An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets
Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard machine learning techniques on imbalanced datasets is the synthetic generation of minority samples. In this paper, a detailed, empirical compar...
Saved in:
Published in | Applied soft computing Vol. 83; p. 105662 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard machine learning techniques on imbalanced datasets is the synthetic generation of minority samples. In this paper, a detailed, empirical comparison of 85 variants of minority oversampling techniques is presented and discussed involving 104 imbalanced datasets for evaluation. The goal of the work is to set a new baseline in the field, determine the oversampling principles leading to the best results under general circumstances, and also give guidance to practitioners on which techniques to use with certain types of datasets.
•The best performing oversamplers are identified through empirical evaluation.•The best performing principles are identified through empirical evaluation.•The top performers were found to depend slightly on characteristics of datasets. |
---|---|
AbstractList | Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard machine learning techniques on imbalanced datasets is the synthetic generation of minority samples. In this paper, a detailed, empirical comparison of 85 variants of minority oversampling techniques is presented and discussed involving 104 imbalanced datasets for evaluation. The goal of the work is to set a new baseline in the field, determine the oversampling principles leading to the best results under general circumstances, and also give guidance to practitioners on which techniques to use with certain types of datasets.
•The best performing oversamplers are identified through empirical evaluation.•The best performing principles are identified through empirical evaluation.•The top performers were found to depend slightly on characteristics of datasets. |
ArticleNumber | 105662 |
Author | Kovács, György |
Author_xml | – sequence: 1 givenname: György orcidid: 0000-0003-1736-0988 surname: Kovács fullname: Kovács, György email: gyuriofkovacs@gmail.com organization: Analytical Minds Ltd., 4933, Beregsurány, Árpád street 5, Hungary |
BookMark | eNp90M9rwyAUwHEZHazt9g_s5D-QTk1qE9illP2Cwi7bWV70pbMkmqkt9L9fsu60Q0_qg4_wvjMycd4hIfecLTjj8mG_gOj1QjBeDYOllOKKTHm5ElklSz4Z7ktZZkVVyBsyi3HPBlSJckri2lHsehushpZq3_UQbPSOgjMUj9AeINnh6RvaWeeDTSfqjxgidH1r3Y4m1F_Ofh8w0lHRFsIOqTt0NYZR2a6GFpxGQw0kiJjiLbluoI1493fOyefz08fmNdu-v7xt1ttM54ylrMBSSmmaWgtRMy3zyhRMIG_k0qCAGo0UwDAHY2qUK1wBCOCVLqBgTDCTz4k4_6uDjzFgo_pgOwgnxZkas6m9GrOpMZs6ZxtQ-Q9pm34bpAC2vUwfzxSHpY4Wg4ra4ri6DaiTMt5e4j8T_Y5o |
CitedBy_id | crossref_primary_10_1093_jamia_ocab048 crossref_primary_10_1186_s40537_025_01119_4 crossref_primary_10_1016_j_knosys_2022_108295 crossref_primary_10_1007_s11071_021_06504_1 crossref_primary_10_1016_j_patcog_2023_110138 crossref_primary_10_1016_j_eswa_2025_126728 crossref_primary_10_1080_0952813X_2022_2120087 crossref_primary_10_1016_j_eswa_2023_122409 crossref_primary_10_1016_j_neunet_2024_107107 crossref_primary_10_1109_ACCESS_2023_3321666 crossref_primary_10_1016_j_ins_2024_121054 crossref_primary_10_1016_j_asoc_2023_110952 crossref_primary_10_1371_journal_pone_0243907 crossref_primary_10_3390_sym13020194 crossref_primary_10_1016_j_eswa_2023_120102 crossref_primary_10_1007_s42979_024_02695_7 crossref_primary_10_1080_01605682_2025_2450060 crossref_primary_10_1016_j_advengsoft_2024_103802 crossref_primary_10_1109_TKDE_2022_3171706 crossref_primary_10_3390_computers11050073 crossref_primary_10_1016_j_jclepro_2024_142909 crossref_primary_10_1016_j_cie_2023_109556 crossref_primary_10_1016_j_knosys_2022_108445 crossref_primary_10_3390_s23042333 crossref_primary_10_1007_s00521_022_07347_6 crossref_primary_10_1016_j_jsr_2025_02_018 crossref_primary_10_1016_j_knosys_2023_110646 crossref_primary_10_1016_j_mlwa_2024_100597 crossref_primary_10_1016_j_patcog_2023_110002 crossref_primary_10_1007_s00357_024_09474_2 crossref_primary_10_3390_axioms11110607 crossref_primary_10_3390_ijerph182312806 crossref_primary_10_1007_s10207_023_00663_5 crossref_primary_10_1016_j_cmpb_2022_107011 crossref_primary_10_1016_j_eswa_2021_115492 crossref_primary_10_1007_s10489_020_01805_1 crossref_primary_10_3390_jcp3040032 crossref_primary_10_1002_int_22557 crossref_primary_10_1007_s13042_022_01662_z crossref_primary_10_1007_s11518_022_5545_5 crossref_primary_10_1186_s40537_022_00578_3 crossref_primary_10_1007_s10489_025_06236_4 crossref_primary_10_1109_ACCESS_2021_3108450 crossref_primary_10_1111_acer_15271 crossref_primary_10_1016_j_future_2023_09_011 crossref_primary_10_1186_s12874_024_02341_z crossref_primary_10_1016_j_knosys_2021_107269 crossref_primary_10_1109_ACCESS_2021_3083421 crossref_primary_10_1016_j_patcog_2021_108114 crossref_primary_10_1016_j_aap_2021_106422 crossref_primary_10_1016_j_patcog_2022_108992 crossref_primary_10_1007_s10462_022_10150_3 crossref_primary_10_1186_s12874_023_01920_w crossref_primary_10_1109_ACCESS_2023_3329560 crossref_primary_10_1002_sam_11672 crossref_primary_10_1007_s00464_023_09955_2 crossref_primary_10_1016_j_asoc_2024_112677 crossref_primary_10_3390_sym12030482 crossref_primary_10_1016_j_eswa_2023_119735 crossref_primary_10_1016_j_neucom_2023_126544 crossref_primary_10_3390_nano10040708 crossref_primary_10_1155_2021_5520990 crossref_primary_10_1016_j_asoc_2025_112718 crossref_primary_10_1016_j_imu_2023_101361 crossref_primary_10_3389_fgene_2021_642282 crossref_primary_10_1007_s10994_023_06326_9 crossref_primary_10_1109_ACCESS_2024_3381536 crossref_primary_10_1016_j_frl_2024_106316 crossref_primary_10_3390_environments11110250 crossref_primary_10_1007_s11042_021_11552_1 crossref_primary_10_1038_s41598_024_62585_z crossref_primary_10_3390_drones9010002 crossref_primary_10_1109_ACCESS_2022_3185227 crossref_primary_10_1007_s00521_024_09676_0 crossref_primary_10_1109_TKDE_2022_3179381 crossref_primary_10_1145_3579050 crossref_primary_10_3390_info14010054 crossref_primary_10_1016_j_knosys_2022_109233 crossref_primary_10_17671_gazibtd_1019015 crossref_primary_10_1007_s40747_024_01399_y crossref_primary_10_1007_s10462_024_10724_3 crossref_primary_10_1109_TR_2022_3214519 crossref_primary_10_1145_3689627 crossref_primary_10_1177_15353702231220665 crossref_primary_10_1016_j_eswa_2023_122593 crossref_primary_10_1016_j_iswa_2024_200357 crossref_primary_10_1016_j_ejor_2022_06_060 crossref_primary_10_1007_s10639_023_12007_w crossref_primary_10_1016_j_eswa_2024_124863 crossref_primary_10_1080_1206212X_2024_2409989 crossref_primary_10_3390_app13053177 crossref_primary_10_1038_s41467_024_55240_8 crossref_primary_10_1016_j_knosys_2022_109902 crossref_primary_10_1007_s10844_022_00763_z crossref_primary_10_1016_j_compbiomed_2022_105466 crossref_primary_10_1016_j_asoc_2024_111841 crossref_primary_10_1007_s11227_023_05829_5 crossref_primary_10_3390_healthcare10071293 crossref_primary_10_3390_s24072201 crossref_primary_10_1016_j_inffus_2022_08_017 crossref_primary_10_3390_drones7060370 crossref_primary_10_1109_TR_2021_3138448 crossref_primary_10_1016_j_knosys_2020_106462 crossref_primary_10_1016_j_neunet_2025_107131 crossref_primary_10_1155_2021_7555587 crossref_primary_10_1007_s00521_022_07828_8 crossref_primary_10_1007_s13042_021_01321_9 crossref_primary_10_1109_ACCESS_2024_3520159 crossref_primary_10_1109_TAI_2022_3196283 crossref_primary_10_1016_j_procs_2020_09_097 crossref_primary_10_3758_s13428_022_01939_9 crossref_primary_10_4018_JDM_321739 crossref_primary_10_1016_j_artmed_2020_101987 crossref_primary_10_1016_j_eswa_2021_115297 crossref_primary_10_1016_j_inpa_2022_04_001 crossref_primary_10_1016_j_eswa_2021_116213 crossref_primary_10_1007_s13204_021_02063_4 crossref_primary_10_1007_s10278_024_01012_1 crossref_primary_10_1007_s00500_021_06532_4 crossref_primary_10_1016_j_knosys_2022_108919 crossref_primary_10_1016_j_asoc_2022_108618 crossref_primary_10_1016_j_asoc_2020_106238 crossref_primary_10_1016_j_ins_2022_12_029 crossref_primary_10_31571_saintek_v13i1_4002 crossref_primary_10_1007_s41870_024_02120_5 crossref_primary_10_1109_ACCESS_2024_3516369 crossref_primary_10_1016_j_ifacol_2024_07_213 crossref_primary_10_1016_j_neucom_2020_08_060 crossref_primary_10_1109_ACCESS_2023_3279732 crossref_primary_10_1016_j_asoc_2024_111267 crossref_primary_10_1080_03610918_2024_2447451 crossref_primary_10_1111_exsy_13591 crossref_primary_10_1002_aisy_202300006 crossref_primary_10_1016_j_trc_2024_104642 crossref_primary_10_1080_03772063_2024_2304002 crossref_primary_10_1007_s10044_022_01129_5 crossref_primary_10_1016_j_neucom_2025_129896 crossref_primary_10_1109_ACCESS_2024_3435670 crossref_primary_10_3390_app14219747 crossref_primary_10_1016_j_eswa_2023_121696 crossref_primary_10_1109_TSMC_2023_3335241 crossref_primary_10_1109_ACCESS_2020_3023949 crossref_primary_10_1016_j_ijdrr_2024_104667 crossref_primary_10_1016_j_knosys_2023_110665 crossref_primary_10_1093_bioinformatics_btac649 crossref_primary_10_1109_ACCESS_2022_3169512 crossref_primary_10_1109_ACCESS_2024_3376423 crossref_primary_10_3233_IDT_230331 crossref_primary_10_1016_j_compbiomed_2022_105639 crossref_primary_10_1109_ACCESS_2020_2983003 crossref_primary_10_1177_09287329241295874 crossref_primary_10_3390_cancers15112898 crossref_primary_10_1016_j_eswa_2019_113026 crossref_primary_10_1016_j_asoc_2024_111376 crossref_primary_10_3390_math12040534 crossref_primary_10_1016_j_compeleceng_2022_108236 crossref_primary_10_1016_j_bspc_2022_104538 crossref_primary_10_3390_electronics11020228 crossref_primary_10_1080_08839514_2025_2468534 crossref_primary_10_3390_f14091697 crossref_primary_10_1016_j_asoc_2024_111659 crossref_primary_10_1016_j_knosys_2024_112236 crossref_primary_10_1007_s10994_024_06563_6 crossref_primary_10_1007_s11771_024_5579_6 crossref_primary_10_1016_j_compag_2023_107787 |
Cites_doi | 10.1109/DAS.2008.74 10.1016/j.eswa.2015.10.031 10.1016/j.ins.2014.08.051 10.1016/j.eswa.2017.09.030 10.1109/ICACSIS.2014.7065849 10.1109/IJCNN.2013.6707035 10.5391/IJFIS.2017.17.4.229 10.1109/ITAB.2008.4570642 10.1371/journal.pone.0107676 10.1007/s13369-016-2179-2 10.1109/ICACCI.2017.8125820 10.1142/S0218001415510040 10.1016/j.neucom.2016.10.041 10.1109/IIKI.2014.14 10.1016/j.neucom.2013.01.050 10.1007/s00521-014-1780-0 10.1016/j.ins.2017.04.046 10.1016/j.patcog.2011.02.019 10.1016/j.eswa.2017.03.073 10.1007/978-3-319-90050-6_15 10.1109/ICPR.2014.245 10.1109/ISDA.2011.6121689 10.1016/j.neucom.2016.12.036 10.1109/KSE.2015.24 10.1109/WAINA.2010.40 10.1613/jair.1.11192 10.1007/978-3-642-20847-8_29 10.1145/1007730.1007735 10.1016/j.patcog.2016.08.023 10.1016/j.engappai.2015.10.009 10.1007/978-3-642-37456-2_25 10.1109/ICMLA.2015.58 10.1016/j.inffus.2017.03.007 10.1007/s10489-011-0287-y 10.1109/ICCAS.2010.5669889 10.1145/2431211.2431215 10.1142/S0218213013500085 10.1109/ICPR.2014.258 10.1109/CIDM.2011.5949434 10.1109/TKDE.2014.2324567 10.1016/j.artmed.2005.03.002 10.1016/j.neucom.2012.08.018 10.1613/jair.953 10.1016/j.dss.2012.01.016 10.1145/2857546.2857648 10.1016/j.eswa.2016.09.010 10.1007/s10115-011-0465-6 10.1007/s10618-012-0295-5 10.1109/SSD.2015.7348093 10.1016/j.ins.2013.09.038 10.1109/CEC.2015.7256954 10.1198/10618600152418584 10.1016/j.neucom.2014.02.006 10.1007/978-3-642-20847-8_27 10.1109/TKDE.2012.232 10.1007/s13748-012-0027-5 10.1109/TKDE.2015.2458858 10.1515/amcs-2017-0050 10.1109/ISCIT.2013.6645923 10.1109/ICCKE.2014.6993409 10.1016/j.inffus.2013.12.003 10.1007/978-3-642-01307-2_43 10.1016/j.procs.2013.05.336 10.1109/ISCBI.2015.12 10.1145/1497577.1497578 10.1016/j.ins.2018.06.056 10.1016/j.ins.2013.07.007 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105662 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105662 S1568494619304429 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4e8666dfbc22b0c639d402e1f65de2abed62a0e3addbe67e7aa2a19c4a40020d3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:03 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Fri Feb 23 02:49:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Minority oversampling SMOTE Imbalanced learning SMOTE variants |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4e8666dfbc22b0c639d402e1f65de2abed62a0e3addbe67e7aa2a19c4a40020d3 |
ORCID | 0000-0003-1736-0988 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_105662 crossref_citationtrail_10_1016_j_asoc_2019_105662 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105662 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dheeru, Karra Taniskidou (b108) 2017 Lopez, Fernandez, Herrera (b16) 2014; 257 Wang, Sun, Zhong (b4) 2016; 31 Zhang, Wang (b29) 2011 S. Cateni, V. Colla, M. Vannucci, Novel resampling method for the classification of imbalanced datasets for industrial and other real-world problems, in: 2011 11th International Conference on Intelligent Systems Design and Applications, 2011, pp. 402–407. Borowska, Stepaniuk (b79) 2016 Puntumapon, Waiyamai (b82) 2012 Torres, Carrasco-Ochoa, Martínez-Trinidad (b75) 2016 Wang, Xu, Wang, Zhang (b37) 2006; vol. 3 Chawla, Bowyer, Hall, Kegelmeyer (b12) 2002; 16 Lomax, Vadera (b8) 2013; 45 Farquad, Bose (b80) 2012; 53 He, Gracia (b1) 2009; 21 Gao, Hong, Chen, Harris, Khalaf (b34) 2014; 138 K. Li, W. Zhang, Q. Lu, X. Fang, An improved SMOTE imbalanced data classification method based on support degree, in: 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, 2014, pp. 34–38. Fan, Tang, Weise (b66) 2011 Li, Zou, Wang, Xia (b104) 2013 J. Li, S. Fong, Y. Zhuang, Optimizing SMOTE by metaheuristics with neural network and decision tree, in: 2015 3rd International Symposium on Computational and Business Intelligence, ISCBI, 2015, pp. 26–32. Barua, Islam, Murase (b70) 2011 Ramentol, Caballero, Bello, Herrera (b84) 2012; 33 Douzas, Bacao, Last (b105) 2018; 465 B. Tang, H. He, KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning, in: IEEE Congress on Evolutionary Computation, 2015, pp. 664–671. C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-Level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proc. of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2009, pp. 475–482. X.T. Dang, D.H. Tran, O. Hirose, K. Satou, SPY: A novel resampling method for improving classification performance in imbalanced data, in: 2015 Seventh International Conference on Knowledge and Systems Engineering, KSE, 2015, pp. 280–285. Nekooeimehr, Lai-Yuen (b83) 2016; 46 Zieba, Tomczak, Gonczarek (b26) 2015 Zhang, Li (b30) 2014; 20 Alcala-Fdez, Fernandez, Luengo, Derrac, Garcia, Sanchez, Herrera (b107) 2011; 17 Qi, Tian, Shi, Yu (b7) 2013; 18 W. Liu, S. Chawla, Class confidence weighted kNN algorithms for imbalanced data sets, in: Proceedings of PAKDD 2011, 2011, pp. 354–356. Cervantes, Garcia-Lamont, Rodriguez, López, Castilla, Trueba (b89) 2017; 228 García, Sánchez, Martín-Félez, Mollineda (b90) 2012; 1 S. Tang, S. Chen, The generation mechanism of synthetic minority class examples, in: 2008 International Conference on Information Technology and Applications in Biomedicine, 2008, pp. 444–447. S. Gazzah, N.E.B. Amara, New oversampling approaches based on polynomial fitting for imbalanced data sets, in: 2008 the Eighth IAPR International Workshop on Document Analysis Systems, 2008, pp. 677–684. Jiang, Qiu, Li (b55) 2015; 29 Al-Khaldy, Kambhampati (b3) 2018; 4 F. Koto, SMOTE-Out, SMOTE-Cosine, and Selected-SMOTE: An enhancement strategy to handle imbalance in data level, in: 2014 Int. Conf. on Advanced Computer Science and Information System, 2014, pp. 280–284. Sanchez, Morales, Gonzalez (b100) 2013; 22 Lee, Kim, Kim (b97) 2017; 17 Han, Wang, Mao (b20) 2005 Jiang, Lu, Xia (b81) 2016; 41 Rivera, Xanthopoulos (b73) 2016; 66 Stefanowski, Wilk (b46) 2008 Raeder, Forman, Chawla (b14) 2012 C. Bellinger, N. Japkowicz, C. Drummond, Synthetic oversampling for advanced radioactive threat detection, in: IEEE 14th International Conference on Machine Learning and Applications, 2015, pp. 948–953. Cao, Liu, Zhang, Zhao, Huang, Zaiane (b25) 2017; 234 S. Chen, G. Guo, L. Chen, A new over-sampling method based on cluster ensembles, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, 2010, pp. 599–604. Dong, Wang (b74) 2011 Ma, Fan (b91) 2017; 18 J. de la Calleja, O. Fuentes, J. González, Selecting minority examples from misclassified data for over-sampling, in: Proc. of the 21st Int. Florida Artificial Intelligence Research Society Conference, 2008, pp. 276–281. T. Sandhan, J.Y. Choi, Handling imbalanced datasets by partially guided hybrid sampling for pattern recognition, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1449–1453. Y. Li, X. Zhang, Improving k nearest neighbor with examplar generalization for imbalanced classification, in: PAKDD 2011, 2011, pp. 1–12. H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: Proc. of IJCNN, 2008, pp. 1322–1328. Ertekin (b24) 2013 Fernández-Navarro, Hervás-Martinez, Gutiérrez (b78) 2011; 44 Barua, Islam, Murase (b92) 2013 Barua, Islam, Yao, Murase (b33) 2014; 26 Y.H. Xu, H. Li, L.P. Le, X.Y. Tian, Neighborhood triangular synthetic minority over-sampling technique for imbalanced prediction on small samples of Chinese tourism and hospitality firms, in: 7th Int. Joint Conf. on Computational Sciences and Optimization, 2014, pp. 534–538. Zhang, Wang (b76) 2011; vol. 1 Douzas, Bacao (b93) 2017; 82 de la Calleja, Fuentes (b39) 2007; vol. 3 Douzas, Bacao (b28) 2018; 91 Fernandez, Garcia, Herrera, Chawla (b18) 2018; 61 Hu, He, Yu, Yang, Yang, Shen (b49) 2014; 9 D.A. Cieslak, N.V. Chawla, A. Striegel, Combating imbalance in network intrusion datasets, in: 2006 IEEE International Conference on Granular Computing, 2006, pp. 732–737. Sáez, Luengo, Stefanowski, Herrera (b59) 2015; 291 S. Wang, Z. Li, W. Chao, Q. Cao, Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning, in: Int. Joint Conf. on Neural Networks, 2012, pp. 1–8. Y. Kang, S. Won, Weight decision algorithm for oversampling technique on class-imbalanced learning, in: ICCAS 2010, 2010, pp. 182–186. X. Zhang, Y. Li, A positive-biased nearest neighbour algorithm for imbalanced classification, in: Proc. of PAKDD 2013, 2013, pp. 293–304. Li, Fong, Wong, Chu (b103) 2018; 39 Lee, Kim, Lee (b67) 2015 Lemaitre, Nogueira, Aridas (b23) 2017; 18 Batista, Prati, Monard (b32) 2004; 6 Rong, Gong, Ng (b47) 2014 B.A. Almogahed, I.A. Kakadiaris, NEATER: Filtering of over-sampled data using non-cooperative game theory, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1371–1376. Z. László, L. Török, G. Kovács, Improving the performance of the k rare class nearest neighbor classifier by the ranking of point patterns, in: Proc. of Foundations of Information and Knowledge Systems, 2018, pp. 265–283. van Dyk, Meng (b19) 2001; 10 T. Maciejewski, J. Stefanowski, Local neighbourhood extension of SMOTE for mining imbalanced data, in: 2011 IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111. Cao, Wang (b62) 2011; vol. 2 S. Mahmoudi, P. Moradi, F. Akhlaghian, R. Moradi, Diversity and separable metrics in over-sampling technique for imbalanced data classification, in: 4th International Conference on Computer and Knowledge Engineering, 2014, pp. 152–158. C. Bunkhumpornpat, S. Subpaiboonkit, Safe level graph for synthetic minority over-sampling techniques, in: 13th International Symposium on Communications and Information Technologies, 2013, pp. 570–575. Lopez, Fernandez, Garcia, Palade, Herrera (b15) 2013; 250 Kriegel, Kröger, Zimek (b112) 2009; 3 L. Chen, Z. Cai, L. Chen, Q. Gu, A novel differential evolution-clustering hybrid resampling algorithm on imbalanced datasets, in: 3rd International Conference on Knowledge Discovery and Data Mining, 2010, pp. 81–85. Yu, Ni, Zhao (b2) 2013; 101 Cohen, Hilario, Sax, Hugonnet, Geissbuhler (b35) 2006; 37 Deepa, Punithavalli (b72) 2011; vol. 2 Kukar, Kononenko (b9) 1998 Hoens, Chawla (b17) 2013 Menardi, Torelli (b106) 2014; 28 Lopez, Triguero, Carmona, Garcia, Herrera (b36) 2014; 126 Pourhabib, Mallick, Ding (b57) 2015; 16 Zhang, Tari, Cheriet (b6) 2017; 62 Hu, Liang, Ma, He (b52) 2009; vol. 2 Rivera (b95) 2017; 408 Xie, Jiang, Ye, Li (b63) 2015 Bunkhumpornpat, Sinapiromsaran, Lursinsap (b86) 2012; 36 Chawla (b13) 2010 A. Gosain, S. Sardana, Handling class imbalance problem using oversampling techniques: A review, in: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI, 2017, pp. 79–85. Young, Nykl, Weckman, Chelberg (b65) 2015; 26 Siriseriwan, Sinapiromsaran (b101) 2017; vol. 39 Feng, Hang (b96) 2013 Shalev-Shwartz, Ben-David (b111) 2014 S. Gazzah, A. Hechkel, N.E.B. Amara, A hybrid sampling method for imbalanced data, in: IEEE 12th International Multi-Conference on Systems, Signals Devices, 2015, pp. 1–6. J. Yun, J. Ha, J.-S. Lee, Automatic determination of neighborhood size in SMOTE, in: Proc. of the 10th International Conference on Ubiquitous Information Management and Communication, 2016, pp. 100:1–100:8. Gu, Cai, Zhu (b54) 2009 Abdi, Hashemi (b77) 2016; 28 Ramentol, Gondres, Lajes, Bello, Caballero, Cornelis, Herrera (b85) 2016; 48 Nakamura, Kajiwara, Otsuka, Kimura (b98) 2013; 6 Koziarski, Wozniak (b99) 2017; 27 B. Zhou, C. Yang, H. Guo, J. Hu, A quasi-linear SVM combined with assembled SMOTE for imbalanced data classification, in: The 2013 International Joint Conference on Neural Networks, IJCNN, 2013, pp. 1–7. Das, Krishnan, Cook (b27) 2015; 27 Dheeru (10.1016/j.asoc.2019.105662_b108) 2017 10.1016/j.asoc.2019.105662_b5 10.1016/j.asoc.2019.105662_b50 10.1016/j.asoc.2019.105662_b51 Nekooeimehr (10.1016/j.asoc.2019.105662_b83) 2016; 46 10.1016/j.asoc.2019.105662_b53 Douzas (10.1016/j.asoc.2019.105662_b93) 2017; 82 Nakamura (10.1016/j.asoc.2019.105662_b98) 2013; 6 Zhang (10.1016/j.asoc.2019.105662_b6) 2017; 62 Farquad (10.1016/j.asoc.2019.105662_b80) 2012; 53 Ma (10.1016/j.asoc.2019.105662_b91) 2017; 18 Cao (10.1016/j.asoc.2019.105662_b25) 2017; 234 Koziarski (10.1016/j.asoc.2019.105662_b99) 2017; 27 Al-Khaldy (10.1016/j.asoc.2019.105662_b3) 2018; 4 10.1016/j.asoc.2019.105662_b45 10.1016/j.asoc.2019.105662_b48 Hoens (10.1016/j.asoc.2019.105662_b17) 2013 Zhang (10.1016/j.asoc.2019.105662_b29) 2011 Wang (10.1016/j.asoc.2019.105662_b37) 2006; vol. 3 10.1016/j.asoc.2019.105662_b40 10.1016/j.asoc.2019.105662_b41 10.1016/j.asoc.2019.105662_b42 10.1016/j.asoc.2019.105662_b43 Feng (10.1016/j.asoc.2019.105662_b96) 2013 10.1016/j.asoc.2019.105662_b44 Xie (10.1016/j.asoc.2019.105662_b63) 2015 Sanchez (10.1016/j.asoc.2019.105662_b100) 2013; 22 Chawla (10.1016/j.asoc.2019.105662_b13) 2010 Gu (10.1016/j.asoc.2019.105662_b54) 2009 Lopez (10.1016/j.asoc.2019.105662_b16) 2014; 257 10.1016/j.asoc.2019.105662_b38 10.1016/j.asoc.2019.105662_b71 Shalev-Shwartz (10.1016/j.asoc.2019.105662_b111) 2014 Wang (10.1016/j.asoc.2019.105662_b4) 2016; 31 Lopez (10.1016/j.asoc.2019.105662_b15) 2013; 250 Fan (10.1016/j.asoc.2019.105662_b66) 2011 Lemaitre (10.1016/j.asoc.2019.105662_b23) 2017; 18 Rivera (10.1016/j.asoc.2019.105662_b73) 2016; 66 Raeder (10.1016/j.asoc.2019.105662_b14) 2012 10.1016/j.asoc.2019.105662_b68 Lopez (10.1016/j.asoc.2019.105662_b36) 2014; 126 10.1016/j.asoc.2019.105662_b69 Puntumapon (10.1016/j.asoc.2019.105662_b82) 2012 10.1016/j.asoc.2019.105662_b60 10.1016/j.asoc.2019.105662_b61 10.1016/j.asoc.2019.105662_b64 Li (10.1016/j.asoc.2019.105662_b104) 2013 Han (10.1016/j.asoc.2019.105662_b20) 2005 Alcala-Fdez (10.1016/j.asoc.2019.105662_b107) 2011; 17 Lomax (10.1016/j.asoc.2019.105662_b8) 2013; 45 Zieba (10.1016/j.asoc.2019.105662_b26) 2015 Menardi (10.1016/j.asoc.2019.105662_b106) 2014; 28 10.1016/j.asoc.2019.105662_b56 Bunkhumpornpat (10.1016/j.asoc.2019.105662_b86) 2012; 36 10.1016/j.asoc.2019.105662_b58 Fernandez (10.1016/j.asoc.2019.105662_b18) 2018; 61 Abdi (10.1016/j.asoc.2019.105662_b77) 2016; 28 García (10.1016/j.asoc.2019.105662_b90) 2012; 1 Zhang (10.1016/j.asoc.2019.105662_b30) 2014; 20 Hu (10.1016/j.asoc.2019.105662_b49) 2014; 9 10.1016/j.asoc.2019.105662_b94 Dong (10.1016/j.asoc.2019.105662_b74) 2011 Fernández-Navarro (10.1016/j.asoc.2019.105662_b78) 2011; 44 10.1016/j.asoc.2019.105662_b10 Chawla (10.1016/j.asoc.2019.105662_b12) 2002; 16 10.1016/j.asoc.2019.105662_b11 Torres (10.1016/j.asoc.2019.105662_b75) 2016 Lee (10.1016/j.asoc.2019.105662_b97) 2017; 17 Zhang (10.1016/j.asoc.2019.105662_b76) 2011; vol. 1 He (10.1016/j.asoc.2019.105662_b1) 2009; 21 Hu (10.1016/j.asoc.2019.105662_b52) 2009; vol. 2 Siriseriwan (10.1016/j.asoc.2019.105662_b101) 2017; vol. 39 10.1016/j.asoc.2019.105662_b110 Pourhabib (10.1016/j.asoc.2019.105662_b57) 2015; 16 Barua (10.1016/j.asoc.2019.105662_b33) 2014; 26 Jiang (10.1016/j.asoc.2019.105662_b81) 2016; 41 Barua (10.1016/j.asoc.2019.105662_b92) 2013 10.1016/j.asoc.2019.105662_b87 10.1016/j.asoc.2019.105662_b88 Kukar (10.1016/j.asoc.2019.105662_b9) 1998 Gao (10.1016/j.asoc.2019.105662_b34) 2014; 138 Rivera (10.1016/j.asoc.2019.105662_b95) 2017; 408 Cohen (10.1016/j.asoc.2019.105662_b35) 2006; 37 Ertekin (10.1016/j.asoc.2019.105662_b24) 2013 10.1016/j.asoc.2019.105662_b31 Cao (10.1016/j.asoc.2019.105662_b62) 2011; vol. 2 van Dyk (10.1016/j.asoc.2019.105662_b19) 2001; 10 Borowska (10.1016/j.asoc.2019.105662_b79) 2016 Kriegel (10.1016/j.asoc.2019.105662_b112) 2009; 3 Rong (10.1016/j.asoc.2019.105662_b47) 2014 Li (10.1016/j.asoc.2019.105662_b103) 2018; 39 Lee (10.1016/j.asoc.2019.105662_b67) 2015 Deepa (10.1016/j.asoc.2019.105662_b72) 2011; vol. 2 Das (10.1016/j.asoc.2019.105662_b27) 2015; 27 Sáez (10.1016/j.asoc.2019.105662_b59) 2015; 291 Young (10.1016/j.asoc.2019.105662_b65) 2015; 26 Yu (10.1016/j.asoc.2019.105662_b2) 2013; 101 Batista (10.1016/j.asoc.2019.105662_b32) 2004; 6 Qi (10.1016/j.asoc.2019.105662_b7) 2013; 18 Jiang (10.1016/j.asoc.2019.105662_b55) 2015; 29 Ramentol (10.1016/j.asoc.2019.105662_b84) 2012; 33 Douzas (10.1016/j.asoc.2019.105662_b105) 2018; 465 10.1016/j.asoc.2019.105662_b21 10.1016/j.asoc.2019.105662_b22 Douzas (10.1016/j.asoc.2019.105662_b28) 2018; 91 de la Calleja (10.1016/j.asoc.2019.105662_b39) 2007; vol. 3 Cervantes (10.1016/j.asoc.2019.105662_b89) 2017; 228 10.1016/j.asoc.2019.105662_b109 Barua (10.1016/j.asoc.2019.105662_b70) 2011 Ramentol (10.1016/j.asoc.2019.105662_b85) 2016; 48 Stefanowski (10.1016/j.asoc.2019.105662_b46) 2008 10.1016/j.asoc.2019.105662_b102 |
References_xml | – volume: 20 start-page: 99 year: 2014 end-page: 116 ident: b30 article-title: RWO-Sampling: A random walk over-sampling approach to imbalanced data classification publication-title: Inf. Fusion – start-page: 410 year: 2014 ident: b111 article-title: Understanding Machine Learning: From Theory to Algorithms – volume: 291 start-page: 184 year: 2015 end-page: 203 ident: b59 article-title: SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering publication-title: Inf. Sci. – volume: 17 start-page: 229 year: 2017 end-page: 234 ident: b97 article-title: Gaussian-based smote algorithm for solving skewed class distributions publication-title: Int. J. Fuzzy Log. Intell. Syst. – reference: Y. Kang, S. Won, Weight decision algorithm for oversampling technique on class-imbalanced learning, in: ICCAS 2010, 2010, pp. 182–186. – start-page: 371 year: 2012 end-page: 382 ident: b82 article-title: A pruning-based approach for searching precise and generalized region for synthetic minority over-sampling publication-title: Advances in Knowledge Discovery and Data Mining – reference: S. Cateni, V. Colla, M. Vannucci, Novel resampling method for the classification of imbalanced datasets for industrial and other real-world problems, in: 2011 11th International Conference on Intelligent Systems Design and Applications, 2011, pp. 402–407. – volume: 228 start-page: 187 year: 2017 end-page: 197 ident: b89 article-title: PSO-based method for SVM classification on skewed data sets publication-title: Neurocomputing – reference: X. Zhang, Y. Li, A positive-biased nearest neighbour algorithm for imbalanced classification, in: Proc. of PAKDD 2013, 2013, pp. 293–304. – reference: T. Sandhan, J.Y. Choi, Handling imbalanced datasets by partially guided hybrid sampling for pattern recognition, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1449–1453. – volume: 465 start-page: 1 year: 2018 end-page: 20 ident: b105 article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE publication-title: Inf. Sci. – volume: 45 start-page: 16:1 year: 2013 end-page: 16:35 ident: b8 article-title: A survey of cost-sensitive decision tree induction algorithms publication-title: ACM Comput. Surv. – volume: vol. 3 start-page: 634 year: 2007 end-page: 635 ident: b39 article-title: A distance-based over-sampling method for learning from imbalanced data sets publication-title: Proceedings of the Twentieth International Florida Artificial Intelligence – volume: 27 start-page: 222 year: 2015 end-page: 234 ident: b27 article-title: RACOG and wRACOG: Two probabilistic oversampling techniques publication-title: IEEE Trans. Knowl. Data Eng. – reference: S. Mahmoudi, P. Moradi, F. Akhlaghian, R. Moradi, Diversity and separable metrics in over-sampling technique for imbalanced data classification, in: 4th International Conference on Computer and Knowledge Engineering, 2014, pp. 152–158. – volume: 18 start-page: 1 year: 2017 end-page: 18 ident: b91 article-title: CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests publication-title: BMC Bioinformatics – volume: vol. 39 start-page: 565 year: 2017 end-page: 576 ident: b101 article-title: Adaptive neighbor synthetic minority oversampling technique under 1NN outcast handling publication-title: Songklanakarin Journal of Science and Technology – reference: S. Gazzah, N.E.B. Amara, New oversampling approaches based on polynomial fitting for imbalanced data sets, in: 2008 the Eighth IAPR International Workshop on Document Analysis Systems, 2008, pp. 677–684. – start-page: 315 year: 2012 end-page: 331 ident: b14 article-title: Learning from imbalanced data: Evaluation matters publication-title: Data Mining: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification – volume: vol. 2 start-page: 322 year: 2011 end-page: 324 ident: b72 article-title: An E-SMOTE technique for feature selection in high-dimensional imbalanced dataset publication-title: 2011 3rd International Conference on Electronics Computer Technology – year: 2017 ident: b108 article-title: UCI Machine Learning Repository – volume: 27 start-page: 727 year: 2017 end-page: 736 ident: b99 article-title: CCR: A combined cleaning and resampling algorithm for imbalanced data classification publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 66 start-page: 124 year: 2016 end-page: 135 ident: b73 article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets publication-title: Expert Syst. Appl. – reference: B. Zhou, C. Yang, H. Guo, J. Hu, A quasi-linear SVM combined with assembled SMOTE for imbalanced data classification, in: The 2013 International Joint Conference on Neural Networks, IJCNN, 2013, pp. 1–7. – reference: J. Yun, J. Ha, J.-S. Lee, Automatic determination of neighborhood size in SMOTE, in: Proc. of the 10th International Conference on Ubiquitous Information Management and Communication, 2016, pp. 100:1–100:8. – volume: 6 start-page: 20 year: 2004 end-page: 29 ident: b32 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: SIGKDD Explor. Newsl. – reference: S. Chen, G. Guo, L. Chen, A new over-sampling method based on cluster ensembles, in: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, 2010, pp. 599–604. – volume: 46 start-page: 405 year: 2016 end-page: 416 ident: b83 article-title: Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets publication-title: Expert Syst. Appl. – reference: W. Liu, S. Chawla, Class confidence weighted kNN algorithms for imbalanced data sets, in: Proceedings of PAKDD 2011, 2011, pp. 354–356. – volume: 44 start-page: 1821 year: 2011 end-page: 1833 ident: b78 article-title: A dynamic over-sampling procedure based on sensitivity for multi-class problems publication-title: Pattern Recognit. – volume: 31 start-page: 1 year: 2016 end-page: 7 ident: b4 article-title: An ensemble anomaly detection with imbalanced data based on robot vision publication-title: Int. J. Robot. Autom. – reference: B.A. Almogahed, I.A. Kakadiaris, NEATER: Filtering of over-sampled data using non-cooperative game theory, in: 22nd International Conference on Pattern Recognition, 2014, pp. 1371–1376. – volume: 62 start-page: 33 year: 2017 end-page: 44 ident: b6 article-title: KRNN: k rare-class nearest neighbor classification publication-title: Pattern Recognit. – volume: 408 start-page: 146 year: 2017 end-page: 161 ident: b95 article-title: Noise reduction a priori synthetic over-sampling for class imbalanced data sets publication-title: Inf. Sci. – volume: 3 start-page: 1:1 year: 2009 end-page: 1:58 ident: b112 article-title: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering publication-title: ACM Trans. Knowl. Discov. Data – volume: 82 start-page: 40 year: 2017 end-page: 52 ident: b93 article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning publication-title: Expert Syst. Appl. – reference: J. de la Calleja, O. Fuentes, J. González, Selecting minority examples from misclassified data for over-sampling, in: Proc. of the 21st Int. Florida Artificial Intelligence Research Society Conference, 2008, pp. 276–281. – volume: 138 start-page: 248 year: 2014 end-page: 259 ident: b34 article-title: PDFOS: PDF estimation based over-sampling for imbalanced two-class problems publication-title: Neurocomputing – volume: 26 start-page: 405 year: 2014 end-page: 425 ident: b33 article-title: MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning publication-title: IEEE Trans. Knowl. Data Eng. – year: 2013 ident: b96 article-title: A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE publication-title: Math. Probl. Eng. – reference: C. Bunkhumpornpat, S. Subpaiboonkit, Safe level graph for synthetic minority over-sampling techniques, in: 13th International Symposium on Communications and Information Technologies, 2013, pp. 570–575. – start-page: 161 year: 2014 end-page: 171 ident: b47 article-title: Stochastic sensitivity oversampling technique for imbalanced data publication-title: Machine Learning and Cybernetics – reference: K. Li, W. Zhang, Q. Lu, X. Fang, An improved SMOTE imbalanced data classification method based on support degree, in: 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, 2014, pp. 34–38. – reference: J. Li, S. Fong, Y. Zhuang, Optimizing SMOTE by metaheuristics with neural network and decision tree, in: 2015 3rd International Symposium on Computational and Business Intelligence, ISCBI, 2015, pp. 26–32. – start-page: 317 year: 2013 end-page: 328 ident: b92 article-title: ProWSyn: Proximity weighted synthetic oversampling technique for imbalanced data set learning publication-title: Advances in Knowledge Discovery and Data Mining – volume: vol. 3 start-page: 1 year: 2006 end-page: 9 ident: b37 article-title: Classification of imbalanced data by using the smote algorithm and locally linear embedding publication-title: 2006 8th International Conference on Signal Processing – reference: S. Tang, S. Chen, The generation mechanism of synthetic minority class examples, in: 2008 International Conference on Information Technology and Applications in Biomedicine, 2008, pp. 444–447. – start-page: 343 year: 2011 end-page: 352 ident: b74 article-title: A new over-sampling approach: Random-SMOTE for learning from imbalanced data sets publication-title: Knowledge Science, Engineering and Management – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b12 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – volume: 36 start-page: 664 year: 2012 end-page: 684 ident: b86 article-title: DBSMOTE: Density-based synthetic minority over-sampling technique publication-title: Appl. Intell. – volume: 53 start-page: 226 year: 2012 end-page: 233 ident: b80 article-title: Preprocessing unbalanced data using support vector machine publication-title: Decis. Support Syst. – start-page: 177 year: 2016 end-page: 188 ident: b75 article-title: SMOTE-D a deterministic version of smote publication-title: MCPR2016: Pattern Recognition – volume: 91 start-page: 464 year: 2018 end-page: 471 ident: b28 article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks publication-title: Expert Syst. Appl. – start-page: 377 year: 2015 end-page: 386 ident: b26 article-title: RBM-SMOTE: Restricted Boltzmann machines for synthetic minority oversampling technique publication-title: Intelligent Information and Database Systems – start-page: 3 year: 2015 end-page: 18 ident: b63 article-title: A synthetic minority oversampling method based on local densities in low-dimensional space for imbalanced learning publication-title: Database Systems for Advanced Applications – start-page: 878 year: 2005 end-page: 887 ident: b20 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning publication-title: Advances in Intelligent Computing – reference: X.T. Dang, D.H. Tran, O. Hirose, K. Satou, SPY: A novel resampling method for improving classification performance in imbalanced data, in: 2015 Seventh International Conference on Knowledge and Systems Engineering, KSE, 2015, pp. 280–285. – reference: C. Bellinger, N. Japkowicz, C. Drummond, Synthetic oversampling for advanced radioactive threat detection, in: IEEE 14th International Conference on Machine Learning and Applications, 2015, pp. 948–953. – volume: vol. 2 start-page: 543 year: 2011 end-page: 548 ident: b62 article-title: Applying over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning publication-title: International Conference on Information Management, Innovation Management and Industrial Engineering – volume: 39 start-page: 1 year: 2018 end-page: 24 ident: b103 article-title: Adaptive multi-objective swarm fusion for imbalanced data classification publication-title: Inf. Fusion – start-page: 445 year: 1998 end-page: 449 ident: b9 article-title: Cost-sensitive learning with neural networks publication-title: Proceedings of the 13th European Conference on Artificial Intelligence, ECAI-98 – volume: 234 start-page: 38 year: 2017 end-page: 57 ident: b25 article-title: 2,1 norm regularized multi-kernel based joint nonlinear feature selection and over-sampling for imbalanced data classification publication-title: Neurocomputing – volume: 29 year: 2015 ident: b55 article-title: A novel minority cloning technique for cost-sensitive learning publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 18 start-page: 1 year: 2017 end-page: 5 ident: b23 article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – start-page: 287 year: 2009 end-page: 296 ident: b54 article-title: Classification of imbalanced data sets by using the hybrid re-sampling algorithm based on Isomap publication-title: Proceedings of the 4th International Symposium on Advances in Computation and Intelligence, ISICA ’09 – volume: 257 start-page: 1 year: 2014 end-page: 13 ident: b16 article-title: On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed publication-title: Inf. Sci. – reference: Y. Li, X. Zhang, Improving k nearest neighbor with examplar generalization for imbalanced classification, in: PAKDD 2011, 2011, pp. 1–12. – volume: 61 start-page: 863 year: 2018 end-page: 905 ident: b18 article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary publication-title: J. Artificial Intelligence Res. – volume: 18 start-page: 1684 year: 2013 end-page: 1689 ident: b7 article-title: Cost-sensitive support vector machine for semi-supervised learning publication-title: Procedia Comput. Sci. – reference: F. Koto, SMOTE-Out, SMOTE-Cosine, and Selected-SMOTE: An enhancement strategy to handle imbalance in data level, in: 2014 Int. Conf. on Advanced Computer Science and Information System, 2014, pp. 280–284. – start-page: 102:1 year: 2015 end-page: 102:6 ident: b67 article-title: An over-sampling technique with rejection for imbalanced class learning publication-title: Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, IMCOM ’15 – start-page: 283 year: 2008 end-page: 292 ident: b46 article-title: Selective pre-processing of imbalanced data for improving classification performance publication-title: Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery, DaWaK ’08 – volume: 250 start-page: 113 year: 2013 end-page: 141 ident: b15 article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics publication-title: Inf. Sci. – volume: 28 start-page: 92 year: 2014 end-page: 122 ident: b106 article-title: Training and assessing classification rules with imbalanced data publication-title: Data Min. Knowl. Discov. – volume: 17 start-page: 255 year: 2011 end-page: 287 ident: b107 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Logic Soft Comput. – start-page: 875 year: 2010 end-page: 886 ident: b13 article-title: Data mining for imbalanced datasets: an overview publication-title: Data Mining and Knowledge Discovery Handbook – reference: H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: Proc. of IJCNN, 2008, pp. 1322–1328. – volume: 10 start-page: 1 year: 2001 end-page: 50 ident: b19 article-title: The art of data augmentation publication-title: J. Comput. Graph. Statist. – start-page: 261 year: 2013 end-page: 269 ident: b24 article-title: Adaptive oversampling for imbalanced data classification publication-title: Information Sciences and Systems 2013 – reference: T. Maciejewski, J. Stefanowski, Local neighbourhood extension of SMOTE for mining imbalanced data, in: 2011 IEEE Symposium on Computational Intelligence and Data Mining, CIDM, 2011, pp. 104–111. – volume: vol. 2 start-page: 13 year: 2009 end-page: 17 ident: b52 article-title: MSMOTE: Improving classification performance when training data is imbalanced publication-title: Proc. of the 2nd International Workshop on Computer Science and Engineering – volume: 41 start-page: 3255 year: 2016 end-page: 3266 ident: b81 article-title: A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE publication-title: Arab. J. Sci. Eng. – reference: S. Gazzah, A. Hechkel, N.E.B. Amara, A hybrid sampling method for imbalanced data, in: IEEE 12th International Multi-Conference on Systems, Signals Devices, 2015, pp. 1–6. – reference: D.A. Cieslak, N.V. Chawla, A. Striegel, Combating imbalance in network intrusion datasets, in: 2006 IEEE International Conference on Granular Computing, 2006, pp. 732–737. – volume: 16 start-page: 2695 year: 2015 end-page: 2724 ident: b57 article-title: Absent data generating classifier for imbalanced class sizes publication-title: J. Mach. Learn. Res. – reference: Z. László, L. Török, G. Kovács, Improving the performance of the k rare class nearest neighbor classifier by the ranking of point patterns, in: Proc. of Foundations of Information and Knowledge Systems, 2018, pp. 265–283. – volume: 101 start-page: 309 year: 2013 end-page: 318 ident: b2 article-title: ACOSampling: An ant colony optimization based undersampling method for classifying imbalanced DNA microarray data publication-title: Neurocomputing – volume: 1 start-page: 347 year: 2012 end-page: 362 ident: b90 article-title: Surrounding neighborhood-based SMOTE for learning from imbalanced data sets publication-title: Prog. Artif. Intell. – volume: 9 start-page: 1 year: 2014 end-page: 10 ident: b49 article-title: A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction publication-title: PLoS One – reference: B. Tang, H. He, KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning, in: IEEE Congress on Evolutionary Computation, 2015, pp. 664–671. – volume: 22 year: 2013 ident: b100 article-title: Synthetic oversampling of instances using clustering publication-title: Int. J. Artif. Intell. Tools – start-page: 547 year: 2013 end-page: 554 ident: b104 article-title: A new combination sampling method for imbalanced data publication-title: Proc. of 2013 Chinese Intelligent Automation Conference – volume: 37 start-page: 7 year: 2006 end-page: 18 ident: b35 article-title: Learning from imbalanced data in surveillance of nosocomial infection publication-title: Artif. Intell. Med. – reference: L. Chen, Z. Cai, L. Chen, Q. Gu, A novel differential evolution-clustering hybrid resampling algorithm on imbalanced datasets, in: 3rd International Conference on Knowledge Discovery and Data Mining, 2010, pp. 81–85. – volume: 28 start-page: 238 year: 2016 end-page: 251 ident: b77 article-title: To combat multi-class imbalanced problems by means of over-sampling techniques publication-title: IEEE Trans. Knowl. Data Eng. – volume: 33 start-page: 245 year: 2012 end-page: 265 ident: b84 article-title: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory publication-title: Knowl. Inf. Syst. – start-page: 83 year: 2011 end-page: 96 ident: b29 article-title: A normal distribution-based over-sampling approach to imbalanced data classification publication-title: Advanced Data Mining and Applications – volume: 4 start-page: 1 year: 2018 end-page: 10 ident: b3 article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset publication-title: Int. Robotics Autom. J. – reference: A. Gosain, S. Sardana, Handling class imbalance problem using oversampling techniques: A review, in: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI, 2017, pp. 79–85. – volume: 6 start-page: 1 year: 2013 end-page: 10 ident: b98 article-title: LVQ-SMOTE – learning vector quantization based synthetic minority over–sampling technique for biomedical data publication-title: BioData Min. – start-page: 309 year: 2011 end-page: 320 ident: b66 article-title: Margin-based over-sampling method for learning from imbalanced datasets publication-title: Advances in Knowledge Discovery and Data Mining – start-page: 31 year: 2016 end-page: 42 ident: b79 article-title: Imbalanced data classification: A novel re-sampling approach combining versatile improved SMOTE and rough sets publication-title: Computer Information Systems and Industrial Management – reference: S. Wang, Z. Li, W. Chao, Q. Cao, Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning, in: Int. Joint Conf. on Neural Networks, 2012, pp. 1–8. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b1 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Discov. – volume: 48 start-page: 134 year: 2016 end-page: 139 ident: b85 article-title: Fuzzy-rough imbalanced learning for the diagnosis of high voltage circuit breaker maintenance: The SMOTE-FRST-2T algorithm publication-title: Eng. Appl. Artif. Intell. – start-page: 735 year: 2011 end-page: 744 ident: b70 article-title: A novel synthetic minority oversampling technique for imbalanced data set learning publication-title: Neural Information Processing – volume: vol. 1 start-page: 393 year: 2011 end-page: 397 ident: b76 article-title: A re-sampling method for class imbalance learning with credit data publication-title: International Conference of Information Technology, Computer Engineering and Management Sciences – start-page: 43 year: 2013 end-page: 59 ident: b17 article-title: Imbalanced datasets: From sampling to classifiers publication-title: Imbalanced Learning – reference: Y.H. Xu, H. Li, L.P. Le, X.Y. Tian, Neighborhood triangular synthetic minority over-sampling technique for imbalanced prediction on small samples of Chinese tourism and hospitality firms, in: 7th Int. Joint Conf. on Computational Sciences and Optimization, 2014, pp. 534–538. – volume: 26 start-page: 1041 year: 2015 end-page: 1054 ident: b65 article-title: Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets publication-title: Neural Comput. Appl. – volume: 126 start-page: 15 year: 2014 end-page: 28 ident: b36 article-title: Addressing imbalanced classification with instance generation techniques: IPADE-ID publication-title: Neurocomputing – reference: C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-Level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proc. of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 2009, pp. 475–482. – ident: 10.1016/j.asoc.2019.105662_b44 doi: 10.1109/DAS.2008.74 – volume: 46 start-page: 405 year: 2016 ident: 10.1016/j.asoc.2019.105662_b83 article-title: Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.031 – volume: vol. 2 start-page: 322 year: 2011 ident: 10.1016/j.asoc.2019.105662_b72 article-title: An E-SMOTE technique for feature selection in high-dimensional imbalanced dataset – start-page: 343 year: 2011 ident: 10.1016/j.asoc.2019.105662_b74 article-title: A new over-sampling approach: Random-SMOTE for learning from imbalanced data sets – volume: 291 start-page: 184 year: 2015 ident: 10.1016/j.asoc.2019.105662_b59 article-title: SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.051 – volume: 91 start-page: 464 issue: C year: 2018 ident: 10.1016/j.asoc.2019.105662_b28 article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.030 – ident: 10.1016/j.asoc.2019.105662_b31 doi: 10.1109/ICACSIS.2014.7065849 – ident: 10.1016/j.asoc.2019.105662_b102 doi: 10.1109/IJCNN.2013.6707035 – volume: 17 start-page: 229 year: 2017 ident: 10.1016/j.asoc.2019.105662_b97 article-title: Gaussian-based smote algorithm for solving skewed class distributions publication-title: Int. J. Fuzzy Log. Intell. Syst. doi: 10.5391/IJFIS.2017.17.4.229 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105662_b23 article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.asoc.2019.105662_b48 doi: 10.1109/ITAB.2008.4570642 – volume: 9 start-page: 1 issue: 9 year: 2014 ident: 10.1016/j.asoc.2019.105662_b49 article-title: A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction publication-title: PLoS One doi: 10.1371/journal.pone.0107676 – volume: 41 start-page: 3255 issue: 8 year: 2016 ident: 10.1016/j.asoc.2019.105662_b81 article-title: A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-016-2179-2 – ident: 10.1016/j.asoc.2019.105662_b22 doi: 10.1109/ICACCI.2017.8125820 – volume: vol. 3 start-page: 634 year: 2007 ident: 10.1016/j.asoc.2019.105662_b39 article-title: A distance-based over-sampling method for learning from imbalanced data sets – volume: 29 year: 2015 ident: 10.1016/j.asoc.2019.105662_b55 article-title: A novel minority cloning technique for cost-sensitive learning publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001415510040 – volume: 228 start-page: 187 year: 2017 ident: 10.1016/j.asoc.2019.105662_b89 article-title: PSO-based method for SVM classification on skewed data sets publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.041 – ident: 10.1016/j.asoc.2019.105662_b40 doi: 10.1109/IIKI.2014.14 – volume: 126 start-page: 15 year: 2014 ident: 10.1016/j.asoc.2019.105662_b36 article-title: Addressing imbalanced classification with instance generation techniques: IPADE-ID publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.050 – volume: 26 start-page: 1041 issue: 5 year: 2015 ident: 10.1016/j.asoc.2019.105662_b65 article-title: Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1780-0 – volume: 6 start-page: 1 issue: 16 year: 2013 ident: 10.1016/j.asoc.2019.105662_b98 article-title: LVQ-SMOTE – learning vector quantization based synthetic minority over–sampling technique for biomedical data publication-title: BioData Min. – volume: 408 start-page: 146 year: 2017 ident: 10.1016/j.asoc.2019.105662_b95 article-title: Noise reduction a priori synthetic over-sampling for class imbalanced data sets publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.046 – volume: 17 start-page: 255 issue: 2–3 year: 2011 ident: 10.1016/j.asoc.2019.105662_b107 article-title: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Logic Soft Comput. – volume: 44 start-page: 1821 issue: 8 year: 2011 ident: 10.1016/j.asoc.2019.105662_b78 article-title: A dynamic over-sampling procedure based on sensitivity for multi-class problems publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.02.019 – volume: 82 start-page: 40 year: 2017 ident: 10.1016/j.asoc.2019.105662_b93 article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.03.073 – ident: 10.1016/j.asoc.2019.105662_b11 doi: 10.1007/978-3-319-90050-6_15 – ident: 10.1016/j.asoc.2019.105662_b38 doi: 10.1109/ICPR.2014.245 – ident: 10.1016/j.asoc.2019.105662_b64 doi: 10.1109/ISDA.2011.6121689 – ident: 10.1016/j.asoc.2019.105662_b5 – volume: vol. 3 start-page: 1 year: 2006 ident: 10.1016/j.asoc.2019.105662_b37 article-title: Classification of imbalanced data by using the smote algorithm and locally linear embedding – volume: 234 start-page: 38 year: 2017 ident: 10.1016/j.asoc.2019.105662_b25 article-title: 2,1 norm regularized multi-kernel based joint nonlinear feature selection and over-sampling for imbalanced data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.036 – ident: 10.1016/j.asoc.2019.105662_b69 doi: 10.1109/KSE.2015.24 – start-page: 3 year: 2015 ident: 10.1016/j.asoc.2019.105662_b63 article-title: A synthetic minority oversampling method based on local densities in low-dimensional space for imbalanced learning – start-page: 445 year: 1998 ident: 10.1016/j.asoc.2019.105662_b9 article-title: Cost-sensitive learning with neural networks – ident: 10.1016/j.asoc.2019.105662_b58 doi: 10.1109/WAINA.2010.40 – ident: 10.1016/j.asoc.2019.105662_b45 – volume: 18 start-page: 1 issue: 169 year: 2017 ident: 10.1016/j.asoc.2019.105662_b91 article-title: CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests publication-title: BMC Bioinformatics – start-page: 547 year: 2013 ident: 10.1016/j.asoc.2019.105662_b104 article-title: A new combination sampling method for imbalanced data – volume: 61 start-page: 863 year: 2018 ident: 10.1016/j.asoc.2019.105662_b18 article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.1.11192 – ident: 10.1016/j.asoc.2019.105662_b110 doi: 10.1007/978-3-642-20847-8_29 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.asoc.2019.105662_b1 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Discov. – start-page: 735 year: 2011 ident: 10.1016/j.asoc.2019.105662_b70 article-title: A novel synthetic minority oversampling technique for imbalanced data set learning – volume: 6 start-page: 20 issue: 1 year: 2004 ident: 10.1016/j.asoc.2019.105662_b32 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007735 – volume: 62 start-page: 33 issue: 2 year: 2017 ident: 10.1016/j.asoc.2019.105662_b6 article-title: KRNN: k rare-class nearest neighbor classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.08.023 – volume: 48 start-page: 134 year: 2016 ident: 10.1016/j.asoc.2019.105662_b85 article-title: Fuzzy-rough imbalanced learning for the diagnosis of high voltage circuit breaker maintenance: The SMOTE-FRST-2T algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.10.009 – year: 2013 ident: 10.1016/j.asoc.2019.105662_b96 article-title: A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE publication-title: Math. Probl. Eng. – ident: 10.1016/j.asoc.2019.105662_b109 doi: 10.1007/978-3-642-37456-2_25 – start-page: 287 year: 2009 ident: 10.1016/j.asoc.2019.105662_b54 article-title: Classification of imbalanced data sets by using the hybrid re-sampling algorithm based on Isomap – start-page: 31 year: 2016 ident: 10.1016/j.asoc.2019.105662_b79 article-title: Imbalanced data classification: A novel re-sampling approach combining versatile improved SMOTE and rough sets – ident: 10.1016/j.asoc.2019.105662_b51 doi: 10.1109/ICMLA.2015.58 – volume: 39 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105662_b103 article-title: Adaptive multi-objective swarm fusion for imbalanced data classification publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.03.007 – volume: vol. 39 start-page: 565 year: 2017 ident: 10.1016/j.asoc.2019.105662_b101 article-title: Adaptive neighbor synthetic minority oversampling technique under 1NN outcast handling – start-page: 317 year: 2013 ident: 10.1016/j.asoc.2019.105662_b92 article-title: ProWSyn: Proximity weighted synthetic oversampling technique for imbalanced data set learning – ident: 10.1016/j.asoc.2019.105662_b56 – volume: 36 start-page: 664 issue: 3 year: 2012 ident: 10.1016/j.asoc.2019.105662_b86 article-title: DBSMOTE: Density-based synthetic minority over-sampling technique publication-title: Appl. Intell. doi: 10.1007/s10489-011-0287-y – ident: 10.1016/j.asoc.2019.105662_b60 doi: 10.1109/ICCAS.2010.5669889 – start-page: 371 year: 2012 ident: 10.1016/j.asoc.2019.105662_b82 article-title: A pruning-based approach for searching precise and generalized region for synthetic minority over-sampling – volume: 45 start-page: 16:1 issue: 2 year: 2013 ident: 10.1016/j.asoc.2019.105662_b8 article-title: A survey of cost-sensitive decision tree induction algorithms publication-title: ACM Comput. Surv. doi: 10.1145/2431211.2431215 – volume: 22 year: 2013 ident: 10.1016/j.asoc.2019.105662_b100 article-title: Synthetic oversampling of instances using clustering publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S0218213013500085 – ident: 10.1016/j.asoc.2019.105662_b43 doi: 10.1109/ICPR.2014.258 – ident: 10.1016/j.asoc.2019.105662_b68 doi: 10.1109/CIDM.2011.5949434 – volume: 31 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.asoc.2019.105662_b4 article-title: An ensemble anomaly detection with imbalanced data based on robot vision publication-title: Int. J. Robot. Autom. – start-page: 177 year: 2016 ident: 10.1016/j.asoc.2019.105662_b75 article-title: SMOTE-D a deterministic version of smote – volume: 27 start-page: 222 issue: 1 year: 2015 ident: 10.1016/j.asoc.2019.105662_b27 article-title: RACOG and wRACOG: Two probabilistic oversampling techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2014.2324567 – volume: 37 start-page: 7 issue: 1 year: 2006 ident: 10.1016/j.asoc.2019.105662_b35 article-title: Learning from imbalanced data in surveillance of nosocomial infection publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2005.03.002 – volume: 101 start-page: 309 year: 2013 ident: 10.1016/j.asoc.2019.105662_b2 article-title: ACOSampling: An ant colony optimization based undersampling method for classifying imbalanced DNA microarray data publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.018 – start-page: 377 year: 2015 ident: 10.1016/j.asoc.2019.105662_b26 article-title: RBM-SMOTE: Restricted Boltzmann machines for synthetic minority oversampling technique – year: 2017 ident: 10.1016/j.asoc.2019.105662_b108 – start-page: 875 year: 2010 ident: 10.1016/j.asoc.2019.105662_b13 article-title: Data mining for imbalanced datasets: an overview – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.asoc.2019.105662_b12 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – start-page: 102:1 year: 2015 ident: 10.1016/j.asoc.2019.105662_b67 article-title: An over-sampling technique with rejection for imbalanced class learning – volume: 53 start-page: 226 issue: 1 year: 2012 ident: 10.1016/j.asoc.2019.105662_b80 article-title: Preprocessing unbalanced data using support vector machine publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2012.01.016 – ident: 10.1016/j.asoc.2019.105662_b87 doi: 10.1145/2857546.2857648 – start-page: 83 year: 2011 ident: 10.1016/j.asoc.2019.105662_b29 article-title: A normal distribution-based over-sampling approach to imbalanced data classification – volume: 66 start-page: 124 year: 2016 ident: 10.1016/j.asoc.2019.105662_b73 article-title: A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.010 – volume: 33 start-page: 245 issue: 2 year: 2012 ident: 10.1016/j.asoc.2019.105662_b84 article-title: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-011-0465-6 – ident: 10.1016/j.asoc.2019.105662_b42 – volume: vol. 1 start-page: 393 year: 2011 ident: 10.1016/j.asoc.2019.105662_b76 article-title: A re-sampling method for class imbalance learning with credit data – volume: 28 start-page: 92 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105662_b106 article-title: Training and assessing classification rules with imbalanced data publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-012-0295-5 – ident: 10.1016/j.asoc.2019.105662_b21 – ident: 10.1016/j.asoc.2019.105662_b53 doi: 10.1109/SSD.2015.7348093 – ident: 10.1016/j.asoc.2019.105662_b88 – volume: 16 start-page: 2695 year: 2015 ident: 10.1016/j.asoc.2019.105662_b57 article-title: Absent data generating classifier for imbalanced class sizes publication-title: J. Mach. Learn. Res. – volume: 257 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2019.105662_b16 article-title: On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.09.038 – ident: 10.1016/j.asoc.2019.105662_b61 doi: 10.1109/CEC.2015.7256954 – start-page: 309 year: 2011 ident: 10.1016/j.asoc.2019.105662_b66 article-title: Margin-based over-sampling method for learning from imbalanced datasets – volume: 10 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.asoc.2019.105662_b19 article-title: The art of data augmentation publication-title: J. Comput. Graph. Statist. doi: 10.1198/10618600152418584 – start-page: 283 year: 2008 ident: 10.1016/j.asoc.2019.105662_b46 article-title: Selective pre-processing of imbalanced data for improving classification performance – volume: 138 start-page: 248 year: 2014 ident: 10.1016/j.asoc.2019.105662_b34 article-title: PDFOS: PDF estimation based over-sampling for imbalanced two-class problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.006 – ident: 10.1016/j.asoc.2019.105662_b10 doi: 10.1007/978-3-642-20847-8_27 – start-page: 410 year: 2014 ident: 10.1016/j.asoc.2019.105662_b111 – volume: 4 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.asoc.2019.105662_b3 article-title: Resampling imbalanced class and the effectiveness of feature selection methods for heart failure dataset publication-title: Int. Robotics Autom. J. – volume: vol. 2 start-page: 543 year: 2011 ident: 10.1016/j.asoc.2019.105662_b62 article-title: Applying over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning – volume: 26 start-page: 405 issue: 2 year: 2014 ident: 10.1016/j.asoc.2019.105662_b33 article-title: MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2012.232 – volume: 1 start-page: 347 issue: 4 year: 2012 ident: 10.1016/j.asoc.2019.105662_b90 article-title: Surrounding neighborhood-based SMOTE for learning from imbalanced data sets publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-012-0027-5 – start-page: 161 year: 2014 ident: 10.1016/j.asoc.2019.105662_b47 article-title: Stochastic sensitivity oversampling technique for imbalanced data – start-page: 261 year: 2013 ident: 10.1016/j.asoc.2019.105662_b24 article-title: Adaptive oversampling for imbalanced data classification – volume: 28 start-page: 238 issue: 1 year: 2016 ident: 10.1016/j.asoc.2019.105662_b77 article-title: To combat multi-class imbalanced problems by means of over-sampling techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2458858 – volume: 27 start-page: 727 year: 2017 ident: 10.1016/j.asoc.2019.105662_b99 article-title: CCR: A combined cleaning and resampling algorithm for imbalanced data classification publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.1515/amcs-2017-0050 – start-page: 878 year: 2005 ident: 10.1016/j.asoc.2019.105662_b20 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning – ident: 10.1016/j.asoc.2019.105662_b94 doi: 10.1109/ISCIT.2013.6645923 – ident: 10.1016/j.asoc.2019.105662_b41 doi: 10.1109/ICCKE.2014.6993409 – volume: vol. 2 start-page: 13 year: 2009 ident: 10.1016/j.asoc.2019.105662_b52 article-title: MSMOTE: Improving classification performance when training data is imbalanced – volume: 20 start-page: 99 year: 2014 ident: 10.1016/j.asoc.2019.105662_b30 article-title: RWO-Sampling: A random walk over-sampling approach to imbalanced data classification publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.12.003 – ident: 10.1016/j.asoc.2019.105662_b50 doi: 10.1007/978-3-642-01307-2_43 – volume: 18 start-page: 1684 year: 2013 ident: 10.1016/j.asoc.2019.105662_b7 article-title: Cost-sensitive support vector machine for semi-supervised learning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2013.05.336 – ident: 10.1016/j.asoc.2019.105662_b71 doi: 10.1109/ISCBI.2015.12 – volume: 3 start-page: 1:1 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.105662_b112 article-title: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/1497577.1497578 – start-page: 43 year: 2013 ident: 10.1016/j.asoc.2019.105662_b17 article-title: Imbalanced datasets: From sampling to classifiers – volume: 465 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105662_b105 article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.06.056 – volume: 250 start-page: 113 year: 2013 ident: 10.1016/j.asoc.2019.105662_b15 article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.07.007 – start-page: 315 year: 2012 ident: 10.1016/j.asoc.2019.105662_b14 article-title: Learning from imbalanced data: Evaluation matters |
SSID | ssj0016928 |
Score | 2.617509 |
Snippet | Learning and mining from imbalanced datasets gained increased interest in recent years. One simple but efficient way to increase the performance of standard... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105662 |
SubjectTerms | Imbalanced learning Minority oversampling SMOTE SMOTE variants |
Title | An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105662 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHrxJbLLZbJJjKZb6KqIWegu72YlE2rSYePW3u5OXCtKDp5AwA-HbzTzCt_MRchEqSDyuhBVwqS2ulWcF0mUW-EKEvqt8v_yh_zAR4ym_nXmzDhk2Z2GQVlnH_iqml9G6ftKv0eyv0rT_bDqPgIfcdACmJTdhFU-wcx93-dVnS_NwRFjqq6Kxhdb1wZmK4yUNAkjvCksBesH-Tk4_Es5oh2zVlSIdVC-zSzqQ7ZHtRoWB1h_lPskHGYXFKi1nfdC41RWkMtP0e5g3XSZ0kWZLFKujyNvMJZLJs1fajnHNKXrROZLDaSUVgl7pQiH_0UBFkU-aQ5EfkOno-mU4tmopBSt2bbuwOASmT9GJihlTdmzKEm0aR3AS4WlgUoEWTNrgmminQPjgS8mkE8ZcciwotXtIutkygyNCOTLBwPNMUtM8ToTJ-JwpYML0kmBq9WPiNBhGcT1nHOUu5lFDKHuLEPcIcY8q3I_JZeuzqqZsrLX2mqWJfu2VyKSBNX4n__Q7JZt4V1H4zki3eP-Ac1OKFKpX7rUe2RgMn-4f8XpzN558ARv74Ng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2wotHUcpxmriqpAYaGV2CI7vqCgNq1IWPnt3OVRQEIMrMmdZH2x7xF9vo-xy8BA7EmjnJ7U1pHWeE5Pu8IBX6nAd43vFz_0Hx7VaCrvnr3nBhvUd2GIVlnF_jKmF9G6etKu0Gwvk6T9hJ1HTwYSOwBsyTGsrrF1iceXZAyuP1Y8j64KCoFVsnbIvLo5U5K8NEJA_K6gUKBX4vfs9C3jDHfYVlUq8n65ml3WgHSPbdcyDLw6lfss66cc5sukGPbBo5WwINep5V_TvPki5vMkXZBaHSfiZqaJTZ6-8NUc14yTF58RO5yXWiHklcwNESARK06E0gzy7IBNhzeTwciptBScyO10ckdCDxsVG5tICNOJsC6x2DlCN1aeBaENWCV0B1wMdwaUD77WQneDSGpJFaV1D1kzXaRwxLgkKhh4HmY1K6NYYcqXwoBQ2EwCFust1q0xDKNq0DjpXczCmlH2GhLuIeEelri32NXKZ1mO2fjT2qs_Tfhjs4SYB_7wO_6n3wXbGE0exuH49vH-hG3Sm5LPd8qa-ds7nGFdkpvzYt99Ak9_4NE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+comparison+and+evaluation+of+minority+oversampling+techniques+on+a+large+number+of+imbalanced+datasets&rft.jtitle=Applied+soft+computing&rft.au=Kov%C3%A1cs%2C+Gy%C3%B6rgy&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=83&rft_id=info:doi/10.1016%2Fj.asoc.2019.105662&rft.externalDocID=S1568494619304429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |