (b29) 2011
S. Cateni, V. Colla, M. Vannucci, Novel resampling method for the classification of imbalanced datasets for industrial and other real-world problems, in: 2011 11th International Conference on Intelligent Systems Design and Applications, 2011, pp. 402–407.
Borowska, Stepaniuk (b79) 2016
Puntumapon, Waiyamai (b82) 2012
Torres, Carrasco-Ochoa, Martínez-Trinidad (b75) 2016
Wang, Xu, Wang, Zhang (b37) 2006; vol. 3
Chawla, Bowyer, Hall, Kegelmeyer (b12) 2002; 16
Lomax, Vadera (b8) 2013; 45
Farquad, Bose (b80) 2012; 53
He, Gracia (b1) 2009; 21
Gao, Hong, Chen, Harris, Khalaf (b34) 2014; 138
K. Li, W. Zhang, Q. Lu, X. Fang, An improved SMOTE imbalanced data classification method based on support degree, in: 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, 2014, pp. 34–38.
Fan, Tang, Weise (b66) 2011
Li, Zou, Wang, Xia (b104) 2013
J. Li, S. Fong, Y. Zhuang, Optimizing SMOTE by metaheuristics with neural network and decision tree, in: 2015 3rd International Symposium on Computational and Business Intelligence, ISCBI, 2015, pp. 26–32.
Barua, Islam, Murase (b70) 2011
Ramentol, Caballero, Bello, Herrera (b84) 2012; 33
Douzas, Bacao, Last (b105) 2018; 465
B. Tang, H. He, KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning, in: IEEE Congress on Evolutionary Computation, 2015, pp. 664–671.
C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-Level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proc. of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2009, pp. 475–482.
X.T. Dang, D.H. Tran, O. Hirose, K. Satou, SPY: A novel resampling method for improving classification performance in imbalanced data, in: 2015 Seventh International Conference on Knowledge and Systems Engineering, KSE, 2015, pp. 280–285.
Nekooeimehr, Lai-Yuen (b83) 2016; 46
Zieba, Tomczak, Gonczarek (b26) 2015
Zhang, Li (b30) 2014; 20
Alcala-Fdez, Fernandez, Luengo, Derrac, Garcia, Sanchez, Herrera (b107) 2011; 17
Qi, Tian, Shi, Yu (b7) 2013; 18
W. Liu, S. Chawla, Class confidence weighted kNN algorithms for imbalanced data sets, in: Proceedings of PAKDD 2011, 2011, pp. 354–356.
Cervantes, Garcia-Lamont, Rodriguez, López, Castilla, Trueba (b89) 2017; 228
García, Sánchez, Martín-Félez, Mollineda (b90) 2012; 1
S. Tang, S. Chen, The generation mechanism of synthetic minority class examples, in: 2008 International Conference on Information Technology and Applications in Biomedicine, 2008, pp. 444–447.
S. Gazzah, N.E.B. Amara, New oversampling approaches based on polynomial fitting for imbalanced data sets, in: 2008 the Eighth IAPR International Workshop on Document Analysis Systems, 2008, pp. 677–684.
Jiang, Qiu, Li (b55) 2015; 29
Al-Khaldy, Kambhampati (b3) 2018; 4
F. Koto, SMOTE-Out, SMOTE-Cosine, and Selected-SMOTE: An enhancement strategy to handle imbalance in data level, in: 2014 Int. Conf. on Advanced Computer Science and Information System, 2014, pp. 280–284.
Sanchez, Morales, Gonzalez (b100) 2013; 22
Lee, Kim, Kim (b97) 2017; 17
Han, Wang, Mao (b20) 2005
Jiang, Lu, Xia (b81) 2016; 41
Rivera, Xanthopoulos (b73) 2016; 66
Stefanowski, Wilk (b46) 2008
Raeder, Forman, Chawla (b14) 2012
C. Bellinger, N. Japkowicz, C. Drummond, Synthetic oversampling for advanced radioactive threat detection, in: IEEE 14th International Conference on Machine Learning and Applications, 2015, pp. 948–953.
Cao, Liu, Zhang, Zhao, Huang, Zaiane (b25) 2017; 234
S. Chen, G. Guo, L. Chen, A new over-sampling method based on cluster ensembles, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, 2010, pp. 599–604.
Dong, Wang (b74) 2011
Ma, Fan (b91) 2017; 18
J. de la Calleja, O. Fuentes, J. González, Selecting minority examples from misclassified data for over-sampling, in: Proc. of the 21st Int. Florida Artificial Intelligence Research Society Conference, 2008, pp. 276–281.
T. Sandhan, J.Y. Choi, Handling imbalanced datasets by partially guided hybrid sampling for pattern recognition, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1449–1453.
Y. Li, X. Zhang, Improving k nearest neighbor with examplar generalization for imbalanced classification, in: PAKDD 2011, 2011, pp. 1–12.
H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: Proc. of IJCNN, 2008, pp. 1322–1328.
Ertekin (b24) 2013
Fernández-Navarro, Hervás-Martinez, Gutiérrez (b78) 2011; 44
Barua, Islam, Murase (b92) 2013
Barua, Islam, Yao, Murase (b33) 2014; 26
Y.H. Xu, H. Li, L.P. Le, X.Y. Tian, Neighborhood triangular synthetic minority over-sampling technique for imbalanced prediction on small samples of Chinese tourism and hospitality firms, in: 7th Int. Joint Conf. on Computational Sciences and Optimization, 2014, pp. 534–538.
Zhang, Wang (b76) 2011; vol. 1
Douzas, Bacao (b93) 2017; 82
de la Calleja, Fuentes (b39) 2007; vol. 3
Douzas, Bacao (b28) 2018; 91
Fernandez, Garcia, Herrera, Chawla (b18) 2018; 61
Hu, He, Yu, Yang, Yang, Shen (b49) 2014; 9
D.A. Cieslak, N.V. Chawla, A. Striegel, Combating imbalance in network intrusion datasets, in: 2006 IEEE International Conference on Granular Computing, 2006, pp. 732–737.
Sáez, Luengo, Stefanowski, Herrera (b59) 2015; 291
S. Wang, Z. Li, W. Chao, Q. Cao, Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning, in: Int. Joint Conf. on Neural Networks, 2012, pp. 1–8.
Y. Kang, S. Won, Weight decision algorithm for oversampling technique on class-imbalanced learning, in: ICCAS 2010, 2010, pp. 182–186.
X. Zhang, Y. Li, A positive-biased nearest neighbour algorithm for imbalanced classification, in: Proc. of PAKDD 2013, 2013, pp. 293–304.
Li, Fong, Wong, Chu (b103) 2018; 39
Lee, Kim, Lee (b67) 2015
Lemaitre, Nogueira, Aridas (b23) 2017; 18
Batista, Prati, Monard (b32) 2004; 6
Rong, Gong, Ng (b47) 2014
B.A. Almogahed, I.A. Kakadiaris, NEATER: Filtering of over-sampled data using non-cooperative game theory, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1371–1376.
Z. László, L. Török, G. Kovács, Improving the performance of the k rare class nearest neighbor classifier by the ranking of point patterns, in: Proc. of Foundations of Information and Knowledge Systems, 2018, pp. 265–283.
van Dyk, Meng (b19) 2001; 10
T. Maciejewski, J. Stefanowski, Local neighbourhood extension of SMOTE for mining imbalanced data, in: 2011 IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111.
Cao, Wang (b62) 2011; vol. 2
S. Mahmoudi, P. Moradi, F. Akhlaghian, R. Moradi, Diversity and separable metrics in over-sampling technique for imbalanced data classification, in: 4th International Conference on Computer and Knowledge Engineering, 2014, pp. 152–158.
C. Bunkhumpornpat, S. Subpaiboonkit, Safe level graph for synthetic minority over-sampling techniques, in: 13th International Symposium on Communications and Information Technologies, 2013, pp. 570–575.
Lopez, Fernandez, Garcia, Palade, Herrera (b15) 2013; 250
Kriegel, Kröger, Zimek (b112) 2009; 3
L. Chen, Z. Cai, L. Chen, Q. Gu, A novel differential evolution-clustering hybrid resampling algorithm on imbalanced datasets, in: 3rd International Conference on Knowledge Discovery and Data Mining, 2010, pp. 81–85.
Yu, Ni, Zhao (b2) 2013; 101
Cohen, Hilario, Sax, Hugonnet, Geissbuhler (b35) 2006; 37
Deepa, Punithavalli (b72) 2011; vol. 2
Kukar, Kononenko (b9) 1998
Hoens, Chawla (b17) 2013
Menardi, Torelli (b106) 2014; 28
Lopez, Triguero, Carmona, Garcia, Herrera (b36) 2014; 126
Pourhabib, Mallick, Ding (b57) 2015; 16
Zhang, Tari, Cheriet (b6) 2017; 62
Hu, Liang, Ma, He (b52) 2009; vol. 2
Rivera (b95) 2017; 408
Xie, Jiang, Ye, Li (b63) 2015
Bunkhumpornpat, Sinapiromsaran, Lursinsap (b86) 2012; 36
Chawla (b13) 2010
A. Gosain, S. Sardana, Handling class imbalance problem using oversampling techniques: A review, in: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI, 2017, pp. 79–85.
Young, Nykl, Weckman, Chelberg (b65) 2015; 26
Siriseriwan, Sinapiromsaran (b101) 2017; vol. 39
Feng, Hang (b96) 2013
Shalev-Shwartz, Ben-David (b111) 2014
S. Gazzah, A. Hechkel, N.E.B. Amara, A hybrid sampling method for imbalanced data, in: IEEE 12th International Multi-Conference on Systems, Signals Devices, 2015, pp. 1–6.
J. Yun, J. Ha, J.-S. Lee, Automatic determination of neighborhood size in SMOTE, in: Proc. of the 10th International Conference on Ubiquitous Information Management and Communication, 2016, pp. 100:1–100:8.
Gu, Cai, Zhu (b54) 2009
Abdi, Hashemi (b77) 2016; 28
Ramentol, Gondres, Lajes, Bello, Caballero, Cornelis, Herrera (b85) 2016; 48
Nakamura, Kajiwara, Otsuka, Kimura (b98) 2013; 6
Koziarski, Wozniak (b99) 2017; 27
B. Zhou, C. Yang, H. Guo, J. Hu, A quasi-linear SVM combined with assembled SMOTE for imbalanced data classification, in: The 2013 International Joint Conference on Neural Networks, IJCNN, 2013, pp. 1–7.
Das, Krishnan, Cook (b27) 2015; 27
Dheeru (10.1016/j.asoc.2019.105662_b108) 2017
10.1016/j.asoc.2019.105662_b5
10.1016/j.asoc.2019.105662_b50
10.1016/j.asoc.2019.105662_b51
Nekooeimehr (10.1016/j.asoc.2019.105662_b83) 2016; 46
10.1016/j.asoc.2019.105662_b53
Douzas (10.1016/j.asoc.2019.105662_b93) 2017; 82
Nakamura (10.1016/j.asoc.2019.105662_b98) 2013; 6
Zhang (10.1016/j.asoc.2019.105662_b6) 2017; 62
Farquad (10.1016/j.asoc.2019.105662_b80) 2012; 53
Ma (10.1016/j.asoc.2019.105662_b91) 2017; 18
Cao (10.1016/j.asoc.2019.105662_b25) 2017; 234
Koziarski (10.1016/j.asoc.2019.105662_b99) 2017; 27
Al-Khaldy (10.1016/j.asoc.2019.105662_b3) 2018; 4
10.1016/j.asoc.2019.105662_b45
10.1016/j.asoc.2019.105662_b48
Hoens (10.1016/j.asoc.2019.105662_b17) 2013
Zhang (10.1016/j.asoc.2019.105662_b29) 2011
Wang (10.1016/j.asoc.2019.105662_b37) 2006; vol. 3
10.1016/j.asoc.2019.105662_b40
10.1016/j.asoc.2019.105662_b41
10.1016/j.asoc.2019.105662_b42
10.1016/j.asoc.2019.105662_b43
Feng (10.1016/j.asoc.2019.105662_b96) 2013
10.1016/j.asoc.2019.105662_b44
Xie (10.1016/j.asoc.2019.105662_b63) 2015
Sanchez (10.1016/j.asoc.2019.105662_b100) 2013; 22
Chawla (10.1016/j.asoc.2019.105662_b13) 2010
Gu (10.1016/j.asoc.2019.105662_b54) 2009
Lopez (10.1016/j.asoc.2019.105662_b16) 2014; 257
10.1016/j.asoc.2019.105662_b38
10.1016/j.asoc.2019.105662_b71
Shalev-Shwartz (10.1016/j.asoc.2019.105662_b111) 2014
Wang (10.1016/j.asoc.2019.105662_b4) 2016; 31
Lopez (10.1016/j.asoc.2019.105662_b15) 2013; 250
Fan (10.1016/j.asoc.2019.105662_b66) 2011
Lemaitre (10.1016/j.asoc.2019.105662_b23) 2017; 18
Rivera (10.1016/j.asoc.2019.105662_b73) 2016; 66
Raeder (10.1016/j.asoc.2019.105662_b14) 2012
10.1016/j.asoc.2019.105662_b68
Lopez (10.1016/j.asoc.2019.105662_b36) 2014; 126
10.1016/j.asoc.2019.105662_b69
Puntumapon (10.1016/j.asoc.2019.105662_b82) 2012
10.1016/j.asoc.2019.105662_b60
10.1016/j.asoc.2019.105662_b61
10.1016/j.asoc.2019.105662_b64
Li (10.1016/j.asoc.2019.105662_b104) 2013
Han (10.1016/j.asoc.2019.105662_b20) 2005
Alcala-Fdez (10.1016/j.asoc.2019.105662_b107) 2011; 17
Lomax (10.1016/j.asoc.2019.105662_b8) 2013; 45
Zieba (10.1016/j.asoc.2019.105662_b26) 2015
Menardi (10.1016/j.asoc.2019.105662_b106) 2014; 28
10.1016/j.asoc.2019.105662_b56
Bunkhumpornpat (10.1016/j.asoc.2019.105662_b86) 2012; 36
10.1016/j.asoc.2019.105662_b58
Fernandez (10.1016/j.asoc.2019.105662_b18) 2018; 61
Abdi (10.1016/j.asoc.2019.105662_b77) 2016; 28
García (10.1016/j.asoc.2019.105662_b90) 2012; 1
Zhang (10.1016/j.asoc.2019.105662_b30) 2014; 20
Hu (10.1016/j.asoc.2019.105662_b49) 2014; 9
10.1016/j.asoc.2019.105662_b94
Dong (10.1016/j.asoc.2019.105662_b74) 2011
Fernández-Navarro (10.1016/j.asoc.2019.105662_b78) 2011; 44
10.1016/j.asoc.2019.105662_b10
Chawla (10.1016/j.asoc.2019.105662_b12) 2002; 16
10.1016/j.asoc.2019.105662_b11
Torres (10.1016/j.asoc.2019.105662_b75) 2016
Lee (10.1016/j.asoc.2019.105662_b97) 2017; 17
Zhang (10.1016/j.asoc.2019.105662_b76) 2011; vol. 1
He (10.1016/j.asoc.2019.105662_b1) 2009; 21
Hu (10.1016/j.asoc.2019.105662_b52) 2009; vol. 2
Siriseriwan (10.1016/j.asoc.2019.105662_b101) 2017; vol. 39
10.1016/j.asoc.2019.105662_b110
Pourhabib (10.1016/j.asoc.2019.105662_b57) 2015; 16
Barua (10.1016/j.asoc.2019.105662_b33) 2014; 26
Jiang (10.1016/j.asoc.2019.105662_b81) 2016; 41
Barua (10.1016/j.asoc.2019.105662_b92) 2013
10.1016/j.asoc.2019.105662_b87
10.1016/j.asoc.2019.105662_b88
Kukar (10.1016/j.asoc.2019.105662_b9) 1998
Gao (10.1016/j.asoc.2019.105662_b34) 2014; 138
Rivera (10.1016/j.asoc.2019.105662_b95) 2017; 408
Cohen (10.1016/j.asoc.2019.105662_b35) 2006; 37
Ertekin (10.1016/j.asoc.2019.105662_b24) 2013
10.1016/j.asoc.2019.105662_b31
Cao (10.1016/j.asoc.2019.105662_b62) 2011; vol. 2
van Dyk (10.1016/j.asoc.2019.105662_b19) 2001; 10
Borowska (10.1016/j.asoc.2019.105662_b79) 2016
Kriegel (10.1016/j.asoc.2019.105662_b112) 2009; 3
Rong (10.1016/j.asoc.2019.105662_b47) 2014
Li (10.1016/j.asoc.2019.105662_b103) 2018; 39
Lee (10.1016/j.asoc.2019.105662_b67) 2015
Deepa (10.1016/j.asoc.2019.105662_b72) 2011; vol. 2
Das (10.1016/j.asoc.2019.105662_b27) 2015; 27
Sáez (10.1016/j.asoc.2019.105662_b59) 2015; 291
Young (10.1016/j.asoc.2019.105662_b65) 2015; 26
Yu (10.1016/j.asoc.2019.105662_b2) 2013; 101
Batista (10.1016/j.asoc.2019.105662_b32) 2004; 6
Qi (10.1016/j.asoc.2019.105662_b7) 2013; 18
Jiang (10.1016/j.asoc.2019.105662_b55) 2015; 29
Ramentol (10.1016/j.asoc.2019.105662_b84) 2012; 33
Douzas (10.1016/j.asoc.2019.105662_b105) 2018; 465
10.1016/j.asoc.2019.105662_b21
10.1016/j.asoc.2019.105662_b22
Douzas (10.1016/j.asoc.2019.105662_b28) 2018; 91
de la Calleja (10.1016/j.asoc.2019.105662_b39) 2007; vol. 3
Cervantes (10.1016/j.asoc.2019.105662_b89) 2017; 228
10.1016/j.asoc.2019.105662_b109
Barua (10.1016/j.asoc.2019.105662_b70) 2011
Ramentol (10.1016/j.asoc.2019.105662_b85) 2016; 48
Stefanowski (10.1016/j.asoc.2019.105662_b46) 2008
10.1016/j.asoc.2019.105662_b102
References_xml – volume: 20
  start-page: 99
  year: 2014
  end-page: 116
  ident: b30
  article-title: RWO-Sampling: A random walk over-sampling approach to imbalanced data classification
  publication-title: Inf. Fusion
– start-page: 410
  year: 2014
  ident: b111
  article-title: Understanding Machine Learning: From Theory to Algorithms
– volume: 291
  start-page: 184
  year: 2015
  end-page: 203
  ident: b59
  article-title: SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
  publication-title: Inf. Sci.
– volume: 17
  start-page: 229
  year: 2017
  end-page: 234
  ident: b97
  article-title: Gaussian-based smote algorithm for solving skewed class distributions
  publication-title: Int. J. Fuzzy Log. Intell. Syst.
– reference: Y. Kang, S. Won, Weight decision algorithm for oversampling technique on class-imbalanced learning, in: ICCAS 2010, 2010, pp. 182–186.
– start-page: 371
  year: 2012
  end-page: 382
  ident: b82
  article-title: A pruning-based approach for searching precise and generalized region for synthetic minority over-sampling
  publication-title: Advances in Knowledge Discovery and Data Mining
– reference: S. Cateni, V. Colla, M. Vannucci, Novel resampling method for the classification of imbalanced datasets for industrial and other real-world problems, in: 2011 11th International Conference on Intelligent Systems Design and Applications, 2011, pp. 402–407.
– volume: 228
  start-page: 187
  year: 2017
  end-page: 197
  ident: b89
  article-title: PSO-based method for SVM classification on skewed data sets
  publication-title: Neurocomputing
– reference: X. Zhang, Y. Li, A positive-biased nearest neighbour algorithm for imbalanced classification, in: Proc. of PAKDD 2013, 2013, pp. 293–304.
– reference: T. Sandhan, J.Y. Choi, Handling imbalanced datasets by partially guided hybrid sampling for pattern recognition, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1449–1453.
– volume: 465
  start-page: 1
  year: 2018
  end-page: 20
  ident: b105
  article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE
  publication-title: Inf. Sci.
– volume: 45
  start-page: 16:1
  year: 2013
  end-page: 16:35
  ident: b8
  article-title: A survey of cost-sensitive decision tree induction algorithms
  publication-title: ACM Comput. Surv.
– volume: vol. 3
  start-page: 634
  year: 2007
  end-page: 635
  ident: b39
  article-title: A distance-based over-sampling method for learning from imbalanced data sets
  publication-title: Proceedings of the Twentieth International Florida Artificial Intelligence
– volume: 27
  start-page: 222
  year: 2015
  end-page: 234
  ident: b27
  article-title: RACOG and wRACOG: Two probabilistic oversampling techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: S. Mahmoudi, P. Moradi, F. Akhlaghian, R. Moradi, Diversity and separable metrics in over-sampling technique for imbalanced data classification, in: 4th International Conference on Computer and Knowledge Engineering, 2014, pp. 152–158.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 18
  ident: b91
  article-title: CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests
  publication-title: BMC Bioinformatics
– volume: vol. 39
  start-page: 565
  year: 2017
  end-page: 576
  ident: b101
  article-title: Adaptive neighbor synthetic minority oversampling technique under 1NN outcast handling
  publication-title: Songklanakarin Journal of Science and Technology
– reference: S. Gazzah, N.E.B. Amara, New oversampling approaches based on polynomial fitting for imbalanced data sets, in: 2008 the Eighth IAPR International Workshop on Document Analysis Systems, 2008, pp. 677–684.
– start-page: 315
  year: 2012
  end-page: 331
  ident: b14
  article-title: Learning from imbalanced data: Evaluation matters
  publication-title: Data Mining: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification
– volume: vol. 2
  start-page: 322
  year: 2011
  end-page: 324
  ident: b72
  article-title: An E-SMOTE technique for feature selection in high-dimensional imbalanced dataset
  publication-title: 2011 3rd International Conference on Electronics Computer Technology
– year: 2017
  ident: b108
  article-title: UCI Machine Learning Repository
– volume: 27
  start-page: 727
  year: 2017
  end-page: 736
  ident: b99
  article-title: CCR: A combined cleaning and resampling algorithm for imbalanced data classification
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 66
  start-page: 124
  year: 2016
  end-page: 135
  ident: b73
  article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
  publication-title: Expert Syst. Appl.
– reference: B. Zhou, C. Yang, H. Guo, J. Hu, A quasi-linear SVM combined with assembled SMOTE for imbalanced data classification, in: The 2013 International Joint Conference on Neural Networks, IJCNN, 2013, pp. 1–7.
– reference: J. Yun, J. Ha, J.-S. Lee, Automatic determination of neighborhood size in SMOTE, in: Proc. of the 10th International Conference on Ubiquitous Information Management and Communication, 2016, pp. 100:1–100:8.
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: b32
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: SIGKDD Explor. Newsl.
– reference: S. Chen, G. Guo, L. Chen, A new over-sampling method based on cluster ensembles, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, 2010, pp. 599–604.
– volume: 46
  start-page: 405
  year: 2016
  end-page: 416
  ident: b83
  article-title: Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
  publication-title: Expert Syst. Appl.
– reference: W. Liu, S. Chawla, Class confidence weighted kNN algorithms for imbalanced data sets, in: Proceedings of PAKDD 2011, 2011, pp. 354–356.
– volume: 44
  start-page: 1821
  year: 2011
  end-page: 1833
  ident: b78
  article-title: A dynamic over-sampling procedure based on sensitivity for multi-class problems
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 1
  year: 2016
  end-page: 7
  ident: b4
  article-title: An ensemble anomaly detection with imbalanced data based on robot vision
  publication-title: Int. J. Robot. Autom.
– reference: B.A. Almogahed, I.A. Kakadiaris, NEATER: Filtering of over-sampled data using non-cooperative game theory, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1371–1376.
– volume: 62
  start-page: 33
  year: 2017
  end-page: 44
  ident: b6
  article-title: KRNN: k rare-class nearest neighbor classification
  publication-title: Pattern Recognit.
– volume: 408
  start-page: 146
  year: 2017
  end-page: 161
  ident: b95
  article-title: Noise reduction a priori synthetic over-sampling for class imbalanced data sets
  publication-title: Inf. Sci.
– volume: 3
  start-page: 1:1
  year: 2009
  end-page: 1:58
  ident: b112
  article-title: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 82
  start-page: 40
  year: 2017
  end-page: 52
  ident: b93
  article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning
  publication-title: Expert Syst. Appl.
– reference: J. de la Calleja, O. Fuentes, J. González, Selecting minority examples from misclassified data for over-sampling, in: Proc. of the 21st Int. Florida Artificial Intelligence Research Society Conference, 2008, pp. 276–281.
– volume: 138
  start-page: 248
  year: 2014
  end-page: 259
  ident: b34
  article-title: PDFOS: PDF estimation based over-sampling for imbalanced two-class problems
  publication-title: Neurocomputing
– volume: 26
  start-page: 405
  year: 2014
  end-page: 425
  ident: b33
  article-title: MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2013
  ident: b96
  article-title: A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE
  publication-title: Math. Probl. Eng.
– reference: C. Bunkhumpornpat, S. Subpaiboonkit, Safe level graph for synthetic minority over-sampling techniques, in: 13th International Symposium on Communications and Information Technologies, 2013, pp. 570–575.
– start-page: 161
  year: 2014
  end-page: 171
  ident: b47
  article-title: Stochastic sensitivity oversampling technique for imbalanced data
  publication-title: Machine Learning and Cybernetics
– reference: K. Li, W. Zhang, Q. Lu, X. Fang, An improved SMOTE imbalanced data classification method based on support degree, in: 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, 2014, pp. 34–38.
– reference: J. Li, S. Fong, Y. Zhuang, Optimizing SMOTE by metaheuristics with neural network and decision tree, in: 2015 3rd International Symposium on Computational and Business Intelligence, ISCBI, 2015, pp. 26–32.
– start-page: 317
  year: 2013
  end-page: 328
  ident: b92
  article-title: ProWSyn: Proximity weighted synthetic oversampling technique for imbalanced data set learning
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: vol. 3
  start-page: 1
  year: 2006
  end-page: 9
  ident: b37
  article-title: Classification of imbalanced data by using the smote algorithm and locally linear embedding
  publication-title: 2006 8th International Conference on Signal Processing
– reference: S. Tang, S. Chen, The generation mechanism of synthetic minority class examples, in: 2008 International Conference on Information Technology and Applications in Biomedicine, 2008, pp. 444–447.
– start-page: 343
  year: 2011
  end-page: 352
  ident: b74
  article-title: A new over-sampling approach: Random-SMOTE for learning from imbalanced data sets
  publication-title: Knowledge Science, Engineering and Management
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b12
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– volume: 36
  start-page: 664
  year: 2012
  end-page: 684
  ident: b86
  article-title: DBSMOTE: Density-based synthetic minority over-sampling technique
  publication-title: Appl. Intell.
– volume: 53
  start-page: 226
  year: 2012
  end-page: 233
  ident: b80
  article-title: Preprocessing unbalanced data using support vector machine
  publication-title: Decis. Support Syst.
– start-page: 177
  year: 2016
  end-page: 188
  ident: b75
  article-title: SMOTE-D a deterministic version of smote
  publication-title: MCPR2016: Pattern Recognition
– volume: 91
  start-page: 464
  year: 2018
  end-page: 471
  ident: b28
  article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks
  publication-title: Expert Syst. Appl.
– start-page: 377
  year: 2015
  end-page: 386
  ident: b26
  article-title: RBM-SMOTE: Restricted Boltzmann machines for synthetic minority oversampling technique
  publication-title: Intelligent Information and Database Systems
– start-page: 3
  year: 2015
  end-page: 18
  ident: b63
  article-title: A synthetic minority oversampling method based on local densities in low-dimensional space for imbalanced learning
  publication-title: Database Systems for Advanced Applications
– start-page: 878
  year: 2005
  end-page: 887
  ident: b20
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Advances in Intelligent Computing
– reference: X.T. Dang, D.H. Tran, O. Hirose, K. Satou, SPY: A novel resampling method for improving classification performance in imbalanced data, in: 2015 Seventh International Conference on Knowledge and Systems Engineering, KSE, 2015, pp. 280–285.
– reference: C. Bellinger, N. Japkowicz, C. Drummond, Synthetic oversampling for advanced radioactive threat detection, in: IEEE 14th International Conference on Machine Learning and Applications, 2015, pp. 948–953.
– volume: vol. 2
  start-page: 543
  year: 2011
  end-page: 548
  ident: b62
  article-title: Applying over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning
  publication-title: International Conference on Information Management, Innovation Management and Industrial Engineering
– volume: 39
  start-page: 1
  year: 2018
  end-page: 24
  ident: b103
  article-title: Adaptive multi-objective swarm fusion for imbalanced data classification
  publication-title: Inf. Fusion
– start-page: 445
  year: 1998
  end-page: 449
  ident: b9
  article-title: Cost-sensitive learning with neural networks
  publication-title: Proceedings of the 13th European Conference on Artificial Intelligence, ECAI-98
– volume: 234
  start-page: 38
  year: 2017
  end-page: 57
  ident: b25
  article-title: 2,1 norm regularized multi-kernel based joint nonlinear feature selection and over-sampling for imbalanced data classification
  publication-title: Neurocomputing
– volume: 29
  year: 2015
  ident: b55
  article-title: A novel minority cloning technique for cost-sensitive learning
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 5
  ident: b23
  article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– start-page: 287
  year: 2009
  end-page: 296
  ident: b54
  article-title: Classification of imbalanced data sets by using the hybrid re-sampling algorithm based on Isomap
  publication-title: Proceedings of the 4th International Symposium on Advances in Computation and Intelligence, ISICA ’09
– volume: 257
  start-page: 1
  year: 2014
  end-page: 13
  ident: b16
  article-title: On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed
  publication-title: Inf. Sci.
– reference: Y. Li, X. Zhang, Improving k nearest neighbor with examplar generalization for imbalanced classification, in: PAKDD 2011, 2011, pp. 1–12.
– volume: 61
  start-page: 863
  year: 2018
  end-page: 905
  ident: b18
  article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary
  publication-title: J. Artificial Intelligence Res.
– volume: 18
  start-page: 1684
  year: 2013
  end-page: 1689
  ident: b7
  article-title: Cost-sensitive support vector machine for semi-supervised learning
  publication-title: Procedia Comput. Sci.
– reference: F. Koto, SMOTE-Out, SMOTE-Cosine, and Selected-SMOTE: An enhancement strategy to handle imbalance in data level, in: 2014 Int. Conf. on Advanced Computer Science and Information System, 2014, pp. 280–284.
– start-page: 102:1
  year: 2015
  end-page: 102:6
  ident: b67
  article-title: An over-sampling technique with rejection for imbalanced class learning
  publication-title: Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, IMCOM ’15
– start-page: 283
  year: 2008
  end-page: 292
  ident: b46
  article-title: Selective pre-processing of imbalanced data for improving classification performance
  publication-title: Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery, DaWaK ’08
– volume: 250
  start-page: 113
  year: 2013
  end-page: 141
  ident: b15
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
– volume: 28
  start-page: 92
  year: 2014
  end-page: 122
  ident: b106
  article-title: Training and assessing classification rules with imbalanced data
  publication-title: Data Min. Knowl. Discov.
– volume: 17
  start-page: 255
  year: 2011
  end-page: 287
  ident: b107
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Logic Soft Comput.
– start-page: 875
  year: 2010
  end-page: 886
  ident: b13
  article-title: Data mining for imbalanced datasets: an overview
  publication-title: Data Mining and Knowledge Discovery Handbook
– reference: H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: Proc. of IJCNN, 2008, pp. 1322–1328.
– volume: 10
  start-page: 1
  year: 2001
  end-page: 50
  ident: b19
  article-title: The art of data augmentation
  publication-title: J. Comput. Graph. Statist.
– start-page: 261
  year: 2013
  end-page: 269
  ident: b24
  article-title: Adaptive oversampling for imbalanced data classification
  publication-title: Information Sciences and Systems 2013
– reference: T. Maciejewski, J. Stefanowski, Local neighbourhood extension of SMOTE for mining imbalanced data, in: 2011 IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111.
– volume: vol. 2
  start-page: 13
  year: 2009
  end-page: 17
  ident: b52
  article-title: MSMOTE: Improving classification performance when training data is imbalanced
  publication-title: Proc. of the 2nd International Workshop on Computer Science and Engineering
– volume: 41
  start-page: 3255
  year: 2016
  end-page: 3266
  ident: b81
  article-title: A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE
  publication-title: Arab. J. Sci. Eng.
– reference: S. Gazzah, A. Hechkel, N.E.B. Amara, A hybrid sampling method for imbalanced data, in: IEEE 12th International Multi-Conference on Systems, Signals Devices, 2015, pp. 1–6.
– reference: D.A. Cieslak, N.V. Chawla, A. Striegel, Combating imbalance in network intrusion datasets, in: 2006 IEEE International Conference on Granular Computing, 2006, pp. 732–737.
– volume: 16
  start-page: 2695
  year: 2015
  end-page: 2724
  ident: b57
  article-title: Absent data generating classifier for imbalanced class sizes
  publication-title: J. Mach. Learn. Res.
– reference: Z. László, L. Török, G. Kovács, Improving the performance of the k rare class nearest neighbor classifier by the ranking of point patterns, in: Proc. of Foundations of Information and Knowledge Systems, 2018, pp. 265–283.
– volume: 101
  start-page: 309
  year: 2013
  end-page: 318
  ident: b2
  article-title: ACOSampling: An ant colony optimization based undersampling method for classifying imbalanced DNA microarray data
  publication-title: Neurocomputing
– volume: 1
  start-page: 347
  year: 2012
  end-page: 362
  ident: b90
  article-title: Surrounding neighborhood-based SMOTE for learning from imbalanced data sets
  publication-title: Prog. Artif. Intell.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 10
  ident: b49
  article-title: A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction
  publication-title: PLoS One
– reference: B. Tang, H. He, KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning, in: IEEE Congress on Evolutionary Computation, 2015, pp. 664–671.
– volume: 22
  year: 2013
  ident: b100
  article-title: Synthetic oversampling of instances using clustering
  publication-title: Int. J. Artif. Intell. Tools
– start-page: 547
  year: 2013
  end-page: 554
  ident: b104
  article-title: A new combination sampling method for imbalanced data
  publication-title: Proc. of 2013 Chinese Intelligent Automation Conference
– volume: 37
  start-page: 7
  year: 2006
  end-page: 18
  ident: b35
  article-title: Learning from imbalanced data in surveillance of nosocomial infection
  publication-title: Artif. Intell. Med.
– reference: L. Chen, Z. Cai, L. Chen, Q. Gu, A novel differential evolution-clustering hybrid resampling algorithm on imbalanced datasets, in: 3rd International Conference on Knowledge Discovery and Data Mining, 2010, pp. 81–85.
– volume: 28
  start-page: 238
  year: 2016
  end-page: 251
  ident: b77
  article-title: To combat multi-class imbalanced problems by means of over-sampling techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 33
  start-page: 245
  year: 2012
  end-page: 265
  ident: b84
  article-title: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory
  publication-title: Knowl. Inf. Syst.
– start-page: 83
  year: 2011
  end-page: 96
  ident: b29
  article-title: A normal distribution-based over-sampling approach to imbalanced data classification
  publication-title: Advanced Data Mining and Applications
– volume: 4
  start-page: 1
  year: 2018
  end-page: 10
  ident: b3
  article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset
  publication-title: Int. Robotics Autom. J.
– reference: A. Gosain, S. Sardana, Handling class imbalance problem using oversampling techniques: A review, in: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI, 2017, pp. 79–85.
– volume: 6
  start-page: 1
  year: 2013
  end-page: 10
  ident: b98
  article-title: LVQ-SMOTE – learning vector quantization based synthetic minority over–sampling technique for biomedical data
  publication-title: BioData Min.
– start-page: 309
  year: 2011
  end-page: 320
  ident: b66
  article-title: Margin-based over-sampling method for learning from imbalanced datasets
  publication-title: Advances in Knowledge Discovery and Data Mining
– start-page: 31
  year: 2016
  end-page: 42
  ident: b79
  article-title: Imbalanced data classification: A novel re-sampling approach combining versatile improved SMOTE and rough sets
  publication-title: Computer Information Systems and Industrial Management
– reference: S. Wang, Z. Li, W. Chao, Q. Cao, Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning, in: Int. Joint Conf. on Neural Networks, 2012, pp. 1–8.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b1
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Discov.
– volume: 48
  start-page: 134
  year: 2016
  end-page: 139
  ident: b85
  article-title: Fuzzy-rough imbalanced learning for the diagnosis of high voltage circuit breaker maintenance: The SMOTE-FRST-2T algorithm
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 735
  year: 2011
  end-page: 744
  ident: b70
  article-title: A novel synthetic minority oversampling technique for imbalanced data set learning
  publication-title: Neural Information Processing
– volume: vol. 1
  start-page: 393
  year: 2011
  end-page: 397
  ident: b76
  article-title: A re-sampling method for class imbalance learning with credit data
  publication-title: International Conference of Information Technology, Computer Engineering and Management Sciences
– start-page: 43
  year: 2013
  end-page: 59
  ident: b17
  article-title: Imbalanced datasets: From sampling to classifiers
  publication-title: Imbalanced Learning
– reference: Y.H. Xu, H. Li, L.P. Le, X.Y. Tian, Neighborhood triangular synthetic minority over-sampling technique for imbalanced prediction on small samples of Chinese tourism and hospitality firms, in: 7th Int. Joint Conf. on Computational Sciences and Optimization, 2014, pp. 534–538.
– volume: 26
  start-page: 1041
  year: 2015
  end-page: 1054
  ident: b65
  article-title: Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets
  publication-title: Neural Comput. Appl.
– volume: 126
  start-page: 15
  year: 2014
  end-page: 28
  ident: b36
  article-title: Addressing imbalanced classification with instance generation techniques: IPADE-ID
  publication-title: Neurocomputing
– reference: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-Level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proc. of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2009, pp. 475–482.
– ident: 10.1016/j.asoc.2019.105662_b44
  doi: 10.1109/DAS.2008.74
– volume: 46
  start-page: 405
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b83
  article-title: Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.031
– volume: vol. 2
  start-page: 322
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b72
  article-title: An E-SMOTE technique for feature selection in high-dimensional imbalanced dataset
– start-page: 343
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b74
  article-title: A new over-sampling approach: Random-SMOTE for learning from imbalanced data sets
– volume: 291
  start-page: 184
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b59
  article-title: SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.051
– volume: 91
  start-page: 464
  issue: C
  year: 2018
  ident: 10.1016/j.asoc.2019.105662_b28
  article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.030
– ident: 10.1016/j.asoc.2019.105662_b31
  doi: 10.1109/ICACSIS.2014.7065849
– ident: 10.1016/j.asoc.2019.105662_b102
  doi: 10.1109/IJCNN.2013.6707035
– volume: 17
  start-page: 229
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b97
  article-title: Gaussian-based smote algorithm for solving skewed class distributions
  publication-title: Int. J. Fuzzy Log. Intell. Syst.
  doi: 10.5391/IJFIS.2017.17.4.229
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b23
  article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.asoc.2019.105662_b48
  doi: 10.1109/ITAB.2008.4570642
– volume: 9
  start-page: 1
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b49
  article-title: A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107676
– volume: 41
  start-page: 3255
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b81
  article-title: A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-016-2179-2
– ident: 10.1016/j.asoc.2019.105662_b22
  doi: 10.1109/ICACCI.2017.8125820
– volume: vol. 3
  start-page: 634
  year: 2007
  ident: 10.1016/j.asoc.2019.105662_b39
  article-title: A distance-based over-sampling method for learning from imbalanced data sets
– volume: 29
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b55
  article-title: A novel minority cloning technique for cost-sensitive learning
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001415510040
– volume: 228
  start-page: 187
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b89
  article-title: PSO-based method for SVM classification on skewed data sets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.041
– ident: 10.1016/j.asoc.2019.105662_b40
  doi: 10.1109/IIKI.2014.14
– volume: 126
  start-page: 15
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b36
  article-title: Addressing imbalanced classification with instance generation techniques: IPADE-ID
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.050
– volume: 26
  start-page: 1041
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b65
  article-title: Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1780-0
– volume: 6
  start-page: 1
  issue: 16
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b98
  article-title: LVQ-SMOTE – learning vector quantization based synthetic minority over–sampling technique for biomedical data
  publication-title: BioData Min.
– volume: 408
  start-page: 146
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b95
  article-title: Noise reduction a priori synthetic over-sampling for class imbalanced data sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.046
– volume: 17
  start-page: 255
  issue: 2–3
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b107
  article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Logic Soft Comput.
– volume: 44
  start-page: 1821
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b78
  article-title: A dynamic over-sampling procedure based on sensitivity for multi-class problems
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.02.019
– volume: 82
  start-page: 40
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b93
  article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.073
– ident: 10.1016/j.asoc.2019.105662_b11
  doi: 10.1007/978-3-319-90050-6_15
– ident: 10.1016/j.asoc.2019.105662_b38
  doi: 10.1109/ICPR.2014.245
– ident: 10.1016/j.asoc.2019.105662_b64
  doi: 10.1109/ISDA.2011.6121689
– ident: 10.1016/j.asoc.2019.105662_b5
– volume: vol. 3
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2019.105662_b37
  article-title: Classification of imbalanced data by using the smote algorithm and locally linear embedding
– volume: 234
  start-page: 38
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b25
  article-title: 2,1 norm regularized multi-kernel based joint nonlinear feature selection and over-sampling for imbalanced data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.036
– ident: 10.1016/j.asoc.2019.105662_b69
  doi: 10.1109/KSE.2015.24
– start-page: 3
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b63
  article-title: A synthetic minority oversampling method based on local densities in low-dimensional space for imbalanced learning
– start-page: 445
  year: 1998
  ident: 10.1016/j.asoc.2019.105662_b9
  article-title: Cost-sensitive learning with neural networks
– ident: 10.1016/j.asoc.2019.105662_b58
  doi: 10.1109/WAINA.2010.40
– ident: 10.1016/j.asoc.2019.105662_b45
– volume: 18
  start-page: 1
  issue: 169
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b91
  article-title: CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests
  publication-title: BMC Bioinformatics
– start-page: 547
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b104
  article-title: A new combination sampling method for imbalanced data
– volume: 61
  start-page: 863
  year: 2018
  ident: 10.1016/j.asoc.2019.105662_b18
  article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.11192
– ident: 10.1016/j.asoc.2019.105662_b110
  doi: 10.1007/978-3-642-20847-8_29
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.asoc.2019.105662_b1
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Discov.
– start-page: 735
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b70
  article-title: A novel synthetic minority oversampling technique for imbalanced data set learning
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2019.105662_b32
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007735
– volume: 62
  start-page: 33
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b6
  article-title: KRNN: k rare-class nearest neighbor classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.08.023
– volume: 48
  start-page: 134
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b85
  article-title: Fuzzy-rough imbalanced learning for the diagnosis of high voltage circuit breaker maintenance: The SMOTE-FRST-2T algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.10.009
– year: 2013
  ident: 10.1016/j.asoc.2019.105662_b96
  article-title: A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE
  publication-title: Math. Probl. Eng.
– ident: 10.1016/j.asoc.2019.105662_b109
  doi: 10.1007/978-3-642-37456-2_25
– start-page: 287
  year: 2009
  ident: 10.1016/j.asoc.2019.105662_b54
  article-title: Classification of imbalanced data sets by using the hybrid re-sampling algorithm based on Isomap
– start-page: 31
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b79
  article-title: Imbalanced data classification: A novel re-sampling approach combining versatile improved SMOTE and rough sets
– ident: 10.1016/j.asoc.2019.105662_b51
  doi: 10.1109/ICMLA.2015.58
– volume: 39
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105662_b103
  article-title: Adaptive multi-objective swarm fusion for imbalanced data classification
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.03.007
– volume: vol. 39
  start-page: 565
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b101
  article-title: Adaptive neighbor synthetic minority oversampling technique under 1NN outcast handling
– start-page: 317
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b92
  article-title: ProWSyn: Proximity weighted synthetic oversampling technique for imbalanced data set learning
– ident: 10.1016/j.asoc.2019.105662_b56
– volume: 36
  start-page: 664
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2019.105662_b86
  article-title: DBSMOTE: Density-based synthetic minority over-sampling technique
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-011-0287-y
– ident: 10.1016/j.asoc.2019.105662_b60
  doi: 10.1109/ICCAS.2010.5669889
– start-page: 371
  year: 2012
  ident: 10.1016/j.asoc.2019.105662_b82
  article-title: A pruning-based approach for searching precise and generalized region for synthetic minority over-sampling
– volume: 45
  start-page: 16:1
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b8
  article-title: A survey of cost-sensitive decision tree induction algorithms
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431215
– volume: 22
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b100
  article-title: Synthetic oversampling of instances using clustering
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213013500085
– ident: 10.1016/j.asoc.2019.105662_b43
  doi: 10.1109/ICPR.2014.258
– ident: 10.1016/j.asoc.2019.105662_b68
  doi: 10.1109/CIDM.2011.5949434
– volume: 31
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b4
  article-title: An ensemble anomaly detection with imbalanced data based on robot vision
  publication-title: Int. J. Robot. Autom.
– start-page: 177
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b75
  article-title: SMOTE-D a deterministic version of smote
– volume: 27
  start-page: 222
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b27
  article-title: RACOG and wRACOG: Two probabilistic oversampling techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2324567
– volume: 37
  start-page: 7
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2019.105662_b35
  article-title: Learning from imbalanced data in surveillance of nosocomial infection
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2005.03.002
– volume: 101
  start-page: 309
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b2
  article-title: ACOSampling: An ant colony optimization based undersampling method for classifying imbalanced DNA microarray data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.018
– start-page: 377
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b26
  article-title: RBM-SMOTE: Restricted Boltzmann machines for synthetic minority oversampling technique
– year: 2017
  ident: 10.1016/j.asoc.2019.105662_b108
– start-page: 875
  year: 2010
  ident: 10.1016/j.asoc.2019.105662_b13
  article-title: Data mining for imbalanced datasets: an overview
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.asoc.2019.105662_b12
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– start-page: 102:1
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b67
  article-title: An over-sampling technique with rejection for imbalanced class learning
– volume: 53
  start-page: 226
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2019.105662_b80
  article-title: Preprocessing unbalanced data using support vector machine
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2012.01.016
– ident: 10.1016/j.asoc.2019.105662_b87
  doi: 10.1145/2857546.2857648
– start-page: 83
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b29
  article-title: A normal distribution-based over-sampling approach to imbalanced data classification
– volume: 66
  start-page: 124
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b73
  article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.010
– volume: 33
  start-page: 245
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2019.105662_b84
  article-title: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-011-0465-6
– ident: 10.1016/j.asoc.2019.105662_b42
– volume: vol. 1
  start-page: 393
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b76
  article-title: A re-sampling method for class imbalance learning with credit data
– volume: 28
  start-page: 92
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b106
  article-title: Training and assessing classification rules with imbalanced data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-012-0295-5
– ident: 10.1016/j.asoc.2019.105662_b21
– ident: 10.1016/j.asoc.2019.105662_b53
  doi: 10.1109/SSD.2015.7348093
– ident: 10.1016/j.asoc.2019.105662_b88
– volume: 16
  start-page: 2695
  year: 2015
  ident: 10.1016/j.asoc.2019.105662_b57
  article-title: Absent data generating classifier for imbalanced class sizes
  publication-title: J. Mach. Learn. Res.
– volume: 257
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b16
  article-title: On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.09.038
– ident: 10.1016/j.asoc.2019.105662_b61
  doi: 10.1109/CEC.2015.7256954
– start-page: 309
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b66
  article-title: Margin-based over-sampling method for learning from imbalanced datasets
– volume: 10
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2019.105662_b19
  article-title: The art of data augmentation
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/10618600152418584
– start-page: 283
  year: 2008
  ident: 10.1016/j.asoc.2019.105662_b46
  article-title: Selective pre-processing of imbalanced data for improving classification performance
– volume: 138
  start-page: 248
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b34
  article-title: PDFOS: PDF estimation based over-sampling for imbalanced two-class problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.006
– ident: 10.1016/j.asoc.2019.105662_b10
  doi: 10.1007/978-3-642-20847-8_27
– start-page: 410
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b111
– volume: 4
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2019.105662_b3
  article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset
  publication-title: Int. Robotics Autom. J.
– volume: vol. 2
  start-page: 543
  year: 2011
  ident: 10.1016/j.asoc.2019.105662_b62
  article-title: Applying over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning
– volume: 26
  start-page: 405
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b33
  article-title: MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.232
– volume: 1
  start-page: 347
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2019.105662_b90
  article-title: Surrounding neighborhood-based SMOTE for learning from imbalanced data sets
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-012-0027-5
– start-page: 161
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b47
  article-title: Stochastic sensitivity oversampling technique for imbalanced data
– start-page: 261
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b24
  article-title: Adaptive oversampling for imbalanced data classification
– volume: 28
  start-page: 238
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2019.105662_b77
  article-title: To combat multi-class imbalanced problems by means of over-sampling techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2458858
– volume: 27
  start-page: 727
  year: 2017
  ident: 10.1016/j.asoc.2019.105662_b99
  article-title: CCR: A combined cleaning and resampling algorithm for imbalanced data classification
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.1515/amcs-2017-0050
– start-page: 878
  year: 2005
  ident: 10.1016/j.asoc.2019.105662_b20
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
– ident: 10.1016/j.asoc.2019.105662_b94
  doi: 10.1109/ISCIT.2013.6645923
– ident: 10.1016/j.asoc.2019.105662_b41
  doi: 10.1109/ICCKE.2014.6993409
– volume: vol. 2
  start-page: 13
  year: 2009
  ident: 10.1016/j.asoc.2019.105662_b52
  article-title: MSMOTE: Improving classification performance when training data is imbalanced
– volume: 20
  start-page: 99
  year: 2014
  ident: 10.1016/j.asoc.2019.105662_b30
  article-title: RWO-Sampling: A random walk over-sampling approach to imbalanced data classification
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.12.003
– ident: 10.1016/j.asoc.2019.105662_b50
  doi: 10.1007/978-3-642-01307-2_43
– volume: 18
  start-page: 1684
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b7
  article-title: Cost-sensitive support vector machine for semi-supervised learning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.05.336
– ident: 10.1016/j.asoc.2019.105662_b71
  doi: 10.1109/ISCBI.2015.12
– volume: 3
  start-page: 1:1
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2019.105662_b112
  article-title: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/1497577.1497578
– start-page: 43
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b17
  article-title: Imbalanced datasets: From sampling to classifiers
– volume: 465
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105662_b105
  article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.056
– volume: 250
  start-page: 113
  year: 2013
  ident: 10.1016/j.asoc.2019.105662_b15
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.07.007
– start-page: 315
  year: 2012
  ident: 10.1016/j.asoc.2019.105662_b14
  article-title: Learning from imbalanced data: Evaluation matters
SSID ssj0016928
Score 2.617509
Snippet Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105662
SubjectTerms Imbalanced learning
Minority oversampling
SMOTE
SMOTE variants
Title An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets
URI https://dx.doi.org/10.1016/j.asoc.2019.105662
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHrxJbLLZbJJjKZb6KqIWegu72YlE2rSYePW3u5OXCtKDp5AwA-HbzTzCt_MRchEqSDyuhBVwqS2ulWcF0mUW-EKEvqt8v_yh_zAR4ym_nXmzDhk2Z2GQVlnH_iqml9G6ftKv0eyv0rT_bDqPgIfcdACmJTdhFU-wcx93-dVnS_NwRFjqq6Kxhdb1wZmK4yUNAkjvCksBesH-Tk4_Es5oh2zVlSIdVC-zSzqQ7ZHtRoWB1h_lPskHGYXFKi1nfdC41RWkMtP0e5g3XSZ0kWZLFKujyNvMJZLJs1fajnHNKXrROZLDaSUVgl7pQiH_0UBFkU-aQ5EfkOno-mU4tmopBSt2bbuwOASmT9GJihlTdmzKEm0aR3AS4WlgUoEWTNrgmminQPjgS8mkE8ZcciwotXtIutkygyNCOTLBwPNMUtM8ToTJ-JwpYML0kmBq9WPiNBhGcT1nHOUu5lFDKHuLEPcIcY8q3I_JZeuzqqZsrLX2mqWJfu2VyKSBNX4n__Q7JZt4V1H4zki3eP-Ac1OKFKpX7rUe2RgMn-4f8XpzN558ARv74Ng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wotHUcpxmriqpAYaGV2CI7vqCgNq1IWPnt3OVRQEIMrMmdZH2x7xF9vo-xy8BA7EmjnJ7U1pHWeE5Pu8IBX6nAd43vFz_0Hx7VaCrvnr3nBhvUd2GIVlnF_jKmF9G6etKu0Gwvk6T9hJ1HTwYSOwBsyTGsrrF1iceXZAyuP1Y8j64KCoFVsnbIvLo5U5K8NEJA_K6gUKBX4vfs9C3jDHfYVlUq8n65ml3WgHSPbdcyDLw6lfss66cc5sukGPbBo5WwINep5V_TvPki5vMkXZBaHSfiZqaJTZ6-8NUc14yTF58RO5yXWiHklcwNESARK06E0gzy7IBNhzeTwciptBScyO10ckdCDxsVG5tICNOJsC6x2DlCN1aeBaENWCV0B1wMdwaUD77WQneDSGpJFaV1D1kzXaRwxLgkKhh4HmY1K6NYYcqXwoBQ2EwCFust1q0xDKNq0DjpXczCmlH2GhLuIeEelri32NXKZ1mO2fjT2qs_Tfhjs4SYB_7wO_6n3wXbGE0exuH49vH-hG3Sm5LPd8qa-ds7nGFdkpvzYt99Ak9_4NE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+comparison+and+evaluation+of+minority+oversampling+techniques+on+a+large+number+of+imbalanced+datasets&rft.jtitle=Applied+soft+computing&rft.au=Kov%C3%A1cs%2C+Gy%C3%B6rgy&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=83&rft_id=info:doi/10.1016%2Fj.asoc.2019.105662&rft.externalDocID=S1568494619304429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon