Malicious code detection based on CNNs and multi-objective algorithm
An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security vulnerabilities. The detection of malicious code is becoming increasingly crucial, and current methods of detection require much improvement. This paper pr...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 129; pp. 50 - 58 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7315 1096-0848 |
DOI | 10.1016/j.jpdc.2019.03.010 |
Cover
Abstract | An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security vulnerabilities. The detection of malicious code is becoming increasingly crucial, and current methods of detection require much improvement. This paper proposes a method to advance the detection of malicious code using convolutional neural networks (CNNs) and intelligence algorithm. The CNNs are used to identify and classify grayscale images converted from executable files of malicious code. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is then employed to deal with the data imbalance of malware families. A series of experiments are designed for malware image data from Vision Research Lab. The experimental results demonstrate that the proposed method is effective, maintaining higher accuracy and less loss.
•A technique for converting a malware binary to an image was introduced.•In this paper, a method based on CNN is used to identify and classify the malicious codes.•An effective data equilibrium approach based on the NSGA-II was designed.•The proposed method was demonstrated through the extensive experiments. |
---|---|
AbstractList | An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security vulnerabilities. The detection of malicious code is becoming increasingly crucial, and current methods of detection require much improvement. This paper proposes a method to advance the detection of malicious code using convolutional neural networks (CNNs) and intelligence algorithm. The CNNs are used to identify and classify grayscale images converted from executable files of malicious code. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is then employed to deal with the data imbalance of malware families. A series of experiments are designed for malware image data from Vision Research Lab. The experimental results demonstrate that the proposed method is effective, maintaining higher accuracy and less loss.
•A technique for converting a malware binary to an image was introduced.•In this paper, a method based on CNN is used to identify and classify the malicious codes.•An effective data equilibrium approach based on the NSGA-II was designed.•The proposed method was demonstrated through the extensive experiments. |
Author | Du, Lei Cui, Zhihua Cai, Xingjuan Wang, Penghong Zhang, Wensheng |
Author_xml | – sequence: 1 givenname: Zhihua surname: Cui fullname: Cui, Zhihua email: zhihua.cui@hotmail.com organization: Complex System and Computational Intelligence Laboratory, TaiYuan University of Science and Technology, Taiyuan, 030024, China – sequence: 2 givenname: Lei surname: Du fullname: Du, Lei email: dulei2468@163.com organization: Complex System and Computational Intelligence Laboratory, TaiYuan University of Science and Technology, Taiyuan, 030024, China – sequence: 3 givenname: Penghong surname: Wang fullname: Wang, Penghong email: penghongwang@sina.cn organization: Complex System and Computational Intelligence Laboratory, TaiYuan University of Science and Technology, Taiyuan, 030024, China – sequence: 4 givenname: Xingjuan surname: Cai fullname: Cai, Xingjuan email: xingjuancai@163.com organization: Complex System and Computational Intelligence Laboratory, TaiYuan University of Science and Technology, Taiyuan, 030024, China – sequence: 5 givenname: Wensheng surname: Zhang fullname: Zhang, Wensheng email: wensheng.zhang@ia.ac.cn organization: State Key Laboratory of Intelligent Control and Management of Complex Systems, Institute of Automation Chinese Academy of Sciences, Beijing, 100190, China |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDySM48SxJTaoQEEqZQNry6-AozSu7LQSf0-ismLR1YxG94x0zwLN-tA7hG4J5AQIu2vzdm9NXgAROdAcCFygOQHBMuAln6E51CXNakqqK7RIqQUgpKr5HD2-qc4bHw4Jm2Adtm5wZvChx1olZ_G4rLbbhFVv8e7QDT4Lup0SR4dV9xWiH7531-iyUV1yN39ziT6fnz5WL9nmff26ethkhgIMWWl0QS2nFdPc6qqum8ooI1gBjWC8LEtLqWJUaG6YErWm47EyAkpKqGgaRpeoOP01MaQUXSP30e9U_JEE5ORBtnLyICcPEqgcPYwQ_wcZP6ip4hCV786j9yfUjaWO3kWZjHe9cdbH0YG0wZ_DfwElwXpv |
CitedBy_id | crossref_primary_10_1016_j_eswa_2020_113648 crossref_primary_10_1007_s44227_024_00032_1 crossref_primary_10_1155_2021_1070586 crossref_primary_10_1002_cpe_5688 crossref_primary_10_1002_cpe_5685 crossref_primary_10_1109_ACCESS_2023_3307473 crossref_primary_10_1016_j_asoc_2024_111401 crossref_primary_10_1007_s13042_020_01087_6 crossref_primary_10_1016_j_asoc_2023_110676 crossref_primary_10_3390_math7060521 crossref_primary_10_3390_s24134253 crossref_primary_10_1007_s13042_019_01002_8 crossref_primary_10_1109_ACCESS_2023_3293530 crossref_primary_10_1002_cpe_5830 crossref_primary_10_1016_j_jpdc_2023_03_001 crossref_primary_10_3390_a14080224 crossref_primary_10_1007_s13042_019_00973_y crossref_primary_10_1155_2020_3094941 crossref_primary_10_1007_s10044_024_01381_x crossref_primary_10_12677_AIRR_2022_114041 crossref_primary_10_32604_cmc_2023_040253 crossref_primary_10_1016_j_ins_2021_09_024 crossref_primary_10_1007_s12293_019_00294_1 crossref_primary_10_1007_s13042_022_01647_y crossref_primary_10_1002_cpe_5464 crossref_primary_10_1016_j_jisa_2021_103063 crossref_primary_10_1007_s11227_023_05727_w crossref_primary_10_1109_MNET_011_2000331 crossref_primary_10_3390_app9153008 crossref_primary_10_1016_j_jnca_2022_103426 crossref_primary_10_3389_fbioe_2022_861079 crossref_primary_10_1007_s11277_019_06540_6 crossref_primary_10_7717_peerj_cs_494 crossref_primary_10_1109_ACCESS_2020_3010706 crossref_primary_10_3390_electronics10212723 crossref_primary_10_1111_coin_12551 crossref_primary_10_1016_j_future_2022_12_034 crossref_primary_10_1016_j_ins_2020_01_018 crossref_primary_10_1155_2022_2959222 crossref_primary_10_3390_app112110464 crossref_primary_10_1016_j_knosys_2022_109512 crossref_primary_10_1016_j_comnet_2020_107138 crossref_primary_10_1016_j_eswa_2022_118073 crossref_primary_10_1002_cpe_5575 crossref_primary_10_1007_s10489_023_05049_7 crossref_primary_10_3390_electronics12143166 crossref_primary_10_1007_s00500_019_04004_4 crossref_primary_10_1016_j_cose_2023_103118 crossref_primary_10_1016_j_cose_2022_102761 crossref_primary_10_1007_s13042_020_01213_4 crossref_primary_10_1109_ACCESS_2019_2937347 crossref_primary_10_32604_cmc_2023_038639 crossref_primary_10_3390_info12030118 crossref_primary_10_1080_15325008_2023_2282185 crossref_primary_10_3390_s21196412 crossref_primary_10_1016_j_cose_2020_101748 crossref_primary_10_3390_electronics10192444 crossref_primary_10_1007_s11227_023_05243_x crossref_primary_10_1109_ACCESS_2024_3435362 crossref_primary_10_1002_cpe_5976 crossref_primary_10_1016_j_cose_2022_102691 crossref_primary_10_1016_j_comcom_2023_12_036 crossref_primary_10_3390_electronics12030708 crossref_primary_10_1016_j_comnet_2021_108595 crossref_primary_10_1002_cpe_6059 crossref_primary_10_1016_j_comnet_2022_109289 crossref_primary_10_3390_fi16070235 crossref_primary_10_1109_ACCESS_2020_2981373 crossref_primary_10_1002_cpe_6051 crossref_primary_10_32604_cmc_2023_045512 crossref_primary_10_1155_2020_3045472 crossref_primary_10_1109_TNNLS_2024_3373809 crossref_primary_10_1016_j_future_2021_06_029 crossref_primary_10_1002_cpe_5768 crossref_primary_10_1109_TNNLS_2021_3099122 crossref_primary_10_1080_1206212X_2024_2401069 crossref_primary_10_1002_cpe_5991 crossref_primary_10_1007_s11416_021_00381_3 crossref_primary_10_1002_cpe_5478 crossref_primary_10_1088_1757_899X_993_1_012055 crossref_primary_10_1016_j_jisa_2021_103057 crossref_primary_10_1002_cpe_5592 crossref_primary_10_1002_cpe_6040 crossref_primary_10_1016_j_neucom_2021_03_117 crossref_primary_10_1109_TII_2020_3024578 crossref_primary_10_1007_s00521_021_06158_5 crossref_primary_10_3390_app12199593 crossref_primary_10_1016_j_ins_2020_05_067 crossref_primary_10_3390_electronics11223665 crossref_primary_10_1088_2058_9565_ad80bd crossref_primary_10_1016_j_est_2022_104227 crossref_primary_10_1109_ACCESS_2020_2990500 crossref_primary_10_48084_etasr_4412 crossref_primary_10_1016_j_aej_2024_10_055 crossref_primary_10_1016_j_ejrs_2022_11_003 crossref_primary_10_1016_j_iot_2025_101522 crossref_primary_10_1016_j_engappai_2024_108374 crossref_primary_10_1109_ACCESS_2019_2937538 crossref_primary_10_1002_cpe_6998 crossref_primary_10_1002_cpe_5948 crossref_primary_10_1016_j_engappai_2023_106030 crossref_primary_10_1002_cpe_5771 crossref_primary_10_1016_j_cose_2021_102547 crossref_primary_10_1049_tje2_12153 crossref_primary_10_1016_j_engappai_2023_107801 crossref_primary_10_1109_ACCESS_2019_2934563 crossref_primary_10_1109_TII_2021_3051607 crossref_primary_10_1109_ACCESS_2021_3059806 crossref_primary_10_1002_cpe_5810 crossref_primary_10_1002_cpe_5778 crossref_primary_10_3233_JIFS_235154 crossref_primary_10_1016_j_heliyon_2024_e35965 crossref_primary_10_1007_s10489_020_01887_x crossref_primary_10_1002_cpe_5815 |
Cites_doi | 10.1504/IJCSM.2018.095500 10.1504/IJBIC.2018.092801 10.1016/j.jpdc.2016.10.011 10.1002/cpe.3426 10.1504/IJBIC.2018.090070 10.1007/s13042-017-0739-8 10.1007/s11432-018-9729-5 10.1016/j.neunet.2014.09.003 10.1145/2792984 10.3390/math7020184 10.1504/IJBIC.2018.091244 10.1162/neco.2006.18.7.1527 10.1504/IJCSM.2018.096325 10.1109/TII.2018.2822680 10.1016/j.ins.2016.12.024 10.1504/IJCSM.2018.093162 10.1007/s12293-017-0237-2 10.1504/IJBIC.2019.097724 10.1109/4235.996017 10.1504/IJBIC.2018.096482 10.1145/3073559 10.1002/cpe.5182 10.1145/3017427 10.1504/IJCSM.2018.091735 10.1504/IJBIC.2018.091234 10.1504/IJBIC.2018.092807 10.1109/CVPR.2012.6248110 10.1504/IJBIC.2016.078666 10.1145/2740070.2631434 10.1504/IJCSM.2018.094654 10.3390/math7020135 10.1109/TETC.2017.2703784 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpdc.2019.03.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1096-0848 |
EndPage | 58 |
ExternalDocumentID | 10_1016_j_jpdc_2019_03_010 S0743731518308529 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4cb23d8356b8db577f5cac9620f968444d33a639b8c6a97b36845c9043139ff63 |
IEDL.DBID | AIKHN |
ISSN | 0743-7315 |
IngestDate | Thu Apr 24 22:52:42 EDT 2025 Tue Jul 01 03:20:48 EDT 2025 Fri Feb 23 02:31:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning NSGA-II CNN Imbalance data Malicious code |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4cb23d8356b8db577f5cac9620f968444d33a639b8c6a97b36845c9043139ff63 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_jpdc_2019_03_010 crossref_citationtrail_10_1016_j_jpdc_2019_03_010 elsevier_sciencedirect_doi_10_1016_j_jpdc_2019_03_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Biswas, Chakraborty, Purkayastha (b2) 2018; 11 Wang, Wang, Zhou (b42) 2017; 382 Cui, Li, Zhang (b8) 2018 Cai, Wang, Cui (b4) 2018; 9 Sharif, Yegneswaran, Saidi (b35) 2008 Cui, Zhang, Wang, Cao, Cai, Zhang, Chen (b11) 2019 Zhao, Xue, Xu (b50) 2018; 9 Kalyanmoy, Pratap, Agarwal (b19) 2002; 6 Zhang, Wang, Cui (b48) 2018; 10 Schmidhuber (b33) 2015; 61 Li, Zuo (b23) 2007 Bao (b1) 2018; 9 Nataraj, Yegneswaran, Porras (b30) 2011 Hinton, Osindero, Teh (b17) 2006; 18 Ma (b25) 2018; 12 Shaid, Maarof (b34) 2014 Cui, Cao, Cai, Cai, Chen (b7) 2017 Li, Yu, Song (b22) 2019 Moser, Kruegel, Kirda (b27) 2007 Cui, Sun, Wang, Xue, Chen (b9) 2017; 103 Tam, Feizollah, Anuar (b36) 2017; 49 Tavares, Nedjah, Mourelle (b37) 2018; 11 Trinius, Holz, Göbel (b38) 2009 Nataraj, Yegneswaran, Porras (b31) 2011 Wang, Wang, Chi (b41) 2018; 9 Liu, Beaugeard, Yang, Zhang, Chen (b24) 2016; 28 Li, Li, Tang (b21) 2015; 48 Wagner, Fischer, Luh (b39) 2015 Zhang, Zhou, Zhang (b49) 2018; 11 He, Li, Sun (b16) 2018; 9 Jie, Jiangjun (b18) 2018; 9 Cui, Xue, Cai (b10) 2018; 14 Narasimhan, Balasubramanian, Kumar (b28) 2018; 11 Gandotra, Bansal, Sofat (b13) 2014; 5 Yoo (b46) 2004 Niu, Liu, Tan (b32) 2019; 13 Wang, Xue, Li, Cui, Xie, Chen (b43) 2019; 7 Chess (b5) 2002 Ye, Li, Adjeroh (b45) 2017; 50 Wang, Cai, Cui, Min, Chen (b40) 2017 Cai, Gao, Xue (b3) 2016; 8 Han, Lim, Im (b15) 2013 De Souza, Vieira, De Souza, Correia, Costa, De Almeida Costa (b12) 2018; 11 Nataraj, Karthikeyan, Jacob (b29) 2011 Miao, Liu, Wang (b26) 2015 Krizhevsky, Sutskever, Hinton (b20) 2012 2012. Grosse, Papernot, Manoharan (b14) 2017 D. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, arXiv preprint Yuan, Lu, Wang (b47) 2014; 44 Wang (b44) 2019; 7 Cui (10.1016/j.jpdc.2019.03.010_b9) 2017; 103 Nataraj (10.1016/j.jpdc.2019.03.010_b29) 2011 Sharif (10.1016/j.jpdc.2019.03.010_b35) 2008 Cai (10.1016/j.jpdc.2019.03.010_b3) 2016; 8 Zhao (10.1016/j.jpdc.2019.03.010_b50) 2018; 9 Cui (10.1016/j.jpdc.2019.03.010_b10) 2018; 14 Ye (10.1016/j.jpdc.2019.03.010_b45) 2017; 50 Wang (10.1016/j.jpdc.2019.03.010_b42) 2017; 382 He (10.1016/j.jpdc.2019.03.010_b16) 2018; 9 Li (10.1016/j.jpdc.2019.03.010_b22) 2019 Li (10.1016/j.jpdc.2019.03.010_b21) 2015; 48 Wang (10.1016/j.jpdc.2019.03.010_b43) 2019; 7 Bao (10.1016/j.jpdc.2019.03.010_b1) 2018; 9 Wagner (10.1016/j.jpdc.2019.03.010_b39) 2015 Wang (10.1016/j.jpdc.2019.03.010_b40) 2017 Yuan (10.1016/j.jpdc.2019.03.010_b47) 2014; 44 Cui (10.1016/j.jpdc.2019.03.010_b11) 2019 10.1016/j.jpdc.2019.03.010_b6 Cui (10.1016/j.jpdc.2019.03.010_b7) 2017 Nataraj (10.1016/j.jpdc.2019.03.010_b31) 2011 Zhang (10.1016/j.jpdc.2019.03.010_b49) 2018; 11 Kalyanmoy (10.1016/j.jpdc.2019.03.010_b19) 2002; 6 Shaid (10.1016/j.jpdc.2019.03.010_b34) 2014 Miao (10.1016/j.jpdc.2019.03.010_b26) 2015 Yoo (10.1016/j.jpdc.2019.03.010_b46) 2004 Liu (10.1016/j.jpdc.2019.03.010_b24) 2016; 28 Tavares (10.1016/j.jpdc.2019.03.010_b37) 2018; 11 Han (10.1016/j.jpdc.2019.03.010_b15) 2013 Wang (10.1016/j.jpdc.2019.03.010_b44) 2019; 7 Chess (10.1016/j.jpdc.2019.03.010_b5) 2002 Tam (10.1016/j.jpdc.2019.03.010_b36) 2017; 49 Trinius (10.1016/j.jpdc.2019.03.010_b38) 2009 Nataraj (10.1016/j.jpdc.2019.03.010_b30) 2011 Niu (10.1016/j.jpdc.2019.03.010_b32) 2019; 13 Grosse (10.1016/j.jpdc.2019.03.010_b14) 2017 De Souza (10.1016/j.jpdc.2019.03.010_b12) 2018; 11 Narasimhan (10.1016/j.jpdc.2019.03.010_b28) 2018; 11 Krizhevsky (10.1016/j.jpdc.2019.03.010_b20) 2012 Cai (10.1016/j.jpdc.2019.03.010_b4) 2018; 9 Hinton (10.1016/j.jpdc.2019.03.010_b17) 2006; 18 Biswas (10.1016/j.jpdc.2019.03.010_b2) 2018; 11 Jie (10.1016/j.jpdc.2019.03.010_b18) 2018; 9 Zhang (10.1016/j.jpdc.2019.03.010_b48) 2018; 10 Cui (10.1016/j.jpdc.2019.03.010_b8) 2018 Li (10.1016/j.jpdc.2019.03.010_b23) 2007 Ma (10.1016/j.jpdc.2019.03.010_b25) 2018; 12 Moser (10.1016/j.jpdc.2019.03.010_b27) 2007 Wang (10.1016/j.jpdc.2019.03.010_b41) 2018; 9 Schmidhuber (10.1016/j.jpdc.2019.03.010_b33) 2015; 61 Gandotra (10.1016/j.jpdc.2019.03.010_b13) 2014; 5 |
References_xml | – volume: 11 start-page: 91 year: 2018 end-page: 101 ident: b12 article-title: Feature selection based on binary particle swarm optimisation and neural networks for pathological voice detection publication-title: Int. J. Bio-Inspired Comput. – volume: 103 start-page: 42 year: 2017 end-page: 52 ident: b9 article-title: A novel oriented cuckoo search algorithm to improve DV-hop performance for cyber-physical systems publication-title: J. Parallel Distrib. Comput. – volume: 11 start-page: 267 year: 2018 end-page: 281 ident: b49 article-title: Preselection via classification: a case study on global optimisation publication-title: Int. J. Bio-Inspired Comput. – volume: 11 start-page: 102 year: 2018 end-page: 109 ident: b37 article-title: Embedded implementation of template matching using correlation and particle swarm optimization publication-title: Int. J. Bio-Inspired Comput. – start-page: 105 year: 2015 end-page: 125 ident: b39 article-title: A survey of visualization systems for malware analysis publication-title: EG conference on visualization (EuroVis)-STARs – start-page: 21 year: 2011 end-page: 30 ident: b31 article-title: A comparative assessment of malware classification using binary texture analysis and dynamic analysis publication-title: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence – start-page: 317 year: 2013 end-page: 321 ident: b15 article-title: Malware analysis method using visualization of binary files publication-title: Proceedings of the 2013 Research in Adaptive and Convergent Systems – volume: 7 start-page: 184 year: 2019 ident: b43 article-title: A multi-objective DVHop localization algorithm based on NSGAII in Internet of Things publication-title: Mathematics – volume: 7 start-page: 135 year: 2019 ident: b44 article-title: A novel bat algorithm with multiple strategies coupling for numerical optimization publication-title: Mathematics – year: 2017 ident: b40 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans. Emerg. Top. Comput. – reference: , 2012. – volume: 49 start-page: 76 year: 2017 ident: b36 article-title: The evolution of android malware and android analysis techniques publication-title: ACM Comput. Surv. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b33 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – volume: 48 start-page: 13 year: 2015 ident: b21 article-title: Many-objective evolutionary algorithms: A survey publication-title: ACM Comput. Surv. – volume: 11 start-page: 60 year: 2018 end-page: 70 ident: b2 article-title: A rule generation algorithm from neural network using classified and misclassified data publication-title: Int. J. Bio-Inspired Comput. – volume: 44 start-page: 371 year: 2014 end-page: 372 ident: b47 article-title: Droid-sec: deep learning in android malware detection publication-title: ACM SIGCOMM Comput. Commun. Rev. – volume: 10 start-page: 199 year: 2018 end-page: 208 ident: b48 article-title: Hybrid multi-objective cuckoo search with dynamical local search publication-title: Memetic Comput. – volume: 9 start-page: 240 year: 2018 end-page: 246 ident: b18 article-title: A high-efficient multi-deme genetic algorithm with better load-balance publication-title: Int. J. Comput. Sci. Math. – start-page: 160 year: 2002 end-page: 173 ident: b5 article-title: Improving computer security using extended static checking publication-title: Proceedings 2002 IEEE Symposium on Security and Privacy – volume: 8 start-page: 205 year: 2016 end-page: 214 ident: b3 article-title: Improved bat algorithm with optimal forage strategy and random disturbance strategy publication-title: Int. J. Bio-Inspired Comput. – volume: 14 start-page: 3187 year: 2018 end-page: 3196 ident: b10 article-title: Detection of malicious code variants based on deep learning publication-title: IEEE Trans. Ind. Inf. – volume: 50 start-page: 41 year: 2017 ident: b45 article-title: A survey on malware detection using data mining techniques publication-title: ACM Comput. Surv. – year: 2019 ident: b11 article-title: A pigeon-inspired optimization algorithm for many-objective optimization problems publication-title: Sci China Inf. Sci. – start-page: 82 year: 2004 end-page: 89 ident: b46 article-title: Visualizing windows executable viruses using self-organizing maps publication-title: Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security – year: 2019 ident: b22 article-title: Image encryption based on a single-round dictionary and chaotic sequences in cloud computing publication-title: Concurr. Comput.: Pract. Exper. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b17 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – start-page: 4 year: 2007 ident: b23 article-title: An overview of object-code obfuscation technologies publication-title: Comput. Technol. Dev. – volume: 12 start-page: 236 year: 2018 end-page: 244 ident: b25 article-title: Network optimisation design of hazmat based on multi-objective genetic algorithm under the uncertain environment publication-title: Int. J. Bio-Inspired Comput. – start-page: 33 year: 2009 end-page: 38 ident: b38 article-title: Visual analysis of malware behavior using treemaps and thread graphs publication-title: 2009 6th International Workshop on Visualization for Cyber Security – start-page: 1 year: 2018 end-page: 20 ident: b8 article-title: Bat algorithm with principal component analysis publication-title: Int. J. Mach. Learn. Cybern. – start-page: 62 year: 2017 end-page: 79 ident: b14 article-title: Adversarial examples for malware detection publication-title: European Symposium on Research in Computer Security – start-page: 21 year: 2011 end-page: 30 ident: b30 article-title: A comparative assessment of malware classification using binary texture analysis and dynamic analysis publication-title: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence – start-page: 283 year: 2015 end-page: 294 ident: b26 article-title: Remote sensing image fusion based on shearlet and genetic algorithm publication-title: Bio-Inspired Computing-Theories and Applications – volume: 9 start-page: 199 year: 2018 end-page: 215 ident: b4 article-title: Bat algorithm with triangle-flipping strategy for numerical optimization publication-title: Int. J. Mach. Learn. Cybern. – year: 2011 ident: b29 article-title: Malware images: visualization and automatic classification publication-title: Proceedings of the 8th International Symposium on Visualization for Cyber Security, Vol. 4 – start-page: 238 year: 2014 end-page: 243 ident: b34 article-title: Malware behavior image for malware variant identification publication-title: 2014 International Symposium on Biometrics and Security Technologies (ISBAST) – start-page: 1097 year: 2012 end-page: 1105 ident: b20 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 474 year: 2018 end-page: 483 ident: b1 article-title: Existence and stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales publication-title: Int. J. Comput. Sci. Math. – volume: 9 start-page: 122 year: 2018 end-page: 132 ident: b41 article-title: A research on defect image enhancement based on partial differential equation of quantum mechanics publication-title: Int. J. Comput. Sci. Math. – volume: 13 start-page: 21 year: 2019 end-page: 31 ident: b32 article-title: Multi-swarm cooperative multi-objective bacterial foraging optimisation publication-title: Int. J. Bio-Inspired Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b19 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 421 year: 2007 end-page: 430 ident: b27 article-title: Limits of static analysis for malware detection publication-title: Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007) – year: 2017 ident: b7 article-title: Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things publication-title: J. Parallel Distrib. Comput. – volume: 9 start-page: 539 year: 2018 end-page: 546 ident: b50 article-title: Multi-objective classification based on NSGA-II publication-title: Int. J. Comput. Sci. Math. – volume: 382 start-page: 374 year: 2017 end-page: 387 ident: b42 article-title: Firefly algorithm with neighborhood attraction publication-title: Inform. Sci. – volume: 28 start-page: 646 year: 2016 end-page: 660 ident: b24 article-title: HKE-BC: hierarchical key exchange for secure scheduling and auditing of big data in cloud computing publication-title: Concurr. Comput.: Pract. Exper. – start-page: 481 year: 2008 end-page: 500 ident: b35 article-title: Eureka: A framework for enabling static malware analysis publication-title: European Symposium on Research in Computer Security – reference: D. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, arXiv preprint – volume: 9 start-page: 327 year: 2018 end-page: 339 ident: b16 article-title: Temperature intelligent prediction model of coke oven flue based on CBR and RBFNN publication-title: Int. J. Comput. Sci. Math. – volume: 11 start-page: 219 year: 2018 end-page: 228 ident: b28 article-title: EGA-FMC: enhanced genetic algorithm-based fuzzy k-modes clustering for categorical data publication-title: Int. J. Bio-Inspired Comput. – volume: 5 start-page: 56 year: 2014 ident: b13 article-title: Malware analysis and classification: A survey publication-title: J. Inf. Secur. – volume: 9 start-page: 474 issue: 5 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b1 article-title: Existence and stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales publication-title: Int. J. Comput. Sci. Math. doi: 10.1504/IJCSM.2018.095500 – start-page: 4 year: 2007 ident: 10.1016/j.jpdc.2019.03.010_b23 article-title: An overview of object-code obfuscation technologies publication-title: Comput. Technol. Dev. – volume: 11 start-page: 219 issue: 4 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b28 article-title: EGA-FMC: enhanced genetic algorithm-based fuzzy k-modes clustering for categorical data publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.092801 – year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b7 article-title: Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things publication-title: J. Parallel Distrib. Comput. – volume: 103 start-page: 42 year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b9 article-title: A novel oriented cuckoo search algorithm to improve DV-hop performance for cyber-physical systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2016.10.011 – start-page: 21 year: 2011 ident: 10.1016/j.jpdc.2019.03.010_b30 article-title: A comparative assessment of malware classification using binary texture analysis and dynamic analysis – volume: 28 start-page: 646 issue: 3 year: 2016 ident: 10.1016/j.jpdc.2019.03.010_b24 article-title: HKE-BC: hierarchical key exchange for secure scheduling and auditing of big data in cloud computing publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.3426 – volume: 11 start-page: 60 issue: 1 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b2 article-title: A rule generation algorithm from neural network using classified and misclassified data publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.090070 – volume: 9 start-page: 199 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b4 article-title: Bat algorithm with triangle-flipping strategy for numerical optimization publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0739-8 – year: 2019 ident: 10.1016/j.jpdc.2019.03.010_b11 article-title: A pigeon-inspired optimization algorithm for many-objective optimization problems publication-title: Sci China Inf. Sci. doi: 10.1007/s11432-018-9729-5 – start-page: 481 year: 2008 ident: 10.1016/j.jpdc.2019.03.010_b35 article-title: Eureka: A framework for enabling static malware analysis – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.jpdc.2019.03.010_b33 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 48 start-page: 13 issue: 1 year: 2015 ident: 10.1016/j.jpdc.2019.03.010_b21 article-title: Many-objective evolutionary algorithms: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2792984 – start-page: 160 year: 2002 ident: 10.1016/j.jpdc.2019.03.010_b5 article-title: Improving computer security using extended static checking – volume: 7 start-page: 184 issue: 2 year: 2019 ident: 10.1016/j.jpdc.2019.03.010_b43 article-title: A multi-objective DVHop localization algorithm based on NSGAII in Internet of Things publication-title: Mathematics doi: 10.3390/math7020184 – volume: 11 start-page: 102 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b37 article-title: Embedded implementation of template matching using correlation and particle swarm optimization publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.091244 – year: 2011 ident: 10.1016/j.jpdc.2019.03.010_b29 article-title: Malware images: visualization and automatic classification – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.jpdc.2019.03.010_b17 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 9 start-page: 539 issue: 6 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b50 article-title: Multi-objective classification based on NSGA-II publication-title: Int. J. Comput. Sci. Math. doi: 10.1504/IJCSM.2018.096325 – start-page: 283 year: 2015 ident: 10.1016/j.jpdc.2019.03.010_b26 article-title: Remote sensing image fusion based on shearlet and genetic algorithm – volume: 14 start-page: 3187 issue: 7 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b10 article-title: Detection of malicious code variants based on deep learning publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2822680 – volume: 382 start-page: 374 year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b42 article-title: Firefly algorithm with neighborhood attraction publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.12.024 – volume: 9 start-page: 240 issue: 3 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b18 article-title: A high-efficient multi-deme genetic algorithm with better load-balance publication-title: Int. J. Comput. Sci. Math. doi: 10.1504/IJCSM.2018.093162 – volume: 10 start-page: 199 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b48 article-title: Hybrid multi-objective cuckoo search with dynamical local search publication-title: Memetic Comput. doi: 10.1007/s12293-017-0237-2 – start-page: 33 year: 2009 ident: 10.1016/j.jpdc.2019.03.010_b38 article-title: Visual analysis of malware behavior using treemaps and thread graphs – volume: 13 start-page: 21 issue: 1 year: 2019 ident: 10.1016/j.jpdc.2019.03.010_b32 article-title: Multi-swarm cooperative multi-objective bacterial foraging optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2019.097724 – start-page: 421 year: 2007 ident: 10.1016/j.jpdc.2019.03.010_b27 article-title: Limits of static analysis for malware detection – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.jpdc.2019.03.010_b19 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 12 start-page: 236 issue: 4 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b25 article-title: Network optimisation design of hazmat based on multi-objective genetic algorithm under the uncertain environment publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.096482 – volume: 50 start-page: 41 issue: 3 year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b45 article-title: A survey on malware detection using data mining techniques publication-title: ACM Comput. Surv. doi: 10.1145/3073559 – start-page: 105 year: 2015 ident: 10.1016/j.jpdc.2019.03.010_b39 article-title: A survey of visualization systems for malware analysis – year: 2019 ident: 10.1016/j.jpdc.2019.03.010_b22 article-title: Image encryption based on a single-round dictionary and chaotic sequences in cloud computing publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.5182 – volume: 49 start-page: 76 issue: 4 year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b36 article-title: The evolution of android malware and android analysis techniques publication-title: ACM Comput. Surv. doi: 10.1145/3017427 – volume: 9 start-page: 122 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b41 article-title: A research on defect image enhancement based on partial differential equation of quantum mechanics publication-title: Int. J. Comput. Sci. Math. doi: 10.1504/IJCSM.2018.091735 – volume: 11 start-page: 91 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b12 article-title: Feature selection based on binary particle swarm optimisation and neural networks for pathological voice detection publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.091234 – start-page: 62 year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b14 article-title: Adversarial examples for malware detection – start-page: 317 year: 2013 ident: 10.1016/j.jpdc.2019.03.010_b15 article-title: Malware analysis method using visualization of binary files – start-page: 238 year: 2014 ident: 10.1016/j.jpdc.2019.03.010_b34 article-title: Malware behavior image for malware variant identification – start-page: 21 year: 2011 ident: 10.1016/j.jpdc.2019.03.010_b31 article-title: A comparative assessment of malware classification using binary texture analysis and dynamic analysis – start-page: 1097 year: 2012 ident: 10.1016/j.jpdc.2019.03.010_b20 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 267 issue: 4 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b49 article-title: Preselection via classification: a case study on global optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.092807 – ident: 10.1016/j.jpdc.2019.03.010_b6 doi: 10.1109/CVPR.2012.6248110 – start-page: 1 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b8 article-title: Bat algorithm with principal component analysis publication-title: Int. J. Mach. Learn. Cybern. – volume: 8 start-page: 205 issue: 4 year: 2016 ident: 10.1016/j.jpdc.2019.03.010_b3 article-title: Improved bat algorithm with optimal forage strategy and random disturbance strategy publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2016.078666 – volume: 44 start-page: 371 issue: 4 year: 2014 ident: 10.1016/j.jpdc.2019.03.010_b47 article-title: Droid-sec: deep learning in android malware detection publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/2740070.2631434 – start-page: 82 year: 2004 ident: 10.1016/j.jpdc.2019.03.010_b46 article-title: Visualizing windows executable viruses using self-organizing maps – volume: 9 start-page: 327 issue: 4 year: 2018 ident: 10.1016/j.jpdc.2019.03.010_b16 article-title: Temperature intelligent prediction model of coke oven flue based on CBR and RBFNN publication-title: Int. J. Comput. Sci. Math. doi: 10.1504/IJCSM.2018.094654 – volume: 5 start-page: 56 issue: 02 year: 2014 ident: 10.1016/j.jpdc.2019.03.010_b13 article-title: Malware analysis and classification: A survey publication-title: J. Inf. Secur. – volume: 7 start-page: 135 issue: 2 year: 2019 ident: 10.1016/j.jpdc.2019.03.010_b44 article-title: A novel bat algorithm with multiple strategies coupling for numerical optimization publication-title: Mathematics doi: 10.3390/math7020135 – year: 2017 ident: 10.1016/j.jpdc.2019.03.010_b40 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2017.2703784 |
SSID | ssj0011578 |
Score | 2.574225 |
Snippet | An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 50 |
SubjectTerms | CNN Deep learning Imbalance data Malicious code NSGA-II |
Title | Malicious code detection based on CNNs and multi-objective algorithm |
URI | https://dx.doi.org/10.1016/j.jpdc.2019.03.010 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH5YENmSax48RjVagKqFmgUrfIjwRalbQqYeW3YzdOBRJiYEusnBR9Sb77In93B3Dl6SwUjEnMqK8xpTrAgrIcxzQXgsfSj3O7oztO2GhCH6bhtAGDuhbG2iod91ecvmFrt9JzaPZWs1nvySa_iJiMFROjGwLehHZAOAtb0O7fP46S7WaCH1aEbLtx2gBXO1PZvOYrbTsZ-lWvU1tI-1t--pZzhvuw68Qi6lf3cwCNrDiEvXoQA3Lf5RHcjo2aVtbNimyJOtJZuXFYFcgmKY3MwSBJ3pEoNNo4CPFSziumQ2LxslzPyte3Y5gM754HI-zGI2BFPK_EVMmAaKOgmIy1DKMoD5VQnAVezllMDe6ECCNAZKyY4JEkZjFU3HbTITzPGTmBVrEsslNARnZk5s_MVrlKmolIGJh8IjXJAu5Lpjrg16CkyvUOtyMsFmltEpunFsjUApl6JDVAduB6G7OqOmf8eXVYY53-eP6pofY_4s7-GXcOO_asMt5eQKtcf2SXRl6UsgvNm0-_616iL70BzP4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UetCLb2N97sGbwQK7LHA01aZqy8U26W2zL7RNpU3Fq7_dHR6NJqYHb2TZScgHzHyEb75B6NrVJhCMSYdRTzuUat8RlKVORFMh4kh6UQp_dAcJ643o0zgYN1Cn7oUBWWWV-8ucXmTraqVdodleTCbtFyh-IbEVKyKWN_jxBtqkAQlB13f7tdJ5gJlMVHtxwvaqc6YUeU0XGnwMvdLpFNpo_6pOPypOdw_tVFQR35VXs48aJjtAu_UYBly9lYfofmC5tAItK4YGdaxNXuirMgwlSmN70EmSDywyjQv9oDOX0zLPYTF7nS8n-dv7ERp1H4adnlMNR3AUcd3coUr6RFv-xGSkZRCGaaCEipnvpjGLqEWdEGHph4wUE3EoiV0MVAxeOiROU0aOUTObZ-YEYUs6jP0ugx5XSY0IhYXJI1IT48eeZKqFvBoUrirncBhgMeO1RGzKAUgOQHKXcAtkC92sYhalb8ba3UGNNf9197lN7GviTv8Zd4W2esNBn_cfk-cztA1nSgnuOWrmy09zYYlGLi-LB-kbb23NyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+code+detection+based+on+CNNs+and+multi-objective+algorithm&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Cui%2C+Zhihua&rft.au=Du%2C+Lei&rft.au=Wang%2C+Penghong&rft.au=Cai%2C+Xingjuan&rft.date=2019-07-01&rft.issn=0743-7315&rft.volume=129&rft.spage=50&rft.epage=58&rft_id=info:doi/10.1016%2Fj.jpdc.2019.03.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2019_03_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |