Remaining useful life prediction using multi-scale deep convolutional neural network
Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to maximize the equipment usage and avoid costly failure. The conventional RUL prediction methods include model-based and data-driven. However, with...
Saved in:
Published in | Applied soft computing Vol. 89; p. 106113 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to maximize the equipment usage and avoid costly failure. The conventional RUL prediction methods include model-based and data-driven. However, with the rapid development of modern industries, the physical model is becoming less capable of describing sophisticated systems, and the traditional data-driven methods have limited ability to learn sophisticated features. To overcome these problems, a multi-scale deep convolutional neural network (MS-DCNN) which have powerful feature extraction capability due to its multi-scale structure is proposed in this paper. This network constructs a direct relationship between Condition Monitoring (CM) data and ground-RUL without using any prior information. The MS-DCNN has three multi-scale blocks (MS-BLOCKs), where three different sizes of convolution operations are put on each block in parallel. This structure improves the network’s ability to learn complex features by extracting features of different scales. The developed algorithm includes three stages: data pre-processing, model training, and RUL prediction. After the min–max normalization pre-processing, the data is sent to the MS-DCNN network for parameter training directly, and the associated RUL value can be estimated base on the learned representations. Regularization helps to improve prediction accuracy and alleviate the overfitting problem. We evaluate the method on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. The results show that the proposed method achieves good prognostics performance compared with other network architectures and state-of-the-art methods. RUL prediction result is obtained precisely without increasing the calculation burden.
•A new deep learning method based on multi-scale feature extraction is proposed for remaining useful life (RUL) prediction.•The proposed method constructs the direct relationship between the raw data and the ground-RUL.•The proposed method improves the learning ability and robustness of the network by capturing more detailed features using multi-scale structure.•We prove that the proposed method achieves more accurate prediction results on NASA’s C-MAPSS dataset in comparison with other deep learning architectures and state-of-the-art methods without increasing the calculation amount |
---|---|
AbstractList | Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to maximize the equipment usage and avoid costly failure. The conventional RUL prediction methods include model-based and data-driven. However, with the rapid development of modern industries, the physical model is becoming less capable of describing sophisticated systems, and the traditional data-driven methods have limited ability to learn sophisticated features. To overcome these problems, a multi-scale deep convolutional neural network (MS-DCNN) which have powerful feature extraction capability due to its multi-scale structure is proposed in this paper. This network constructs a direct relationship between Condition Monitoring (CM) data and ground-RUL without using any prior information. The MS-DCNN has three multi-scale blocks (MS-BLOCKs), where three different sizes of convolution operations are put on each block in parallel. This structure improves the network’s ability to learn complex features by extracting features of different scales. The developed algorithm includes three stages: data pre-processing, model training, and RUL prediction. After the min–max normalization pre-processing, the data is sent to the MS-DCNN network for parameter training directly, and the associated RUL value can be estimated base on the learned representations. Regularization helps to improve prediction accuracy and alleviate the overfitting problem. We evaluate the method on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. The results show that the proposed method achieves good prognostics performance compared with other network architectures and state-of-the-art methods. RUL prediction result is obtained precisely without increasing the calculation burden.
•A new deep learning method based on multi-scale feature extraction is proposed for remaining useful life (RUL) prediction.•The proposed method constructs the direct relationship between the raw data and the ground-RUL.•The proposed method improves the learning ability and robustness of the network by capturing more detailed features using multi-scale structure.•We prove that the proposed method achieves more accurate prediction results on NASA’s C-MAPSS dataset in comparison with other deep learning architectures and state-of-the-art methods without increasing the calculation amount |
ArticleNumber | 106113 |
Author | Zhao, Wei Zhang, Yuxi Li, Han Zio, Enrico |
Author_xml | – sequence: 1 givenname: Han surname: Li fullname: Li, Han organization: School of Electronic and Information Engineering, Beihang University, Group 203, Beijing 100191, China – sequence: 2 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: School of Electronic and Information Engineering, Beihang University, Group 203, Beijing 100191, China – sequence: 3 givenname: Yuxi surname: Zhang fullname: Zhang, Yuxi email: zhangyuxi@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Group 203, Beijing 100191, China – sequence: 4 givenname: Enrico surname: Zio fullname: Zio, Enrico organization: Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, Milan 20133, Italy |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_7B7bma3ez4EWKXyAIUs8hm51IapqUZLfivzdrPXnoacI784SZZ4FmPnhA6JrgFcGkvtmuVAp6RTGdgpoQdobmRDS0bGtBZvld1aLkLa8v0CKlLc5QS8Ucbd5gp6y3_qMYE5jRFc4aKPYReqsHG3yOp-ZudIMtk1YOih5gX-jgD8GN04hyhYcx_pbhK8TPS3RulEtw9VeX6P3hfrN-Kl9eH5_Xdy-lZhgPJdcYeCX6nkCjuNKka5QxefuqqzvSsEYoUtG2M4IL1laV1oYRzVjOKG8EZ0skjv_qGFKKYKS2g5pWGqKyThIsJztyKyc7crIjj3YySv-h-2h3Kn6fhm6PEOSjDhaiTNqC19lVBD3IPthT-A80b4FX |
CitedBy_id | crossref_primary_10_1088_1361_6501_acb074 crossref_primary_10_1002_nano_202100028 crossref_primary_10_1109_OJIM_2022_3205649 crossref_primary_10_1109_JSEN_2023_3326487 crossref_primary_10_1016_j_optcom_2024_130588 crossref_primary_10_3390_a17080321 crossref_primary_10_1109_ACCESS_2023_3277730 crossref_primary_10_1016_j_asoc_2021_107150 crossref_primary_10_1051_jnwpu_20213920407 crossref_primary_10_1016_j_ress_2023_109404 crossref_primary_10_1093_jcde_qwae018 crossref_primary_10_1088_2631_8695_ad68c9 crossref_primary_10_1109_JSEN_2023_3261874 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_1016_j_knosys_2021_107652 crossref_primary_10_3390_s22197384 crossref_primary_10_1016_j_asoc_2021_108008 crossref_primary_10_1016_j_ress_2021_107919 crossref_primary_10_1088_1742_6596_2820_1_012005 crossref_primary_10_1109_JSEN_2023_3246595 crossref_primary_10_1002_qre_3740 crossref_primary_10_1109_TIM_2022_3200093 crossref_primary_10_1155_2023_1830694 crossref_primary_10_1007_s10489_024_06145_y crossref_primary_10_1016_j_asoc_2024_112325 crossref_primary_10_1016_j_asoc_2022_109164 crossref_primary_10_1016_j_knosys_2024_112291 crossref_primary_10_1109_TIM_2021_3104414 crossref_primary_10_1115_1_4067843 crossref_primary_10_1109_TIM_2023_3322481 crossref_primary_10_1109_TIM_2022_3160561 crossref_primary_10_1016_j_measurement_2022_111893 crossref_primary_10_3390_machines10121226 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_1016_j_inffus_2024_102462 crossref_primary_10_1088_1361_6501_ad0ad5 crossref_primary_10_1016_j_knosys_2024_111738 crossref_primary_10_1021_acsomega_4c03873 crossref_primary_10_1109_TIM_2024_3375984 crossref_primary_10_1109_TSM_2022_3164578 crossref_primary_10_3390_e24121818 crossref_primary_10_1093_jigpal_jzae023 crossref_primary_10_1016_j_asoc_2025_113017 crossref_primary_10_1016_j_ress_2023_109199 crossref_primary_10_3390_pr11041153 crossref_primary_10_1016_j_engappai_2024_108160 crossref_primary_10_3390_agriculture14040513 crossref_primary_10_1016_j_cie_2024_110592 crossref_primary_10_3390_math13010130 crossref_primary_10_1088_2631_8695_ada870 crossref_primary_10_3390_s25020497 crossref_primary_10_1016_j_engappai_2024_108475 crossref_primary_10_1016_j_est_2023_109069 crossref_primary_10_1016_j_ress_2023_109321 crossref_primary_10_3390_app132111893 crossref_primary_10_3390_math9233035 crossref_primary_10_7736_JKSPE_024_101 crossref_primary_10_1088_1742_6596_2591_1_012063 crossref_primary_10_1016_j_measurement_2020_108707 crossref_primary_10_1016_j_asoc_2020_106491 crossref_primary_10_1177_1748006X221141744 crossref_primary_10_1016_j_ress_2023_109333 crossref_primary_10_1142_S0218126624501603 crossref_primary_10_1109_TR_2023_3349201 crossref_primary_10_1115_1_4056433 crossref_primary_10_1016_j_engappai_2023_107519 crossref_primary_10_1088_1361_6501_acb83e crossref_primary_10_3390_e25050798 crossref_primary_10_1016_j_egyr_2022_04_041 crossref_primary_10_1109_TIM_2023_3246526 crossref_primary_10_1016_j_neucom_2023_126618 crossref_primary_10_1016_j_eswa_2023_121859 crossref_primary_10_3390_ma17092106 crossref_primary_10_1016_j_ast_2024_109065 crossref_primary_10_1109_JSEN_2023_3269030 crossref_primary_10_1155_2022_9930176 crossref_primary_10_1016_j_ins_2023_119795 crossref_primary_10_1007_s10845_024_02399_y crossref_primary_10_1007_s10489_021_03034_6 crossref_primary_10_1016_j_isatra_2023_06_020 crossref_primary_10_1109_TII_2021_3078193 crossref_primary_10_1016_j_ress_2022_108722 crossref_primary_10_1002_qre_3494 crossref_primary_10_1016_j_measurement_2025_116685 crossref_primary_10_1007_s40430_023_04062_8 crossref_primary_10_1016_j_neucom_2025_129487 crossref_primary_10_1016_j_ress_2023_109793 crossref_primary_10_1088_1361_6501_ad4b54 crossref_primary_10_1080_00207543_2024_2349257 crossref_primary_10_1109_TIM_2023_3268453 crossref_primary_10_1162_neco_a_01296 crossref_primary_10_1016_j_ijar_2023_108988 crossref_primary_10_1088_1361_6501_ac7f7f crossref_primary_10_1088_1402_4896_ad7ab9 crossref_primary_10_1016_j_est_2024_111626 crossref_primary_10_1109_TIM_2022_3184352 crossref_primary_10_1016_j_measurement_2025_117061 crossref_primary_10_1016_j_jmsy_2024_05_011 crossref_primary_10_1016_j_mfglet_2023_08_037 crossref_primary_10_1016_j_asoc_2023_110836 crossref_primary_10_1109_TII_2022_3202832 crossref_primary_10_1016_j_jmsy_2021_07_008 crossref_primary_10_1088_1361_6501_aca8c2 crossref_primary_10_3390_electronics11071125 crossref_primary_10_1109_JSEN_2024_3523335 crossref_primary_10_1088_2053_1591_ad5140 crossref_primary_10_1109_JSEN_2024_3485750 crossref_primary_10_1016_j_measurement_2024_114177 crossref_primary_10_1109_JSEN_2024_3404072 crossref_primary_10_1016_j_measurement_2024_116116 crossref_primary_10_1109_TEC_2021_3116423 crossref_primary_10_1155_2021_2122655 crossref_primary_10_1016_j_energy_2023_128761 crossref_primary_10_1109_TICPS_2024_3433492 crossref_primary_10_3390_electronics13050976 crossref_primary_10_1016_j_aei_2023_101898 crossref_primary_10_3233_IDA_227099 crossref_primary_10_1109_TAES_2024_3402199 crossref_primary_10_1016_j_ress_2021_107871 crossref_primary_10_1088_1361_6501_ac84f6 crossref_primary_10_21105_joss_05294 crossref_primary_10_1016_j_apenergy_2022_119011 crossref_primary_10_1002_oca_3195 crossref_primary_10_1007_s00521_022_07378_z crossref_primary_10_1016_j_jmapro_2024_03_098 crossref_primary_10_1093_jcde_qwae072 crossref_primary_10_3390_aerospace11121057 crossref_primary_10_3390_e23010040 crossref_primary_10_1109_TIM_2025_3545540 crossref_primary_10_1088_1361_6501_ad78f5 crossref_primary_10_1155_2021_6616861 crossref_primary_10_3390_su151310434 crossref_primary_10_1016_j_ress_2024_110190 crossref_primary_10_1177_1748006X221119301 crossref_primary_10_1109_JSEN_2023_3324330 crossref_primary_10_1016_j_ress_2025_110818 crossref_primary_10_1177_16878132241239802 crossref_primary_10_1007_s10845_023_02077_5 crossref_primary_10_1088_2631_8695_adbe26 crossref_primary_10_1007_s11668_022_01469_8 crossref_primary_10_1007_s12206_021_1109_8 crossref_primary_10_1007_s40430_022_03856_6 crossref_primary_10_3390_aerospace10010080 crossref_primary_10_3390_s21030932 crossref_primary_10_3390_s22145174 crossref_primary_10_1016_j_eswa_2025_126807 crossref_primary_10_1016_j_aei_2024_102958 crossref_primary_10_1016_j_aei_2023_102316 crossref_primary_10_3390_mi13091471 crossref_primary_10_1016_j_dsp_2023_104368 crossref_primary_10_3390_s21227655 crossref_primary_10_1016_j_ress_2022_108916 crossref_primary_10_1088_1361_6501_ad07b6 crossref_primary_10_1016_j_heliyon_2024_e25120 crossref_primary_10_1016_j_ress_2023_109605 crossref_primary_10_1155_2022_1809482 crossref_primary_10_1016_j_asoc_2024_111726 crossref_primary_10_3390_aerospace11100809 crossref_primary_10_1016_j_ress_2022_108353 crossref_primary_10_1109_TII_2023_3240599 crossref_primary_10_1016_j_ress_2023_109163 crossref_primary_10_1088_1361_6501_ad73f1 crossref_primary_10_1155_2021_9937846 crossref_primary_10_35377_saucis_04_02_912154 crossref_primary_10_1016_j_ress_2022_108908 crossref_primary_10_1061_JAEEEZ_ASENG_5887 crossref_primary_10_1088_1361_6501_ad5c8c crossref_primary_10_1007_s40997_022_00526_9 crossref_primary_10_3390_en17235855 crossref_primary_10_3390_s21144676 crossref_primary_10_1109_JSEN_2023_3279365 crossref_primary_10_1016_j_ress_2022_108341 crossref_primary_10_1088_1361_6501_ad2d50 crossref_primary_10_1016_j_asoc_2020_107067 crossref_primary_10_1088_1361_6501_ad58ff crossref_primary_10_1109_JSEN_2023_3310479 crossref_primary_10_1016_j_engappai_2023_105970 crossref_primary_10_3390_aerospace12030259 crossref_primary_10_3390_aerospace11090741 crossref_primary_10_1016_j_asoc_2023_111071 crossref_primary_10_1016_j_autcon_2024_105648 crossref_primary_10_3390_s25020432 crossref_primary_10_1109_TII_2022_3152578 crossref_primary_10_1007_s40747_021_00606_4 crossref_primary_10_1088_1742_6596_2138_1_012009 crossref_primary_10_1109_ACCESS_2020_3010506 crossref_primary_10_1016_j_jpowsour_2024_234674 crossref_primary_10_1016_j_engappai_2023_107365 crossref_primary_10_1016_j_aei_2024_102372 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ress_2022_108330 crossref_primary_10_1016_j_rser_2023_114193 crossref_primary_10_1109_TIM_2023_3347782 crossref_primary_10_1016_j_aei_2024_102490 crossref_primary_10_1016_j_asoc_2023_110419 crossref_primary_10_1016_j_ress_2021_108012 crossref_primary_10_1109_TASE_2023_3287598 crossref_primary_10_1016_j_ymssp_2023_110187 crossref_primary_10_1007_s40684_025_00694_4 crossref_primary_10_1016_j_engappai_2023_105860 crossref_primary_10_1109_TIM_2021_3053992 crossref_primary_10_1016_j_ymssp_2021_107785 crossref_primary_10_1007_s40843_024_3204_5 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1155_2022_9707940 crossref_primary_10_1016_j_inffus_2024_102659 crossref_primary_10_1016_j_cie_2025_110964 |
Cites_doi | 10.1109/CVPR.2016.90 10.1109/MSP.2012.2205597 10.1016/j.ress.2017.03.012 10.1016/j.ress.2009.08.001 10.1109/TIE.2004.824875 10.1016/j.ymssp.2013.06.004 10.1109/PHM.2008.4711422 10.1016/j.ress.2011.09.005 10.1016/j.ress.2017.11.021 10.1109/PHM.2008.4711421 10.1007/s00365-006-0663-2 10.1109/AUS.2016.7748035 10.1016/j.ress.2017.06.003 10.1162/neco.1995.7.2.219 10.1016/j.ress.2015.01.008 10.1016/j.ress.2016.11.008 10.1115/1.3656900 10.1109/JSEN.2013.2293517 10.36001/phmconf.2014.v6i1.2512 10.1109/PHM.2008.4711456 10.1016/j.ress.2015.01.013 10.1109/TIE.2016.2586442 10.1016/j.ress.2017.05.040 10.1016/j.engappai.2013.02.006 10.1016/j.ymssp.2008.06.009 10.1016/j.jmsy.2017.02.013 10.1016/j.ress.2018.11.027 10.1109/ICPHM.2017.7998311 10.1016/j.ymssp.2011.10.019 10.1109/TNNLS.2016.2582798 10.1016/j.ress.2015.12.003 10.1109/TSMC.2017.2697842 10.1109/PHM.2008.4711414 10.1115/1.2814097 10.1016/j.ress.2013.06.039 10.1016/j.ress.2011.07.009 10.1109/TIM.2010.2078296 10.1016/j.ymssp.2013.07.010 10.1016/j.ress.2005.12.014 10.1038/323533a0 10.1109/TIP.2017.2772836 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106113 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106113 S1568494620300533 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4c0e458dd1e7a4ac1b7aff0615b6b17378a1529bf8483955ccf31c33529247843 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:05 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 23 02:47:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Multi-scale Remaining useful life Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4c0e458dd1e7a4ac1b7aff0615b6b17378a1529bf8483955ccf31c33529247843 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106113 crossref_primary_10_1016_j_asoc_2020_106113 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yao, Rosasco, Caponnetto (b44) 2007; 26 Hieu, Muu, Quy, Vy (b38) 2019; 74 Liu, Zio (b19) 2017; 168 Kingma, Ba (b37) 2014 Heng, Zhang, Tan, Mathew (b22) 2009; 23 M.d.C. Moura, Santana, Droguett, Lins, Guedes (b8) 2017; 168 Blemel (b9) 1998 Jones, Poggio (b43) 1995; 7 Ikasari, Ayumi, Fanany, Mulyono (b39) 2016 2, 1 -norms minimization, in: International Conference on Neural Information Processing Systems, 2010, pp. 1813–1821. Paris (b11) 1963; 85 Fang, Paynabar, Gebraeel (b49) 2017; 159 Koushik (b34) 2016 Ramasso (b47) 2014 Jouin, Gouriveau, Hissel, Péra, Zerhouni (b12) 2016; 148 Baraldi, Compare, Sauco, Zio (b24) 2013; 41 Zhang, Lim, Qin, Tan (b32) 2017; 28 Wang, Youn, Hu (b52) 2012; 28 Park, Jung (b2) 2015; 138 Wu, Prasad (b53) 2018; 27 Liao, Jin, Pavel (b28) 2016; 63 Kontogiannis, Malakis (b7) 2012; 99 A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012, pp. 1097–1105. Benkedjouh, Medjaher, Zerhouni, Rechak (b17) 2013; 26 G.J. Kacprzynski, M.J. Roemer, G. Modgil, A. Palladino, K. Maynard, Enhancement of physics-of-failure prognostic models with system level features, in: Proceedings, IEEE Aerospace Conference, vol. 2916, 2002, pp. 6-2919-2916-2925. J.B. Coble, J.W. Hines, Prognostic algorithm categorization with PHM Challenge application, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–11. Wang, Maio, Zio (b15) 2017; 167 Li, Ding, Sun (b30) 2018; 172 Gebraeel, Lawley, Liu, Parmeshwaran (b16) 2004; 51 Wu, Chang, Mao, Du (b4) 2013; 119 Zio, Di Maio (b18) 2010; 95 S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, in: IEEE International Conference on Prognostics and Health Management, 2017, pp. 88–95. T. Wang, Y. Jianbo, D. Siegel, J. Lee, A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6. Chen (b5) 2007; 92 Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b46) 2019; 183 Hinton, Deng, Yu, Dahl, A.r. Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (b25) 2012; 29 S. Marble, B.P. Morton, Predicting the remaining life of propulsion system bearings, in: 2006 IEEE Aerospace Conference, 2006, p. 8. Lathuiliére, Mesejo, Alameda-Pineda, Horaud (b54) 2019 F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6. Ren, Cui, Sun, Cheng (b27) 2017; 43 Malhi, Yan, Gao (b20) 2011; 60 Rumelhart, Hinton, Williams (b42) 1986; 323 Hernandez-Garcia, König (b41) 2018 G.C. Cheng, Y.X. Hou, X.Z. Zhao, Q. Yu, Local and Non-Local Regularization for Semi-supervised deep learning, in: International Conference on Control Engineering and Automation, Iccea 2014, 2014, pp. 272–278. M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 135–140. A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–9. E. Ramasso, A. Saxena, Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset, in: Conference of the Prognostics and Health Management Society, 2015. F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint Lee, Wu, Zhao, Ghaffari, Liao, Siegel (b10) 2014; 42 Andersen, Häger, Maberg, Næss, Tungland (b6) 2012; 105 Jamali (b1) 2015; 137 Deutsch, He (b29) 2018; 48 Xu, Wang, Xu (b3) 2014; 14 Hansen, Hall, Kurtz (b23) 1995; 117 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. 10.1016/j.asoc.2020.106113_b50 10.1016/j.asoc.2020.106113_b51 10.1016/j.asoc.2020.106113_b14 Deutsch (10.1016/j.asoc.2020.106113_b29) 2018; 48 M.d.C. Moura (10.1016/j.asoc.2020.106113_b8) 2017; 168 Lathuiliére (10.1016/j.asoc.2020.106113_b54) 2019 Rumelhart (10.1016/j.asoc.2020.106113_b42) 1986; 323 Wu (10.1016/j.asoc.2020.106113_b53) 2018; 27 10.1016/j.asoc.2020.106113_b13 Hinton (10.1016/j.asoc.2020.106113_b25) 2012; 29 Heng (10.1016/j.asoc.2020.106113_b22) 2009; 23 Listou Ellefsen (10.1016/j.asoc.2020.106113_b46) 2019; 183 10.1016/j.asoc.2020.106113_b40 Jamali (10.1016/j.asoc.2020.106113_b1) 2015; 137 Kingma (10.1016/j.asoc.2020.106113_b37) 2014 Benkedjouh (10.1016/j.asoc.2020.106113_b17) 2013; 26 10.1016/j.asoc.2020.106113_b48 Malhi (10.1016/j.asoc.2020.106113_b20) 2011; 60 Kontogiannis (10.1016/j.asoc.2020.106113_b7) 2012; 99 Ramasso (10.1016/j.asoc.2020.106113_b47) 2014 10.1016/j.asoc.2020.106113_b45 Park (10.1016/j.asoc.2020.106113_b2) 2015; 138 Wang (10.1016/j.asoc.2020.106113_b15) 2017; 167 Lee (10.1016/j.asoc.2020.106113_b10) 2014; 42 Andersen (10.1016/j.asoc.2020.106113_b6) 2012; 105 Yao (10.1016/j.asoc.2020.106113_b44) 2007; 26 Jouin (10.1016/j.asoc.2020.106113_b12) 2016; 148 Wu (10.1016/j.asoc.2020.106113_b4) 2013; 119 Liao (10.1016/j.asoc.2020.106113_b28) 2016; 63 Blemel (10.1016/j.asoc.2020.106113_b9) 1998 Jones (10.1016/j.asoc.2020.106113_b43) 1995; 7 10.1016/j.asoc.2020.106113_b31 Paris (10.1016/j.asoc.2020.106113_b11) 1963; 85 10.1016/j.asoc.2020.106113_b36 Fang (10.1016/j.asoc.2020.106113_b49) 2017; 159 Liu (10.1016/j.asoc.2020.106113_b19) 2017; 168 10.1016/j.asoc.2020.106113_b33 Ikasari (10.1016/j.asoc.2020.106113_b39) 2016 10.1016/j.asoc.2020.106113_b35 Hernandez-Garcia (10.1016/j.asoc.2020.106113_b41) 2018 Zio (10.1016/j.asoc.2020.106113_b18) 2010; 95 Hansen (10.1016/j.asoc.2020.106113_b23) 1995; 117 Baraldi (10.1016/j.asoc.2020.106113_b24) 2013; 41 Koushik (10.1016/j.asoc.2020.106113_b34) 2016 Ren (10.1016/j.asoc.2020.106113_b27) 2017; 43 Li (10.1016/j.asoc.2020.106113_b30) 2018; 172 Chen (10.1016/j.asoc.2020.106113_b5) 2007; 92 Gebraeel (10.1016/j.asoc.2020.106113_b16) 2004; 51 10.1016/j.asoc.2020.106113_b26 Wang (10.1016/j.asoc.2020.106113_b52) 2012; 28 Xu (10.1016/j.asoc.2020.106113_b3) 2014; 14 10.1016/j.asoc.2020.106113_b21 Hieu (10.1016/j.asoc.2020.106113_b38) 2019; 74 Zhang (10.1016/j.asoc.2020.106113_b32) 2017; 28 |
References_xml | – year: 2019 ident: b54 article-title: A comprehensive analysis of deep regression publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: b25 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Mag. – volume: 26 start-page: 289 year: 2007 end-page: 315 ident: b44 article-title: On early stopping in gradient descent learning publication-title: Const. App. – volume: 92 start-page: 423 year: 2007 end-page: 432 ident: b5 article-title: Forecasting systems reliability based on support vector regression with genetic algorithms publication-title: Reliab. Eng. Syst. Saf. – volume: 105 start-page: 3 year: 2012 end-page: 12 ident: b6 article-title: The financial crisis in an operational risk management context—A review of causes and influencing factors publication-title: Reliab. Eng. Syst. Saf. – volume: 95 start-page: 49 year: 2010 end-page: 57 ident: b18 article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system publication-title: Reliab. Eng. Syst. Saf. – volume: 28 start-page: 622 year: 2012 end-page: 637 ident: b52 article-title: A generic probabilistic framework for structural health prognostics and uncertainty management publication-title: Mech. Syst. Signal Process. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. – volume: 119 start-page: 244 year: 2013 end-page: 250 ident: b4 article-title: Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters publication-title: Reliab. Eng. Syst. Saf. – volume: 159 start-page: 322 year: 2017 end-page: 331 ident: b49 article-title: Multistream sensor fusion-based prognostics model for systems with single failure modes publication-title: Reliab. Eng. Syst. Saf. – volume: 167 start-page: 276 year: 2017 end-page: 289 ident: b15 article-title: Three-loop Monte Carlo simulation approach to multi-state physics modeling for system reliability assessment publication-title: Reliab. Eng. Syst. Saf. – reference: F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: b30 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. – reference: J.B. Coble, J.W. Hines, Prognostic algorithm categorization with PHM Challenge application, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–11. – reference: F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6. – reference: G.C. Cheng, Y.X. Hou, X.Z. Zhao, Q. Yu, Local and Non-Local Regularization for Semi-supervised deep learning, in: International Conference on Control Engineering and Automation, Iccea 2014, 2014, pp. 272–278. – volume: 7 start-page: 219 year: 1995 end-page: 269 ident: b43 article-title: Regularization theory and neural networks architectures publication-title: Neural Comput. – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012, pp. 1097–1105. – reference: E. Ramasso, A. Saxena, Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset, in: Conference of the Prognostics and Health Management Society, 2015. – year: 1998 ident: b9 article-title: Dynamic autonomous test systems for prognostic health management – volume: 74 year: 2019 ident: b38 article-title: Explicit extragradient-like method with regularization for variational inequalities publication-title: Results Math. – reference: 2, 1 -norms minimization, in: International Conference on Neural Information Processing Systems, 2010, pp. 1813–1821. – reference: G.J. Kacprzynski, M.J. Roemer, G. Modgil, A. Palladino, K. Maynard, Enhancement of physics-of-failure prognostic models with system level features, in: Proceedings, IEEE Aerospace Conference, vol. 2916, 2002, pp. 6-2919-2916-2925. – volume: 41 start-page: 288 year: 2013 end-page: 300 ident: b24 article-title: Ensemble neural network-based particle filtering for prognostics publication-title: Mech. Syst. Signal Process. – reference: A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–9. – volume: 28 start-page: 2306 year: 2017 end-page: 2318 ident: b32 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 168 start-page: 338 year: 2017 end-page: 354 ident: b8 article-title: Analysis of extended warranties for medical equipment: A stackelberg game model using priority queues publication-title: Reliab. Eng. Syst. Saf. – volume: 43 start-page: 248 year: 2017 end-page: 256 ident: b27 article-title: Multi-bearing remaining useful life collaborative prediction: A deep learning approach publication-title: J. Manuf. Syst. – volume: 183 start-page: 240 year: 2019 end-page: 251 ident: b46 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. – volume: 23 start-page: 724 year: 2009 end-page: 739 ident: b22 article-title: Rotating machinery prognostics: State of the art, challenges and opportunities publication-title: Mech. Syst. Signal Process. – volume: 63 start-page: 7076 year: 2016 end-page: 7083 ident: b28 article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans. Ind. Electron. – volume: 42 start-page: 314 year: 2014 end-page: 334 ident: b10 article-title: Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications publication-title: Mech. Syst. Signal Process. – volume: 14 start-page: 1124 year: 2014 end-page: 1132 ident: b3 article-title: PHM-Oriented integrated fusion prognostics for aircraft engines based on sensor data publication-title: IEEE Sens. J. – volume: 117 start-page: 320 year: 1995 end-page: 325 ident: b23 article-title: New approach to the challenge of machinery prognostics publication-title: J. Eng. Gas Turbines Power – year: 2014 ident: b37 article-title: Adam: A method for stochastic optimization publication-title: Comput. Sci. – volume: 138 start-page: 21 year: 2015 end-page: 30 ident: b2 article-title: A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants publication-title: Reliab. Eng. Syst. Saf. – volume: 60 start-page: 703 year: 2011 end-page: 711 ident: b20 article-title: Prognosis of defect propagation based on recurrent neural networks publication-title: IEEE Trans. Instrum. Meas. – volume: 26 start-page: 1751 year: 2013 end-page: 1760 ident: b17 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng. Appl. Artif. Intell. – volume: 48 start-page: 11 year: 2018 end-page: 20 ident: b29 article-title: Using deep learning-based approach to predict remaining useful life of rotating components publication-title: IEEE Trans. Syst. Man Cybern. S – start-page: 512 year: 2016 end-page: 517 ident: b39 article-title: Multiple regularizations deep learning for paddy growth stages classification from LANDSAT-8 publication-title: Int. C Adv. Comp. Sci. I – volume: 168 start-page: 210 year: 2017 end-page: 217 ident: b19 article-title: Weighted-feature and cost-sensitive regression model for component continuous degradation assessment publication-title: Reliab. Eng. Syst. Saf. – volume: 137 start-page: 112 year: 2015 end-page: 119 ident: b1 article-title: Achieving reasonable conservatism in nuclear safety analyses publication-title: Reliab. Eng. Syst. Saf. – year: 2016 ident: b34 article-title: Understanding Convolutional Neural Networks – year: 2014 ident: b47 article-title: Investigating computational geometry for failure prognostics – year: 2018 ident: b41 article-title: Do deep nets really need weight decay and dropout? – reference: S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, in: IEEE International Conference on Prognostics and Health Management, 2017, pp. 88–95. – volume: 99 start-page: 193 year: 2012 end-page: 208 ident: b7 article-title: A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations publication-title: Reliab. Eng. Syst. Saf. – volume: 27 start-page: 1259 year: 2018 end-page: 1270 ident: b53 article-title: Semi-supervised deep learning using pseudo labels for hyperspectral image classification publication-title: IEEE Trans. Image Process. – volume: 85 start-page: 528 year: 1963 end-page: 533 ident: b11 article-title: A critical analysis of crack propagation laws publication-title: Trans. ASME D – reference: T. Wang, Y. Jianbo, D. Siegel, J. Lee, A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6. – reference: M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 135–140. – volume: 148 start-page: 78 year: 2016 end-page: 95 ident: b12 article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC publication-title: Reliab. Eng. Syst. Saf. – reference: S. Marble, B.P. Morton, Predicting the remaining life of propulsion system bearings, in: 2006 IEEE Aerospace Conference, 2006, p. 8. – volume: 323 start-page: 533 year: 1986 ident: b42 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 51 start-page: 694 year: 2004 end-page: 700 ident: b16 article-title: Residual life predictions from vibration-based degradation signals: a neural network approach publication-title: IEEE Trans. Ind. Electron. – ident: 10.1016/j.asoc.2020.106113_b35 doi: 10.1109/CVPR.2016.90 – year: 2018 ident: 10.1016/j.asoc.2020.106113_b41 – volume: 29 start-page: 82 year: 2012 ident: 10.1016/j.asoc.2020.106113_b25 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 168 start-page: 210 year: 2017 ident: 10.1016/j.asoc.2020.106113_b19 article-title: Weighted-feature and cost-sensitive regression model for component continuous degradation assessment publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.03.012 – volume: 95 start-page: 49 year: 2010 ident: 10.1016/j.asoc.2020.106113_b18 article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2009.08.001 – volume: 51 start-page: 694 year: 2004 ident: 10.1016/j.asoc.2020.106113_b16 article-title: Residual life predictions from vibration-based degradation signals: a neural network approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2004.824875 – volume: 42 start-page: 314 year: 2014 ident: 10.1016/j.asoc.2020.106113_b10 article-title: Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.06.004 – ident: 10.1016/j.asoc.2020.106113_b33 doi: 10.1109/PHM.2008.4711422 – volume: 105 start-page: 3 year: 2012 ident: 10.1016/j.asoc.2020.106113_b6 article-title: The financial crisis in an operational risk management context—A review of causes and influencing factors publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.09.005 – volume: 74 year: 2019 ident: 10.1016/j.asoc.2020.106113_b38 article-title: Explicit extragradient-like method with regularization for variational inequalities publication-title: Results Math. – volume: 172 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106113_b30 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – ident: 10.1016/j.asoc.2020.106113_b50 doi: 10.1109/PHM.2008.4711421 – ident: 10.1016/j.asoc.2020.106113_b26 – volume: 26 start-page: 289 issue: 2 year: 2007 ident: 10.1016/j.asoc.2020.106113_b44 article-title: On early stopping in gradient descent learning publication-title: Const. App. doi: 10.1007/s00365-006-0663-2 – year: 1998 ident: 10.1016/j.asoc.2020.106113_b9 – ident: 10.1016/j.asoc.2020.106113_b21 doi: 10.1109/AUS.2016.7748035 – year: 2016 ident: 10.1016/j.asoc.2020.106113_b34 – volume: 167 start-page: 276 year: 2017 ident: 10.1016/j.asoc.2020.106113_b15 article-title: Three-loop Monte Carlo simulation approach to multi-state physics modeling for system reliability assessment publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.06.003 – ident: 10.1016/j.asoc.2020.106113_b36 – year: 2019 ident: 10.1016/j.asoc.2020.106113_b54 article-title: A comprehensive analysis of deep regression publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 start-page: 219 year: 1995 ident: 10.1016/j.asoc.2020.106113_b43 article-title: Regularization theory and neural networks architectures publication-title: Neural Comput. doi: 10.1162/neco.1995.7.2.219 – volume: 137 start-page: 112 year: 2015 ident: 10.1016/j.asoc.2020.106113_b1 article-title: Achieving reasonable conservatism in nuclear safety analyses publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.01.008 – volume: 159 start-page: 322 year: 2017 ident: 10.1016/j.asoc.2020.106113_b49 article-title: Multistream sensor fusion-based prognostics model for systems with single failure modes publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2016.11.008 – volume: 85 start-page: 528 year: 1963 ident: 10.1016/j.asoc.2020.106113_b11 article-title: A critical analysis of crack propagation laws publication-title: Trans. ASME D doi: 10.1115/1.3656900 – volume: 14 start-page: 1124 year: 2014 ident: 10.1016/j.asoc.2020.106113_b3 article-title: PHM-Oriented integrated fusion prognostics for aircraft engines based on sensor data publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2293517 – ident: 10.1016/j.asoc.2020.106113_b31 doi: 10.36001/phmconf.2014.v6i1.2512 – ident: 10.1016/j.asoc.2020.106113_b51 doi: 10.1109/PHM.2008.4711456 – volume: 138 start-page: 21 year: 2015 ident: 10.1016/j.asoc.2020.106113_b2 article-title: A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.01.013 – volume: 63 start-page: 7076 year: 2016 ident: 10.1016/j.asoc.2020.106113_b28 article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2586442 – year: 2014 ident: 10.1016/j.asoc.2020.106113_b47 – volume: 168 start-page: 338 year: 2017 ident: 10.1016/j.asoc.2020.106113_b8 article-title: Analysis of extended warranties for medical equipment: A stackelberg game model using priority queues publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.05.040 – start-page: 512 year: 2016 ident: 10.1016/j.asoc.2020.106113_b39 article-title: Multiple regularizations deep learning for paddy growth stages classification from LANDSAT-8 publication-title: Int. C Adv. Comp. Sci. I – ident: 10.1016/j.asoc.2020.106113_b14 – volume: 26 start-page: 1751 year: 2013 ident: 10.1016/j.asoc.2020.106113_b17 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.02.006 – volume: 23 start-page: 724 year: 2009 ident: 10.1016/j.asoc.2020.106113_b22 article-title: Rotating machinery prognostics: State of the art, challenges and opportunities publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.06.009 – volume: 43 start-page: 248 year: 2017 ident: 10.1016/j.asoc.2020.106113_b27 article-title: Multi-bearing remaining useful life collaborative prediction: A deep learning approach publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2017.02.013 – volume: 183 start-page: 240 year: 2019 ident: 10.1016/j.asoc.2020.106113_b46 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.11.027 – ident: 10.1016/j.asoc.2020.106113_b48 doi: 10.1109/ICPHM.2017.7998311 – volume: 28 start-page: 622 year: 2012 ident: 10.1016/j.asoc.2020.106113_b52 article-title: A generic probabilistic framework for structural health prognostics and uncertainty management publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.10.019 – volume: 28 start-page: 2306 year: 2017 ident: 10.1016/j.asoc.2020.106113_b32 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 – volume: 148 start-page: 78 year: 2016 ident: 10.1016/j.asoc.2020.106113_b12 article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.12.003 – volume: 48 start-page: 11 year: 2018 ident: 10.1016/j.asoc.2020.106113_b29 article-title: Using deep learning-based approach to predict remaining useful life of rotating components publication-title: IEEE Trans. Syst. Man Cybern. S doi: 10.1109/TSMC.2017.2697842 – ident: 10.1016/j.asoc.2020.106113_b45 doi: 10.1109/PHM.2008.4711414 – year: 2014 ident: 10.1016/j.asoc.2020.106113_b37 article-title: Adam: A method for stochastic optimization publication-title: Comput. Sci. – ident: 10.1016/j.asoc.2020.106113_b13 – volume: 117 start-page: 320 year: 1995 ident: 10.1016/j.asoc.2020.106113_b23 article-title: New approach to the challenge of machinery prognostics publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.2814097 – volume: 119 start-page: 244 year: 2013 ident: 10.1016/j.asoc.2020.106113_b4 article-title: Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.06.039 – volume: 99 start-page: 193 year: 2012 ident: 10.1016/j.asoc.2020.106113_b7 article-title: A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.07.009 – volume: 60 start-page: 703 year: 2011 ident: 10.1016/j.asoc.2020.106113_b20 article-title: Prognosis of defect propagation based on recurrent neural networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2010.2078296 – volume: 41 start-page: 288 year: 2013 ident: 10.1016/j.asoc.2020.106113_b24 article-title: Ensemble neural network-based particle filtering for prognostics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.07.010 – volume: 92 start-page: 423 year: 2007 ident: 10.1016/j.asoc.2020.106113_b5 article-title: Forecasting systems reliability based on support vector regression with genetic algorithms publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.12.014 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.asoc.2020.106113_b42 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: 10.1016/j.asoc.2020.106113_b40 – volume: 27 start-page: 1259 year: 2018 ident: 10.1016/j.asoc.2020.106113_b53 article-title: Semi-supervised deep learning using pseudo labels for hyperspectral image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2772836 |
SSID | ssj0016928 |
Score | 2.6660364 |
Snippet | Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106113 |
SubjectTerms | Convolutional neural network Deep learning Multi-scale Remaining useful life |
Title | Remaining useful life prediction using multi-scale deep convolutional neural network |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106113 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbr0XZo-goZuRU1syZY8htCQvkJJE8hmLFkqKWlq8lj726uT5dBCydBJWJyw_el8D_ydDqFrahizYT0nhkWSMEklEbEr4wpDY9qh4a5_yvMg7o_ZwySa1FC3qoUBWqW3_aVNd9baz7Q8mq1iOm292sxDsITFYZu6ilKoYGcctPz2a0PzCOLE9VcFYQLSvnCm5HhlFgGbI4YwEQcB_ds5_XA4vQO05yNF3Ckf5hDV9PwI7VddGLD_KI_RaKg_yjYPeL3UZj3Ds6nRuFjALxiAHQO3_Q076iBZ2j3RONe6wEA494pn7wMHW7rB0cJP0Lh3N-r2ie-VQJR9-xVhqq1ZJPI80DxjmQokzyzWNl6RsQw45SKznjqRRjAbEkWRUoYGCgquYKcEo6eoPv-c6zOEVTvJbdijacw1S3KZhDkVeSaMFKG06U8DBRVIqfIHiUM_i1laMcbeUwA2BWDTEtgGutmsKcpjNLZKRxX26S9lSK2d37Lu_J_rLtAuXJWEnEtUXy3W-srGGivZdMrURDud7vDpBcb7x_7gG-F50-U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG_HGA0wotLGdxBkYEA-1QDtAkdhCnNioqJSKtkIs_Cn-IGfHqUBCDEhMkRw7sT-f7iF_5wPYY5pzdOsjT_NAelwy6YnQpnFRqnWd6sjWT2m1w8Ytv7gL7irwUebCGFql0_2FTrfa2rXUHJq1Qbdbu8HIQ_CYh7TObEapY1ZeqrdXjNuGR81T3OR9Ss_POicNz5UW8DLsPPJ4Vlc8EHnuqyjlaebLKMWpoXmXofQjFokUDVssteDoQQRBlmnmZyY_ySxMcIbfnYJpjurClE04fJ_wSvwwtgVdzew8Mz2XqVOQylKEHINSahpC32c_W8MvFu58Aeaca0qOi9UvQkX1l2C-LPtAnBZYhs61eirqSpDxUOlxj_S6WpHBiznzMftMDJn-gViuojdEIVAkV2pADMPdSTr-x9ykaR-Wh74Ct_-C4CpU-899tQYkq8c5-lmKhZHicS5jmjORp0JLQSXGW-vglyAlmbu53BTQ6CUlRe0xMcAmBtikAHYdDiZjBsW9Hb_2Dkrsk2_Sl6Bh-WXcxh_H7cJMo9O6Sq6a7ctNmDVvCjbQFlRHL2O1jY7OSO5YwSJw_9-S_AmeHAyZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+using+multi-scale+deep+convolutional+neural+network&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Han&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Yuxi&rft.au=Zio%2C+Enrico&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=89&rft_id=info:doi/10.1016%2Fj.asoc.2020.106113&rft.externalDocID=S1568494620300533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |