Fe3O4 thin films epitaxially growth model on TiO2-terminated SrTiO3(100)
The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the structure at the Fe3O4/SrTiO3(100) interface. One opinion suggests the formation of interfacial antiferromagnetic FeO layers, while another op...
Saved in:
Published in | Micro and nanostructures (2022) Vol. 167; p. 107183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the structure at the Fe3O4/SrTiO3(100) interface. One opinion suggests the formation of interfacial antiferromagnetic FeO layers, while another opinion suggests that are γ-Fe2O3 layers. Here, we propose a theoretical model that what kind of iron oxide stacking sequence forming on the substrate depends on the substrate termination charge. We give a tentative and easy-to-understand growth model for epitaxy, which agrees with the opinion of γ-Fe2O3 layers formation at the Fe3O4/SrTiO3(100) interface. This theoretical model agrees well with the experimental curve and gives a prediction for the different Fe ions concentration depending on thickness. The calculation results of the Fe ions concentration adjacent to the substrate surface show that there are almost no B-site Fe ions at the interface. It indicates that there are unusual electric and magnetic properties at interface. Our growth model illustrates that the possible magnetically dead layer at the interface is responsible for the decrease of the magnetization in the thin films.
•This growth mode give credit to the results of interfacial ferrimagnetic γ-Fe2O3 layer in Fe3O4/SrTiO3(100).•The model curve agrees with the experimental curve, gives prediction for the Fe ions concentration depending on thickness.•There are almost no B-site Fe at interface. There exists possible magnetically dead layer at the interface.•The growth mode and the oxidation level are determined by the TiO2-termination charge.•The magnetite film grown on SrTiO3(001) exhibiting vertical compressive and lateral tensile strain has been explained. |
---|---|
AbstractList | The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the structure at the Fe3O4/SrTiO3(100) interface. One opinion suggests the formation of interfacial antiferromagnetic FeO layers, while another opinion suggests that are γ-Fe2O3 layers. Here, we propose a theoretical model that what kind of iron oxide stacking sequence forming on the substrate depends on the substrate termination charge. We give a tentative and easy-to-understand growth model for epitaxy, which agrees with the opinion of γ-Fe2O3 layers formation at the Fe3O4/SrTiO3(100) interface. This theoretical model agrees well with the experimental curve and gives a prediction for the different Fe ions concentration depending on thickness. The calculation results of the Fe ions concentration adjacent to the substrate surface show that there are almost no B-site Fe ions at the interface. It indicates that there are unusual electric and magnetic properties at interface. Our growth model illustrates that the possible magnetically dead layer at the interface is responsible for the decrease of the magnetization in the thin films.
•This growth mode give credit to the results of interfacial ferrimagnetic γ-Fe2O3 layer in Fe3O4/SrTiO3(100).•The model curve agrees with the experimental curve, gives prediction for the Fe ions concentration depending on thickness.•There are almost no B-site Fe at interface. There exists possible magnetically dead layer at the interface.•The growth mode and the oxidation level are determined by the TiO2-termination charge.•The magnetite film grown on SrTiO3(001) exhibiting vertical compressive and lateral tensile strain has been explained. |
ArticleNumber | 107183 |
Author | Liu, Xing Hu, Jifan Cheng, Bin |
Author_xml | – sequence: 1 givenname: Bin surname: Cheng fullname: Cheng, Bin organization: School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China – sequence: 2 givenname: Xing surname: Liu fullname: Liu, Xing email: bingxing0108@163.com organization: Jinan Engineering Polytechnic, Jinan, 250200, China – sequence: 3 givenname: Jifan surname: Hu fullname: Hu, Jifan email: hujf@sdu.edu.cn organization: School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China |
BookMark | eNp9kE1LAzEURYNUsK3-AVdZ6mLGl0lmMgNupFgrFLqw-5BJ3tiU-ShJUPvvnVJXLrq6cOFcuGdGJv3QIyH3DFIGrHjap-HQuTSDLBsLyUp-RaYMqiLhhZQTMgUpqqQAXtyQWQh7AKgEk1OyWiLfCBp3rqeNa7tA8eCi_nG6bY_00w_fcUe7wWJLh55u3SZLIvrO9TqipR9-bPgDA3i8JdeNbgPe_eWcbJev28UqWW_e3hcv68RwgJiImpmmzkvOLGih87KRCJnIRG7zWuamkEznOTIryqpBzQVawXSJTNdC18jnJDvPGj-E4LFRB-867Y-KgTqpUHt1UqFOKtRZxQiV_yAzfoxu6KPXrr2MPp9RHD99OfQqGIe9Qes8mqjs4C7hv-niev8 |
CitedBy_id | crossref_primary_10_1002_adma_202309217 |
Cites_doi | 10.1016/j.actamat.2012.10.003 10.1038/nmat1569 10.1002/adfm.201504999 10.1088/0953-8984/22/25/255401 10.1103/PhysRevLett.124.017702 10.1103/PhysRevB.86.241108 10.1021/jp510615j 10.1021/nn203991q 10.1063/1.4940890 10.1088/0034-4885/71/1/016501 10.1103/PhysRevLett.106.166807 10.1016/j.spmi.2018.05.065 10.1103/PhysRevLett.122.257601 10.1021/acsnano.8b01293 10.1063/1.4995408 10.1016/j.tsf.2012.10.076 10.1002/admi.201701565 10.1016/j.susc.2010.06.012 10.1002/pssc.200675222 10.1107/S1600576718007823 10.1063/1.4952769 10.1063/1.4803894 10.1103/PhysRevLett.123.036805 10.1103/PhysRevLett.98.196802 10.1038/s41563-019-0354-z 10.1103/PhysRevLett.108.117003 10.1002/adma.200901381 10.1016/j.jmmm.2017.02.032 10.1063/1.2189225 10.1021/acs.nanolett.7b03714 10.1039/C9TC05921K 10.1088/0953-8984/12/31/201 10.1021/acsami.8b20625 10.1063/1.4944590 10.1063/1.3357436 10.1103/PhysRevB.74.014418 10.1002/adma.200801448 10.1063/1.5139307 10.1103/PhysRevLett.104.126802 10.1063/1.4871001 10.1002/admi.201900301 10.1063/1.1682788 10.1002/adma.200903800 10.1063/1.4904471 10.1063/1.5082256 10.1021/acs.jpcc.7b11583 10.1063/1.4953822 10.1088/1361-6463/aaec49 10.1021/nl052199p 10.1063/1.5046177 10.1038/nature02308 10.1063/1.364355 10.1088/1361-648X/aaae37 10.1103/PhysRevMaterials.3.104418 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2022.107183 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Engineering |
EISSN | 1096-3677 2773-0123 |
ExternalDocumentID | 10_1016_j_spmi_2022_107183 S0749603622000362 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX AEIPS AFJKZ AFXIZ AGRNS AIIUN ANKPU APXCP BNPGV CITATION M41 SSH |
ID | FETCH-LOGICAL-c300t-4b1cfb5831d0a4a58f7e024245d5b75c671a55e1d489fea34ed41a8e1ab4abe3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 2773-0123 |
IngestDate | Thu Apr 24 23:01:42 EDT 2025 Tue Jul 01 00:38:55 EDT 2025 Fri Feb 23 02:40:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetite Spintronic Hetero-interface Polar Epitaxy Maghemite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4b1cfb5831d0a4a58f7e024245d5b75c671a55e1d489fea34ed41a8e1ab4abe3 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2022_107183 crossref_citationtrail_10_1016_j_spmi_2022_107183 elsevier_sciencedirect_doi_10_1016_j_spmi_2022_107183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Micro and nanostructures (2022) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Noguera (bib34) 2000; 12 Delugas, Filippetti, Fiorentini, Bilc, Fontaine, Ghosez (bib8) 2011; 106 Wu, Wang, Li, Zhou, Zhu, Lu (bib33) 2019; 52 Wittlich, Boschker, Asaba, Li, Noad, Watson, Moler, Daraselia, Japaridze, Shengelaya, Wang, Xia, Mannhart (bib6) 2019; 3 Chapline, Wang (bib52) 2006; 74 Gao, Huang, Li, Wang, Wei, Zhang, Guo (bib7) 2018; 5 Tang, Tylan-Tyler, Lee, Lee, Tomczyk, Huang, Eom, Irvin, Levy (bib14) 2019; 6 Rubio-Zuazo, Onandia, Salas-Colera, Muñoz-Noval, Castro (bib23) 2015; 119 Zhang, Lv, Zhang, Huang, Wong, Yau, Chen, Wen, Jiang, Zeng, Hong, Dai (bib20) 2019; 122 Singh, Jouan, Herranz, Scigaj, Sánchez, Benfatto, Caprara, Grilli, Saiz, Couëdo, Feuillet-Palma, Lesueur, Bergeal (bib4) 2019; 18 Wang, Ramaswamy, Motapothula, Narayanapillai, Zhu, Yu, Venkatesan, Yang (bib15) 2017; 17 Yin, Smink, Leermakers, Tang, Lebedev, Zeitler, van der Wiel, Hilgenkamp, Aarts (bib2) 2020; 124 Chang, Hu, Klein, Liu, Sutarto, Tanaka, Cezar, Brookes, Lin, Hsieh, Chen, Rata, Tjeng (bib40) 2016; 6 Ben Shalom, Sachs, Rakhmilevitch, Palevski, Dagan (bib19) 2010; 104 Cheng, Qin, Pei, Liu, Ren, Hu (bib55) 2016; 108 Guan, Zhou, Xue, Quan, Xu (bib31) 2016; 4 Tebano, Fabbri, Pergolesi, Balestrino, Traversa (bib16) 2012; 6 Ortmann, Nookala, He, Gao, Lin, Posadas, Borisevich, Belkin, Demkov (bib9) 2018; 12 Liu, Liu, Zhang (bib30) 2017; 96 (bib37) 2010; 29 Cai, Zhang, Yang, Yin, Zhang, Hu, Wang (bib39) 2006; 124 Siemons, Koster, Yamamoto, Harrison, Lucovsky, Geballe, Blank, Beasley (bib17) 2007; 98 Suturin, Kaveev, Korovin, Fedorov, Sawada, Sokolov (bib57) 2018; 51 Nakagawa, Hwang, Muller (bib36) 2006; 5 Wada, Watanabe, Shirahata, Itoh, Yamaguchi, Taniyama (bib50) 2010; 96 Gariglio, Gabay, Triscone (bib12) 2016; 4 Cheng, Qin, Liu, Xie, Hu (bib41) 2018; 120 Zhang, Liu, Zhang, Zhang, Niu, Gao, Wang, Du, Zhang, Xu (bib44) 2017; 432 Hamie, Dumont, Popova, Fouchet, Warot-Fonrose, Gatel, Chikoidze, Scola, Berini, Keller (bib28) 2012; 525 Heinrich, Demund, Szargan (bib56) 2007; 4 Kuschel, Spiess, Schemme, Rubio-Zuazo, Kuepper, Wollschläger (bib29) 2017; 111 Vanacorea, Zagonel, Barrett (bib38) 2010; 604 Gao, Kim, Thevuthasan, Chambers, Lubitz (bib43) 1997; 81 Chen, Chen, Zhou, Wang, Tang, Wang, Daughton (bib42) 2004; 95 Lu, Wu, Zhu, Li, Wang, Pan (bib26) 2019; 114 Ji, Wang, Li (bib27) 2018; 30 Hamed, Hinz, Lömker, Wilhelm, Gloskovskii, Bencok, Schmitz-Antoniak, Elnaggar, Schneider, Müller (bib21) 2019; 11 Michaeli, Potter, Lee (bib18) 2012; 108 Grau-Crespo, Al-Baitai, Saadoune, De Leeuw (bib48) 2010; 22 Li, Xia, Zhu, Wen, Zhang, Alshareef, Zhang (bib54) 2016; 26 Hamed, Mueller, Müller (bib22) 2020; 8 Huijben, Brinkman, Koster, Rijnders, Hilgenkamp, Blank (bib10) 2009; 21 Chen, Kolpak, Ismail-Beigi (bib13) 2010; 22 Khanna, Rout, Mograbi, Tuvia, Leermakers, Zeitler, Dagan, Goldstein (bib3) 2019; 123 Liu, Xu, Wong, Maltby, Li, Wang, Du, You, Wu, Bencok, Zhang (bib53) 2014; 104 Ohtomo, Hwang (bib1) 2004; 427 Bertram, Deiter, Schemme, Jentsch, Wollschläger (bib46) 2013; 113 Sun, Wang, Mi (bib51) 2018; 122 Liao, Li, Xu, Zhang, Xia, Yu (bib49) 2006; 6 Zhu, Zheng, Yang, Zheng, Wang, Li, Shi (bib24) 2014; 105 Kozioł-Rachwał, Ślęzak, Nozaki, Yuasa, Korecki (bib47) 2016; 108 Janotti, Bjaalie, Gordon, Van de Walle (bib11) 2012; 86 Uzun, Smink, de Jong, Hilgenkamp, van der Wiel (bib5) 2020; 116 Wu, Zhou, Li, Wang, Pan (bib32) 2018; 113 Alexe, Ziese, Hesse, Esquinazi, Yamauchi, Fukushima, Picozzi, Gösele (bib25) 2009; 21 Goniakowski, Finocchi, Noguera (bib35) 2008; 71 Huang, Yang, Ding (bib45) 2013; 61 Wada (10.1016/j.spmi.2022.107183_bib50) 2010; 96 Guan (10.1016/j.spmi.2022.107183_bib31) 2016; 4 Gariglio (10.1016/j.spmi.2022.107183_bib12) 2016; 4 Sun (10.1016/j.spmi.2022.107183_bib51) 2018; 122 Liao (10.1016/j.spmi.2022.107183_bib49) 2006; 6 Ji (10.1016/j.spmi.2022.107183_bib27) 2018; 30 Wu (10.1016/j.spmi.2022.107183_bib33) 2019; 52 Ohtomo (10.1016/j.spmi.2022.107183_bib1) 2004; 427 Hamie (10.1016/j.spmi.2022.107183_bib28) 2012; 525 (10.1016/j.spmi.2022.107183_bib37) 2010; 29 Huang (10.1016/j.spmi.2022.107183_bib45) 2013; 61 Cai (10.1016/j.spmi.2022.107183_bib39) 2006; 124 Gao (10.1016/j.spmi.2022.107183_bib43) 1997; 81 Chen (10.1016/j.spmi.2022.107183_bib13) 2010; 22 Tang (10.1016/j.spmi.2022.107183_bib14) 2019; 6 Li (10.1016/j.spmi.2022.107183_bib54) 2016; 26 Heinrich (10.1016/j.spmi.2022.107183_bib56) 2007; 4 Zhang (10.1016/j.spmi.2022.107183_bib44) 2017; 432 Zhang (10.1016/j.spmi.2022.107183_bib20) 2019; 122 Cheng (10.1016/j.spmi.2022.107183_bib41) 2018; 120 Hamed (10.1016/j.spmi.2022.107183_bib21) 2019; 11 Liu (10.1016/j.spmi.2022.107183_bib30) 2017; 96 Khanna (10.1016/j.spmi.2022.107183_bib3) 2019; 123 Gao (10.1016/j.spmi.2022.107183_bib7) 2018; 5 Chapline (10.1016/j.spmi.2022.107183_bib52) 2006; 74 Ben Shalom (10.1016/j.spmi.2022.107183_bib19) 2010; 104 Ortmann (10.1016/j.spmi.2022.107183_bib9) 2018; 12 Kozioł-Rachwał (10.1016/j.spmi.2022.107183_bib47) 2016; 108 Cheng (10.1016/j.spmi.2022.107183_bib55) 2016; 108 Wu (10.1016/j.spmi.2022.107183_bib32) 2018; 113 Michaeli (10.1016/j.spmi.2022.107183_bib18) 2012; 108 Kuschel (10.1016/j.spmi.2022.107183_bib29) 2017; 111 Siemons (10.1016/j.spmi.2022.107183_bib17) 2007; 98 Lu (10.1016/j.spmi.2022.107183_bib26) 2019; 114 Delugas (10.1016/j.spmi.2022.107183_bib8) 2011; 106 Goniakowski (10.1016/j.spmi.2022.107183_bib35) 2008; 71 Bertram (10.1016/j.spmi.2022.107183_bib46) 2013; 113 Chen (10.1016/j.spmi.2022.107183_bib42) 2004; 95 Singh (10.1016/j.spmi.2022.107183_bib4) 2019; 18 Liu (10.1016/j.spmi.2022.107183_bib53) 2014; 104 Uzun (10.1016/j.spmi.2022.107183_bib5) 2020; 116 Wittlich (10.1016/j.spmi.2022.107183_bib6) 2019; 3 Wang (10.1016/j.spmi.2022.107183_bib15) 2017; 17 Zhu (10.1016/j.spmi.2022.107183_bib24) 2014; 105 Vanacorea (10.1016/j.spmi.2022.107183_bib38) 2010; 604 Janotti (10.1016/j.spmi.2022.107183_bib11) 2012; 86 Rubio-Zuazo (10.1016/j.spmi.2022.107183_bib23) 2015; 119 Nakagawa (10.1016/j.spmi.2022.107183_bib36) 2006; 5 Suturin (10.1016/j.spmi.2022.107183_bib57) 2018; 51 Hamed (10.1016/j.spmi.2022.107183_bib22) 2020; 8 Grau-Crespo (10.1016/j.spmi.2022.107183_bib48) 2010; 22 Noguera (10.1016/j.spmi.2022.107183_bib34) 2000; 12 Tebano (10.1016/j.spmi.2022.107183_bib16) 2012; 6 Alexe (10.1016/j.spmi.2022.107183_bib25) 2009; 21 Yin (10.1016/j.spmi.2022.107183_bib2) 2020; 124 Chang (10.1016/j.spmi.2022.107183_bib40) 2016; 6 Huijben (10.1016/j.spmi.2022.107183_bib10) 2009; 21 |
References_xml | – volume: 96 year: 2017 ident: bib30 article-title: Evolution of magnetic properties in the vicinity of the Verwey transition in Fe publication-title: Phys. Rev. B – volume: 604 start-page: 1674 year: 2010 end-page: 1683 ident: bib38 article-title: Surface enhanced covalency and Madelung potentials in Nb doped SrTiO publication-title: Surf. Sci. – volume: 61 start-page: 548 year: 2013 end-page: 557 ident: bib45 article-title: Epitaxial growth of γ-Fe publication-title: Acta Mater. – volume: 116 year: 2020 ident: bib5 article-title: Acoustoelectric charge transport at the LaAlO publication-title: Appl. Phys. Lett. – volume: 86 start-page: 241108 year: 2012 ident: bib11 article-title: Controlling the density of the two-dimensional electron gas at the SrTiO publication-title: Phys. Rev. B – volume: 52 year: 2019 ident: bib33 article-title: Temperature dependences of strain and charge effects modulated by electric fields in a STO/Fe publication-title: J. Phys. D Appl. Phys. – volume: 4 start-page: 1836 year: 2007 end-page: 1843 ident: bib56 article-title: Investigation of FeO films on SrTiO publication-title: phys. stat. sol.(c) – volume: 29 year: 2010 ident: bib37 publication-title: Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy – volume: 8 start-page: 1335 year: 2020 end-page: 1343 ident: bib22 article-title: Thermal phase design of ultrathin magnetic ironoxide films: from Fe publication-title: J. Mater. Chem. C – volume: 95 start-page: 7282 year: 2004 ident: bib42 article-title: Direct observation of strain fields in epitaxial growth Fe publication-title: J. Appl. Phys. – volume: 122 start-page: 257601 year: 2019 ident: bib20 article-title: Modulating the electrical transport in the two-dimensional electron gas at LaAlO publication-title: Phys. Rev. Lett. – volume: 6 start-page: 1900301 year: 2019 ident: bib14 article-title: Long-range non-coulombic electron-electron interactions between LaAlO publication-title: Adv. Mater. Interfac. – volume: 124 start-page: 174701 year: 2006 ident: bib39 article-title: Ab initio study of structural and electronic properties of SrTiO publication-title: J. Chem. Phys. – volume: 111 year: 2017 ident: bib29 article-title: Real-time monitoring of the structure of ultrathin Fe publication-title: Appl. Phys. Lett. – volume: 26 start-page: 5679 year: 2016 end-page: 5689 ident: bib54 article-title: Ultrathin epitaxial ferromagnetic γ-Fe publication-title: Adv. Funct. Mater. – volume: 22 start-page: 255401 year: 2010 ident: bib48 article-title: Vacancy ordering and electronic structure of γ-Fe publication-title: J. Phys. Condens. Matter – volume: 18 start-page: 948 year: 2019 end-page: 954 ident: bib4 article-title: Gap suppression at a Lifshitz transition in a multi-condensate superconductor publication-title: Nat. Mater. – volume: 104 start-page: 142407 year: 2014 ident: bib53 article-title: Spin and orbital moments of nanoscale Fe publication-title: Appl. Phys. Lett. – volume: 104 start-page: 126802 year: 2010 ident: bib19 article-title: Tuning spin-orbit coupling and superconductivity at the SrTiO publication-title: Phys. Rev. Lett. – volume: 30 start-page: 11LT01 year: 2018 ident: bib27 article-title: Charge screening-controlled Verwey phase transition in Fe publication-title: J. Phys. Condens. Matter – volume: 113 start-page: 102404 year: 2018 ident: bib32 article-title: Multiple modulations of strain- and charge-mediated converse magnetoelectric coupling effects in a STO/Fe publication-title: Appl. Phys. Lett. – volume: 4 year: 2016 ident: bib12 article-title: Research update: conductivity and beyond at the LaAlO publication-title: Apl. Mater. – volume: 17 start-page: 7659 year: 2017 end-page: 7664 ident: bib15 article-title: Room-temperature giant charge-to-spin conversion at the SrTiO publication-title: Nano Lett. – volume: 21 start-page: 1665 year: 2009 end-page: 1677 ident: bib10 article-title: Structure–property relation of SrTiO publication-title: Adv. Mater. – volume: 108 year: 2016 ident: bib47 article-title: Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001) publication-title: Appl. Phys. Lett. – volume: 12 start-page: 7682 year: 2018 end-page: 7689 ident: bib9 article-title: Quantum confinement in oxide heterostructures: room-temperature intersubband Absorption in SrTiO publication-title: ACS Nano – volume: 5 start-page: 1701565 year: 2018 ident: bib7 article-title: Reversible resistance switching of 2D electron gas at LaAlO publication-title: Adv. Mater. Interfac. – volume: 108 start-page: 117003 year: 2012 ident: bib18 article-title: Superconducting and ferromagnetic phases in SrTiO publication-title: Phys. Rev. Lett. – volume: 96 start-page: 102510 year: 2010 ident: bib50 article-title: Efficient spin injection into GaAs quantum well across Fe publication-title: Appl. Phys. Lett. – volume: 122 start-page: 3115 year: 2018 end-page: 3122 ident: bib51 article-title: Large magnetoresistance in Fe publication-title: J. Phys. Chem. C – volume: 3 start-page: 104418 year: 2019 ident: bib6 article-title: Exploring possible ferromagnetism of the LaAlO publication-title: Phys. Rev. Mater. – volume: 4 year: 2016 ident: bib31 article-title: The investigation of giant magnetic moment in ultrathin Fe publication-title: Apl. Mater. – volume: 6 start-page: 1278 year: 2012 end-page: 1283 ident: bib16 article-title: Room-temperature giant persistent photoconductivity in SrTiO publication-title: ACS Nano – volume: 71 year: 2008 ident: bib35 article-title: Polarity of oxide surfaces and nanostructures publication-title: Rep. Prog. Phys. – volume: 427 start-page: 423 year: 2004 end-page: 426 ident: bib1 article-title: A high-mobility electron gas at the LaAlO publication-title: Nature – volume: 123 year: 2019 ident: bib3 article-title: Symmetry and correlation effects on band structure explain the anomalous transport properties of (111) LaAlO publication-title: Phys. Rev. Lett. – volume: 525 start-page: 115 year: 2012 end-page: 120 ident: bib28 article-title: Investigation of high quality magnetite thin films grown on SrTiO publication-title: Thin Solid Films – volume: 51 start-page: 1069 year: 2018 end-page: 1081 ident: bib57 article-title: Structural transformations and interfacial iron reduction in heterostructures with epitaxial layers of 3d metals and ferrimagnetic oxides publication-title: J. Appl. Cryst – volume: 113 start-page: 184103 year: 2013 ident: bib46 article-title: Reordering between tetrahedral and octahedral sites in ultrathin magnetite films grown on MgO(001) publication-title: J. Appl. Phys. – volume: 108 start-page: 212404 year: 2016 ident: bib55 article-title: Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe publication-title: Appl. Phys. Lett. – volume: 106 start-page: 166807 year: 2011 ident: bib8 article-title: Spontaneous 2-dimensional carrier confinement at the n-type SrTiO publication-title: Phys. Rev. Lett. – volume: 98 start-page: 196802 year: 2007 ident: bib17 article-title: Origin of charge density at LaAlO publication-title: Phys. Rev. Lett. – volume: 11 start-page: 7576 year: 2019 end-page: 7583 ident: bib21 article-title: Tunable magnetic phases at Fe publication-title: ACS Appl. Mater. Interfaces – volume: 432 start-page: 472 year: 2017 end-page: 476 ident: bib44 article-title: Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films publication-title: J. Magn. Magn Mater. – volume: 74 year: 2006 ident: bib52 article-title: Room-temperature spin filtering in a CoFe publication-title: Phys. Rev. B – volume: 124 year: 2020 ident: bib2 article-title: Electron trapping mechanism in LaAlO publication-title: Phys. Rev. Lett. – volume: 119 start-page: 1108 year: 2015 end-page: 1112 ident: bib23 article-title: Incommensurate growth of thin and ultrathin films of single-phase Fe publication-title: J. Phys. Chem. C – volume: 6 start-page: 1087 year: 2006 end-page: 1091 ident: bib49 article-title: Spin-Filter effect in magnetite nanowire publication-title: Nano Lett. – volume: 105 start-page: 241604 year: 2014 ident: bib24 article-title: Interface correlated exchange bias effect in epitaxial Fe publication-title: Appl. Phys. Lett. – volume: 12 start-page: R367 year: 2000 end-page: R410 ident: bib34 article-title: Polar oxide surfaces publication-title: J. Phys. Condens. Matter – volume: 81 start-page: 3253 year: 1997 ident: bib43 article-title: Growth, structure, and magnetic properties of γ-Fe publication-title: J. Appl. Phys. – volume: 22 start-page: 2881 year: 2010 end-page: 2899 ident: bib13 article-title: Electronic and magnetic properties of SrTiO publication-title: Adv. Mater. – volume: 120 start-page: 377 year: 2018 end-page: 381 ident: bib41 article-title: Mechanism of polar catastrophe cancelling induced by charge compensation for epitaxy γ-Fe publication-title: Microst – volume: 21 start-page: 4452 year: 2009 end-page: 4455 ident: bib25 article-title: Ferroelectric switching in multiferroic magnetite (Fe publication-title: Adv. Mater. – volume: 114 year: 2019 ident: bib26 article-title: Enhanced modulation of magnetization in the Fe publication-title: Appl. Phys. Lett. – volume: 6 year: 2016 ident: bib40 article-title: Dynamic atomic reconstruction: how Fe publication-title: Phys. Rev. X – volume: 5 start-page: 204 year: 2006 end-page: 209 ident: bib36 article-title: Why some interfaces cannot be sharp publication-title: Nat. Mater. – volume: 61 start-page: 548 year: 2013 ident: 10.1016/j.spmi.2022.107183_bib45 article-title: Epitaxial growth of γ-Fe2O3 thin films on MgO substrates by pulsed laser deposition and their properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.10.003 – volume: 5 start-page: 204 year: 2006 ident: 10.1016/j.spmi.2022.107183_bib36 article-title: Why some interfaces cannot be sharp publication-title: Nat. Mater. doi: 10.1038/nmat1569 – volume: 26 start-page: 5679 year: 2016 ident: 10.1016/j.spmi.2022.107183_bib54 article-title: Ultrathin epitaxial ferromagnetic γ-Fe2O3 layer as high efficiency spin filtering materials for spintronics device based on semiconductors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504999 – volume: 22 start-page: 255401 year: 2010 ident: 10.1016/j.spmi.2022.107183_bib48 article-title: Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/25/255401 – volume: 124 year: 2020 ident: 10.1016/j.spmi.2022.107183_bib2 article-title: Electron trapping mechanism in LaAlO3/SrTiO3 heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.017702 – volume: 86 start-page: 241108 year: 2012 ident: 10.1016/j.spmi.2022.107183_bib11 article-title: Controlling the density of the two-dimensional electron gas at the SrTiO3/LaAlO3 interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.241108 – volume: 119 start-page: 1108 year: 2015 ident: 10.1016/j.spmi.2022.107183_bib23 article-title: Incommensurate growth of thin and ultrathin films of single-phase Fe3O4(001) on SrTiO3(001) publication-title: J. Phys. Chem. C doi: 10.1021/jp510615j – volume: 6 start-page: 1278 year: 2012 ident: 10.1016/j.spmi.2022.107183_bib16 article-title: Room-temperature giant persistent photoconductivity in SrTiO3/LaAlO3 heterostructures publication-title: ACS Nano doi: 10.1021/nn203991q – volume: 108 year: 2016 ident: 10.1016/j.spmi.2022.107183_bib47 article-title: Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001) publication-title: Appl. Phys. Lett. doi: 10.1063/1.4940890 – volume: 96 year: 2017 ident: 10.1016/j.spmi.2022.107183_bib30 article-title: Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films publication-title: Phys. Rev. B – volume: 71 year: 2008 ident: 10.1016/j.spmi.2022.107183_bib35 article-title: Polarity of oxide surfaces and nanostructures publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/71/1/016501 – volume: 106 start-page: 166807 year: 2011 ident: 10.1016/j.spmi.2022.107183_bib8 article-title: Spontaneous 2-dimensional carrier confinement at the n-type SrTiO3/LaAlO3 interface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.166807 – volume: 120 start-page: 377 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib41 article-title: Mechanism of polar catastrophe cancelling induced by charge compensation for epitaxy γ-Fe2O3 film on MgO(001) substrate: a theoretical investigation, Superlattice publication-title: Microst doi: 10.1016/j.spmi.2018.05.065 – volume: 122 start-page: 257601 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib20 article-title: Modulating the electrical transport in the two-dimensional electron gas at LaAlO3/SrTiO3 heterostructures by interfacial flexoelectricity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.257601 – volume: 12 start-page: 7682 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib9 article-title: Quantum confinement in oxide heterostructures: room-temperature intersubband Absorption in SrTiO3/LaAlO3 multiple quantum wells publication-title: ACS Nano doi: 10.1021/acsnano.8b01293 – volume: 111 year: 2017 ident: 10.1016/j.spmi.2022.107183_bib29 article-title: Real-time monitoring of the structure of ultrathin Fe3O4 films during growth on Nb-doped SrTiO3(001) publication-title: Appl. Phys. Lett. doi: 10.1063/1.4995408 – volume: 525 start-page: 115 year: 2012 ident: 10.1016/j.spmi.2022.107183_bib28 article-title: Investigation of high quality magnetite thin films grown on SrTiO3(001) substrates by pulsed laser deposition publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.10.076 – volume: 5 start-page: 1701565 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib7 article-title: Reversible resistance switching of 2D electron gas at LaAlO3/SrTiO3 heterointerface publication-title: Adv. Mater. Interfac. doi: 10.1002/admi.201701565 – volume: 604 start-page: 1674 year: 2010 ident: 10.1016/j.spmi.2022.107183_bib38 article-title: Surface enhanced covalency and Madelung potentials in Nb doped SrTiO3 (100), (110) and (111) single crystals publication-title: Surf. Sci. doi: 10.1016/j.susc.2010.06.012 – volume: 4 start-page: 1836 year: 2007 ident: 10.1016/j.spmi.2022.107183_bib56 article-title: Investigation of FeO films on SrTiO3(100) publication-title: phys. stat. sol.(c) doi: 10.1002/pssc.200675222 – volume: 51 start-page: 1069 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib57 article-title: Structural transformations and interfacial iron reduction in heterostructures with epitaxial layers of 3d metals and ferrimagnetic oxides publication-title: J. Appl. Cryst doi: 10.1107/S1600576718007823 – volume: 108 start-page: 212404 year: 2016 ident: 10.1016/j.spmi.2022.107183_bib55 article-title: Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe2O3/MgO thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4952769 – volume: 113 start-page: 184103 year: 2013 ident: 10.1016/j.spmi.2022.107183_bib46 article-title: Reordering between tetrahedral and octahedral sites in ultrathin magnetite films grown on MgO(001) publication-title: J. Appl. Phys. doi: 10.1063/1.4803894 – volume: 123 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib3 article-title: Symmetry and correlation effects on band structure explain the anomalous transport properties of (111) LaAlO3/SrTiO3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.036805 – volume: 98 start-page: 196802 year: 2007 ident: 10.1016/j.spmi.2022.107183_bib17 article-title: Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.196802 – volume: 18 start-page: 948 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib4 article-title: Gap suppression at a Lifshitz transition in a multi-condensate superconductor publication-title: Nat. Mater. doi: 10.1038/s41563-019-0354-z – volume: 108 start-page: 117003 year: 2012 ident: 10.1016/j.spmi.2022.107183_bib18 article-title: Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures:possibility of finite momentum pairing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.117003 – volume: 21 start-page: 4452 year: 2009 ident: 10.1016/j.spmi.2022.107183_bib25 article-title: Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films publication-title: Adv. Mater. doi: 10.1002/adma.200901381 – volume: 29 year: 2010 ident: 10.1016/j.spmi.2022.107183_bib37 – volume: 432 start-page: 472 year: 2017 ident: 10.1016/j.spmi.2022.107183_bib44 article-title: Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2017.02.032 – volume: 124 start-page: 174701 year: 2006 ident: 10.1016/j.spmi.2022.107183_bib39 article-title: Ab initio study of structural and electronic properties of SrTiO3 (001) oxygen-vacancy surfaces publication-title: J. Chem. Phys. doi: 10.1063/1.2189225 – volume: 6 year: 2016 ident: 10.1016/j.spmi.2022.107183_bib40 article-title: Dynamic atomic reconstruction: how Fe3O4 thin films evade polar catastrophe for epitaxy publication-title: Phys. Rev. X – volume: 17 start-page: 7659 year: 2017 ident: 10.1016/j.spmi.2022.107183_bib15 article-title: Room-temperature giant charge-to-spin conversion at the SrTiO3-LaAlO3 oxide interface publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03714 – volume: 8 start-page: 1335 year: 2020 ident: 10.1016/j.spmi.2022.107183_bib22 article-title: Thermal phase design of ultrathin magnetic ironoxide films: from Fe3O4 to γ-Fe2O3 and FeO publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05921K – volume: 12 start-page: R367 year: 2000 ident: 10.1016/j.spmi.2022.107183_bib34 article-title: Polar oxide surfaces publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/12/31/201 – volume: 11 start-page: 7576 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib21 article-title: Tunable magnetic phases at Fe3O4/SrTiO3 oxide interfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20625 – volume: 4 year: 2016 ident: 10.1016/j.spmi.2022.107183_bib31 article-title: The investigation of giant magnetic moment in ultrathin Fe3O4 films publication-title: Apl. Mater. doi: 10.1063/1.4944590 – volume: 96 start-page: 102510 year: 2010 ident: 10.1016/j.spmi.2022.107183_bib50 article-title: Efficient spin injection into GaAs quantum well across Fe3O4 spin filter publication-title: Appl. Phys. Lett. doi: 10.1063/1.3357436 – volume: 74 year: 2006 ident: 10.1016/j.spmi.2022.107183_bib52 article-title: Room-temperature spin filtering in a CoFe2O4/MgAl2O4/Fe3O4 magnetic tunnel barrier publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.014418 – volume: 21 start-page: 1665 year: 2009 ident: 10.1016/j.spmi.2022.107183_bib10 article-title: Structure–property relation of SrTiO3/LaAlO3 interfaces publication-title: Adv. Mater. doi: 10.1002/adma.200801448 – volume: 116 year: 2020 ident: 10.1016/j.spmi.2022.107183_bib5 article-title: Acoustoelectric charge transport at the LaAlO3/SrTiO3 interface publication-title: Appl. Phys. Lett. doi: 10.1063/1.5139307 – volume: 104 start-page: 126802 year: 2010 ident: 10.1016/j.spmi.2022.107183_bib19 article-title: Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.126802 – volume: 104 start-page: 142407 year: 2014 ident: 10.1016/j.spmi.2022.107183_bib53 article-title: Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100) publication-title: Appl. Phys. Lett. doi: 10.1063/1.4871001 – volume: 6 start-page: 1900301 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib14 article-title: Long-range non-coulombic electron-electron interactions between LaAlO3/SrTiO3 nanowires publication-title: Adv. Mater. Interfac. doi: 10.1002/admi.201900301 – volume: 95 start-page: 7282 year: 2004 ident: 10.1016/j.spmi.2022.107183_bib42 article-title: Direct observation of strain fields in epitaxial growth Fe3O4 thin films on MgO substrates publication-title: J. Appl. Phys. doi: 10.1063/1.1682788 – volume: 22 start-page: 2881 year: 2010 ident: 10.1016/j.spmi.2022.107183_bib13 article-title: Electronic and magnetic properties of SrTiO3/LaAlO3 interfaces from first principles publication-title: Adv. Mater. doi: 10.1002/adma.200903800 – volume: 105 start-page: 241604 year: 2014 ident: 10.1016/j.spmi.2022.107183_bib24 article-title: Interface correlated exchange bias effect in epitaxial Fe3O4 thin films grown on SrTiO3 substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904471 – volume: 114 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib26 article-title: Enhanced modulation of magnetization in the Fe3O4/MgO/SrTiO3 heterostructure by electric field publication-title: Appl. Phys. Lett. doi: 10.1063/1.5082256 – volume: 122 start-page: 3115 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib51 article-title: Large magnetoresistance in Fe3O4/4,4′-Bipyridine/Fe3O4 organic magnetic tunnel junctions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b11583 – volume: 4 year: 2016 ident: 10.1016/j.spmi.2022.107183_bib12 article-title: Research update: conductivity and beyond at the LaAlO3/SrTiO3 interface publication-title: Apl. Mater. doi: 10.1063/1.4953822 – volume: 52 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib33 article-title: Temperature dependences of strain and charge effects modulated by electric fields in a STO/Fe3O4/Au/PZT multiferroic heterostructure publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aaec49 – volume: 6 start-page: 1087 year: 2006 ident: 10.1016/j.spmi.2022.107183_bib49 article-title: Spin-Filter effect in magnetite nanowire publication-title: Nano Lett. doi: 10.1021/nl052199p – volume: 113 start-page: 102404 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib32 article-title: Multiple modulations of strain- and charge-mediated converse magnetoelectric coupling effects in a STO/Fe3O4/Au/PZT multiferroic heterostructure publication-title: Appl. Phys. Lett. doi: 10.1063/1.5046177 – volume: 427 start-page: 423 year: 2004 ident: 10.1016/j.spmi.2022.107183_bib1 article-title: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface publication-title: Nature doi: 10.1038/nature02308 – volume: 81 start-page: 3253 year: 1997 ident: 10.1016/j.spmi.2022.107183_bib43 article-title: Growth, structure, and magnetic properties of γ-Fe2O3 epitaxial films on MgO publication-title: J. Appl. Phys. doi: 10.1063/1.364355 – volume: 30 start-page: 11LT01 year: 2018 ident: 10.1016/j.spmi.2022.107183_bib27 article-title: Charge screening-controlled Verwey phase transition in Fe3O4/SrTiO3 heterostructure publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aaae37 – volume: 3 start-page: 104418 year: 2019 ident: 10.1016/j.spmi.2022.107183_bib6 article-title: Exploring possible ferromagnetism of the LaAlO3/SrTiO3 interface publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.104418 |
SSID | ssj0009417 ssj0003212365 |
Score | 2.3211815 |
Snippet | The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107183 |
SubjectTerms | Epitaxy Hetero-interface Maghemite Magnetite Polar Spintronic |
Title | Fe3O4 thin films epitaxially growth model on TiO2-terminated SrTiO3(100) |
URI | https://dx.doi.org/10.1016/j.spmi.2022.107183 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBgyKx2WS3SY8lWOKrFVuht7BJJjbSpqWNoBd_u7N5-ADpwVOSYQbCMMw3A9_MEHIqDBkijEUaRpOvcQQYrQ0c34wQmGnJCJgaFL7vtdwnfjMSowpxylkYRasscn-e07NsXUiahTeb8zhuDhD8sPzGBGzkW1XUBDu3VJRffnzTPNo8u7qrlDWlXQzO5Byv5XwaY49oGCjAJG3-DU4_AKe7TbaKSpF28p_ZIRVIamTDKQ-01ch6xt4MlrvE7YLZ5zQdxwmN4sl0SUEdA3nD2Jq802fstNMxzW7e0FlCh3Hf0AoSDNabdLBAiXnGdP18jwy7V0PH1YoTCVpg6nqqcZ8FkS9sk4W65FLYkQUKdbkIhW-JoGUxKQSwkNvtCKTJIeRM2sCkz6UP5j6pJrMEDgiVUnBsH4wIWxRu-QGiVAC2jd0bGDwMoE5Y6RovKNaHqysWE6_kib14yp2ecqeXu7NOLr5s5vnyjJXaovS49ysEPMzuK-wO_2l3RDbVV869PSbVdPEKJ1hhpH4jC6EGWes4j3cP6nl96_Y-Aa_8zq4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qInoRrYr1uQcPisRmk12THqVY6qPtoRV6C5tkYiNtWmwEvfjbnc3DB0gP3sJmB8IwmW8GvpkP4FRaKiQYiwyKJt8QBDBGAwU9WSFy21ERcj0o3OletR_F3VAOK9AsZ2E0rbLI_XlOz7J1cVIvvFmfxXG9T-BH5TclYCvfqrIEK4J-Xy1jcPnxzfNoiEx2V9829PViciYnec1nk5iaRMuiA8rS9t_o9ANxWpuwUZSK7Dr_mi2oYFKFtWap0FaF1Yy-Gcy3od1CuydYOooTFsXjyZyhVgN5o-Aav7MnarXTEctEb9g0YYO4ZxkFC4YKTtZ_oRP7jJvm-Q4MWjeDZtsoNBKMwDbN1BA-DyJfujYPTSWUdCMHNewKGUrfkcGVw5WUyEPhNiJUtsBQcOUiV75QPtq7sJxME9wDppQU1D9YEfUowvEDgqkAXZfaN7REGGANeOkaLyj2h2sZi7FXEsWePe1OT7vTy91Zg4svm1m-PWPhbVl63PsVAx6l9wV2-_-0O4G19qDz4D3cdu8PYF2_yYm4h7CcvrziEZUbqX-chdMnJCvOpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe3O4+thin+films+epitaxially+growth+model+on+TiO2-terminated+SrTiO3%28100%29&rft.jtitle=Superlattices+and+microstructures&rft.au=Cheng%2C+Bin&rft.au=Liu%2C+Xing&rft.au=Hu%2C+Jifan&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=167&rft_id=info:doi/10.1016%2Fj.spmi.2022.107183&rft.externalDocID=S0749603622000362 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |