Fe3O4 thin films epitaxially growth model on TiO2-terminated SrTiO3(100)

The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the structure at the Fe3O4/SrTiO3(100) interface. One opinion suggests the formation of interfacial antiferromagnetic FeO layers, while another op...

Full description

Saved in:
Bibliographic Details
Published inMicro and nanostructures (2022) Vol. 167; p. 107183
Main Authors Cheng, Bin, Liu, Xing, Hu, Jifan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the structure at the Fe3O4/SrTiO3(100) interface. One opinion suggests the formation of interfacial antiferromagnetic FeO layers, while another opinion suggests that are γ-Fe2O3 layers. Here, we propose a theoretical model that what kind of iron oxide stacking sequence forming on the substrate depends on the substrate termination charge. We give a tentative and easy-to-understand growth model for epitaxy, which agrees with the opinion of γ-Fe2O3 layers formation at the Fe3O4/SrTiO3(100) interface. This theoretical model agrees well with the experimental curve and gives a prediction for the different Fe ions concentration depending on thickness. The calculation results of the Fe ions concentration adjacent to the substrate surface show that there are almost no B-site Fe ions at the interface. It indicates that there are unusual electric and magnetic properties at interface. Our growth model illustrates that the possible magnetically dead layer at the interface is responsible for the decrease of the magnetization in the thin films. •This growth mode give credit to the results of interfacial ferrimagnetic γ-Fe2O3 layer in Fe3O4/SrTiO3(100).•The model curve agrees with the experimental curve, gives prediction for the Fe ions concentration depending on thickness.•There are almost no B-site Fe at interface. There exists possible magnetically dead layer at the interface.•The growth mode and the oxidation level are determined by the TiO2-termination charge.•The magnetite film grown on SrTiO3(001) exhibiting vertical compressive and lateral tensile strain has been explained.
AbstractList The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the structure at the Fe3O4/SrTiO3(100) interface. One opinion suggests the formation of interfacial antiferromagnetic FeO layers, while another opinion suggests that are γ-Fe2O3 layers. Here, we propose a theoretical model that what kind of iron oxide stacking sequence forming on the substrate depends on the substrate termination charge. We give a tentative and easy-to-understand growth model for epitaxy, which agrees with the opinion of γ-Fe2O3 layers formation at the Fe3O4/SrTiO3(100) interface. This theoretical model agrees well with the experimental curve and gives a prediction for the different Fe ions concentration depending on thickness. The calculation results of the Fe ions concentration adjacent to the substrate surface show that there are almost no B-site Fe ions at the interface. It indicates that there are unusual electric and magnetic properties at interface. Our growth model illustrates that the possible magnetically dead layer at the interface is responsible for the decrease of the magnetization in the thin films. •This growth mode give credit to the results of interfacial ferrimagnetic γ-Fe2O3 layer in Fe3O4/SrTiO3(100).•The model curve agrees with the experimental curve, gives prediction for the Fe ions concentration depending on thickness.•There are almost no B-site Fe at interface. There exists possible magnetically dead layer at the interface.•The growth mode and the oxidation level are determined by the TiO2-termination charge.•The magnetite film grown on SrTiO3(001) exhibiting vertical compressive and lateral tensile strain has been explained.
ArticleNumber 107183
Author Liu, Xing
Hu, Jifan
Cheng, Bin
Author_xml – sequence: 1
  givenname: Bin
  surname: Cheng
  fullname: Cheng, Bin
  organization: School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China
– sequence: 2
  givenname: Xing
  surname: Liu
  fullname: Liu, Xing
  email: bingxing0108@163.com
  organization: Jinan Engineering Polytechnic, Jinan, 250200, China
– sequence: 3
  givenname: Jifan
  surname: Hu
  fullname: Hu, Jifan
  email: hujf@sdu.edu.cn
  organization: School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China
BookMark eNp9kE1LAzEURYNUsK3-AVdZ6mLGl0lmMgNupFgrFLqw-5BJ3tiU-ShJUPvvnVJXLrq6cOFcuGdGJv3QIyH3DFIGrHjap-HQuTSDLBsLyUp-RaYMqiLhhZQTMgUpqqQAXtyQWQh7AKgEk1OyWiLfCBp3rqeNa7tA8eCi_nG6bY_00w_fcUe7wWJLh55u3SZLIvrO9TqipR9-bPgDA3i8JdeNbgPe_eWcbJev28UqWW_e3hcv68RwgJiImpmmzkvOLGih87KRCJnIRG7zWuamkEznOTIryqpBzQVawXSJTNdC18jnJDvPGj-E4LFRB-867Y-KgTqpUHt1UqFOKtRZxQiV_yAzfoxu6KPXrr2MPp9RHD99OfQqGIe9Qes8mqjs4C7hv-niev8
CitedBy_id crossref_primary_10_1002_adma_202309217
Cites_doi 10.1016/j.actamat.2012.10.003
10.1038/nmat1569
10.1002/adfm.201504999
10.1088/0953-8984/22/25/255401
10.1103/PhysRevLett.124.017702
10.1103/PhysRevB.86.241108
10.1021/jp510615j
10.1021/nn203991q
10.1063/1.4940890
10.1088/0034-4885/71/1/016501
10.1103/PhysRevLett.106.166807
10.1016/j.spmi.2018.05.065
10.1103/PhysRevLett.122.257601
10.1021/acsnano.8b01293
10.1063/1.4995408
10.1016/j.tsf.2012.10.076
10.1002/admi.201701565
10.1016/j.susc.2010.06.012
10.1002/pssc.200675222
10.1107/S1600576718007823
10.1063/1.4952769
10.1063/1.4803894
10.1103/PhysRevLett.123.036805
10.1103/PhysRevLett.98.196802
10.1038/s41563-019-0354-z
10.1103/PhysRevLett.108.117003
10.1002/adma.200901381
10.1016/j.jmmm.2017.02.032
10.1063/1.2189225
10.1021/acs.nanolett.7b03714
10.1039/C9TC05921K
10.1088/0953-8984/12/31/201
10.1021/acsami.8b20625
10.1063/1.4944590
10.1063/1.3357436
10.1103/PhysRevB.74.014418
10.1002/adma.200801448
10.1063/1.5139307
10.1103/PhysRevLett.104.126802
10.1063/1.4871001
10.1002/admi.201900301
10.1063/1.1682788
10.1002/adma.200903800
10.1063/1.4904471
10.1063/1.5082256
10.1021/acs.jpcc.7b11583
10.1063/1.4953822
10.1088/1361-6463/aaec49
10.1021/nl052199p
10.1063/1.5046177
10.1038/nature02308
10.1063/1.364355
10.1088/1361-648X/aaae37
10.1103/PhysRevMaterials.3.104418
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2022.107183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Engineering
EISSN 1096-3677
2773-0123
ExternalDocumentID 10_1016_j_spmi_2022_107183
S0749603622000362
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
AEIPS
AFJKZ
AFXIZ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
M41
SSH
ID FETCH-LOGICAL-c300t-4b1cfb5831d0a4a58f7e024245d5b75c671a55e1d489fea34ed41a8e1ab4abe3
IEDL.DBID .~1
ISSN 0749-6036
2773-0123
IngestDate Thu Apr 24 23:01:42 EDT 2025
Tue Jul 01 00:38:55 EDT 2025
Fri Feb 23 02:40:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetite
Spintronic
Hetero-interface
Polar
Epitaxy
Maghemite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4b1cfb5831d0a4a58f7e024245d5b75c671a55e1d489fea34ed41a8e1ab4abe3
ParticipantIDs crossref_primary_10_1016_j_spmi_2022_107183
crossref_citationtrail_10_1016_j_spmi_2022_107183
elsevier_sciencedirect_doi_10_1016_j_spmi_2022_107183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Micro and nanostructures (2022)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Noguera (bib34) 2000; 12
Delugas, Filippetti, Fiorentini, Bilc, Fontaine, Ghosez (bib8) 2011; 106
Wu, Wang, Li, Zhou, Zhu, Lu (bib33) 2019; 52
Wittlich, Boschker, Asaba, Li, Noad, Watson, Moler, Daraselia, Japaridze, Shengelaya, Wang, Xia, Mannhart (bib6) 2019; 3
Chapline, Wang (bib52) 2006; 74
Gao, Huang, Li, Wang, Wei, Zhang, Guo (bib7) 2018; 5
Tang, Tylan-Tyler, Lee, Lee, Tomczyk, Huang, Eom, Irvin, Levy (bib14) 2019; 6
Rubio-Zuazo, Onandia, Salas-Colera, Muñoz-Noval, Castro (bib23) 2015; 119
Zhang, Lv, Zhang, Huang, Wong, Yau, Chen, Wen, Jiang, Zeng, Hong, Dai (bib20) 2019; 122
Singh, Jouan, Herranz, Scigaj, Sánchez, Benfatto, Caprara, Grilli, Saiz, Couëdo, Feuillet-Palma, Lesueur, Bergeal (bib4) 2019; 18
Wang, Ramaswamy, Motapothula, Narayanapillai, Zhu, Yu, Venkatesan, Yang (bib15) 2017; 17
Yin, Smink, Leermakers, Tang, Lebedev, Zeitler, van der Wiel, Hilgenkamp, Aarts (bib2) 2020; 124
Chang, Hu, Klein, Liu, Sutarto, Tanaka, Cezar, Brookes, Lin, Hsieh, Chen, Rata, Tjeng (bib40) 2016; 6
Ben Shalom, Sachs, Rakhmilevitch, Palevski, Dagan (bib19) 2010; 104
Cheng, Qin, Pei, Liu, Ren, Hu (bib55) 2016; 108
Guan, Zhou, Xue, Quan, Xu (bib31) 2016; 4
Tebano, Fabbri, Pergolesi, Balestrino, Traversa (bib16) 2012; 6
Ortmann, Nookala, He, Gao, Lin, Posadas, Borisevich, Belkin, Demkov (bib9) 2018; 12
Liu, Liu, Zhang (bib30) 2017; 96
(bib37) 2010; 29
Cai, Zhang, Yang, Yin, Zhang, Hu, Wang (bib39) 2006; 124
Siemons, Koster, Yamamoto, Harrison, Lucovsky, Geballe, Blank, Beasley (bib17) 2007; 98
Suturin, Kaveev, Korovin, Fedorov, Sawada, Sokolov (bib57) 2018; 51
Nakagawa, Hwang, Muller (bib36) 2006; 5
Wada, Watanabe, Shirahata, Itoh, Yamaguchi, Taniyama (bib50) 2010; 96
Gariglio, Gabay, Triscone (bib12) 2016; 4
Cheng, Qin, Liu, Xie, Hu (bib41) 2018; 120
Zhang, Liu, Zhang, Zhang, Niu, Gao, Wang, Du, Zhang, Xu (bib44) 2017; 432
Hamie, Dumont, Popova, Fouchet, Warot-Fonrose, Gatel, Chikoidze, Scola, Berini, Keller (bib28) 2012; 525
Heinrich, Demund, Szargan (bib56) 2007; 4
Kuschel, Spiess, Schemme, Rubio-Zuazo, Kuepper, Wollschläger (bib29) 2017; 111
Vanacorea, Zagonel, Barrett (bib38) 2010; 604
Gao, Kim, Thevuthasan, Chambers, Lubitz (bib43) 1997; 81
Chen, Chen, Zhou, Wang, Tang, Wang, Daughton (bib42) 2004; 95
Lu, Wu, Zhu, Li, Wang, Pan (bib26) 2019; 114
Ji, Wang, Li (bib27) 2018; 30
Hamed, Hinz, Lömker, Wilhelm, Gloskovskii, Bencok, Schmitz-Antoniak, Elnaggar, Schneider, Müller (bib21) 2019; 11
Michaeli, Potter, Lee (bib18) 2012; 108
Grau-Crespo, Al-Baitai, Saadoune, De Leeuw (bib48) 2010; 22
Li, Xia, Zhu, Wen, Zhang, Alshareef, Zhang (bib54) 2016; 26
Hamed, Mueller, Müller (bib22) 2020; 8
Huijben, Brinkman, Koster, Rijnders, Hilgenkamp, Blank (bib10) 2009; 21
Chen, Kolpak, Ismail-Beigi (bib13) 2010; 22
Khanna, Rout, Mograbi, Tuvia, Leermakers, Zeitler, Dagan, Goldstein (bib3) 2019; 123
Liu, Xu, Wong, Maltby, Li, Wang, Du, You, Wu, Bencok, Zhang (bib53) 2014; 104
Ohtomo, Hwang (bib1) 2004; 427
Bertram, Deiter, Schemme, Jentsch, Wollschläger (bib46) 2013; 113
Sun, Wang, Mi (bib51) 2018; 122
Liao, Li, Xu, Zhang, Xia, Yu (bib49) 2006; 6
Zhu, Zheng, Yang, Zheng, Wang, Li, Shi (bib24) 2014; 105
Kozioł-Rachwał, Ślęzak, Nozaki, Yuasa, Korecki (bib47) 2016; 108
Janotti, Bjaalie, Gordon, Van de Walle (bib11) 2012; 86
Uzun, Smink, de Jong, Hilgenkamp, van der Wiel (bib5) 2020; 116
Wu, Zhou, Li, Wang, Pan (bib32) 2018; 113
Alexe, Ziese, Hesse, Esquinazi, Yamauchi, Fukushima, Picozzi, Gösele (bib25) 2009; 21
Goniakowski, Finocchi, Noguera (bib35) 2008; 71
Huang, Yang, Ding (bib45) 2013; 61
Wada (10.1016/j.spmi.2022.107183_bib50) 2010; 96
Guan (10.1016/j.spmi.2022.107183_bib31) 2016; 4
Gariglio (10.1016/j.spmi.2022.107183_bib12) 2016; 4
Sun (10.1016/j.spmi.2022.107183_bib51) 2018; 122
Liao (10.1016/j.spmi.2022.107183_bib49) 2006; 6
Ji (10.1016/j.spmi.2022.107183_bib27) 2018; 30
Wu (10.1016/j.spmi.2022.107183_bib33) 2019; 52
Ohtomo (10.1016/j.spmi.2022.107183_bib1) 2004; 427
Hamie (10.1016/j.spmi.2022.107183_bib28) 2012; 525
(10.1016/j.spmi.2022.107183_bib37) 2010; 29
Huang (10.1016/j.spmi.2022.107183_bib45) 2013; 61
Cai (10.1016/j.spmi.2022.107183_bib39) 2006; 124
Gao (10.1016/j.spmi.2022.107183_bib43) 1997; 81
Chen (10.1016/j.spmi.2022.107183_bib13) 2010; 22
Tang (10.1016/j.spmi.2022.107183_bib14) 2019; 6
Li (10.1016/j.spmi.2022.107183_bib54) 2016; 26
Heinrich (10.1016/j.spmi.2022.107183_bib56) 2007; 4
Zhang (10.1016/j.spmi.2022.107183_bib44) 2017; 432
Zhang (10.1016/j.spmi.2022.107183_bib20) 2019; 122
Cheng (10.1016/j.spmi.2022.107183_bib41) 2018; 120
Hamed (10.1016/j.spmi.2022.107183_bib21) 2019; 11
Liu (10.1016/j.spmi.2022.107183_bib30) 2017; 96
Khanna (10.1016/j.spmi.2022.107183_bib3) 2019; 123
Gao (10.1016/j.spmi.2022.107183_bib7) 2018; 5
Chapline (10.1016/j.spmi.2022.107183_bib52) 2006; 74
Ben Shalom (10.1016/j.spmi.2022.107183_bib19) 2010; 104
Ortmann (10.1016/j.spmi.2022.107183_bib9) 2018; 12
Kozioł-Rachwał (10.1016/j.spmi.2022.107183_bib47) 2016; 108
Cheng (10.1016/j.spmi.2022.107183_bib55) 2016; 108
Wu (10.1016/j.spmi.2022.107183_bib32) 2018; 113
Michaeli (10.1016/j.spmi.2022.107183_bib18) 2012; 108
Kuschel (10.1016/j.spmi.2022.107183_bib29) 2017; 111
Siemons (10.1016/j.spmi.2022.107183_bib17) 2007; 98
Lu (10.1016/j.spmi.2022.107183_bib26) 2019; 114
Delugas (10.1016/j.spmi.2022.107183_bib8) 2011; 106
Goniakowski (10.1016/j.spmi.2022.107183_bib35) 2008; 71
Bertram (10.1016/j.spmi.2022.107183_bib46) 2013; 113
Chen (10.1016/j.spmi.2022.107183_bib42) 2004; 95
Singh (10.1016/j.spmi.2022.107183_bib4) 2019; 18
Liu (10.1016/j.spmi.2022.107183_bib53) 2014; 104
Uzun (10.1016/j.spmi.2022.107183_bib5) 2020; 116
Wittlich (10.1016/j.spmi.2022.107183_bib6) 2019; 3
Wang (10.1016/j.spmi.2022.107183_bib15) 2017; 17
Zhu (10.1016/j.spmi.2022.107183_bib24) 2014; 105
Vanacorea (10.1016/j.spmi.2022.107183_bib38) 2010; 604
Janotti (10.1016/j.spmi.2022.107183_bib11) 2012; 86
Rubio-Zuazo (10.1016/j.spmi.2022.107183_bib23) 2015; 119
Nakagawa (10.1016/j.spmi.2022.107183_bib36) 2006; 5
Suturin (10.1016/j.spmi.2022.107183_bib57) 2018; 51
Hamed (10.1016/j.spmi.2022.107183_bib22) 2020; 8
Grau-Crespo (10.1016/j.spmi.2022.107183_bib48) 2010; 22
Noguera (10.1016/j.spmi.2022.107183_bib34) 2000; 12
Tebano (10.1016/j.spmi.2022.107183_bib16) 2012; 6
Alexe (10.1016/j.spmi.2022.107183_bib25) 2009; 21
Yin (10.1016/j.spmi.2022.107183_bib2) 2020; 124
Chang (10.1016/j.spmi.2022.107183_bib40) 2016; 6
Huijben (10.1016/j.spmi.2022.107183_bib10) 2009; 21
References_xml – volume: 96
  year: 2017
  ident: bib30
  article-title: Evolution of magnetic properties in the vicinity of the Verwey transition in Fe
  publication-title: Phys. Rev. B
– volume: 604
  start-page: 1674
  year: 2010
  end-page: 1683
  ident: bib38
  article-title: Surface enhanced covalency and Madelung potentials in Nb doped SrTiO
  publication-title: Surf. Sci.
– volume: 61
  start-page: 548
  year: 2013
  end-page: 557
  ident: bib45
  article-title: Epitaxial growth of γ-Fe
  publication-title: Acta Mater.
– volume: 116
  year: 2020
  ident: bib5
  article-title: Acoustoelectric charge transport at the LaAlO
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 241108
  year: 2012
  ident: bib11
  article-title: Controlling the density of the two-dimensional electron gas at the SrTiO
  publication-title: Phys. Rev. B
– volume: 52
  year: 2019
  ident: bib33
  article-title: Temperature dependences of strain and charge effects modulated by electric fields in a STO/Fe
  publication-title: J. Phys. D Appl. Phys.
– volume: 4
  start-page: 1836
  year: 2007
  end-page: 1843
  ident: bib56
  article-title: Investigation of FeO films on SrTiO
  publication-title: phys. stat. sol.(c)
– volume: 29
  year: 2010
  ident: bib37
  publication-title: Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy
– volume: 8
  start-page: 1335
  year: 2020
  end-page: 1343
  ident: bib22
  article-title: Thermal phase design of ultrathin magnetic ironoxide films: from Fe
  publication-title: J. Mater. Chem. C
– volume: 95
  start-page: 7282
  year: 2004
  ident: bib42
  article-title: Direct observation of strain fields in epitaxial growth Fe
  publication-title: J. Appl. Phys.
– volume: 122
  start-page: 257601
  year: 2019
  ident: bib20
  article-title: Modulating the electrical transport in the two-dimensional electron gas at LaAlO
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 1900301
  year: 2019
  ident: bib14
  article-title: Long-range non-coulombic electron-electron interactions between LaAlO
  publication-title: Adv. Mater. Interfac.
– volume: 124
  start-page: 174701
  year: 2006
  ident: bib39
  article-title: Ab initio study of structural and electronic properties of SrTiO
  publication-title: J. Chem. Phys.
– volume: 111
  year: 2017
  ident: bib29
  article-title: Real-time monitoring of the structure of ultrathin Fe
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 5679
  year: 2016
  end-page: 5689
  ident: bib54
  article-title: Ultrathin epitaxial ferromagnetic γ-Fe
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 255401
  year: 2010
  ident: bib48
  article-title: Vacancy ordering and electronic structure of γ-Fe
  publication-title: J. Phys. Condens. Matter
– volume: 18
  start-page: 948
  year: 2019
  end-page: 954
  ident: bib4
  article-title: Gap suppression at a Lifshitz transition in a multi-condensate superconductor
  publication-title: Nat. Mater.
– volume: 104
  start-page: 142407
  year: 2014
  ident: bib53
  article-title: Spin and orbital moments of nanoscale Fe
  publication-title: Appl. Phys. Lett.
– volume: 104
  start-page: 126802
  year: 2010
  ident: bib19
  article-title: Tuning spin-orbit coupling and superconductivity at the SrTiO
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 11LT01
  year: 2018
  ident: bib27
  article-title: Charge screening-controlled Verwey phase transition in Fe
  publication-title: J. Phys. Condens. Matter
– volume: 113
  start-page: 102404
  year: 2018
  ident: bib32
  article-title: Multiple modulations of strain- and charge-mediated converse magnetoelectric coupling effects in a STO/Fe
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2016
  ident: bib12
  article-title: Research update: conductivity and beyond at the LaAlO
  publication-title: Apl. Mater.
– volume: 17
  start-page: 7659
  year: 2017
  end-page: 7664
  ident: bib15
  article-title: Room-temperature giant charge-to-spin conversion at the SrTiO
  publication-title: Nano Lett.
– volume: 21
  start-page: 1665
  year: 2009
  end-page: 1677
  ident: bib10
  article-title: Structure–property relation of SrTiO
  publication-title: Adv. Mater.
– volume: 108
  year: 2016
  ident: bib47
  article-title: Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001)
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 7682
  year: 2018
  end-page: 7689
  ident: bib9
  article-title: Quantum confinement in oxide heterostructures: room-temperature intersubband Absorption in SrTiO
  publication-title: ACS Nano
– volume: 5
  start-page: 1701565
  year: 2018
  ident: bib7
  article-title: Reversible resistance switching of 2D electron gas at LaAlO
  publication-title: Adv. Mater. Interfac.
– volume: 108
  start-page: 117003
  year: 2012
  ident: bib18
  article-title: Superconducting and ferromagnetic phases in SrTiO
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 102510
  year: 2010
  ident: bib50
  article-title: Efficient spin injection into GaAs quantum well across Fe
  publication-title: Appl. Phys. Lett.
– volume: 122
  start-page: 3115
  year: 2018
  end-page: 3122
  ident: bib51
  article-title: Large magnetoresistance in Fe
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 104418
  year: 2019
  ident: bib6
  article-title: Exploring possible ferromagnetism of the LaAlO
  publication-title: Phys. Rev. Mater.
– volume: 4
  year: 2016
  ident: bib31
  article-title: The investigation of giant magnetic moment in ultrathin Fe
  publication-title: Apl. Mater.
– volume: 6
  start-page: 1278
  year: 2012
  end-page: 1283
  ident: bib16
  article-title: Room-temperature giant persistent photoconductivity in SrTiO
  publication-title: ACS Nano
– volume: 71
  year: 2008
  ident: bib35
  article-title: Polarity of oxide surfaces and nanostructures
  publication-title: Rep. Prog. Phys.
– volume: 427
  start-page: 423
  year: 2004
  end-page: 426
  ident: bib1
  article-title: A high-mobility electron gas at the LaAlO
  publication-title: Nature
– volume: 123
  year: 2019
  ident: bib3
  article-title: Symmetry and correlation effects on band structure explain the anomalous transport properties of (111) LaAlO
  publication-title: Phys. Rev. Lett.
– volume: 525
  start-page: 115
  year: 2012
  end-page: 120
  ident: bib28
  article-title: Investigation of high quality magnetite thin films grown on SrTiO
  publication-title: Thin Solid Films
– volume: 51
  start-page: 1069
  year: 2018
  end-page: 1081
  ident: bib57
  article-title: Structural transformations and interfacial iron reduction in heterostructures with epitaxial layers of 3d metals and ferrimagnetic oxides
  publication-title: J. Appl. Cryst
– volume: 113
  start-page: 184103
  year: 2013
  ident: bib46
  article-title: Reordering between tetrahedral and octahedral sites in ultrathin magnetite films grown on MgO(001)
  publication-title: J. Appl. Phys.
– volume: 108
  start-page: 212404
  year: 2016
  ident: bib55
  article-title: Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe
  publication-title: Appl. Phys. Lett.
– volume: 106
  start-page: 166807
  year: 2011
  ident: bib8
  article-title: Spontaneous 2-dimensional carrier confinement at the n-type SrTiO
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 196802
  year: 2007
  ident: bib17
  article-title: Origin of charge density at LaAlO
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 7576
  year: 2019
  end-page: 7583
  ident: bib21
  article-title: Tunable magnetic phases at Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 432
  start-page: 472
  year: 2017
  end-page: 476
  ident: bib44
  article-title: Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films
  publication-title: J. Magn. Magn Mater.
– volume: 74
  year: 2006
  ident: bib52
  article-title: Room-temperature spin filtering in a CoFe
  publication-title: Phys. Rev. B
– volume: 124
  year: 2020
  ident: bib2
  article-title: Electron trapping mechanism in LaAlO
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 1108
  year: 2015
  end-page: 1112
  ident: bib23
  article-title: Incommensurate growth of thin and ultrathin films of single-phase Fe
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 1087
  year: 2006
  end-page: 1091
  ident: bib49
  article-title: Spin-Filter effect in magnetite nanowire
  publication-title: Nano Lett.
– volume: 105
  start-page: 241604
  year: 2014
  ident: bib24
  article-title: Interface correlated exchange bias effect in epitaxial Fe
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: R367
  year: 2000
  end-page: R410
  ident: bib34
  article-title: Polar oxide surfaces
  publication-title: J. Phys. Condens. Matter
– volume: 81
  start-page: 3253
  year: 1997
  ident: bib43
  article-title: Growth, structure, and magnetic properties of γ-Fe
  publication-title: J. Appl. Phys.
– volume: 22
  start-page: 2881
  year: 2010
  end-page: 2899
  ident: bib13
  article-title: Electronic and magnetic properties of SrTiO
  publication-title: Adv. Mater.
– volume: 120
  start-page: 377
  year: 2018
  end-page: 381
  ident: bib41
  article-title: Mechanism of polar catastrophe cancelling induced by charge compensation for epitaxy γ-Fe
  publication-title: Microst
– volume: 21
  start-page: 4452
  year: 2009
  end-page: 4455
  ident: bib25
  article-title: Ferroelectric switching in multiferroic magnetite (Fe
  publication-title: Adv. Mater.
– volume: 114
  year: 2019
  ident: bib26
  article-title: Enhanced modulation of magnetization in the Fe
  publication-title: Appl. Phys. Lett.
– volume: 6
  year: 2016
  ident: bib40
  article-title: Dynamic atomic reconstruction: how Fe
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 204
  year: 2006
  end-page: 209
  ident: bib36
  article-title: Why some interfaces cannot be sharp
  publication-title: Nat. Mater.
– volume: 61
  start-page: 548
  year: 2013
  ident: 10.1016/j.spmi.2022.107183_bib45
  article-title: Epitaxial growth of γ-Fe2O3 thin films on MgO substrates by pulsed laser deposition and their properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.10.003
– volume: 5
  start-page: 204
  year: 2006
  ident: 10.1016/j.spmi.2022.107183_bib36
  article-title: Why some interfaces cannot be sharp
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1569
– volume: 26
  start-page: 5679
  year: 2016
  ident: 10.1016/j.spmi.2022.107183_bib54
  article-title: Ultrathin epitaxial ferromagnetic γ-Fe2O3 layer as high efficiency spin filtering materials for spintronics device based on semiconductors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504999
– volume: 22
  start-page: 255401
  year: 2010
  ident: 10.1016/j.spmi.2022.107183_bib48
  article-title: Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/25/255401
– volume: 124
  year: 2020
  ident: 10.1016/j.spmi.2022.107183_bib2
  article-title: Electron trapping mechanism in LaAlO3/SrTiO3 heterostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.017702
– volume: 86
  start-page: 241108
  year: 2012
  ident: 10.1016/j.spmi.2022.107183_bib11
  article-title: Controlling the density of the two-dimensional electron gas at the SrTiO3/LaAlO3 interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.241108
– volume: 119
  start-page: 1108
  year: 2015
  ident: 10.1016/j.spmi.2022.107183_bib23
  article-title: Incommensurate growth of thin and ultrathin films of single-phase Fe3O4(001) on SrTiO3(001)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510615j
– volume: 6
  start-page: 1278
  year: 2012
  ident: 10.1016/j.spmi.2022.107183_bib16
  article-title: Room-temperature giant persistent photoconductivity in SrTiO3/LaAlO3 heterostructures
  publication-title: ACS Nano
  doi: 10.1021/nn203991q
– volume: 108
  year: 2016
  ident: 10.1016/j.spmi.2022.107183_bib47
  article-title: Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4940890
– volume: 96
  year: 2017
  ident: 10.1016/j.spmi.2022.107183_bib30
  article-title: Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films
  publication-title: Phys. Rev. B
– volume: 71
  year: 2008
  ident: 10.1016/j.spmi.2022.107183_bib35
  article-title: Polarity of oxide surfaces and nanostructures
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/71/1/016501
– volume: 106
  start-page: 166807
  year: 2011
  ident: 10.1016/j.spmi.2022.107183_bib8
  article-title: Spontaneous 2-dimensional carrier confinement at the n-type SrTiO3/LaAlO3 interface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.166807
– volume: 120
  start-page: 377
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib41
  article-title: Mechanism of polar catastrophe cancelling induced by charge compensation for epitaxy γ-Fe2O3 film on MgO(001) substrate: a theoretical investigation, Superlattice
  publication-title: Microst
  doi: 10.1016/j.spmi.2018.05.065
– volume: 122
  start-page: 257601
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib20
  article-title: Modulating the electrical transport in the two-dimensional electron gas at LaAlO3/SrTiO3 heterostructures by interfacial flexoelectricity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.257601
– volume: 12
  start-page: 7682
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib9
  article-title: Quantum confinement in oxide heterostructures: room-temperature intersubband Absorption in SrTiO3/LaAlO3 multiple quantum wells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01293
– volume: 111
  year: 2017
  ident: 10.1016/j.spmi.2022.107183_bib29
  article-title: Real-time monitoring of the structure of ultrathin Fe3O4 films during growth on Nb-doped SrTiO3(001)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4995408
– volume: 525
  start-page: 115
  year: 2012
  ident: 10.1016/j.spmi.2022.107183_bib28
  article-title: Investigation of high quality magnetite thin films grown on SrTiO3(001) substrates by pulsed laser deposition
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.10.076
– volume: 5
  start-page: 1701565
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib7
  article-title: Reversible resistance switching of 2D electron gas at LaAlO3/SrTiO3 heterointerface
  publication-title: Adv. Mater. Interfac.
  doi: 10.1002/admi.201701565
– volume: 604
  start-page: 1674
  year: 2010
  ident: 10.1016/j.spmi.2022.107183_bib38
  article-title: Surface enhanced covalency and Madelung potentials in Nb doped SrTiO3 (100), (110) and (111) single crystals
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2010.06.012
– volume: 4
  start-page: 1836
  year: 2007
  ident: 10.1016/j.spmi.2022.107183_bib56
  article-title: Investigation of FeO films on SrTiO3(100)
  publication-title: phys. stat. sol.(c)
  doi: 10.1002/pssc.200675222
– volume: 51
  start-page: 1069
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib57
  article-title: Structural transformations and interfacial iron reduction in heterostructures with epitaxial layers of 3d metals and ferrimagnetic oxides
  publication-title: J. Appl. Cryst
  doi: 10.1107/S1600576718007823
– volume: 108
  start-page: 212404
  year: 2016
  ident: 10.1016/j.spmi.2022.107183_bib55
  article-title: Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe2O3/MgO thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4952769
– volume: 113
  start-page: 184103
  year: 2013
  ident: 10.1016/j.spmi.2022.107183_bib46
  article-title: Reordering between tetrahedral and octahedral sites in ultrathin magnetite films grown on MgO(001)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4803894
– volume: 123
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib3
  article-title: Symmetry and correlation effects on band structure explain the anomalous transport properties of (111) LaAlO3/SrTiO3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.036805
– volume: 98
  start-page: 196802
  year: 2007
  ident: 10.1016/j.spmi.2022.107183_bib17
  article-title: Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.196802
– volume: 18
  start-page: 948
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib4
  article-title: Gap suppression at a Lifshitz transition in a multi-condensate superconductor
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0354-z
– volume: 108
  start-page: 117003
  year: 2012
  ident: 10.1016/j.spmi.2022.107183_bib18
  article-title: Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures:possibility of finite momentum pairing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.117003
– volume: 21
  start-page: 4452
  year: 2009
  ident: 10.1016/j.spmi.2022.107183_bib25
  article-title: Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901381
– volume: 29
  year: 2010
  ident: 10.1016/j.spmi.2022.107183_bib37
– volume: 432
  start-page: 472
  year: 2017
  ident: 10.1016/j.spmi.2022.107183_bib44
  article-title: Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2017.02.032
– volume: 124
  start-page: 174701
  year: 2006
  ident: 10.1016/j.spmi.2022.107183_bib39
  article-title: Ab initio study of structural and electronic properties of SrTiO3 (001) oxygen-vacancy surfaces
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2189225
– volume: 6
  year: 2016
  ident: 10.1016/j.spmi.2022.107183_bib40
  article-title: Dynamic atomic reconstruction: how Fe3O4 thin films evade polar catastrophe for epitaxy
  publication-title: Phys. Rev. X
– volume: 17
  start-page: 7659
  year: 2017
  ident: 10.1016/j.spmi.2022.107183_bib15
  article-title: Room-temperature giant charge-to-spin conversion at the SrTiO3-LaAlO3 oxide interface
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03714
– volume: 8
  start-page: 1335
  year: 2020
  ident: 10.1016/j.spmi.2022.107183_bib22
  article-title: Thermal phase design of ultrathin magnetic ironoxide films: from Fe3O4 to γ-Fe2O3 and FeO
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05921K
– volume: 12
  start-page: R367
  year: 2000
  ident: 10.1016/j.spmi.2022.107183_bib34
  article-title: Polar oxide surfaces
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/12/31/201
– volume: 11
  start-page: 7576
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib21
  article-title: Tunable magnetic phases at Fe3O4/SrTiO3 oxide interfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20625
– volume: 4
  year: 2016
  ident: 10.1016/j.spmi.2022.107183_bib31
  article-title: The investigation of giant magnetic moment in ultrathin Fe3O4 films
  publication-title: Apl. Mater.
  doi: 10.1063/1.4944590
– volume: 96
  start-page: 102510
  year: 2010
  ident: 10.1016/j.spmi.2022.107183_bib50
  article-title: Efficient spin injection into GaAs quantum well across Fe3O4 spin filter
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3357436
– volume: 74
  year: 2006
  ident: 10.1016/j.spmi.2022.107183_bib52
  article-title: Room-temperature spin filtering in a CoFe2O4/MgAl2O4/Fe3O4 magnetic tunnel barrier
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.014418
– volume: 21
  start-page: 1665
  year: 2009
  ident: 10.1016/j.spmi.2022.107183_bib10
  article-title: Structure–property relation of SrTiO3/LaAlO3 interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801448
– volume: 116
  year: 2020
  ident: 10.1016/j.spmi.2022.107183_bib5
  article-title: Acoustoelectric charge transport at the LaAlO3/SrTiO3 interface
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5139307
– volume: 104
  start-page: 126802
  year: 2010
  ident: 10.1016/j.spmi.2022.107183_bib19
  article-title: Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.126802
– volume: 104
  start-page: 142407
  year: 2014
  ident: 10.1016/j.spmi.2022.107183_bib53
  article-title: Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4871001
– volume: 6
  start-page: 1900301
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib14
  article-title: Long-range non-coulombic electron-electron interactions between LaAlO3/SrTiO3 nanowires
  publication-title: Adv. Mater. Interfac.
  doi: 10.1002/admi.201900301
– volume: 95
  start-page: 7282
  year: 2004
  ident: 10.1016/j.spmi.2022.107183_bib42
  article-title: Direct observation of strain fields in epitaxial growth Fe3O4 thin films on MgO substrates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1682788
– volume: 22
  start-page: 2881
  year: 2010
  ident: 10.1016/j.spmi.2022.107183_bib13
  article-title: Electronic and magnetic properties of SrTiO3/LaAlO3 interfaces from first principles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903800
– volume: 105
  start-page: 241604
  year: 2014
  ident: 10.1016/j.spmi.2022.107183_bib24
  article-title: Interface correlated exchange bias effect in epitaxial Fe3O4 thin films grown on SrTiO3 substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904471
– volume: 114
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib26
  article-title: Enhanced modulation of magnetization in the Fe3O4/MgO/SrTiO3 heterostructure by electric field
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5082256
– volume: 122
  start-page: 3115
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib51
  article-title: Large magnetoresistance in Fe3O4/4,4′-Bipyridine/Fe3O4 organic magnetic tunnel junctions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11583
– volume: 4
  year: 2016
  ident: 10.1016/j.spmi.2022.107183_bib12
  article-title: Research update: conductivity and beyond at the LaAlO3/SrTiO3 interface
  publication-title: Apl. Mater.
  doi: 10.1063/1.4953822
– volume: 52
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib33
  article-title: Temperature dependences of strain and charge effects modulated by electric fields in a STO/Fe3O4/Au/PZT multiferroic heterostructure
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/aaec49
– volume: 6
  start-page: 1087
  year: 2006
  ident: 10.1016/j.spmi.2022.107183_bib49
  article-title: Spin-Filter effect in magnetite nanowire
  publication-title: Nano Lett.
  doi: 10.1021/nl052199p
– volume: 113
  start-page: 102404
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib32
  article-title: Multiple modulations of strain- and charge-mediated converse magnetoelectric coupling effects in a STO/Fe3O4/Au/PZT multiferroic heterostructure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5046177
– volume: 427
  start-page: 423
  year: 2004
  ident: 10.1016/j.spmi.2022.107183_bib1
  article-title: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
  publication-title: Nature
  doi: 10.1038/nature02308
– volume: 81
  start-page: 3253
  year: 1997
  ident: 10.1016/j.spmi.2022.107183_bib43
  article-title: Growth, structure, and magnetic properties of γ-Fe2O3 epitaxial films on MgO
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.364355
– volume: 30
  start-page: 11LT01
  year: 2018
  ident: 10.1016/j.spmi.2022.107183_bib27
  article-title: Charge screening-controlled Verwey phase transition in Fe3O4/SrTiO3 heterostructure
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aaae37
– volume: 3
  start-page: 104418
  year: 2019
  ident: 10.1016/j.spmi.2022.107183_bib6
  article-title: Exploring possible ferromagnetism of the LaAlO3/SrTiO3 interface
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.104418
SSID ssj0009417
ssj0003212365
Score 2.3211815
Snippet The advanced interface of Fe3O4/SrTiO3, popular in spintronic, has attracted considerable attention. Some experiments have given controversial results on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107183
SubjectTerms Epitaxy
Hetero-interface
Maghemite
Magnetite
Polar
Spintronic
Title Fe3O4 thin films epitaxially growth model on TiO2-terminated SrTiO3(100)
URI https://dx.doi.org/10.1016/j.spmi.2022.107183
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBgyKx2WS3SY8lWOKrFVuht7BJJjbSpqWNoBd_u7N5-ADpwVOSYQbCMMw3A9_MEHIqDBkijEUaRpOvcQQYrQ0c34wQmGnJCJgaFL7vtdwnfjMSowpxylkYRasscn-e07NsXUiahTeb8zhuDhD8sPzGBGzkW1XUBDu3VJRffnzTPNo8u7qrlDWlXQzO5Byv5XwaY49oGCjAJG3-DU4_AKe7TbaKSpF28p_ZIRVIamTDKQ-01ch6xt4MlrvE7YLZ5zQdxwmN4sl0SUEdA3nD2Jq802fstNMxzW7e0FlCh3Hf0AoSDNabdLBAiXnGdP18jwy7V0PH1YoTCVpg6nqqcZ8FkS9sk4W65FLYkQUKdbkIhW-JoGUxKQSwkNvtCKTJIeRM2sCkz6UP5j6pJrMEDgiVUnBsH4wIWxRu-QGiVAC2jd0bGDwMoE5Y6RovKNaHqysWE6_kib14yp2ecqeXu7NOLr5s5vnyjJXaovS49ysEPMzuK-wO_2l3RDbVV869PSbVdPEKJ1hhpH4jC6EGWes4j3cP6nl96_Y-Aa_8zq4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qInoRrYr1uQcPisRmk12THqVY6qPtoRV6C5tkYiNtWmwEvfjbnc3DB0gP3sJmB8IwmW8GvpkP4FRaKiQYiwyKJt8QBDBGAwU9WSFy21ERcj0o3OletR_F3VAOK9AsZ2E0rbLI_XlOz7J1cVIvvFmfxXG9T-BH5TclYCvfqrIEK4J-Xy1jcPnxzfNoiEx2V9829PViciYnec1nk5iaRMuiA8rS9t_o9ANxWpuwUZSK7Dr_mi2oYFKFtWap0FaF1Yy-Gcy3od1CuydYOooTFsXjyZyhVgN5o-Aav7MnarXTEctEb9g0YYO4ZxkFC4YKTtZ_oRP7jJvm-Q4MWjeDZtsoNBKMwDbN1BA-DyJfujYPTSWUdCMHNewKGUrfkcGVw5WUyEPhNiJUtsBQcOUiV75QPtq7sJxME9wDppQU1D9YEfUowvEDgqkAXZfaN7REGGANeOkaLyj2h2sZi7FXEsWePe1OT7vTy91Zg4svm1m-PWPhbVl63PsVAx6l9wV2-_-0O4G19qDz4D3cdu8PYF2_yYm4h7CcvrziEZUbqX-chdMnJCvOpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe3O4+thin+films+epitaxially+growth+model+on+TiO2-terminated+SrTiO3%28100%29&rft.jtitle=Superlattices+and+microstructures&rft.au=Cheng%2C+Bin&rft.au=Liu%2C+Xing&rft.au=Hu%2C+Jifan&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=167&rft_id=info:doi/10.1016%2Fj.spmi.2022.107183&rft.externalDocID=S0749603622000362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon