Remaining useful life prediction using multi-scale deep convolutional neural network

Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to maximize the equipment usage and avoid costly failure. The conventional RUL prediction methods include model-based and data-driven. However, with...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 89; p. 106113
Main Authors Li, Han, Zhao, Wei, Zhang, Yuxi, Zio, Enrico
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to maximize the equipment usage and avoid costly failure. The conventional RUL prediction methods include model-based and data-driven. However, with the rapid development of modern industries, the physical model is becoming less capable of describing sophisticated systems, and the traditional data-driven methods have limited ability to learn sophisticated features. To overcome these problems, a multi-scale deep convolutional neural network (MS-DCNN) which have powerful feature extraction capability due to its multi-scale structure is proposed in this paper. This network constructs a direct relationship between Condition Monitoring (CM) data and ground-RUL without using any prior information. The MS-DCNN has three multi-scale blocks (MS-BLOCKs), where three different sizes of convolution operations are put on each block in parallel. This structure improves the network’s ability to learn complex features by extracting features of different scales. The developed algorithm includes three stages: data pre-processing, model training, and RUL prediction. After the min–max normalization pre-processing, the data is sent to the MS-DCNN network for parameter training directly, and the associated RUL value can be estimated base on the learned representations. Regularization helps to improve prediction accuracy and alleviate the overfitting problem. We evaluate the method on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. The results show that the proposed method achieves good prognostics performance compared with other network architectures and state-of-the-art methods. RUL prediction result is obtained precisely without increasing the calculation burden. •A new deep learning method based on multi-scale feature extraction is proposed for remaining useful life (RUL) prediction.•The proposed method constructs the direct relationship between the raw data and the ground-RUL.•The proposed method improves the learning ability and robustness of the network by capturing more detailed features using multi-scale structure.•We prove that the proposed method achieves more accurate prediction results on NASA’s C-MAPSS dataset in comparison with other deep learning architectures and state-of-the-art methods without increasing the calculation amount
AbstractList Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to maximize the equipment usage and avoid costly failure. The conventional RUL prediction methods include model-based and data-driven. However, with the rapid development of modern industries, the physical model is becoming less capable of describing sophisticated systems, and the traditional data-driven methods have limited ability to learn sophisticated features. To overcome these problems, a multi-scale deep convolutional neural network (MS-DCNN) which have powerful feature extraction capability due to its multi-scale structure is proposed in this paper. This network constructs a direct relationship between Condition Monitoring (CM) data and ground-RUL without using any prior information. The MS-DCNN has three multi-scale blocks (MS-BLOCKs), where three different sizes of convolution operations are put on each block in parallel. This structure improves the network’s ability to learn complex features by extracting features of different scales. The developed algorithm includes three stages: data pre-processing, model training, and RUL prediction. After the min–max normalization pre-processing, the data is sent to the MS-DCNN network for parameter training directly, and the associated RUL value can be estimated base on the learned representations. Regularization helps to improve prediction accuracy and alleviate the overfitting problem. We evaluate the method on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. The results show that the proposed method achieves good prognostics performance compared with other network architectures and state-of-the-art methods. RUL prediction result is obtained precisely without increasing the calculation burden. •A new deep learning method based on multi-scale feature extraction is proposed for remaining useful life (RUL) prediction.•The proposed method constructs the direct relationship between the raw data and the ground-RUL.•The proposed method improves the learning ability and robustness of the network by capturing more detailed features using multi-scale structure.•We prove that the proposed method achieves more accurate prediction results on NASA’s C-MAPSS dataset in comparison with other deep learning architectures and state-of-the-art methods without increasing the calculation amount
ArticleNumber 106113
Author Zhao, Wei
Zhang, Yuxi
Li, Han
Zio, Enrico
Author_xml – sequence: 1
  givenname: Han
  surname: Li
  fullname: Li, Han
  organization: School of Electronic and Information Engineering, Beihang University, Group 203, Beijing 100191, China
– sequence: 2
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: School of Electronic and Information Engineering, Beihang University, Group 203, Beijing 100191, China
– sequence: 3
  givenname: Yuxi
  surname: Zhang
  fullname: Zhang, Yuxi
  email: zhangyuxi@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Group 203, Beijing 100191, China
– sequence: 4
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: Department of Energy, Polytechnic of Milan, Via Ponzio 34/3, Milan 20133, Italy
BookMark eNp9kE1LAzEQhoNUsK3-AU_7B7bma3ez4EWKXyAIUs8hm51IapqUZLfivzdrPXnoacI784SZZ4FmPnhA6JrgFcGkvtmuVAp6RTGdgpoQdobmRDS0bGtBZvld1aLkLa8v0CKlLc5QS8Ucbd5gp6y3_qMYE5jRFc4aKPYReqsHG3yOp-ZudIMtk1YOih5gX-jgD8GN04hyhYcx_pbhK8TPS3RulEtw9VeX6P3hfrN-Kl9eH5_Xdy-lZhgPJdcYeCX6nkCjuNKka5QxefuqqzvSsEYoUtG2M4IL1laV1oYRzVjOKG8EZ0skjv_qGFKKYKS2g5pWGqKyThIsJztyKyc7crIjj3YySv-h-2h3Kn6fhm6PEOSjDhaiTNqC19lVBD3IPthT-A80b4FX
CitedBy_id crossref_primary_10_1088_1361_6501_acb074
crossref_primary_10_1002_nano_202100028
crossref_primary_10_1109_OJIM_2022_3205649
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_1016_j_optcom_2024_130588
crossref_primary_10_3390_a17080321
crossref_primary_10_1109_ACCESS_2023_3277730
crossref_primary_10_1016_j_asoc_2021_107150
crossref_primary_10_1051_jnwpu_20213920407
crossref_primary_10_1016_j_ress_2023_109404
crossref_primary_10_1093_jcde_qwae018
crossref_primary_10_1088_2631_8695_ad68c9
crossref_primary_10_1109_JSEN_2023_3261874
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1016_j_knosys_2021_107652
crossref_primary_10_3390_s22197384
crossref_primary_10_1016_j_asoc_2021_108008
crossref_primary_10_1016_j_ress_2021_107919
crossref_primary_10_1088_1742_6596_2820_1_012005
crossref_primary_10_1109_JSEN_2023_3246595
crossref_primary_10_1002_qre_3740
crossref_primary_10_1109_TIM_2022_3200093
crossref_primary_10_1155_2023_1830694
crossref_primary_10_1007_s10489_024_06145_y
crossref_primary_10_1016_j_asoc_2024_112325
crossref_primary_10_1016_j_asoc_2022_109164
crossref_primary_10_1016_j_knosys_2024_112291
crossref_primary_10_1109_TIM_2021_3104414
crossref_primary_10_1115_1_4067843
crossref_primary_10_1109_TIM_2023_3322481
crossref_primary_10_1109_TIM_2022_3160561
crossref_primary_10_1016_j_measurement_2022_111893
crossref_primary_10_3390_machines10121226
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_1016_j_inffus_2024_102462
crossref_primary_10_1088_1361_6501_ad0ad5
crossref_primary_10_1016_j_knosys_2024_111738
crossref_primary_10_1021_acsomega_4c03873
crossref_primary_10_1109_TIM_2024_3375984
crossref_primary_10_1109_TSM_2022_3164578
crossref_primary_10_3390_e24121818
crossref_primary_10_1093_jigpal_jzae023
crossref_primary_10_1016_j_asoc_2025_113017
crossref_primary_10_1016_j_ress_2023_109199
crossref_primary_10_3390_pr11041153
crossref_primary_10_1016_j_engappai_2024_108160
crossref_primary_10_3390_agriculture14040513
crossref_primary_10_1016_j_cie_2024_110592
crossref_primary_10_3390_math13010130
crossref_primary_10_1088_2631_8695_ada870
crossref_primary_10_3390_s25020497
crossref_primary_10_1016_j_engappai_2024_108475
crossref_primary_10_1016_j_est_2023_109069
crossref_primary_10_1016_j_ress_2023_109321
crossref_primary_10_3390_app132111893
crossref_primary_10_3390_math9233035
crossref_primary_10_7736_JKSPE_024_101
crossref_primary_10_1088_1742_6596_2591_1_012063
crossref_primary_10_1016_j_measurement_2020_108707
crossref_primary_10_1016_j_asoc_2020_106491
crossref_primary_10_1177_1748006X221141744
crossref_primary_10_1016_j_ress_2023_109333
crossref_primary_10_1142_S0218126624501603
crossref_primary_10_1109_TR_2023_3349201
crossref_primary_10_1115_1_4056433
crossref_primary_10_1016_j_engappai_2023_107519
crossref_primary_10_1088_1361_6501_acb83e
crossref_primary_10_3390_e25050798
crossref_primary_10_1016_j_egyr_2022_04_041
crossref_primary_10_1109_TIM_2023_3246526
crossref_primary_10_1016_j_neucom_2023_126618
crossref_primary_10_1016_j_eswa_2023_121859
crossref_primary_10_3390_ma17092106
crossref_primary_10_1016_j_ast_2024_109065
crossref_primary_10_1109_JSEN_2023_3269030
crossref_primary_10_1155_2022_9930176
crossref_primary_10_1016_j_ins_2023_119795
crossref_primary_10_1007_s10845_024_02399_y
crossref_primary_10_1007_s10489_021_03034_6
crossref_primary_10_1016_j_isatra_2023_06_020
crossref_primary_10_1109_TII_2021_3078193
crossref_primary_10_1016_j_ress_2022_108722
crossref_primary_10_1002_qre_3494
crossref_primary_10_1016_j_measurement_2025_116685
crossref_primary_10_1007_s40430_023_04062_8
crossref_primary_10_1016_j_neucom_2025_129487
crossref_primary_10_1016_j_ress_2023_109793
crossref_primary_10_1088_1361_6501_ad4b54
crossref_primary_10_1080_00207543_2024_2349257
crossref_primary_10_1109_TIM_2023_3268453
crossref_primary_10_1162_neco_a_01296
crossref_primary_10_1016_j_ijar_2023_108988
crossref_primary_10_1088_1361_6501_ac7f7f
crossref_primary_10_1088_1402_4896_ad7ab9
crossref_primary_10_1016_j_est_2024_111626
crossref_primary_10_1109_TIM_2022_3184352
crossref_primary_10_1016_j_measurement_2025_117061
crossref_primary_10_1016_j_jmsy_2024_05_011
crossref_primary_10_1016_j_mfglet_2023_08_037
crossref_primary_10_1016_j_asoc_2023_110836
crossref_primary_10_1109_TII_2022_3202832
crossref_primary_10_1016_j_jmsy_2021_07_008
crossref_primary_10_1088_1361_6501_aca8c2
crossref_primary_10_3390_electronics11071125
crossref_primary_10_1109_JSEN_2024_3523335
crossref_primary_10_1088_2053_1591_ad5140
crossref_primary_10_1109_JSEN_2024_3485750
crossref_primary_10_1016_j_measurement_2024_114177
crossref_primary_10_1109_JSEN_2024_3404072
crossref_primary_10_1016_j_measurement_2024_116116
crossref_primary_10_1109_TEC_2021_3116423
crossref_primary_10_1155_2021_2122655
crossref_primary_10_1016_j_energy_2023_128761
crossref_primary_10_1109_TICPS_2024_3433492
crossref_primary_10_3390_electronics13050976
crossref_primary_10_1016_j_aei_2023_101898
crossref_primary_10_3233_IDA_227099
crossref_primary_10_1109_TAES_2024_3402199
crossref_primary_10_1016_j_ress_2021_107871
crossref_primary_10_1088_1361_6501_ac84f6
crossref_primary_10_21105_joss_05294
crossref_primary_10_1016_j_apenergy_2022_119011
crossref_primary_10_1002_oca_3195
crossref_primary_10_1007_s00521_022_07378_z
crossref_primary_10_1016_j_jmapro_2024_03_098
crossref_primary_10_1093_jcde_qwae072
crossref_primary_10_3390_aerospace11121057
crossref_primary_10_3390_e23010040
crossref_primary_10_1109_TIM_2025_3545540
crossref_primary_10_1088_1361_6501_ad78f5
crossref_primary_10_1155_2021_6616861
crossref_primary_10_3390_su151310434
crossref_primary_10_1016_j_ress_2024_110190
crossref_primary_10_1177_1748006X221119301
crossref_primary_10_1109_JSEN_2023_3324330
crossref_primary_10_1016_j_ress_2025_110818
crossref_primary_10_1177_16878132241239802
crossref_primary_10_1007_s10845_023_02077_5
crossref_primary_10_1088_2631_8695_adbe26
crossref_primary_10_1007_s11668_022_01469_8
crossref_primary_10_1007_s12206_021_1109_8
crossref_primary_10_1007_s40430_022_03856_6
crossref_primary_10_3390_aerospace10010080
crossref_primary_10_3390_s21030932
crossref_primary_10_3390_s22145174
crossref_primary_10_1016_j_eswa_2025_126807
crossref_primary_10_1016_j_aei_2024_102958
crossref_primary_10_1016_j_aei_2023_102316
crossref_primary_10_3390_mi13091471
crossref_primary_10_1016_j_dsp_2023_104368
crossref_primary_10_3390_s21227655
crossref_primary_10_1016_j_ress_2022_108916
crossref_primary_10_1088_1361_6501_ad07b6
crossref_primary_10_1016_j_heliyon_2024_e25120
crossref_primary_10_1016_j_ress_2023_109605
crossref_primary_10_1155_2022_1809482
crossref_primary_10_1016_j_asoc_2024_111726
crossref_primary_10_3390_aerospace11100809
crossref_primary_10_1016_j_ress_2022_108353
crossref_primary_10_1109_TII_2023_3240599
crossref_primary_10_1016_j_ress_2023_109163
crossref_primary_10_1088_1361_6501_ad73f1
crossref_primary_10_1155_2021_9937846
crossref_primary_10_35377_saucis_04_02_912154
crossref_primary_10_1016_j_ress_2022_108908
crossref_primary_10_1061_JAEEEZ_ASENG_5887
crossref_primary_10_1088_1361_6501_ad5c8c
crossref_primary_10_1007_s40997_022_00526_9
crossref_primary_10_3390_en17235855
crossref_primary_10_3390_s21144676
crossref_primary_10_1109_JSEN_2023_3279365
crossref_primary_10_1016_j_ress_2022_108341
crossref_primary_10_1088_1361_6501_ad2d50
crossref_primary_10_1016_j_asoc_2020_107067
crossref_primary_10_1088_1361_6501_ad58ff
crossref_primary_10_1109_JSEN_2023_3310479
crossref_primary_10_1016_j_engappai_2023_105970
crossref_primary_10_3390_aerospace12030259
crossref_primary_10_3390_aerospace11090741
crossref_primary_10_1016_j_asoc_2023_111071
crossref_primary_10_1016_j_autcon_2024_105648
crossref_primary_10_3390_s25020432
crossref_primary_10_1109_TII_2022_3152578
crossref_primary_10_1007_s40747_021_00606_4
crossref_primary_10_1088_1742_6596_2138_1_012009
crossref_primary_10_1109_ACCESS_2020_3010506
crossref_primary_10_1016_j_jpowsour_2024_234674
crossref_primary_10_1016_j_engappai_2023_107365
crossref_primary_10_1016_j_aei_2024_102372
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2022_108330
crossref_primary_10_1016_j_rser_2023_114193
crossref_primary_10_1109_TIM_2023_3347782
crossref_primary_10_1016_j_aei_2024_102490
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1016_j_ress_2021_108012
crossref_primary_10_1109_TASE_2023_3287598
crossref_primary_10_1016_j_ymssp_2023_110187
crossref_primary_10_1007_s40684_025_00694_4
crossref_primary_10_1016_j_engappai_2023_105860
crossref_primary_10_1109_TIM_2021_3053992
crossref_primary_10_1016_j_ymssp_2021_107785
crossref_primary_10_1007_s40843_024_3204_5
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1155_2022_9707940
crossref_primary_10_1016_j_inffus_2024_102659
crossref_primary_10_1016_j_cie_2025_110964
Cites_doi 10.1109/CVPR.2016.90
10.1109/MSP.2012.2205597
10.1016/j.ress.2017.03.012
10.1016/j.ress.2009.08.001
10.1109/TIE.2004.824875
10.1016/j.ymssp.2013.06.004
10.1109/PHM.2008.4711422
10.1016/j.ress.2011.09.005
10.1016/j.ress.2017.11.021
10.1109/PHM.2008.4711421
10.1007/s00365-006-0663-2
10.1109/AUS.2016.7748035
10.1016/j.ress.2017.06.003
10.1162/neco.1995.7.2.219
10.1016/j.ress.2015.01.008
10.1016/j.ress.2016.11.008
10.1115/1.3656900
10.1109/JSEN.2013.2293517
10.36001/phmconf.2014.v6i1.2512
10.1109/PHM.2008.4711456
10.1016/j.ress.2015.01.013
10.1109/TIE.2016.2586442
10.1016/j.ress.2017.05.040
10.1016/j.engappai.2013.02.006
10.1016/j.ymssp.2008.06.009
10.1016/j.jmsy.2017.02.013
10.1016/j.ress.2018.11.027
10.1109/ICPHM.2017.7998311
10.1016/j.ymssp.2011.10.019
10.1109/TNNLS.2016.2582798
10.1016/j.ress.2015.12.003
10.1109/TSMC.2017.2697842
10.1109/PHM.2008.4711414
10.1115/1.2814097
10.1016/j.ress.2013.06.039
10.1016/j.ress.2011.07.009
10.1109/TIM.2010.2078296
10.1016/j.ymssp.2013.07.010
10.1016/j.ress.2005.12.014
10.1038/323533a0
10.1109/TIP.2017.2772836
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106113
S1568494620300533
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-4c0e458dd1e7a4ac1b7aff0615b6b17378a1529bf8483955ccf31c33529247843
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:05 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 23 02:47:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multi-scale
Remaining useful life
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4c0e458dd1e7a4ac1b7aff0615b6b17378a1529bf8483955ccf31c33529247843
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106113
crossref_primary_10_1016_j_asoc_2020_106113
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yao, Rosasco, Caponnetto (b44) 2007; 26
Hieu, Muu, Quy, Vy (b38) 2019; 74
Liu, Zio (b19) 2017; 168
Kingma, Ba (b37) 2014
Heng, Zhang, Tan, Mathew (b22) 2009; 23
M.d.C. Moura, Santana, Droguett, Lins, Guedes (b8) 2017; 168
Blemel (b9) 1998
Jones, Poggio (b43) 1995; 7
Ikasari, Ayumi, Fanany, Mulyono (b39) 2016
2, 1 -norms minimization, in: International Conference on Neural Information Processing Systems, 2010, pp. 1813–1821.
Paris (b11) 1963; 85
Fang, Paynabar, Gebraeel (b49) 2017; 159
Koushik (b34) 2016
Ramasso (b47) 2014
Jouin, Gouriveau, Hissel, Péra, Zerhouni (b12) 2016; 148
Baraldi, Compare, Sauco, Zio (b24) 2013; 41
Zhang, Lim, Qin, Tan (b32) 2017; 28
Wang, Youn, Hu (b52) 2012; 28
Park, Jung (b2) 2015; 138
Wu, Prasad (b53) 2018; 27
Liao, Jin, Pavel (b28) 2016; 63
Kontogiannis, Malakis (b7) 2012; 99
A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012, pp. 1097–1105.
Benkedjouh, Medjaher, Zerhouni, Rechak (b17) 2013; 26
G.J. Kacprzynski, M.J. Roemer, G. Modgil, A. Palladino, K. Maynard, Enhancement of physics-of-failure prognostic models with system level features, in: Proceedings, IEEE Aerospace Conference, vol. 2916, 2002, pp. 6-2919-2916-2925.
J.B. Coble, J.W. Hines, Prognostic algorithm categorization with PHM Challenge application, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–11.
Wang, Maio, Zio (b15) 2017; 167
Li, Ding, Sun (b30) 2018; 172
Gebraeel, Lawley, Liu, Parmeshwaran (b16) 2004; 51
Wu, Chang, Mao, Du (b4) 2013; 119
Zio, Di Maio (b18) 2010; 95
S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, in: IEEE International Conference on Prognostics and Health Management, 2017, pp. 88–95.
T. Wang, Y. Jianbo, D. Siegel, J. Lee, A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6.
Chen (b5) 2007; 92
Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b46) 2019; 183
Hinton, Deng, Yu, Dahl, A.r. Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (b25) 2012; 29
S. Marble, B.P. Morton, Predicting the remaining life of propulsion system bearings, in: 2006 IEEE Aerospace Conference, 2006, p. 8.
Lathuiliére, Mesejo, Alameda-Pineda, Horaud (b54) 2019
F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6.
Ren, Cui, Sun, Cheng (b27) 2017; 43
Malhi, Yan, Gao (b20) 2011; 60
Rumelhart, Hinton, Williams (b42) 1986; 323
Hernandez-Garcia, König (b41) 2018
G.C. Cheng, Y.X. Hou, X.Z. Zhao, Q. Yu, Local and Non-Local Regularization for Semi-supervised deep learning, in: International Conference on Control Engineering and Automation, Iccea 2014, 2014, pp. 272–278.
M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 135–140.
A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–9.
E. Ramasso, A. Saxena, Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset, in: Conference of the Prognostics and Health Management Society, 2015.
F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint
Lee, Wu, Zhao, Ghaffari, Liao, Siegel (b10) 2014; 42
Andersen, Häger, Maberg, Næss, Tungland (b6) 2012; 105
Jamali (b1) 2015; 137
Deutsch, He (b29) 2018; 48
Xu, Wang, Xu (b3) 2014; 14
Hansen, Hall, Kurtz (b23) 1995; 117
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
10.1016/j.asoc.2020.106113_b50
10.1016/j.asoc.2020.106113_b51
10.1016/j.asoc.2020.106113_b14
Deutsch (10.1016/j.asoc.2020.106113_b29) 2018; 48
M.d.C. Moura (10.1016/j.asoc.2020.106113_b8) 2017; 168
Lathuiliére (10.1016/j.asoc.2020.106113_b54) 2019
Rumelhart (10.1016/j.asoc.2020.106113_b42) 1986; 323
Wu (10.1016/j.asoc.2020.106113_b53) 2018; 27
10.1016/j.asoc.2020.106113_b13
Hinton (10.1016/j.asoc.2020.106113_b25) 2012; 29
Heng (10.1016/j.asoc.2020.106113_b22) 2009; 23
Listou Ellefsen (10.1016/j.asoc.2020.106113_b46) 2019; 183
10.1016/j.asoc.2020.106113_b40
Jamali (10.1016/j.asoc.2020.106113_b1) 2015; 137
Kingma (10.1016/j.asoc.2020.106113_b37) 2014
Benkedjouh (10.1016/j.asoc.2020.106113_b17) 2013; 26
10.1016/j.asoc.2020.106113_b48
Malhi (10.1016/j.asoc.2020.106113_b20) 2011; 60
Kontogiannis (10.1016/j.asoc.2020.106113_b7) 2012; 99
Ramasso (10.1016/j.asoc.2020.106113_b47) 2014
10.1016/j.asoc.2020.106113_b45
Park (10.1016/j.asoc.2020.106113_b2) 2015; 138
Wang (10.1016/j.asoc.2020.106113_b15) 2017; 167
Lee (10.1016/j.asoc.2020.106113_b10) 2014; 42
Andersen (10.1016/j.asoc.2020.106113_b6) 2012; 105
Yao (10.1016/j.asoc.2020.106113_b44) 2007; 26
Jouin (10.1016/j.asoc.2020.106113_b12) 2016; 148
Wu (10.1016/j.asoc.2020.106113_b4) 2013; 119
Liao (10.1016/j.asoc.2020.106113_b28) 2016; 63
Blemel (10.1016/j.asoc.2020.106113_b9) 1998
Jones (10.1016/j.asoc.2020.106113_b43) 1995; 7
10.1016/j.asoc.2020.106113_b31
Paris (10.1016/j.asoc.2020.106113_b11) 1963; 85
10.1016/j.asoc.2020.106113_b36
Fang (10.1016/j.asoc.2020.106113_b49) 2017; 159
Liu (10.1016/j.asoc.2020.106113_b19) 2017; 168
10.1016/j.asoc.2020.106113_b33
Ikasari (10.1016/j.asoc.2020.106113_b39) 2016
10.1016/j.asoc.2020.106113_b35
Hernandez-Garcia (10.1016/j.asoc.2020.106113_b41) 2018
Zio (10.1016/j.asoc.2020.106113_b18) 2010; 95
Hansen (10.1016/j.asoc.2020.106113_b23) 1995; 117
Baraldi (10.1016/j.asoc.2020.106113_b24) 2013; 41
Koushik (10.1016/j.asoc.2020.106113_b34) 2016
Ren (10.1016/j.asoc.2020.106113_b27) 2017; 43
Li (10.1016/j.asoc.2020.106113_b30) 2018; 172
Chen (10.1016/j.asoc.2020.106113_b5) 2007; 92
Gebraeel (10.1016/j.asoc.2020.106113_b16) 2004; 51
10.1016/j.asoc.2020.106113_b26
Wang (10.1016/j.asoc.2020.106113_b52) 2012; 28
Xu (10.1016/j.asoc.2020.106113_b3) 2014; 14
10.1016/j.asoc.2020.106113_b21
Hieu (10.1016/j.asoc.2020.106113_b38) 2019; 74
Zhang (10.1016/j.asoc.2020.106113_b32) 2017; 28
References_xml – year: 2019
  ident: b54
  article-title: A comprehensive analysis of deep regression
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b25
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– volume: 26
  start-page: 289
  year: 2007
  end-page: 315
  ident: b44
  article-title: On early stopping in gradient descent learning
  publication-title: Const. App.
– volume: 92
  start-page: 423
  year: 2007
  end-page: 432
  ident: b5
  article-title: Forecasting systems reliability based on support vector regression with genetic algorithms
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 105
  start-page: 3
  year: 2012
  end-page: 12
  ident: b6
  article-title: The financial crisis in an operational risk management context—A review of causes and influencing factors
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 95
  start-page: 49
  year: 2010
  end-page: 57
  ident: b18
  article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 28
  start-page: 622
  year: 2012
  end-page: 637
  ident: b52
  article-title: A generic probabilistic framework for structural health prognostics and uncertainty management
  publication-title: Mech. Syst. Signal Process.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
– volume: 119
  start-page: 244
  year: 2013
  end-page: 250
  ident: b4
  article-title: Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 159
  start-page: 322
  year: 2017
  end-page: 331
  ident: b49
  article-title: Multistream sensor fusion-based prognostics model for systems with single failure modes
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 167
  start-page: 276
  year: 2017
  end-page: 289
  ident: b15
  article-title: Three-loop Monte Carlo simulation approach to multi-state physics modeling for system reliability assessment
  publication-title: Reliab. Eng. Syst. Saf.
– reference: F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: b30
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
– reference: J.B. Coble, J.W. Hines, Prognostic algorithm categorization with PHM Challenge application, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–11.
– reference: F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6.
– reference: G.C. Cheng, Y.X. Hou, X.Z. Zhao, Q. Yu, Local and Non-Local Regularization for Semi-supervised deep learning, in: International Conference on Control Engineering and Automation, Iccea 2014, 2014, pp. 272–278.
– volume: 7
  start-page: 219
  year: 1995
  end-page: 269
  ident: b43
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Comput.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012, pp. 1097–1105.
– reference: E. Ramasso, A. Saxena, Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset, in: Conference of the Prognostics and Health Management Society, 2015.
– year: 1998
  ident: b9
  article-title: Dynamic autonomous test systems for prognostic health management
– volume: 74
  year: 2019
  ident: b38
  article-title: Explicit extragradient-like method with regularization for variational inequalities
  publication-title: Results Math.
– reference: 2, 1 -norms minimization, in: International Conference on Neural Information Processing Systems, 2010, pp. 1813–1821.
– reference: G.J. Kacprzynski, M.J. Roemer, G. Modgil, A. Palladino, K. Maynard, Enhancement of physics-of-failure prognostic models with system level features, in: Proceedings, IEEE Aerospace Conference, vol. 2916, 2002, pp. 6-2919-2916-2925.
– volume: 41
  start-page: 288
  year: 2013
  end-page: 300
  ident: b24
  article-title: Ensemble neural network-based particle filtering for prognostics
  publication-title: Mech. Syst. Signal Process.
– reference: A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–9.
– volume: 28
  start-page: 2306
  year: 2017
  end-page: 2318
  ident: b32
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 168
  start-page: 338
  year: 2017
  end-page: 354
  ident: b8
  article-title: Analysis of extended warranties for medical equipment: A stackelberg game model using priority queues
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 43
  start-page: 248
  year: 2017
  end-page: 256
  ident: b27
  article-title: Multi-bearing remaining useful life collaborative prediction: A deep learning approach
  publication-title: J. Manuf. Syst.
– volume: 183
  start-page: 240
  year: 2019
  end-page: 251
  ident: b46
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 23
  start-page: 724
  year: 2009
  end-page: 739
  ident: b22
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mech. Syst. Signal Process.
– volume: 63
  start-page: 7076
  year: 2016
  end-page: 7083
  ident: b28
  article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment
  publication-title: IEEE Trans. Ind. Electron.
– volume: 42
  start-page: 314
  year: 2014
  end-page: 334
  ident: b10
  article-title: Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications
  publication-title: Mech. Syst. Signal Process.
– volume: 14
  start-page: 1124
  year: 2014
  end-page: 1132
  ident: b3
  article-title: PHM-Oriented integrated fusion prognostics for aircraft engines based on sensor data
  publication-title: IEEE Sens. J.
– volume: 117
  start-page: 320
  year: 1995
  end-page: 325
  ident: b23
  article-title: New approach to the challenge of machinery prognostics
  publication-title: J. Eng. Gas Turbines Power
– year: 2014
  ident: b37
  article-title: Adam: A method for stochastic optimization
  publication-title: Comput. Sci.
– volume: 138
  start-page: 21
  year: 2015
  end-page: 30
  ident: b2
  article-title: A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 60
  start-page: 703
  year: 2011
  end-page: 711
  ident: b20
  article-title: Prognosis of defect propagation based on recurrent neural networks
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 26
  start-page: 1751
  year: 2013
  end-page: 1760
  ident: b17
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng. Appl. Artif. Intell.
– volume: 48
  start-page: 11
  year: 2018
  end-page: 20
  ident: b29
  article-title: Using deep learning-based approach to predict remaining useful life of rotating components
  publication-title: IEEE Trans. Syst. Man Cybern. S
– start-page: 512
  year: 2016
  end-page: 517
  ident: b39
  article-title: Multiple regularizations deep learning for paddy growth stages classification from LANDSAT-8
  publication-title: Int. C Adv. Comp. Sci. I
– volume: 168
  start-page: 210
  year: 2017
  end-page: 217
  ident: b19
  article-title: Weighted-feature and cost-sensitive regression model for component continuous degradation assessment
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 137
  start-page: 112
  year: 2015
  end-page: 119
  ident: b1
  article-title: Achieving reasonable conservatism in nuclear safety analyses
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2016
  ident: b34
  article-title: Understanding Convolutional Neural Networks
– year: 2014
  ident: b47
  article-title: Investigating computational geometry for failure prognostics
– year: 2018
  ident: b41
  article-title: Do deep nets really need weight decay and dropout?
– reference: S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, in: IEEE International Conference on Prognostics and Health Management, 2017, pp. 88–95.
– volume: 99
  start-page: 193
  year: 2012
  end-page: 208
  ident: b7
  article-title: A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 27
  start-page: 1259
  year: 2018
  end-page: 1270
  ident: b53
  article-title: Semi-supervised deep learning using pseudo labels for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
– volume: 85
  start-page: 528
  year: 1963
  end-page: 533
  ident: b11
  article-title: A critical analysis of crack propagation laws
  publication-title: Trans. ASME D
– reference: T. Wang, Y. Jianbo, D. Siegel, J. Lee, A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems, in: 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–6.
– reference: M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 135–140.
– volume: 148
  start-page: 78
  year: 2016
  end-page: 95
  ident: b12
  article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC
  publication-title: Reliab. Eng. Syst. Saf.
– reference: S. Marble, B.P. Morton, Predicting the remaining life of propulsion system bearings, in: 2006 IEEE Aerospace Conference, 2006, p. 8.
– volume: 323
  start-page: 533
  year: 1986
  ident: b42
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 51
  start-page: 694
  year: 2004
  end-page: 700
  ident: b16
  article-title: Residual life predictions from vibration-based degradation signals: a neural network approach
  publication-title: IEEE Trans. Ind. Electron.
– ident: 10.1016/j.asoc.2020.106113_b35
  doi: 10.1109/CVPR.2016.90
– year: 2018
  ident: 10.1016/j.asoc.2020.106113_b41
– volume: 29
  start-page: 82
  year: 2012
  ident: 10.1016/j.asoc.2020.106113_b25
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 168
  start-page: 210
  year: 2017
  ident: 10.1016/j.asoc.2020.106113_b19
  article-title: Weighted-feature and cost-sensitive regression model for component continuous degradation assessment
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.03.012
– volume: 95
  start-page: 49
  year: 2010
  ident: 10.1016/j.asoc.2020.106113_b18
  article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2009.08.001
– volume: 51
  start-page: 694
  year: 2004
  ident: 10.1016/j.asoc.2020.106113_b16
  article-title: Residual life predictions from vibration-based degradation signals: a neural network approach
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2004.824875
– volume: 42
  start-page: 314
  year: 2014
  ident: 10.1016/j.asoc.2020.106113_b10
  article-title: Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.06.004
– ident: 10.1016/j.asoc.2020.106113_b33
  doi: 10.1109/PHM.2008.4711422
– volume: 105
  start-page: 3
  year: 2012
  ident: 10.1016/j.asoc.2020.106113_b6
  article-title: The financial crisis in an operational risk management context—A review of causes and influencing factors
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.09.005
– volume: 74
  year: 2019
  ident: 10.1016/j.asoc.2020.106113_b38
  article-title: Explicit extragradient-like method with regularization for variational inequalities
  publication-title: Results Math.
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106113_b30
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– ident: 10.1016/j.asoc.2020.106113_b50
  doi: 10.1109/PHM.2008.4711421
– ident: 10.1016/j.asoc.2020.106113_b26
– volume: 26
  start-page: 289
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2020.106113_b44
  article-title: On early stopping in gradient descent learning
  publication-title: Const. App.
  doi: 10.1007/s00365-006-0663-2
– year: 1998
  ident: 10.1016/j.asoc.2020.106113_b9
– ident: 10.1016/j.asoc.2020.106113_b21
  doi: 10.1109/AUS.2016.7748035
– year: 2016
  ident: 10.1016/j.asoc.2020.106113_b34
– volume: 167
  start-page: 276
  year: 2017
  ident: 10.1016/j.asoc.2020.106113_b15
  article-title: Three-loop Monte Carlo simulation approach to multi-state physics modeling for system reliability assessment
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.06.003
– ident: 10.1016/j.asoc.2020.106113_b36
– year: 2019
  ident: 10.1016/j.asoc.2020.106113_b54
  article-title: A comprehensive analysis of deep regression
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 219
  year: 1995
  ident: 10.1016/j.asoc.2020.106113_b43
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.2.219
– volume: 137
  start-page: 112
  year: 2015
  ident: 10.1016/j.asoc.2020.106113_b1
  article-title: Achieving reasonable conservatism in nuclear safety analyses
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.01.008
– volume: 159
  start-page: 322
  year: 2017
  ident: 10.1016/j.asoc.2020.106113_b49
  article-title: Multistream sensor fusion-based prognostics model for systems with single failure modes
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2016.11.008
– volume: 85
  start-page: 528
  year: 1963
  ident: 10.1016/j.asoc.2020.106113_b11
  article-title: A critical analysis of crack propagation laws
  publication-title: Trans. ASME D
  doi: 10.1115/1.3656900
– volume: 14
  start-page: 1124
  year: 2014
  ident: 10.1016/j.asoc.2020.106113_b3
  article-title: PHM-Oriented integrated fusion prognostics for aircraft engines based on sensor data
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2293517
– ident: 10.1016/j.asoc.2020.106113_b31
  doi: 10.36001/phmconf.2014.v6i1.2512
– ident: 10.1016/j.asoc.2020.106113_b51
  doi: 10.1109/PHM.2008.4711456
– volume: 138
  start-page: 21
  year: 2015
  ident: 10.1016/j.asoc.2020.106113_b2
  article-title: A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.01.013
– volume: 63
  start-page: 7076
  year: 2016
  ident: 10.1016/j.asoc.2020.106113_b28
  article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2586442
– year: 2014
  ident: 10.1016/j.asoc.2020.106113_b47
– volume: 168
  start-page: 338
  year: 2017
  ident: 10.1016/j.asoc.2020.106113_b8
  article-title: Analysis of extended warranties for medical equipment: A stackelberg game model using priority queues
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.05.040
– start-page: 512
  year: 2016
  ident: 10.1016/j.asoc.2020.106113_b39
  article-title: Multiple regularizations deep learning for paddy growth stages classification from LANDSAT-8
  publication-title: Int. C Adv. Comp. Sci. I
– ident: 10.1016/j.asoc.2020.106113_b14
– volume: 26
  start-page: 1751
  year: 2013
  ident: 10.1016/j.asoc.2020.106113_b17
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.02.006
– volume: 23
  start-page: 724
  year: 2009
  ident: 10.1016/j.asoc.2020.106113_b22
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.06.009
– volume: 43
  start-page: 248
  year: 2017
  ident: 10.1016/j.asoc.2020.106113_b27
  article-title: Multi-bearing remaining useful life collaborative prediction: A deep learning approach
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2017.02.013
– volume: 183
  start-page: 240
  year: 2019
  ident: 10.1016/j.asoc.2020.106113_b46
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.11.027
– ident: 10.1016/j.asoc.2020.106113_b48
  doi: 10.1109/ICPHM.2017.7998311
– volume: 28
  start-page: 622
  year: 2012
  ident: 10.1016/j.asoc.2020.106113_b52
  article-title: A generic probabilistic framework for structural health prognostics and uncertainty management
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.10.019
– volume: 28
  start-page: 2306
  year: 2017
  ident: 10.1016/j.asoc.2020.106113_b32
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
– volume: 148
  start-page: 78
  year: 2016
  ident: 10.1016/j.asoc.2020.106113_b12
  article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.12.003
– volume: 48
  start-page: 11
  year: 2018
  ident: 10.1016/j.asoc.2020.106113_b29
  article-title: Using deep learning-based approach to predict remaining useful life of rotating components
  publication-title: IEEE Trans. Syst. Man Cybern. S
  doi: 10.1109/TSMC.2017.2697842
– ident: 10.1016/j.asoc.2020.106113_b45
  doi: 10.1109/PHM.2008.4711414
– year: 2014
  ident: 10.1016/j.asoc.2020.106113_b37
  article-title: Adam: A method for stochastic optimization
  publication-title: Comput. Sci.
– ident: 10.1016/j.asoc.2020.106113_b13
– volume: 117
  start-page: 320
  year: 1995
  ident: 10.1016/j.asoc.2020.106113_b23
  article-title: New approach to the challenge of machinery prognostics
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.2814097
– volume: 119
  start-page: 244
  year: 2013
  ident: 10.1016/j.asoc.2020.106113_b4
  article-title: Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.06.039
– volume: 99
  start-page: 193
  year: 2012
  ident: 10.1016/j.asoc.2020.106113_b7
  article-title: A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.07.009
– volume: 60
  start-page: 703
  year: 2011
  ident: 10.1016/j.asoc.2020.106113_b20
  article-title: Prognosis of defect propagation based on recurrent neural networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2010.2078296
– volume: 41
  start-page: 288
  year: 2013
  ident: 10.1016/j.asoc.2020.106113_b24
  article-title: Ensemble neural network-based particle filtering for prognostics
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.07.010
– volume: 92
  start-page: 423
  year: 2007
  ident: 10.1016/j.asoc.2020.106113_b5
  article-title: Forecasting systems reliability based on support vector regression with genetic algorithms
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.12.014
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.asoc.2020.106113_b42
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.asoc.2020.106113_b40
– volume: 27
  start-page: 1259
  year: 2018
  ident: 10.1016/j.asoc.2020.106113_b53
  article-title: Semi-supervised deep learning using pseudo labels for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2772836
SSID ssj0016928
Score 2.6660364
Snippet Accurate and reliable remaining useful life (RUL) assessment result provides decision-makers valuable information to take suitable maintenance strategy to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106113
SubjectTerms Convolutional neural network
Deep learning
Multi-scale
Remaining useful life
Title Remaining useful life prediction using multi-scale deep convolutional neural network
URI https://dx.doi.org/10.1016/j.asoc.2020.106113
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbr0XZo-goZuRU1syZY8htCQvkJJE8hmLFkqKWlq8lj726uT5dBCydBJWJyw_el8D_ydDqFrahizYT0nhkWSMEklEbEr4wpDY9qh4a5_yvMg7o_ZwySa1FC3qoUBWqW3_aVNd9baz7Q8mq1iOm292sxDsITFYZu6ilKoYGcctPz2a0PzCOLE9VcFYQLSvnCm5HhlFgGbI4YwEQcB_ds5_XA4vQO05yNF3Ckf5hDV9PwI7VddGLD_KI_RaKg_yjYPeL3UZj3Ds6nRuFjALxiAHQO3_Q076iBZ2j3RONe6wEA494pn7wMHW7rB0cJP0Lh3N-r2ie-VQJR9-xVhqq1ZJPI80DxjmQokzyzWNl6RsQw45SKznjqRRjAbEkWRUoYGCgquYKcEo6eoPv-c6zOEVTvJbdijacw1S3KZhDkVeSaMFKG06U8DBRVIqfIHiUM_i1laMcbeUwA2BWDTEtgGutmsKcpjNLZKRxX26S9lSK2d37Lu_J_rLtAuXJWEnEtUXy3W-srGGivZdMrURDud7vDpBcb7x_7gG-F50-U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG_HGA0wotLGdxBkYEA-1QDtAkdhCnNioqJSKtkIs_Cn-IGfHqUBCDEhMkRw7sT-f7iF_5wPYY5pzdOsjT_NAelwy6YnQpnFRqnWd6sjWT2m1w8Ytv7gL7irwUebCGFql0_2FTrfa2rXUHJq1Qbdbu8HIQ_CYh7TObEapY1ZeqrdXjNuGR81T3OR9Ss_POicNz5UW8DLsPPJ4Vlc8EHnuqyjlaebLKMWpoXmXofQjFokUDVssteDoQQRBlmnmZyY_ySxMcIbfnYJpjurClE04fJ_wSvwwtgVdzew8Mz2XqVOQylKEHINSahpC32c_W8MvFu58Aeaca0qOi9UvQkX1l2C-LPtAnBZYhs61eirqSpDxUOlxj_S6WpHBiznzMftMDJn-gViuojdEIVAkV2pADMPdSTr-x9ykaR-Wh74Ct_-C4CpU-899tQYkq8c5-lmKhZHicS5jmjORp0JLQSXGW-vglyAlmbu53BTQ6CUlRe0xMcAmBtikAHYdDiZjBsW9Hb_2Dkrsk2_Sl6Bh-WXcxh_H7cJMo9O6Sq6a7ctNmDVvCjbQFlRHL2O1jY7OSO5YwSJw_9-S_AmeHAyZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prediction+using+multi-scale+deep+convolutional+neural+network&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Han&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Yuxi&rft.au=Zio%2C+Enrico&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=89&rft_id=info:doi/10.1016%2Fj.asoc.2020.106113&rft.externalDocID=S1568494620300533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon