Wind-uplift capacity of cold-formed steel interlocking claddings-Experimental and numerical investigations

Cold-formed steel (CFS) interlocking panels are popular in industrial and housing applications. They are mostly used in façades, soffits, fascia's, chimney claddings and interior feature walls. During strong wind occurrences, CFS interlocking panels are subjected to severe wind uplift or suctio...

Full description

Saved in:
Bibliographic Details
Published inJournal of Building Engineering Vol. 63; p. 105433
Main Author Roy, Krishanu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN2352-7102
2352-7102
DOI10.1016/j.jobe.2022.105433

Cover

Abstract Cold-formed steel (CFS) interlocking panels are popular in industrial and housing applications. They are mostly used in façades, soffits, fascia's, chimney claddings and interior feature walls. During strong wind occurrences, CFS interlocking panels are subjected to severe wind uplift or suction pressure. This is especially problematic in areas with strong prevailing winds, such as the West Coast of the United States, the United Kingdom, and New Zealand. Turbulence in the wind flow around the building causes suction pressure, which can vary both geographically and temporally. The overlap between two adjacent interlocking panels and screw fasteners is the weakest link in the interlocking cladding system, and if it fails, the entire cladding assembly can collapse. Using a Pressure Loading Actuator (PLA), an experimental programme on a series of interlocking panels was carried out under static wind uplift and cyclic pressure. A total of 24 tests were carried out and the results are presented in this paper. The experimental investigation took into account two distinct cladding thicknesses (0.48 mm and 0.55 mm). Tensile coupon tests were used to determine the material properties of the interlocking panels, and a laser scanner was used to measure initial geometric imperfections. The load at critical tek screws was measured using 3-axis (x-y-z) and S-type load cells to determine the failure load at the screw fastener (tek screw). The interlocking panels revealed local failure around the tek screws where two adjacent cladding sheets were linked, followed by global failure of the cladding assembly at ultimate wind pressure, according to tests. A nonlinear finite element model for interlocking panels under static wind uplift pressure was also created, and the results were in good agreement with the experimental results. The finite element model contained non-linear material properties and initial imperfections. The influence of thickness, yield stress, and interlocking cladding span on the wind uplift capacity of such claddings was investigated using 264 finite element models in a parametric study. For interlocking panels' ultimate limit state of failure, load-span tables are also proposed. •Experimental tests on interlocking claddings under static wind uplift and cyclic pressure.•A total of 24 full scale wind load tests were conducted and reported herein.•A nonlinear finite element model was also developed for interlocking claddings under static wind uplift pressure.•A parametric study was conducted comprising 264 finite element models to investigate the effect of different parameters.•Load-span tables were also proposed for ultimate limit state of failure for interlocking claddings.
AbstractList Cold-formed steel (CFS) interlocking panels are popular in industrial and housing applications. They are mostly used in façades, soffits, fascia's, chimney claddings and interior feature walls. During strong wind occurrences, CFS interlocking panels are subjected to severe wind uplift or suction pressure. This is especially problematic in areas with strong prevailing winds, such as the West Coast of the United States, the United Kingdom, and New Zealand. Turbulence in the wind flow around the building causes suction pressure, which can vary both geographically and temporally. The overlap between two adjacent interlocking panels and screw fasteners is the weakest link in the interlocking cladding system, and if it fails, the entire cladding assembly can collapse. Using a Pressure Loading Actuator (PLA), an experimental programme on a series of interlocking panels was carried out under static wind uplift and cyclic pressure. A total of 24 tests were carried out and the results are presented in this paper. The experimental investigation took into account two distinct cladding thicknesses (0.48 mm and 0.55 mm). Tensile coupon tests were used to determine the material properties of the interlocking panels, and a laser scanner was used to measure initial geometric imperfections. The load at critical tek screws was measured using 3-axis (x-y-z) and S-type load cells to determine the failure load at the screw fastener (tek screw). The interlocking panels revealed local failure around the tek screws where two adjacent cladding sheets were linked, followed by global failure of the cladding assembly at ultimate wind pressure, according to tests. A nonlinear finite element model for interlocking panels under static wind uplift pressure was also created, and the results were in good agreement with the experimental results. The finite element model contained non-linear material properties and initial imperfections. The influence of thickness, yield stress, and interlocking cladding span on the wind uplift capacity of such claddings was investigated using 264 finite element models in a parametric study. For interlocking panels' ultimate limit state of failure, load-span tables are also proposed. •Experimental tests on interlocking claddings under static wind uplift and cyclic pressure.•A total of 24 full scale wind load tests were conducted and reported herein.•A nonlinear finite element model was also developed for interlocking claddings under static wind uplift pressure.•A parametric study was conducted comprising 264 finite element models to investigate the effect of different parameters.•Load-span tables were also proposed for ultimate limit state of failure for interlocking claddings.
ArticleNumber 105433
Author Roy, Krishanu
Author_xml – sequence: 1
  givenname: Krishanu
  orcidid: 0000-0002-8086-3070
  surname: Roy
  fullname: Roy, Krishanu
  email: krishanu.roy@waikato.ac.nz
  organization: School of Engineering, The University of Waikato, Hamilton, 3216, New Zealand
BookMark eNp9kMtKAzEUhoNUsNa-gKt5gam5dwpupNQLFNwoLkMmOVMyTpOSpMW-vTPWhbjo6vwc-A7n_67RyAcPCN0SPCOYyLt21oYaZhRT2i8EZ-wCjSkTtJwTTEd_8hWaptRijOlCsEryMWo_nLflfte5JhdG77Rx-ViEpjChs2UT4hZskTJAVzifIXbBfDq_KUynre1DKldfO4huCz7rrtDeFn6_7RdGD8QBUnYbnV3w6QZdNrpLMP2dE_T-uHpbPpfr16eX5cO6NAzjXHLLuJBijutK1gRLarCUppaCWlFz2khWk5oLaAgnDZ9zRhm3i4oKq4ECpmyCqtNdE0NKERrVd_p5IUftOkWwGrSpVg3a1KBNnbT1KP2H7vpqOh7PQ_cnCPpSBwdRJePAG7AugsnKBncO_wYVFYnA
CitedBy_id crossref_primary_10_1007_s42107_023_00983_w
crossref_primary_10_3390_app132111975
crossref_primary_10_1108_SASBE_01_2023_0006
Cites_doi 10.1016/0141-0296(95)00049-D
10.1016/j.engstruct.2008.09.013
10.1016/j.jcsr.2017.09.027
10.1016/j.engstruct.2011.08.020
10.1061/(ASCE)0887-3828(2004)18:1(4)
10.1016/S0143-974X(98)00007-8
10.1016/j.engstruct.2022.114238
10.1016/j.engstruct.2015.12.016
10.1016/S0045-7949(99)00081-4
10.1061/(ASCE)ST.1943-541X.0001476
10.1016/0167-6105(75)90007-0
10.1061/(ASCE)0733-9445(1995)121:3(389)
10.1016/j.engstruct.2004.05.007
10.12989/was.2009.12.4.383
10.1016/j.engstruct.2016.07.020
10.1016/j.istruc.2021.05.096
10.1016/j.tws.2021.108076
10.1016/0141-0296(94)90030-2
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jobe.2022.105433
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID 10_1016_j_jobe_2022_105433
S2352710222014395
GroupedDBID --M
0R~
457
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
4.4
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
SSH
ID FETCH-LOGICAL-c300t-4d3456570b86b1062c066cb652d5b42f63b1b45ef141f4743234d9825dae2e023
IEDL.DBID AIKHN
ISSN 2352-7102
IngestDate Tue Jul 01 04:03:37 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Fri Feb 23 02:38:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Full scale testing
Fatigue
Finite element modelling
Cold-formed steel
Interlocking panels
Wind-uplift pressure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4d3456570b86b1062c066cb652d5b42f63b1b45ef141f4743234d9825dae2e023
ORCID 0000-0002-8086-3070
ParticipantIDs crossref_citationtrail_10_1016_j_jobe_2022_105433
crossref_primary_10_1016_j_jobe_2022_105433
elsevier_sciencedirect_doi_10_1016_j_jobe_2022_105433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mahendran (bib11) 1990
Mahaarachchi, Mahendran (bib7) 2009; 97
Jancauskas, Mahendran, Walker (bib16) 1994; 51
Mahendran, Mahaarachchi (bib5) 2004; 18
Mahaarachchi, Mahendran (bib6) 2004; 26
Sivapathasundaram, Mahendran (bib9) 2016; 113
Mahendran (bib12) 1989
Mahendran (bib24) 1995; 17
Fang, Roy, Chen, Xie, Ingham, Lim (bib32) 2022; 260
Henderson, Ginger, Morrison, Kopp (bib23) 2009; 12
(bib26) 2007
(bib27) 2005
Schafer, Peköz (bib33) 1998; 47
Morgan, Beck (bib2) 1977; 19
Mahendran (bib4) 1994; 16
Kumar (bib15) 2000; 75
Sivapathasundaram, Mahendran (bib10) 2016; 142
Sivapathasundaram, Mahendran (bib20) 2017; 139
Henderson, Reardon, Ginger (bib18) 2001
Beck, Stevens (bib3) 1979
Henderson, Ginger (bib21) 2011; 33
Lovisa, Henderson, Ginger (bib17) 2016; 125
Eaton, Mayne (bib1) 1975; 1
Kumar, Stathopoulos (bib22) 1998; 77
Xu (bib13) 1995; 121
Mahendran (bib14) 1995; 17
Schijve (bib19) 2008
Fang, Roy, Chen, Sham, Hajirasouliha, Lim (bib31) 2021; 166
(bib29) 2018
Mahaarachchi, Mahendran (bib8) 2009; 31
Eurocode (bib25) 1992
Fang, Roy, Mares, Sham, Chen, Lim (bib30) 2021; 33
(bib28) 2009
Fang (10.1016/j.jobe.2022.105433_bib32) 2022; 260
Henderson (10.1016/j.jobe.2022.105433_bib21) 2011; 33
(10.1016/j.jobe.2022.105433_bib27) 2005
Sivapathasundaram (10.1016/j.jobe.2022.105433_bib9) 2016; 113
(10.1016/j.jobe.2022.105433_bib26) 2007
Henderson (10.1016/j.jobe.2022.105433_bib23) 2009; 12
Mahendran (10.1016/j.jobe.2022.105433_bib12) 1989
Morgan (10.1016/j.jobe.2022.105433_bib2) 1977; 19
Lovisa (10.1016/j.jobe.2022.105433_bib17) 2016; 125
Mahendran (10.1016/j.jobe.2022.105433_bib5) 2004; 18
Sivapathasundaram (10.1016/j.jobe.2022.105433_bib10) 2016; 142
Sivapathasundaram (10.1016/j.jobe.2022.105433_bib20) 2017; 139
Mahaarachchi (10.1016/j.jobe.2022.105433_bib6) 2004; 26
Schijve (10.1016/j.jobe.2022.105433_bib19) 2008
Mahendran (10.1016/j.jobe.2022.105433_bib14) 1995; 17
Fang (10.1016/j.jobe.2022.105433_bib30) 2021; 33
Mahaarachchi (10.1016/j.jobe.2022.105433_bib7) 2009; 97
Kumar (10.1016/j.jobe.2022.105433_bib15) 2000; 75
Mahendran (10.1016/j.jobe.2022.105433_bib4) 1994; 16
Eaton (10.1016/j.jobe.2022.105433_bib1) 1975; 1
Schafer (10.1016/j.jobe.2022.105433_bib33) 1998; 47
Mahaarachchi (10.1016/j.jobe.2022.105433_bib8) 2009; 31
Mahendran (10.1016/j.jobe.2022.105433_bib11) 1990
Mahendran (10.1016/j.jobe.2022.105433_bib24) 1995; 17
Fang (10.1016/j.jobe.2022.105433_bib31) 2021; 166
Henderson (10.1016/j.jobe.2022.105433_bib18) 2001
Xu (10.1016/j.jobe.2022.105433_bib13) 1995; 121
Kumar (10.1016/j.jobe.2022.105433_bib22) 1998; 77
Jancauskas (10.1016/j.jobe.2022.105433_bib16) 1994; 51
Beck (10.1016/j.jobe.2022.105433_bib3) 1979
(10.1016/j.jobe.2022.105433_bib28) 2009
Eurocode (10.1016/j.jobe.2022.105433_bib25) 1992
(10.1016/j.jobe.2022.105433_bib29) 2018
References_xml – year: 2001
  ident: bib18
  article-title: Performance of light gauge metal roof cladding subjected to cyclonic wind loading
  publication-title: 9th Australian Wind Engineering Workshop
– volume: 1
  start-page: 67
  year: 1975
  end-page: 109
  ident: bib1
  article-title: The measurement of wind pressures on two-storey houses at Aylesbury
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 97
  start-page: 140
  year: 2009
  end-page: 150
  ident: bib7
  article-title: Wind uplift strength of trapezoidal steel cladding with closely spaced ribs
  publication-title: J. Wind Eng.
– year: 2008
  ident: bib19
  article-title: Fatigue of Structures and Materials
– volume: 18
  start-page: 4
  year: 2004
  end-page: 11
  ident: bib5
  article-title: Splitting failures in trapezoidal steel roof cladding
  publication-title: J. Perform. Constr. Facil. ASCE
– volume: 17
  start-page: 476
  year: 1995
  end-page: 484
  ident: bib24
  article-title: Towards an appropriate fatigue loading sequence for roof claddings in cyclone prone areas
  publication-title: Eng. Struct.
– start-page: 163
  year: 1979
  end-page: 174
  ident: bib3
  article-title: Wind loading failures of trapezoidal profile roof cladding
  publication-title: Civ. Eng. Trans. IE Aust.
– volume: 33
  start-page: 3290
  year: 2011
  end-page: 3298
  ident: bib21
  article-title: Response of pierced fixed trapezoidal profile steel roofing systems subjected to wind loads
  publication-title: Eng. Struct.
– volume: 16
  start-page: 368
  year: 1994
  end-page: 376
  ident: bib4
  article-title: Behaviour and design of crest-fixed profiled steel roof claddings under wind uplift
  publication-title: Eng. Struct.
– volume: 142
  year: 2016
  ident: bib10
  article-title: Development of suitable test methods for the screw connections in cold-formed steel roof battens
  publication-title: J. Struct. Eng.
– volume: 19
  start-page: 1
  year: 1977
  end-page: 5
  ident: bib2
  article-title: Failure of sheet-metal roofing under repeated wind loading
  publication-title: Civ. Eng. Trans.
– volume: 31
  start-page: 498
  year: 2009
  end-page: 506
  ident: bib8
  article-title: A strain criterion for pull-through failures in crest-fixed steel claddings
  publication-title: Eng. Struct.
– volume: 12
  start-page: 381
  year: 2009
  end-page: 398
  ident: bib23
  article-title: Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing
  publication-title: Wind Struct.
– volume: 121
  start-page: 389
  year: 1995
  end-page: 398
  ident: bib13
  article-title: Fatigue performance of screw-fastened light-gauge-steel roofing sheets
  publication-title: J. Struct. Eng. ASCE
– volume: 47
  start-page: 193
  year: 1998
  end-page: 210
  ident: bib33
  article-title: Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses
  publication-title: J. Constr. Steel Res.
– volume: 77
  start-page: 171
  year: 1998
  end-page: 183
  ident: bib22
  article-title: Fatigue analysis of roof cladding under simulated wind loading
  publication-title: J. Wind Eng.
– year: 1992
  ident: bib25
  article-title: Design of Steel Structures Part Cold Formed Thin Gauge Members and Sheeting
– year: 1990
  ident: bib11
  article-title: Fatigue behaviour of trapezoidal profile roofing under cyclic wind loading
  publication-title: Civ. Eng. Trans. IE Aust.
– start-page: S100
  year: 2007
  end-page: S107
  ident: bib26
  article-title: North American specification for the design of cold-formed steel structural members
  publication-title: AISI
– volume: 17
  start-page: 476
  year: 1995
  end-page: 484
  ident: bib14
  article-title: Towards an appropriate fatigue loading sequence for roof claddings in cyclone prone areas
  publication-title: Eng. Struct.
– year: 2005
  ident: bib27
  article-title: AS/NZS 4600
– year: 2009
  ident: bib28
  article-title: Metallic Materials–Tensile Testing—Part 1: Method of Test at Room Temperature ISO E, 6892-1
– volume: 139
  start-page: 135
  year: 2017
  end-page: 148
  ident: bib20
  article-title: Unified static-fatigue pull-through capacity equations for cold-formed steel roof battens
  publication-title: J. Constr. Steel Res.
– volume: 113
  start-page: 388
  year: 2016
  end-page: 406
  ident: bib9
  article-title: Experimental studies of thin-walled steel roof battens subject to pull-through failures
  publication-title: Eng. Struct.
– volume: 26
  start-page: 1547
  year: 2004
  end-page: 1559
  ident: bib6
  article-title: Finite element analysis and design of crest-fixed trapezoidal steel claddings with wide pans subject to pull-through failures
  publication-title: Eng. Struct.
– year: 1989
  ident: bib12
  article-title: Fatigue Behavior of Trapezoidal Profile Roofing under Cyclic Wind Loading, Cyclone Testing Station Technical Report 35
– volume: 75
  start-page: 31
  year: 2000
  end-page: 44
  ident: bib15
  article-title: Prediction of wind-induced fatigue on claddings of low buildings
  publication-title: Comput. Struct.
– year: 2018
  ident: bib29
  publication-title: ABAQUS Analysis User's Manual-Version 6.14-2
– volume: 125
  start-page: 364
  year: 2016
  end-page: 373
  ident: bib17
  article-title: Characterising fatigue macrocrack initiation in profiled steel roof cladding
  publication-title: Eng. Struct.
– volume: 166
  year: 2021
  ident: bib31
  article-title: Deep learning-based procedure for structural design of cold-formed steel channels with edge-stiffened and un-stiffened holes under axial compression
  publication-title: Thin-Walled Struct.
– volume: 260
  year: 2022
  ident: bib32
  article-title: Effect of the web hole size on the axial capacity of back-to-back aluminium alloy channel section columns
  publication-title: Eng. Struct.
– volume: 51
  start-page: 215
  year: 1994
  end-page: 227
  ident: bib16
  article-title: Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone
  publication-title: J. Wind Eng.
– volume: 33
  start-page: 2792
  year: 2021
  end-page: 2802
  ident: bib30
  article-title: Deep learning-based axial capacity prediction for cold-formed steel channels using Deep Belief Network
  publication-title: Struct
– volume: 17
  start-page: 476
  issue: 7
  year: 1995
  ident: 10.1016/j.jobe.2022.105433_bib14
  article-title: Towards an appropriate fatigue loading sequence for roof claddings in cyclone prone areas
  publication-title: Eng. Struct.
  doi: 10.1016/0141-0296(95)00049-D
– year: 2001
  ident: 10.1016/j.jobe.2022.105433_bib18
  article-title: Performance of light gauge metal roof cladding subjected to cyclonic wind loading
– volume: 31
  start-page: 498
  issue: 2
  year: 2009
  ident: 10.1016/j.jobe.2022.105433_bib8
  article-title: A strain criterion for pull-through failures in crest-fixed steel claddings
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2008.09.013
– volume: 19
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.jobe.2022.105433_bib2
  article-title: Failure of sheet-metal roofing under repeated wind loading
  publication-title: Civ. Eng. Trans.
– volume: 139
  start-page: 135
  year: 2017
  ident: 10.1016/j.jobe.2022.105433_bib20
  article-title: Unified static-fatigue pull-through capacity equations for cold-formed steel roof battens
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2017.09.027
– volume: 33
  start-page: 3290
  issue: 12
  year: 2011
  ident: 10.1016/j.jobe.2022.105433_bib21
  article-title: Response of pierced fixed trapezoidal profile steel roofing systems subjected to wind loads
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.08.020
– volume: 18
  start-page: 4
  issue: 1
  year: 2004
  ident: 10.1016/j.jobe.2022.105433_bib5
  article-title: Splitting failures in trapezoidal steel roof cladding
  publication-title: J. Perform. Constr. Facil. ASCE
  doi: 10.1061/(ASCE)0887-3828(2004)18:1(4)
– year: 2009
  ident: 10.1016/j.jobe.2022.105433_bib28
– volume: 51
  start-page: 215
  issue: 2
  year: 1994
  ident: 10.1016/j.jobe.2022.105433_bib16
  article-title: Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone
  publication-title: J. Wind Eng.
– year: 1990
  ident: 10.1016/j.jobe.2022.105433_bib11
  article-title: Fatigue behaviour of trapezoidal profile roofing under cyclic wind loading
  publication-title: Civ. Eng. Trans. IE Aust.
– volume: 47
  start-page: 193
  issue: 3
  year: 1998
  ident: 10.1016/j.jobe.2022.105433_bib33
  article-title: Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/S0143-974X(98)00007-8
– year: 1989
  ident: 10.1016/j.jobe.2022.105433_bib12
– volume: 17
  start-page: 476
  issue: 7
  year: 1995
  ident: 10.1016/j.jobe.2022.105433_bib24
  article-title: Towards an appropriate fatigue loading sequence for roof claddings in cyclone prone areas
  publication-title: Eng. Struct.
  doi: 10.1016/0141-0296(95)00049-D
– volume: 260
  year: 2022
  ident: 10.1016/j.jobe.2022.105433_bib32
  article-title: Effect of the web hole size on the axial capacity of back-to-back aluminium alloy channel section columns
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114238
– volume: 113
  start-page: 388
  year: 2016
  ident: 10.1016/j.jobe.2022.105433_bib9
  article-title: Experimental studies of thin-walled steel roof battens subject to pull-through failures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.12.016
– volume: 75
  start-page: 31
  issue: 1
  year: 2000
  ident: 10.1016/j.jobe.2022.105433_bib15
  article-title: Prediction of wind-induced fatigue on claddings of low buildings
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(99)00081-4
– volume: 142
  issue: 6
  year: 2016
  ident: 10.1016/j.jobe.2022.105433_bib10
  article-title: Development of suitable test methods for the screw connections in cold-formed steel roof battens
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001476
– volume: 1
  start-page: 67
  year: 1975
  ident: 10.1016/j.jobe.2022.105433_bib1
  article-title: The measurement of wind pressures on two-storey houses at Aylesbury
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/0167-6105(75)90007-0
– volume: 121
  start-page: 389
  issue: 3
  year: 1995
  ident: 10.1016/j.jobe.2022.105433_bib13
  article-title: Fatigue performance of screw-fastened light-gauge-steel roofing sheets
  publication-title: J. Struct. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9445(1995)121:3(389)
– volume: 26
  start-page: 1547
  issue: 11
  year: 2004
  ident: 10.1016/j.jobe.2022.105433_bib6
  article-title: Finite element analysis and design of crest-fixed trapezoidal steel claddings with wide pans subject to pull-through failures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2004.05.007
– start-page: 163
  year: 1979
  ident: 10.1016/j.jobe.2022.105433_bib3
  article-title: Wind loading failures of trapezoidal profile roof cladding
  publication-title: Civ. Eng. Trans. IE Aust.
– volume: 77
  start-page: 171
  issue: 8
  year: 1998
  ident: 10.1016/j.jobe.2022.105433_bib22
  article-title: Fatigue analysis of roof cladding under simulated wind loading
  publication-title: J. Wind Eng.
– volume: 12
  start-page: 381
  issue: 4
  year: 2009
  ident: 10.1016/j.jobe.2022.105433_bib23
  article-title: Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing
  publication-title: Wind Struct.
  doi: 10.12989/was.2009.12.4.383
– year: 2018
  ident: 10.1016/j.jobe.2022.105433_bib29
– volume: 125
  start-page: 364
  issue: 15
  year: 2016
  ident: 10.1016/j.jobe.2022.105433_bib17
  article-title: Characterising fatigue macrocrack initiation in profiled steel roof cladding
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.07.020
– year: 1992
  ident: 10.1016/j.jobe.2022.105433_bib25
– volume: 33
  start-page: 2792
  year: 2021
  ident: 10.1016/j.jobe.2022.105433_bib30
  article-title: Deep learning-based axial capacity prediction for cold-formed steel channels using Deep Belief Network
  publication-title: Struct
  doi: 10.1016/j.istruc.2021.05.096
– volume: 166
  year: 2021
  ident: 10.1016/j.jobe.2022.105433_bib31
  article-title: Deep learning-based procedure for structural design of cold-formed steel channels with edge-stiffened and un-stiffened holes under axial compression
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.108076
– start-page: S100
  year: 2007
  ident: 10.1016/j.jobe.2022.105433_bib26
  article-title: North American specification for the design of cold-formed steel structural members
  publication-title: AISI
– year: 2008
  ident: 10.1016/j.jobe.2022.105433_bib19
– volume: 16
  start-page: 368
  issue: 5
  year: 1994
  ident: 10.1016/j.jobe.2022.105433_bib4
  article-title: Behaviour and design of crest-fixed profiled steel roof claddings under wind uplift
  publication-title: Eng. Struct.
  doi: 10.1016/0141-0296(94)90030-2
– volume: 97
  start-page: 140
  issue: 3–4
  year: 2009
  ident: 10.1016/j.jobe.2022.105433_bib7
  article-title: Wind uplift strength of trapezoidal steel cladding with closely spaced ribs
  publication-title: J. Wind Eng.
– year: 2005
  ident: 10.1016/j.jobe.2022.105433_bib27
SSID ssj0002953864
Score 2.2819118
Snippet Cold-formed steel (CFS) interlocking panels are popular in industrial and housing applications. They are mostly used in façades, soffits, fascia's, chimney...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105433
SubjectTerms Cold-formed steel
Fatigue
Finite element modelling
Full scale testing
Interlocking panels
Wind-uplift pressure
Title Wind-uplift capacity of cold-formed steel interlocking claddings-Experimental and numerical investigations
URI https://dx.doi.org/10.1016/j.jobe.2022.105433
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gXLwYjRrxlT14MxvovkqPhEBQIxclcmu6jxoIKQbh_zvbbgkmhoPXptM0X7cz3-zOfAPwEEsZW2UZdUkkqciVpFpHhsZZGdBVxsv26NeJGk_F80zOGjCoe2F8WWXw_ZVPL711uNIJaHa-5vPOG0PuEJcJi9eoS-QRtBhPlGxCq__0Mp7stlpYgn91KSTlTXz1IQvtM1Wl18L33TB8kB96Kzj_O0TthZ3RKZwEvkj61SudQcMV57D4wEyabpE_5htiMNwZ5NJklRP8qpZ6Guoswc_nlsTLQawxYPkdcWKWvnyo-Pymwz1hf5IVlhTb6ujGW-yUN3BFXsB0NHwfjGkYmkAN73Y3VFheHmV2dU9pzPeYQVJhtJLMSi1YrriOtJAuj0SUC-QPjAubYJ5oM8ccRvBLaBarwl0ByTnSAa4xSRZO9DDdlDzWzCF-TjFmTBuiGqfUBEVxP9himdalY4vUY5t6bNMK2zY87my-Kj2Ng3fLGv7016pI0eEfsLv-p90NHPtx8tUWyy00N-utu0PSsdH3YVH9AONv07k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF6sHtpLaWlL391Db2XR7CvmKKLE-rhUqbeQfaQoEsXG_9_ZPMRC8dBryIQw2cx83-7MNwi9-kL4RhpKbOAJwhMpiFKeJn6cJ3QZs7w9ejyR4Yy_z8W8hrpVL4wrqyxjfxHT82hdXmmW3mxuFovmBwXs4OeExWnUBeIENbgAtldHjc5gGE72Wy00gL86F5JyJq76kJbtM0Wl19L13VB4kBt6yxn7O0UdpJ3-BTov8SLuFK90iWo2vULLT2DSZAf4McmwhnSnAUvjdYLhqxriYKg1GD6fXWEnB7GFhOV2xLFeufKh9Oub9A6E_XGcGpzuiqMbZ7FX3oAVeY1m_d60G5JyaALRrNXKCDcsP8psqbZUwPeoBlChlRTUCMVpIpnyFBc28biXcMAPlHETAE80saUWMvgNqqfr1N4inDCAA0wBSeaWt4FuCuYrasF_VlKq9R3yKj9FulQUd4MtVlFVOraMnG8j59uo8O0detvbbAo9jaN3i8r90a9VEUHAP2J3_0-7F3QaTsejaDSYDB_QmRstX2y3PKJ6tt3ZJwAgmXouF9gP-CHWpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind-uplift+capacity+of+cold-formed+steel+interlocking+claddings-Experimental+and+numerical+investigations&rft.jtitle=Journal+of+Building+Engineering&rft.au=Roy%2C+Krishanu&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=2352-7102&rft.volume=63&rft_id=info:doi/10.1016%2Fj.jobe.2022.105433&rft.externalDocID=S2352710222014395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon