AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer’s disease through multiple neuroimaging computational approaches

•We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the maximum accuracy and binary classification.•First study to examine the performance of three neuroimaging computational techniques in...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 74; p. 103500
Main Authors Goenka, Nitika, Tiwari, Shamik
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103500

Cover

Loading…
Abstract •We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the maximum accuracy and binary classification.•First study to examine the performance of three neuroimaging computational techniques in a systematic fashion (3D subject-level, 3D patch-based and 3D slice-based).•Three different Slice Based approaches used (Subset slice method, uniform slice method, Interpolation zoom method).•Classification accuracy of different patches ranging in size from small to medium to huge for 3D patch-based approach. Alzheimer's disease is a degenerative neurological disease that causes a loss of cognitive skills and has no known treatment. Alzheimer's disease (AD) must be detected early, before symptoms appear, in order to be treated effectively. In this study, we used a deep learning approach called a convolutional neural network to classify Alzheimer's disease into three categories using a neuroimaging biomarker called T1w-MRI. Our research is the first to look at the results of three neuroimaging computational approaches in a systematic way (3D subject-level, 3D patch-based and slice-based). To show Alzheimer detection using deep convolutional neural networks, three distinct Slice Based methods are used (Subset selection method, uniform selection method, Interpolation zoom method). For 3D patch-based approaches, we investigated the classification accuracy of distinct non-overlapping patches ranging in size from small to medium to large (from 32, 40, 48, 56, 64, 72, 80, till 88). Our findings revealed that 1) our 3-class classification model performed best, with 98.3 percent accuracy percent (highest accuracy obtained until now as per our best knowledge); 2) The 3D Subject-level approach was the most efficient, followed by 3D-patch-based and then Slice-based approaches, with classification accuracy of 98.26 percent, 97.48 percent, and 95.40 percent, respectively; and 3) The same network had the most accuracy for bigger patches (size 72, 80, 88), followed by medium-sized (size 56, 64) to tiny patches (size 32, 40, 48). Large patches had a classification accuracy of 97.48 percent, while medium patches had a classification accuracy of 96.62 percent, and small patches had an accuracy of 86.49 percent. 4)) Even slice selection and interpolation selection exceeded subset slice selection with three-class classification accuracy of 95.37 percent and 94.57 percent, respectively, compared to 92.57 percent for subset slice selection.
AbstractList •We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the maximum accuracy and binary classification.•First study to examine the performance of three neuroimaging computational techniques in a systematic fashion (3D subject-level, 3D patch-based and 3D slice-based).•Three different Slice Based approaches used (Subset slice method, uniform slice method, Interpolation zoom method).•Classification accuracy of different patches ranging in size from small to medium to huge for 3D patch-based approach. Alzheimer's disease is a degenerative neurological disease that causes a loss of cognitive skills and has no known treatment. Alzheimer's disease (AD) must be detected early, before symptoms appear, in order to be treated effectively. In this study, we used a deep learning approach called a convolutional neural network to classify Alzheimer's disease into three categories using a neuroimaging biomarker called T1w-MRI. Our research is the first to look at the results of three neuroimaging computational approaches in a systematic way (3D subject-level, 3D patch-based and slice-based). To show Alzheimer detection using deep convolutional neural networks, three distinct Slice Based methods are used (Subset selection method, uniform selection method, Interpolation zoom method). For 3D patch-based approaches, we investigated the classification accuracy of distinct non-overlapping patches ranging in size from small to medium to large (from 32, 40, 48, 56, 64, 72, 80, till 88). Our findings revealed that 1) our 3-class classification model performed best, with 98.3 percent accuracy percent (highest accuracy obtained until now as per our best knowledge); 2) The 3D Subject-level approach was the most efficient, followed by 3D-patch-based and then Slice-based approaches, with classification accuracy of 98.26 percent, 97.48 percent, and 95.40 percent, respectively; and 3) The same network had the most accuracy for bigger patches (size 72, 80, 88), followed by medium-sized (size 56, 64) to tiny patches (size 32, 40, 48). Large patches had a classification accuracy of 97.48 percent, while medium patches had a classification accuracy of 96.62 percent, and small patches had an accuracy of 86.49 percent. 4)) Even slice selection and interpolation selection exceeded subset slice selection with three-class classification accuracy of 95.37 percent and 94.57 percent, respectively, compared to 92.57 percent for subset slice selection.
ArticleNumber 103500
Author Goenka, Nitika
Tiwari, Shamik
Author_xml – sequence: 1
  givenname: Nitika
  surname: Goenka
  fullname: Goenka, Nitika
  email: nitika.g@ddn.upes.ac.in
– sequence: 2
  givenname: Shamik
  surname: Tiwari
  fullname: Tiwari, Shamik
  email: shamik.tiwari@ddn.upes.ac.in
BookMark eNp9kE1OwzAQhS1UJNrCBVj5Ai224_wUsakq_qQKNsDWcpxJ65LEke0UwYprsONsnISkKRsW3cyMLX_ved4IDSpTAULnlEwpodHFZpq6Wk0ZYay9CEJCjtCQxjyaJJQkg7-ZzPgJGjm3IYQnMeVD9D0vPl4ewF_iOd6aoinBW62wMlV38tpUssAVNHbX_Juxrzg3FpdN4bUqpHN4V3WuleyeY5PjVnMNugT78_nlcKYdSAfYr61pVuserQvYyRpdypWuVq1jWTde7h1lXVsj1RrcKTrOZeHgbN_H6Pnm-mlxN1k-3t4v5suJCgjxEx7LOM5ZSNhMkYCnGaRppCgLWJhCBFyGVIYykzADleYxBaAsDXkmFc_DgEbBGLFeV1njnIVc1Lb9m30XlIguY7ERXcaiy1j0GbdQ8g9Sut_BW6mLw-hVj0K71FaDFU5pqBRk2oLyIjP6EP4LDoChTw
CitedBy_id crossref_primary_10_35377_saucis___1493368
crossref_primary_10_3390_bioengineering9080370
crossref_primary_10_1098_rsta_2022_0169
crossref_primary_10_1016_j_bspc_2022_104375
crossref_primary_10_1109_ACCESS_2022_3218621
crossref_primary_10_1007_s11042_022_13935_4
crossref_primary_10_1016_j_rineng_2023_100927
crossref_primary_10_3389_fneur_2024_1413071
crossref_primary_10_1002_ima_22897
crossref_primary_10_3389_fnagi_2023_1238065
crossref_primary_10_1007_s11042_023_16379_6
crossref_primary_10_1016_j_asoc_2023_109991
crossref_primary_10_7759_cureus_47004
crossref_primary_10_1109_ACCESS_2024_3390186
crossref_primary_10_1007_s00521_024_10399_5
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_3390_diagnostics13010167
crossref_primary_10_1007_s11571_023_09993_5
crossref_primary_10_32604_cmc_2023_034796
crossref_primary_10_3390_sci5010013
crossref_primary_10_1186_s12911_024_02764_0
crossref_primary_10_14283_jpad_2024_66
crossref_primary_10_1007_s12530_022_09467_9
crossref_primary_10_1002_ima_23079
crossref_primary_10_1016_j_bspc_2023_104787
crossref_primary_10_1111_exsy_13463
crossref_primary_10_1016_j_compbiomed_2022_105737
crossref_primary_10_24012_dumf_1141233
crossref_primary_10_1038_s41598_024_81563_z
crossref_primary_10_3390_make5020031
crossref_primary_10_3390_agriengineering5010017
crossref_primary_10_1007_s10278_022_00631_w
crossref_primary_10_3390_app14156798
crossref_primary_10_1016_j_engappai_2023_107032
crossref_primary_10_3233_JAD_220806
crossref_primary_10_1007_s11042_023_17288_4
Cites_doi 10.1016/j.neucom.2020.05.087
10.1038/s41598-019-54548-6
10.3390/app10020485
10.1007/978-3-642-41714-6_90345
10.1109/42.668698
10.1371/journal.pone.0225759
10.1016/S1361-8415(01)00036-6
10.3389/fnins.2019.00509
10.1016/j.bspc.2018.08.009
10.1016/j.neuroimage.2010.07.033
10.1016/B978-0-12-804832-0.00003-1
10.1007/978-3-030-02628-8_3
10.1109/TMI.2010.2046908
10.1002/hbm.10062
10.1016/j.cogsys.2018.12.015
10.3389/fnins.2018.00777
10.1016/j.jneumeth.2020.108795
10.1016/B978-0-12-804832-0.00005-5
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2014.06.077
10.1007/978-3-030-05587-5_34
10.1007/s10462-021-10016-0
10.1016/j.media.2019.101625
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103500
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103500
S1746809422000222
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-47a77f25029c034bdebb6c12325be6e4a51a5adae9ecbf71ee12b54dac4f53163
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 01:34:13 EDT 2025
Fri Feb 23 02:40:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neuroimaging
Brain imaging
T1w MRI
Alzheimer
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-47a77f25029c034bdebb6c12325be6e4a51a5adae9ecbf71ee12b54dac4f53163
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103500
crossref_citationtrail_10_1016_j_bspc_2022_103500
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References ANTs, n.d. http://stnava.github.io/ANTs/CADDementia Dataset. (n.d.). https://caddementia.grand-challenge.org/.
ADNI Dataset, n.d. http://adni.loni.usc.edu/ALzheimer’s association Facts and Figures. (n.d.). https://www.alz.org/alzheimers-dementia/facts-figures.
Oh, Chung, Kim, Kim, Oh (b0200) 2019; 9
Goenka, N., Sharma, D.K., 2020. CAREBOT : A COGNITIVE BEHAVIOURAL THERAPY AGENT USING DEEP LEARNING FOR COVID-19. 7(19), 6100–6108.
Suk, Lee, Shen (b0240) 2014; 101
Dimitriadis, Liparas, Tsolaki (b0025) 2017; 302
Lin, Chen, Yan (b0165) 2014
Qiu, Chang, Panagia, Gopal, Au, Kolachalama (b0210) 2018; 10
FLIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT.
Korolev, Safiullin, Belyaev, Dodonova (b0150) 2017
FreeSurfer. (n.d.).
Jenkinson, Smith (b0120) 2001; 5
Khan (b0130) 2016; Vol. 1
Sled, Zijdenbos, Evans (b0230) 1998; 17
Islam, Zhang (b0105) 2018; 2
Márquez, Yassa (b0185) 2019; 5
FNIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT.
(n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
Zunair, Rahman, Mohammed, Cohen (b0260) 2020
Kingma, Ba (b0145) 2015
Liu, Li, Yan, Wang, Ma, Disease, Initiative, Shen, Xu (b0175) 2020; 208
Jenkinson, Bannister, Brady, Smith (b0115) 2002; 17
Smith (b0235) 2002; 17
Lin, Tong, Gao, Guo, Du, Yang, Guo, Xiao, Du, Qu (b0170) 2018; 12
Punjabi, Martersteck, Wang, Parrish, Katsaggelos, Ginsberg (b0205) 2019; 14
Goenka, Tiwari (b0060) 2021; 54
Qu, Wu, Zou (b0215) 2020; 10
Haleem, Javaid, Khan, Tech, Engineering (b0080) 2019
Zunair, Rahman, Mohammed (b0255) 2019
Goenka, Tiwari, Yadav (b0070) 2021; 10
Gupta, Ayhan, Maida (b0075) 2013; 28
Rallabandi, Tulpule, Gattu (b0220) 2020; 18
Huang, Xu, Zhou, Tong, Zhuang (b0100) 2019; 13
Lahmiri, Shmuel (b0155) 2018; 52
Jain, Jain, Aggarwal, Hemanth (b0110) 2019; 57
Chollet, F., 2015. Keras. DARTEL toolbox. (n.d.). https://neurometrika.org/node/34.
Khan, T., 2016a. Alzheimer ’ s Disease Cerebrospinal Fluid (CSF) Biomarkers. In: Biomarkers in Alzheimer’s Disease, pp. 139–180.
Rieke, Eitel, Weygandt, Haynes, Ritter (b0225) 2018; 2
Khvostikov, Aderghal, Benois-pineau, Krylov, Catheline, Initiative (b0140) 2018
Liu, Zhang, Adeli, Shen (b0180) 2018
Khan (b0135) 2016; Vol. 84
Zhang, Shi (b0250) 2020; 341
Hosseini-Asl, Keynton, El-Baz (b0095) 2016
Muschelli, J. (n.d.-b). Image Registration. https://doi.org/10.1007/978-3-642-41714-6_90345.
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Zheng (b0005) 2016; I
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (b0245) 2010; 29
Hosseini-Asl, Ghazal, Mahmoud, Aslantas, Shalaby, Barnes, Gimel, Keynton, Baz (b0090) 2018; 23
Fonov, Evans, Botteron, Almli, McKinstry, Collins (b0045) 2011; 54
Lee, Nho, Kang, Sohn, Kim (b0160) 2019; 9
El-Sappagh, Abuhmed, Riazul Islam, Kwak (b0030) 2020; 412
Goenka, Tiwari (b0065) 2021
Muschelli, J. (n.d.-a). Brain Extraction/Segmentation.
Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin (b0085) 2019; 60
10.1016/j.bspc.2022.103500_b0050
10.1016/j.bspc.2022.103500_b0015
10.1016/j.bspc.2022.103500_b0010
Haleem (10.1016/j.bspc.2022.103500_b0080) 2019
Zunair (10.1016/j.bspc.2022.103500_b0260) 2020
10.1016/j.bspc.2022.103500_b0055
Hao (10.1016/j.bspc.2022.103500_b0085) 2019; 60
Lee (10.1016/j.bspc.2022.103500_b0160) 2019; 9
Oh (10.1016/j.bspc.2022.103500_b0200) 2019; 9
Huang (10.1016/j.bspc.2022.103500_b0100) 2019; 13
Punjabi (10.1016/j.bspc.2022.103500_b0205) 2019; 14
Jenkinson (10.1016/j.bspc.2022.103500_b0115) 2002; 17
10.1016/j.bspc.2022.103500_b0040
Hosseini-Asl (10.1016/j.bspc.2022.103500_b0090) 2018; 23
10.1016/j.bspc.2022.103500_b0125
Korolev (10.1016/j.bspc.2022.103500_b0150) 2017
Khan (10.1016/j.bspc.2022.103500_b0135) 2016; Vol. 84
Jain (10.1016/j.bspc.2022.103500_b0110) 2019; 57
Lahmiri (10.1016/j.bspc.2022.103500_b0155) 2018; 52
Abadi (10.1016/j.bspc.2022.103500_b0005) 2016; I
Zhang (10.1016/j.bspc.2022.103500_b0250) 2020; 341
Suk (10.1016/j.bspc.2022.103500_b0240) 2014; 101
Liu (10.1016/j.bspc.2022.103500_b0175) 2020; 208
Rallabandi (10.1016/j.bspc.2022.103500_b0220) 2020; 18
Goenka (10.1016/j.bspc.2022.103500_b0065) 2021
Liu (10.1016/j.bspc.2022.103500_b0180) 2018
Gupta (10.1016/j.bspc.2022.103500_b0075) 2013; 28
10.1016/j.bspc.2022.103500_b0195
Sled (10.1016/j.bspc.2022.103500_b0230) 1998; 17
Jenkinson (10.1016/j.bspc.2022.103500_b0120) 2001; 5
Khan (10.1016/j.bspc.2022.103500_b0130) 2016; Vol. 1
10.1016/j.bspc.2022.103500_b0190
Khvostikov (10.1016/j.bspc.2022.103500_b0140) 2018
10.1016/j.bspc.2022.103500_b0035
Márquez (10.1016/j.bspc.2022.103500_b0185) 2019; 5
Hosseini-Asl (10.1016/j.bspc.2022.103500_b0095) 2016
Fonov (10.1016/j.bspc.2022.103500_b0045) 2011; 54
Qu (10.1016/j.bspc.2022.103500_b0215) 2020; 10
Rieke (10.1016/j.bspc.2022.103500_b0225) 2018; 2
Qiu (10.1016/j.bspc.2022.103500_b0210) 2018; 10
Lin (10.1016/j.bspc.2022.103500_b0170) 2018; 12
Zunair (10.1016/j.bspc.2022.103500_b0255) 2019
Goenka (10.1016/j.bspc.2022.103500_b0060) 2021; 54
Kingma (10.1016/j.bspc.2022.103500_b0145) 2015
Lin (10.1016/j.bspc.2022.103500_b0165) 2014
10.1016/j.bspc.2022.103500_b0020
Smith (10.1016/j.bspc.2022.103500_b0235) 2002; 17
Goenka (10.1016/j.bspc.2022.103500_b0070) 2021; 10
Tustison (10.1016/j.bspc.2022.103500_b0245) 2010; 29
Dimitriadis (10.1016/j.bspc.2022.103500_b0025) 2017; 302
Islam (10.1016/j.bspc.2022.103500_b0105) 2018; 2
El-Sappagh (10.1016/j.bspc.2022.103500_b0030) 2020; 412
References_xml – start-page: 1500
  year: 2021
  end-page: 1505
  ident: b0065
  article-title: Volumetric Convolutional Neural Network for Alzheimer Detection
  publication-title: ICOEI
– volume: 54
  start-page: 4827
  year: 2021
  end-page: 4871
  ident: b0060
  article-title: Deep learning for Alzheimer prediction using brain biomarkers
  publication-title: Artif. Intell. Rev.
– reference: ADNI Dataset, n.d. http://adni.loni.usc.edu/ALzheimer’s association Facts and Figures. (n.d.). https://www.alz.org/alzheimers-dementia/facts-figures.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: b0115
  article-title: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images
  publication-title: NeuroImage
– reference: FreeSurfer. (n.d.).
– volume: 57
  start-page: 147
  year: 2019
  end-page: 159
  ident: b0110
  article-title: Convolutional neural network based Alzheimer ’ s disease classification from magnetic resonance brain images
  publication-title: Cognit. Syst. Res.
– volume: Vol. 84
  start-page: 51
  year: 2016
  end-page: 100
  ident: b0135
  publication-title: Neuroimaging Biomarkers in Alzheimer ’ s Disease. In: Biomarkers in Alzheimer’s Disease
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: b0235
  article-title: Fast Robust Automated Brain Extraction
  publication-title: Hum. Brain Mapp.
– start-page: 9
  year: 2019
  end-page: 12
  ident: b0255
  article-title: Estimating Severity from CT Scans of Tuberculosis Patients using 3D Convolutional Nets and Slice Selection
  publication-title: CLEF
– volume: 2
  year: 2018
  ident: b0105
  article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks
  publication-title: Brain Informat.
– reference: Khan, T., 2016a. Alzheimer ’ s Disease Cerebrospinal Fluid (CSF) Biomarkers. In: Biomarkers in Alzheimer’s Disease, pp. 139–180.
– start-page: 1
  year: 2015
  end-page: 15
  ident: b0145
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
– volume: 12
  year: 2018
  ident: b0170
  article-title: Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment
  publication-title: Front. Neurosci.
– start-page: 1
  year: 2014
  end-page: 10
  ident: b0165
  article-title: Network In Network
  publication-title: ArXiv
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: b0240
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD / MCI diagnosis
  publication-title: NeuroImage
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0160
  article-title: Predicting Alzheimer ’ s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
– start-page: 835
  year: 2017
  end-page: 838
  ident: b0150
  article-title: RESIDUAL AND PLAIN CONVOLUTIONAL NEURAL NETWORKS FOR 3D BRAIN MRI CLASSIFICATION
  publication-title: ISBI
– reference: Muschelli, J. (n.d.-b). Image Registration. https://doi.org/10.1007/978-3-642-41714-6_90345.
– reference: . (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
– volume: 10
  start-page: 1175
  year: 2021
  end-page: 1182
  ident: b0070
  article-title: No-reference image blur detection scheme using fuzzy inference
  publication-title: Adv. Math.: Sci. J.
– volume: 14
  start-page: e0225759
  year: 2019
  ident: b0205
  article-title: Neuroimaging modality fusion in Alzheimer ’ s classification using convolutional neural networks
  publication-title: PLoS ONE
– volume: 18
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0220
  article-title: Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer ’ s disease using structural MRI analysis
  publication-title: Inf. Med. Unlocked
– volume: 10
  start-page: 485
  year: 2020
  ident: b0215
  article-title: 3D Dense separated convolution module for volumetric medical image analysis
  publication-title: Appl. Sci.
– volume: 208
  year: 2020
  ident: b0175
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer ’ s disease
  publication-title: NeuroImage
– volume: 341
  start-page: 108795
  year: 2020
  ident: b0250
  article-title: Multi-modal Neuroimaging Feature Fusion for Diagnosis of Alzheimer’s Disease
  publication-title: J. Neurosci. Methods
– reference: ANTs, n.d. http://stnava.github.io/ANTs/CADDementia Dataset. (n.d.). https://caddementia.grand-challenge.org/.
– volume: 54
  start-page: 313
  year: 2011
  end-page: 327
  ident: b0045
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: NeuroImage
– volume: 10
  start-page: 737
  year: 2018
  end-page: 749
  ident: b0210
  article-title: Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment
  publication-title: Alzheimer’s & Dementia: Diagnosis Assessment Dis. Monitor.
– volume: 412
  start-page: 197
  year: 2020
  end-page: 215
  ident: b0030
  article-title: Multimodal multitask deep learning model for Alzheimer ’ s disease progression detection based on time series data
  publication-title: Neurocomputing
– start-page: 1
  year: 2018
  end-page: 12
  ident: b0180
  article-title: Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer’s Disease Diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: b0245
  article-title: N4ITK : Improved N3 Bias Correction
  publication-title: IEEE Trans. Med. Imaging
– volume: Vol. 1
  start-page: 103
  year: 2016
  end-page: 135
  ident: b0130
  article-title: Genetic Biomarkers in Alzheimer ’ s Disease
  publication-title: Biomarkers in Alzheimer’s Disease
– volume: 9
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0200
  article-title: Classification and Visualization of Alzheimer ’ s Disease using Volumetric Convolutional Neural Network and Transfer Learning
  publication-title: Sci. Rep.
– start-page: 1
  year: 2020
  end-page: 12
  ident: b0260
  article-title: Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction
  publication-title: ArXiv
– volume: 60
  start-page: 101625
  year: 2019
  ident: b0085
  article-title: Multi-modal Neuroimaging Feature Selection with Consistent Metric Constraint for Diagnosis of Alzheimer’s Disease
  publication-title: Med. Image Anal.
– year: 2018
  ident: b0140
  article-title: 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies
  publication-title: ArXiv
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: b0230
  article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data
  publication-title: IEEE Trans. Med. Imaging
– reference: Goenka, N., Sharma, D.K., 2020. CAREBOT : A COGNITIVE BEHAVIOURAL THERAPY AGENT USING DEEP LEARNING FOR COVID-19. 7(19), 6100–6108.
– volume: I
  start-page: 16
  year: 2016
  ident: b0005
  article-title: TensorFlow : A System for Large-Scale Machine Learning
  publication-title: OSD
– volume: 302
  start-page: 14
  year: 2017
  end-page: 23
  ident: b0025
  article-title: Random Forest Feature Selection, Fusion and Ensemble Strategy : Combining Multiple Morphological MRI Measures to Discriminate healthy elderly, early / late MCI and Alzheimer ’ s disease Random forest feature selection, fusion and ensemble strategy
  publication-title: J. Neurosci. Methods
– volume: 2
  start-page: 24
  year: 2018
  end-page: 31
  ident: b0225
  article-title: Visualizing Convolutional Networks for MRI-Based Diagnosis of Alzheimer ’ s Disease
  publication-title: Lect. Notes Comput. Sci.
– volume: 13
  start-page: 509
  year: 2019
  ident: b0100
  article-title: Diagnosis of Alzheimer ’ s Disease via Multi-Modality 3D Convolutional Neural Network
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0185
  article-title: Neuroimaging Biomarkers for Alzheimer’s Disease
  publication-title: Mol. Neurodegener.
– volume: 28
  start-page: 987
  year: 2013
  end-page: 994
  ident: b0075
  article-title: Natural Image Bases to Represent Neuroimaging Data
  publication-title: ICML
– year: 2016
  ident: b0095
  article-title: Alzheimer’s Disease Diagnostics By Adaptation Of 3D Convolutional Network
  publication-title: ICIP
– reference: Muschelli, J. (n.d.-a). Brain Extraction/Segmentation.
– year: 2019
  ident: b0080
  article-title: Current status and applications of Artificial Intelligence (AI) in medical field: An overview
  publication-title: CMRP.
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: b0120
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– reference: FNIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT.
– reference: FLIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT.
– reference: Chollet, F., 2015. Keras. DARTEL toolbox. (n.d.). https://neurometrika.org/node/34.
– volume: 23
  start-page: 584
  year: 2018
  end-page: 596
  ident: b0090
  article-title: Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network
  publication-title: Front. Biosci.
– volume: 52
  start-page: 414
  year: 2018
  end-page: 419
  ident: b0155
  article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease
  publication-title: Biomed. Signal Process. Control
– volume: 412
  start-page: 197
  year: 2020
  ident: 10.1016/j.bspc.2022.103500_b0030
  article-title: Multimodal multitask deep learning model for Alzheimer ’ s disease progression detection based on time series data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.087
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0200
  article-title: Classification and Visualization of Alzheimer ’ s Disease using Volumetric Convolutional Neural Network and Transfer Learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54548-6
– start-page: 9
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0255
  article-title: Estimating Severity from CT Scans of Tuberculosis Patients using 3D Convolutional Nets and Slice Selection
  publication-title: CLEF
– ident: 10.1016/j.bspc.2022.103500_b0190
– start-page: 835
  year: 2017
  ident: 10.1016/j.bspc.2022.103500_b0150
  article-title: RESIDUAL AND PLAIN CONVOLUTIONAL NEURAL NETWORKS FOR 3D BRAIN MRI CLASSIFICATION
  publication-title: ISBI
– volume: 10
  start-page: 485
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2022.103500_b0215
  article-title: 3D Dense separated convolution module for volumetric medical image analysis
  publication-title: Appl. Sci.
  doi: 10.3390/app10020485
– volume: 18
  start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.103500_b0220
  article-title: Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer ’ s disease using structural MRI analysis
  publication-title: Inf. Med. Unlocked
– ident: 10.1016/j.bspc.2022.103500_b0020
– volume: 10
  start-page: 737
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0210
  article-title: Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment
  publication-title: Alzheimer’s & Dementia: Diagnosis Assessment Dis. Monitor.
– ident: 10.1016/j.bspc.2022.103500_b0195
  doi: 10.1007/978-3-642-41714-6_90345
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 10.1016/j.bspc.2022.103500_b0230
  article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0160
  article-title: Predicting Alzheimer ’ s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
– volume: 14
  start-page: e0225759
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0205
  article-title: Neuroimaging modality fusion in Alzheimer ’ s classification using convolutional neural networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0225759
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2022.103500_b0145
  article-title: Adam: A method for stochastic optimization
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  ident: 10.1016/j.bspc.2022.103500_b0120
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 13
  start-page: 509
  issue: May
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0100
  article-title: Diagnosis of Alzheimer ’ s Disease via Multi-Modality 3D Convolutional Neural Network
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00509
– volume: 5
  start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0185
  article-title: Neuroimaging Biomarkers for Alzheimer’s Disease
  publication-title: Mol. Neurodegener.
– year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0080
  article-title: Current status and applications of Artificial Intelligence (AI) in medical field: An overview
  publication-title: CMRP.
– start-page: 1500
  year: 2021
  ident: 10.1016/j.bspc.2022.103500_b0065
  article-title: Volumetric Convolutional Neural Network for Alzheimer Detection
  publication-title: ICOEI
– volume: 52
  start-page: 414
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0155
  article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.009
– ident: 10.1016/j.bspc.2022.103500_b0035
– year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0140
  article-title: 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies
  publication-title: ArXiv
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.103500_b0260
  article-title: Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction
  publication-title: ArXiv
– ident: 10.1016/j.bspc.2022.103500_b0010
– volume: 54
  start-page: 313
  issue: 1
  year: 2011
  ident: 10.1016/j.bspc.2022.103500_b0045
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.033
– volume: Vol. 84
  start-page: 51
  year: 2016
  ident: 10.1016/j.bspc.2022.103500_b0135
  publication-title: Neuroimaging Biomarkers in Alzheimer ’ s Disease. In: Biomarkers in Alzheimer’s Disease
  doi: 10.1016/B978-0-12-804832-0.00003-1
– volume: 23
  start-page: 584
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0090
  article-title: Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network
  publication-title: Front. Biosci.
– volume: 2
  start-page: 24
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0225
  article-title: Visualizing Convolutional Networks for MRI-Based Diagnosis of Alzheimer ’ s Disease
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-030-02628-8_3
– volume: I
  start-page: 16
  year: 2016
  ident: 10.1016/j.bspc.2022.103500_b0005
  article-title: TensorFlow : A System for Large-Scale Machine Learning
  publication-title: OSD
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.bspc.2022.103500_b0245
  article-title: N4ITK : Improved N3 Bias Correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 28
  start-page: 987
  year: 2013
  ident: 10.1016/j.bspc.2022.103500_b0075
  article-title: Natural Image Bases to Represent Neuroimaging Data
  publication-title: ICML
– volume: 302
  start-page: 14
  issue: December
  year: 2017
  ident: 10.1016/j.bspc.2022.103500_b0025
  article-title: Random Forest Feature Selection, Fusion and Ensemble Strategy : Combining Multiple Morphological MRI Measures to Discriminate healthy elderly, early / late MCI and Alzheimer ’ s disease Random forest feature selection, fusion and ensemble strategy
  publication-title: J. Neurosci. Methods
– year: 2016
  ident: 10.1016/j.bspc.2022.103500_b0095
  article-title: Alzheimer’s Disease Diagnostics By Adaptation Of 3D Convolutional Network
  publication-title: ICIP
– volume: 10
  start-page: 1175
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.103500_b0070
  article-title: No-reference image blur detection scheme using fuzzy inference
  publication-title: Adv. Math.: Sci. J.
– volume: 208
  issue: 2019
  year: 2020
  ident: 10.1016/j.bspc.2022.103500_b0175
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer ’ s disease
  publication-title: NeuroImage
– ident: 10.1016/j.bspc.2022.103500_b0055
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0180
  article-title: Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer’s Disease Diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
– ident: 10.1016/j.bspc.2022.103500_b0015
– ident: 10.1016/j.bspc.2022.103500_b0040
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.bspc.2022.103500_b0235
  article-title: Fast Robust Automated Brain Extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 57
  start-page: 147
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0110
  article-title: Convolutional neural network based Alzheimer ’ s disease classification from magnetic resonance brain images
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.015
– volume: 12
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0170
  article-title: Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00777
– volume: 341
  start-page: 108795
  year: 2020
  ident: 10.1016/j.bspc.2022.103500_b0250
  article-title: Multi-modal Neuroimaging Feature Fusion for Diagnosis of Alzheimer’s Disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108795
– ident: 10.1016/j.bspc.2022.103500_b0125
  doi: 10.1016/B978-0-12-804832-0.00005-5
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.bspc.2022.103500_b0115
  article-title: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.bspc.2022.103500_b0240
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD / MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 2
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2022.103500_b0105
  article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks
  publication-title: Brain Informat.
  doi: 10.1007/978-3-030-05587-5_34
– volume: Vol. 1
  start-page: 103
  year: 2016
  ident: 10.1016/j.bspc.2022.103500_b0130
  article-title: Genetic Biomarkers in Alzheimer ’ s Disease
– ident: 10.1016/j.bspc.2022.103500_b0050
– volume: 54
  start-page: 4827
  issue: 7
  year: 2021
  ident: 10.1016/j.bspc.2022.103500_b0060
  article-title: Deep learning for Alzheimer prediction using brain biomarkers
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10016-0
– volume: 60
  start-page: 101625
  year: 2019
  ident: 10.1016/j.bspc.2022.103500_b0085
  article-title: Multi-modal Neuroimaging Feature Selection with Consistent Metric Constraint for Diagnosis of Alzheimer’s Disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101625
– start-page: 1
  year: 2014
  ident: 10.1016/j.bspc.2022.103500_b0165
  article-title: Network In Network
  publication-title: ArXiv
SSID ssj0048714
Score 2.4401908
Snippet •We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103500
SubjectTerms Alzheimer
Brain imaging
Convolutional neural network
Neuroimaging
T1w MRI
Title AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer’s disease through multiple neuroimaging computational approaches
URI https://dx.doi.org/10.1016/j.bspc.2022.103500
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywodA87KRhiyqqAqILFHWLbOciivpSWxYGxN9g47fxS_A5TlUk1IElUSLbinyX85f4u-8IOcedHBFl4EQBMIchzTUWWe6I3OOSxcwDI8dw3w07PXbb5_0KaZW5MEirtLG_iOkmWts7DTubjelg0HjQWDps6q8T3zcqLhiHGYvQyy_flzQPjceNvjc2drC1TZwpOF5yPkUZQ9_H3HOOWW5_LU4rC057h2xbpEiT4mF2SQXGe2RrRT9wn3wlw7enLiyuaEKLMIN6-xSZ5Naj9ACoWGlOhu9NNUilhkWoEDdTc0S6kLEQneRUj_kMgxHMvj8-59Ru4FBbz4eWBEQz7GQwMkWOqDK1Iex_RVrqlMP8gPTa14-tjmNLLjgqcN2Fg4aLcg2L_Fi5AZMZSBkqhF1cQghMcE9wkQmIQck88gA8X3KWCcVy_TaHwSGpjidjOCJUhqFoKhXEwBnLWdaMskDDC4kbv65GTTXilXOdKqtHjmUxhmlJPHtJ0T4p2ict7FMjF8s-00KNY21rXpow_eVTqV4u1vQ7_me_E7KJVwWv55RUF7NXONOQZSHrxifrZCO5uet0fwAavPCT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQOwAD4inK0wMbitokdtKwVRVVSx8LLeoW2c5FFPWltixM_A02fhu_BJ_joCKhDiyJlPisyOecv8TffUfIDe7kiDABJ_SBOQxprpFIUkekLpcsYi4YOYZuL2gO2MOQD7dIPc-FQVqljf1ZTDfR2l4p29Esz0ej8qPG0kFVf514nlFx0XG4iOpUvECKtVa72csDsobkRuIb2ztoYHNnMpqXXM5RydDzMP2cY6LbX-vT2prT2Cd7FizSWvY8B2QLpodkd01C8Ih81sZvTz1Y3dEazSINSu5TJJPbSaU7QNFKczKUb6pxKjVEQoXQmZojMoaMk-gspbrPZxhNYPH1_rGkdg-H2pI-NOcgmm5no4mpc0SVKQ9hfy3SXKoclsdk0Ljv15uOrbrgKL9SWTnouzDVyMiLVMVnMgEpA4XIi0sIgAnuCi4SAREomYYugOtJzhKhWKpf6MA_IYXpbAqnhMogEFWl_Ag4YylLqmHia4Qhce-3ooFTibj5WMfKSpJjZYxxnHPPXmL0T4z-iTP_lMjtj808E-TY2JrnLox_TatYrxgb7M7-aXdNtpv9bifutHrtc7KDdzKazwUprBavcKkRzEpe2Rn6DU5b80Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AlzVNet%3A+A+volumetric+convolutional+neural+network+for+multiclass+classification+of+Alzheimer%E2%80%99s+disease+through+multiple+neuroimaging+computational+approaches&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Goenka%2C+Nitika&rft.au=Tiwari%2C+Shamik&rft.date=2022-04-01&rft.issn=1746-8094&rft.volume=74&rft.spage=103500&rft_id=info:doi/10.1016%2Fj.bspc.2022.103500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon