AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer’s disease through multiple neuroimaging computational approaches
•We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the maximum accuracy and binary classification.•First study to examine the performance of three neuroimaging computational techniques in...
Saved in:
Published in | Biomedical signal processing and control Vol. 74; p. 103500 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2022.103500 |
Cover
Loading…
Abstract | •We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the maximum accuracy and binary classification.•First study to examine the performance of three neuroimaging computational techniques in a systematic fashion (3D subject-level, 3D patch-based and 3D slice-based).•Three different Slice Based approaches used (Subset slice method, uniform slice method, Interpolation zoom method).•Classification accuracy of different patches ranging in size from small to medium to huge for 3D patch-based approach.
Alzheimer's disease is a degenerative neurological disease that causes a loss of cognitive skills and has no known treatment. Alzheimer's disease (AD) must be detected early, before symptoms appear, in order to be treated effectively. In this study, we used a deep learning approach called a convolutional neural network to classify Alzheimer's disease into three categories using a neuroimaging biomarker called T1w-MRI. Our research is the first to look at the results of three neuroimaging computational approaches in a systematic way (3D subject-level, 3D patch-based and slice-based). To show Alzheimer detection using deep convolutional neural networks, three distinct Slice Based methods are used (Subset selection method, uniform selection method, Interpolation zoom method). For 3D patch-based approaches, we investigated the classification accuracy of distinct non-overlapping patches ranging in size from small to medium to large (from 32, 40, 48, 56, 64, 72, 80, till 88). Our findings revealed that 1) our 3-class classification model performed best, with 98.3 percent accuracy percent (highest accuracy obtained until now as per our best knowledge); 2) The 3D Subject-level approach was the most efficient, followed by 3D-patch-based and then Slice-based approaches, with classification accuracy of 98.26 percent, 97.48 percent, and 95.40 percent, respectively; and 3) The same network had the most accuracy for bigger patches (size 72, 80, 88), followed by medium-sized (size 56, 64) to tiny patches (size 32, 40, 48). Large patches had a classification accuracy of 97.48 percent, while medium patches had a classification accuracy of 96.62 percent, and small patches had an accuracy of 86.49 percent. 4)) Even slice selection and interpolation selection exceeded subset slice selection with three-class classification accuracy of 95.37 percent and 94.57 percent, respectively, compared to 92.57 percent for subset slice selection. |
---|---|
AbstractList | •We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the maximum accuracy and binary classification.•First study to examine the performance of three neuroimaging computational techniques in a systematic fashion (3D subject-level, 3D patch-based and 3D slice-based).•Three different Slice Based approaches used (Subset slice method, uniform slice method, Interpolation zoom method).•Classification accuracy of different patches ranging in size from small to medium to huge for 3D patch-based approach.
Alzheimer's disease is a degenerative neurological disease that causes a loss of cognitive skills and has no known treatment. Alzheimer's disease (AD) must be detected early, before symptoms appear, in order to be treated effectively. In this study, we used a deep learning approach called a convolutional neural network to classify Alzheimer's disease into three categories using a neuroimaging biomarker called T1w-MRI. Our research is the first to look at the results of three neuroimaging computational approaches in a systematic way (3D subject-level, 3D patch-based and slice-based). To show Alzheimer detection using deep convolutional neural networks, three distinct Slice Based methods are used (Subset selection method, uniform selection method, Interpolation zoom method). For 3D patch-based approaches, we investigated the classification accuracy of distinct non-overlapping patches ranging in size from small to medium to large (from 32, 40, 48, 56, 64, 72, 80, till 88). Our findings revealed that 1) our 3-class classification model performed best, with 98.3 percent accuracy percent (highest accuracy obtained until now as per our best knowledge); 2) The 3D Subject-level approach was the most efficient, followed by 3D-patch-based and then Slice-based approaches, with classification accuracy of 98.26 percent, 97.48 percent, and 95.40 percent, respectively; and 3) The same network had the most accuracy for bigger patches (size 72, 80, 88), followed by medium-sized (size 56, 64) to tiny patches (size 32, 40, 48). Large patches had a classification accuracy of 97.48 percent, while medium patches had a classification accuracy of 96.62 percent, and small patches had an accuracy of 86.49 percent. 4)) Even slice selection and interpolation selection exceeded subset slice selection with three-class classification accuracy of 95.37 percent and 94.57 percent, respectively, compared to 92.57 percent for subset slice selection. |
ArticleNumber | 103500 |
Author | Goenka, Nitika Tiwari, Shamik |
Author_xml | – sequence: 1 givenname: Nitika surname: Goenka fullname: Goenka, Nitika email: nitika.g@ddn.upes.ac.in – sequence: 2 givenname: Shamik surname: Tiwari fullname: Tiwari, Shamik email: shamik.tiwari@ddn.upes.ac.in |
BookMark | eNp9kE1OwzAQhS1UJNrCBVj5Ai224_wUsakq_qQKNsDWcpxJ65LEke0UwYprsONsnISkKRsW3cyMLX_ved4IDSpTAULnlEwpodHFZpq6Wk0ZYay9CEJCjtCQxjyaJJQkg7-ZzPgJGjm3IYQnMeVD9D0vPl4ewF_iOd6aoinBW62wMlV38tpUssAVNHbX_Juxrzg3FpdN4bUqpHN4V3WuleyeY5PjVnMNugT78_nlcKYdSAfYr61pVuserQvYyRpdypWuVq1jWTde7h1lXVsj1RrcKTrOZeHgbN_H6Pnm-mlxN1k-3t4v5suJCgjxEx7LOM5ZSNhMkYCnGaRppCgLWJhCBFyGVIYykzADleYxBaAsDXkmFc_DgEbBGLFeV1njnIVc1Lb9m30XlIguY7ERXcaiy1j0GbdQ8g9Sut_BW6mLw-hVj0K71FaDFU5pqBRk2oLyIjP6EP4LDoChTw |
CitedBy_id | crossref_primary_10_35377_saucis___1493368 crossref_primary_10_3390_bioengineering9080370 crossref_primary_10_1098_rsta_2022_0169 crossref_primary_10_1016_j_bspc_2022_104375 crossref_primary_10_1109_ACCESS_2022_3218621 crossref_primary_10_1007_s11042_022_13935_4 crossref_primary_10_1016_j_rineng_2023_100927 crossref_primary_10_3389_fneur_2024_1413071 crossref_primary_10_1002_ima_22897 crossref_primary_10_3389_fnagi_2023_1238065 crossref_primary_10_1007_s11042_023_16379_6 crossref_primary_10_1016_j_asoc_2023_109991 crossref_primary_10_7759_cureus_47004 crossref_primary_10_1109_ACCESS_2024_3390186 crossref_primary_10_1007_s00521_024_10399_5 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_3390_diagnostics13010167 crossref_primary_10_1007_s11571_023_09993_5 crossref_primary_10_32604_cmc_2023_034796 crossref_primary_10_3390_sci5010013 crossref_primary_10_1186_s12911_024_02764_0 crossref_primary_10_14283_jpad_2024_66 crossref_primary_10_1007_s12530_022_09467_9 crossref_primary_10_1002_ima_23079 crossref_primary_10_1016_j_bspc_2023_104787 crossref_primary_10_1111_exsy_13463 crossref_primary_10_1016_j_compbiomed_2022_105737 crossref_primary_10_24012_dumf_1141233 crossref_primary_10_1038_s41598_024_81563_z crossref_primary_10_3390_make5020031 crossref_primary_10_3390_agriengineering5010017 crossref_primary_10_1007_s10278_022_00631_w crossref_primary_10_3390_app14156798 crossref_primary_10_1016_j_engappai_2023_107032 crossref_primary_10_3233_JAD_220806 crossref_primary_10_1007_s11042_023_17288_4 |
Cites_doi | 10.1016/j.neucom.2020.05.087 10.1038/s41598-019-54548-6 10.3390/app10020485 10.1007/978-3-642-41714-6_90345 10.1109/42.668698 10.1371/journal.pone.0225759 10.1016/S1361-8415(01)00036-6 10.3389/fnins.2019.00509 10.1016/j.bspc.2018.08.009 10.1016/j.neuroimage.2010.07.033 10.1016/B978-0-12-804832-0.00003-1 10.1007/978-3-030-02628-8_3 10.1109/TMI.2010.2046908 10.1002/hbm.10062 10.1016/j.cogsys.2018.12.015 10.3389/fnins.2018.00777 10.1016/j.jneumeth.2020.108795 10.1016/B978-0-12-804832-0.00005-5 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2014.06.077 10.1007/978-3-030-05587-5_34 10.1007/s10462-021-10016-0 10.1016/j.media.2019.101625 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103500 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103500 S1746809422000222 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-47a77f25029c034bdebb6c12325be6e4a51a5adae9ecbf71ee12b54dac4f53163 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 01:34:13 EDT 2025 Fri Feb 23 02:40:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neuroimaging Brain imaging T1w MRI Alzheimer Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-47a77f25029c034bdebb6c12325be6e4a51a5adae9ecbf71ee12b54dac4f53163 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_103500 crossref_citationtrail_10_1016_j_bspc_2022_103500 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | ANTs, n.d. http://stnava.github.io/ANTs/CADDementia Dataset. (n.d.). https://caddementia.grand-challenge.org/. ADNI Dataset, n.d. http://adni.loni.usc.edu/ALzheimer’s association Facts and Figures. (n.d.). https://www.alz.org/alzheimers-dementia/facts-figures. Oh, Chung, Kim, Kim, Oh (b0200) 2019; 9 Goenka, N., Sharma, D.K., 2020. CAREBOT : A COGNITIVE BEHAVIOURAL THERAPY AGENT USING DEEP LEARNING FOR COVID-19. 7(19), 6100–6108. Suk, Lee, Shen (b0240) 2014; 101 Dimitriadis, Liparas, Tsolaki (b0025) 2017; 302 Lin, Chen, Yan (b0165) 2014 Qiu, Chang, Panagia, Gopal, Au, Kolachalama (b0210) 2018; 10 FLIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT. Korolev, Safiullin, Belyaev, Dodonova (b0150) 2017 FreeSurfer. (n.d.). Jenkinson, Smith (b0120) 2001; 5 Khan (b0130) 2016; Vol. 1 Sled, Zijdenbos, Evans (b0230) 1998; 17 Islam, Zhang (b0105) 2018; 2 Márquez, Yassa (b0185) 2019; 5 FNIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. Zunair, Rahman, Mohammed, Cohen (b0260) 2020 Kingma, Ba (b0145) 2015 Liu, Li, Yan, Wang, Ma, Disease, Initiative, Shen, Xu (b0175) 2020; 208 Jenkinson, Bannister, Brady, Smith (b0115) 2002; 17 Smith (b0235) 2002; 17 Lin, Tong, Gao, Guo, Du, Yang, Guo, Xiao, Du, Qu (b0170) 2018; 12 Punjabi, Martersteck, Wang, Parrish, Katsaggelos, Ginsberg (b0205) 2019; 14 Goenka, Tiwari (b0060) 2021; 54 Qu, Wu, Zou (b0215) 2020; 10 Haleem, Javaid, Khan, Tech, Engineering (b0080) 2019 Zunair, Rahman, Mohammed (b0255) 2019 Goenka, Tiwari, Yadav (b0070) 2021; 10 Gupta, Ayhan, Maida (b0075) 2013; 28 Rallabandi, Tulpule, Gattu (b0220) 2020; 18 Huang, Xu, Zhou, Tong, Zhuang (b0100) 2019; 13 Lahmiri, Shmuel (b0155) 2018; 52 Jain, Jain, Aggarwal, Hemanth (b0110) 2019; 57 Chollet, F., 2015. Keras. DARTEL toolbox. (n.d.). https://neurometrika.org/node/34. Khan, T., 2016a. Alzheimer ’ s Disease Cerebrospinal Fluid (CSF) Biomarkers. In: Biomarkers in Alzheimer’s Disease, pp. 139–180. Rieke, Eitel, Weygandt, Haynes, Ritter (b0225) 2018; 2 Khvostikov, Aderghal, Benois-pineau, Krylov, Catheline, Initiative (b0140) 2018 Liu, Zhang, Adeli, Shen (b0180) 2018 Khan (b0135) 2016; Vol. 84 Zhang, Shi (b0250) 2020; 341 Hosseini-Asl, Keynton, El-Baz (b0095) 2016 Muschelli, J. (n.d.-b). Image Registration. https://doi.org/10.1007/978-3-642-41714-6_90345. Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Zheng (b0005) 2016; I Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (b0245) 2010; 29 Hosseini-Asl, Ghazal, Mahmoud, Aslantas, Shalaby, Barnes, Gimel, Keynton, Baz (b0090) 2018; 23 Fonov, Evans, Botteron, Almli, McKinstry, Collins (b0045) 2011; 54 Lee, Nho, Kang, Sohn, Kim (b0160) 2019; 9 El-Sappagh, Abuhmed, Riazul Islam, Kwak (b0030) 2020; 412 Goenka, Tiwari (b0065) 2021 Muschelli, J. (n.d.-a). Brain Extraction/Segmentation. Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin (b0085) 2019; 60 10.1016/j.bspc.2022.103500_b0050 10.1016/j.bspc.2022.103500_b0015 10.1016/j.bspc.2022.103500_b0010 Haleem (10.1016/j.bspc.2022.103500_b0080) 2019 Zunair (10.1016/j.bspc.2022.103500_b0260) 2020 10.1016/j.bspc.2022.103500_b0055 Hao (10.1016/j.bspc.2022.103500_b0085) 2019; 60 Lee (10.1016/j.bspc.2022.103500_b0160) 2019; 9 Oh (10.1016/j.bspc.2022.103500_b0200) 2019; 9 Huang (10.1016/j.bspc.2022.103500_b0100) 2019; 13 Punjabi (10.1016/j.bspc.2022.103500_b0205) 2019; 14 Jenkinson (10.1016/j.bspc.2022.103500_b0115) 2002; 17 10.1016/j.bspc.2022.103500_b0040 Hosseini-Asl (10.1016/j.bspc.2022.103500_b0090) 2018; 23 10.1016/j.bspc.2022.103500_b0125 Korolev (10.1016/j.bspc.2022.103500_b0150) 2017 Khan (10.1016/j.bspc.2022.103500_b0135) 2016; Vol. 84 Jain (10.1016/j.bspc.2022.103500_b0110) 2019; 57 Lahmiri (10.1016/j.bspc.2022.103500_b0155) 2018; 52 Abadi (10.1016/j.bspc.2022.103500_b0005) 2016; I Zhang (10.1016/j.bspc.2022.103500_b0250) 2020; 341 Suk (10.1016/j.bspc.2022.103500_b0240) 2014; 101 Liu (10.1016/j.bspc.2022.103500_b0175) 2020; 208 Rallabandi (10.1016/j.bspc.2022.103500_b0220) 2020; 18 Goenka (10.1016/j.bspc.2022.103500_b0065) 2021 Liu (10.1016/j.bspc.2022.103500_b0180) 2018 Gupta (10.1016/j.bspc.2022.103500_b0075) 2013; 28 10.1016/j.bspc.2022.103500_b0195 Sled (10.1016/j.bspc.2022.103500_b0230) 1998; 17 Jenkinson (10.1016/j.bspc.2022.103500_b0120) 2001; 5 Khan (10.1016/j.bspc.2022.103500_b0130) 2016; Vol. 1 10.1016/j.bspc.2022.103500_b0190 Khvostikov (10.1016/j.bspc.2022.103500_b0140) 2018 10.1016/j.bspc.2022.103500_b0035 Márquez (10.1016/j.bspc.2022.103500_b0185) 2019; 5 Hosseini-Asl (10.1016/j.bspc.2022.103500_b0095) 2016 Fonov (10.1016/j.bspc.2022.103500_b0045) 2011; 54 Qu (10.1016/j.bspc.2022.103500_b0215) 2020; 10 Rieke (10.1016/j.bspc.2022.103500_b0225) 2018; 2 Qiu (10.1016/j.bspc.2022.103500_b0210) 2018; 10 Lin (10.1016/j.bspc.2022.103500_b0170) 2018; 12 Zunair (10.1016/j.bspc.2022.103500_b0255) 2019 Goenka (10.1016/j.bspc.2022.103500_b0060) 2021; 54 Kingma (10.1016/j.bspc.2022.103500_b0145) 2015 Lin (10.1016/j.bspc.2022.103500_b0165) 2014 10.1016/j.bspc.2022.103500_b0020 Smith (10.1016/j.bspc.2022.103500_b0235) 2002; 17 Goenka (10.1016/j.bspc.2022.103500_b0070) 2021; 10 Tustison (10.1016/j.bspc.2022.103500_b0245) 2010; 29 Dimitriadis (10.1016/j.bspc.2022.103500_b0025) 2017; 302 Islam (10.1016/j.bspc.2022.103500_b0105) 2018; 2 El-Sappagh (10.1016/j.bspc.2022.103500_b0030) 2020; 412 |
References_xml | – start-page: 1500 year: 2021 end-page: 1505 ident: b0065 article-title: Volumetric Convolutional Neural Network for Alzheimer Detection publication-title: ICOEI – volume: 54 start-page: 4827 year: 2021 end-page: 4871 ident: b0060 article-title: Deep learning for Alzheimer prediction using brain biomarkers publication-title: Artif. Intell. Rev. – reference: ADNI Dataset, n.d. http://adni.loni.usc.edu/ALzheimer’s association Facts and Figures. (n.d.). https://www.alz.org/alzheimers-dementia/facts-figures. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: b0115 article-title: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images publication-title: NeuroImage – reference: FreeSurfer. (n.d.). – volume: 57 start-page: 147 year: 2019 end-page: 159 ident: b0110 article-title: Convolutional neural network based Alzheimer ’ s disease classification from magnetic resonance brain images publication-title: Cognit. Syst. Res. – volume: Vol. 84 start-page: 51 year: 2016 end-page: 100 ident: b0135 publication-title: Neuroimaging Biomarkers in Alzheimer ’ s Disease. In: Biomarkers in Alzheimer’s Disease – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: b0235 article-title: Fast Robust Automated Brain Extraction publication-title: Hum. Brain Mapp. – start-page: 9 year: 2019 end-page: 12 ident: b0255 article-title: Estimating Severity from CT Scans of Tuberculosis Patients using 3D Convolutional Nets and Slice Selection publication-title: CLEF – volume: 2 year: 2018 ident: b0105 article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks publication-title: Brain Informat. – reference: Khan, T., 2016a. Alzheimer ’ s Disease Cerebrospinal Fluid (CSF) Biomarkers. In: Biomarkers in Alzheimer’s Disease, pp. 139–180. – start-page: 1 year: 2015 end-page: 15 ident: b0145 article-title: Adam: A method for stochastic optimization publication-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings – volume: 12 year: 2018 ident: b0170 article-title: Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment publication-title: Front. Neurosci. – start-page: 1 year: 2014 end-page: 10 ident: b0165 article-title: Network In Network publication-title: ArXiv – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: b0240 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD / MCI diagnosis publication-title: NeuroImage – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: b0160 article-title: Predicting Alzheimer ’ s disease progression using multi-modal deep learning approach publication-title: Sci. Rep. – start-page: 835 year: 2017 end-page: 838 ident: b0150 article-title: RESIDUAL AND PLAIN CONVOLUTIONAL NEURAL NETWORKS FOR 3D BRAIN MRI CLASSIFICATION publication-title: ISBI – reference: Muschelli, J. (n.d.-b). Image Registration. https://doi.org/10.1007/978-3-642-41714-6_90345. – reference: . (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. – volume: 10 start-page: 1175 year: 2021 end-page: 1182 ident: b0070 article-title: No-reference image blur detection scheme using fuzzy inference publication-title: Adv. Math.: Sci. J. – volume: 14 start-page: e0225759 year: 2019 ident: b0205 article-title: Neuroimaging modality fusion in Alzheimer ’ s classification using convolutional neural networks publication-title: PLoS ONE – volume: 18 start-page: 1 year: 2020 end-page: 7 ident: b0220 article-title: Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer ’ s disease using structural MRI analysis publication-title: Inf. Med. Unlocked – volume: 10 start-page: 485 year: 2020 ident: b0215 article-title: 3D Dense separated convolution module for volumetric medical image analysis publication-title: Appl. Sci. – volume: 208 year: 2020 ident: b0175 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer ’ s disease publication-title: NeuroImage – volume: 341 start-page: 108795 year: 2020 ident: b0250 article-title: Multi-modal Neuroimaging Feature Fusion for Diagnosis of Alzheimer’s Disease publication-title: J. Neurosci. Methods – reference: ANTs, n.d. http://stnava.github.io/ANTs/CADDementia Dataset. (n.d.). https://caddementia.grand-challenge.org/. – volume: 54 start-page: 313 year: 2011 end-page: 327 ident: b0045 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: NeuroImage – volume: 10 start-page: 737 year: 2018 end-page: 749 ident: b0210 article-title: Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment publication-title: Alzheimer’s & Dementia: Diagnosis Assessment Dis. Monitor. – volume: 412 start-page: 197 year: 2020 end-page: 215 ident: b0030 article-title: Multimodal multitask deep learning model for Alzheimer ’ s disease progression detection based on time series data publication-title: Neurocomputing – start-page: 1 year: 2018 end-page: 12 ident: b0180 article-title: Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer’s Disease Diagnosis publication-title: IEEE Trans. Biomed. Eng. – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: b0245 article-title: N4ITK : Improved N3 Bias Correction publication-title: IEEE Trans. Med. Imaging – volume: Vol. 1 start-page: 103 year: 2016 end-page: 135 ident: b0130 article-title: Genetic Biomarkers in Alzheimer ’ s Disease publication-title: Biomarkers in Alzheimer’s Disease – volume: 9 start-page: 1 year: 2019 end-page: 16 ident: b0200 article-title: Classification and Visualization of Alzheimer ’ s Disease using Volumetric Convolutional Neural Network and Transfer Learning publication-title: Sci. Rep. – start-page: 1 year: 2020 end-page: 12 ident: b0260 article-title: Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction publication-title: ArXiv – volume: 60 start-page: 101625 year: 2019 ident: b0085 article-title: Multi-modal Neuroimaging Feature Selection with Consistent Metric Constraint for Diagnosis of Alzheimer’s Disease publication-title: Med. Image Anal. – year: 2018 ident: b0140 article-title: 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies publication-title: ArXiv – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: b0230 article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data publication-title: IEEE Trans. Med. Imaging – reference: Goenka, N., Sharma, D.K., 2020. CAREBOT : A COGNITIVE BEHAVIOURAL THERAPY AGENT USING DEEP LEARNING FOR COVID-19. 7(19), 6100–6108. – volume: I start-page: 16 year: 2016 ident: b0005 article-title: TensorFlow : A System for Large-Scale Machine Learning publication-title: OSD – volume: 302 start-page: 14 year: 2017 end-page: 23 ident: b0025 article-title: Random Forest Feature Selection, Fusion and Ensemble Strategy : Combining Multiple Morphological MRI Measures to Discriminate healthy elderly, early / late MCI and Alzheimer ’ s disease Random forest feature selection, fusion and ensemble strategy publication-title: J. Neurosci. Methods – volume: 2 start-page: 24 year: 2018 end-page: 31 ident: b0225 article-title: Visualizing Convolutional Networks for MRI-Based Diagnosis of Alzheimer ’ s Disease publication-title: Lect. Notes Comput. Sci. – volume: 13 start-page: 509 year: 2019 ident: b0100 article-title: Diagnosis of Alzheimer ’ s Disease via Multi-Modality 3D Convolutional Neural Network publication-title: Front. Neurosci. – volume: 5 start-page: 1 year: 2019 end-page: 14 ident: b0185 article-title: Neuroimaging Biomarkers for Alzheimer’s Disease publication-title: Mol. Neurodegener. – volume: 28 start-page: 987 year: 2013 end-page: 994 ident: b0075 article-title: Natural Image Bases to Represent Neuroimaging Data publication-title: ICML – year: 2016 ident: b0095 article-title: Alzheimer’s Disease Diagnostics By Adaptation Of 3D Convolutional Network publication-title: ICIP – reference: Muschelli, J. (n.d.-a). Brain Extraction/Segmentation. – year: 2019 ident: b0080 article-title: Current status and applications of Artificial Intelligence (AI) in medical field: An overview publication-title: CMRP. – volume: 5 start-page: 143 year: 2001 end-page: 156 ident: b0120 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. – reference: FNIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT. – reference: FLIRT. (n.d.). https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT. – reference: Chollet, F., 2015. Keras. DARTEL toolbox. (n.d.). https://neurometrika.org/node/34. – volume: 23 start-page: 584 year: 2018 end-page: 596 ident: b0090 article-title: Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network publication-title: Front. Biosci. – volume: 52 start-page: 414 year: 2018 end-page: 419 ident: b0155 article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease publication-title: Biomed. Signal Process. Control – volume: 412 start-page: 197 year: 2020 ident: 10.1016/j.bspc.2022.103500_b0030 article-title: Multimodal multitask deep learning model for Alzheimer ’ s disease progression detection based on time series data publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.087 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0200 article-title: Classification and Visualization of Alzheimer ’ s Disease using Volumetric Convolutional Neural Network and Transfer Learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-54548-6 – start-page: 9 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0255 article-title: Estimating Severity from CT Scans of Tuberculosis Patients using 3D Convolutional Nets and Slice Selection publication-title: CLEF – ident: 10.1016/j.bspc.2022.103500_b0190 – start-page: 835 year: 2017 ident: 10.1016/j.bspc.2022.103500_b0150 article-title: RESIDUAL AND PLAIN CONVOLUTIONAL NEURAL NETWORKS FOR 3D BRAIN MRI CLASSIFICATION publication-title: ISBI – volume: 10 start-page: 485 issue: 2 year: 2020 ident: 10.1016/j.bspc.2022.103500_b0215 article-title: 3D Dense separated convolution module for volumetric medical image analysis publication-title: Appl. Sci. doi: 10.3390/app10020485 – volume: 18 start-page: 1 year: 2020 ident: 10.1016/j.bspc.2022.103500_b0220 article-title: Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer ’ s disease using structural MRI analysis publication-title: Inf. Med. Unlocked – ident: 10.1016/j.bspc.2022.103500_b0020 – volume: 10 start-page: 737 issue: 1 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0210 article-title: Fusion of deep learning models of MRI scans, Mini-Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment publication-title: Alzheimer’s & Dementia: Diagnosis Assessment Dis. Monitor. – ident: 10.1016/j.bspc.2022.103500_b0195 doi: 10.1007/978-3-642-41714-6_90345 – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 10.1016/j.bspc.2022.103500_b0230 article-title: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0160 article-title: Predicting Alzheimer ’ s disease progression using multi-modal deep learning approach publication-title: Sci. Rep. – volume: 14 start-page: e0225759 issue: 12 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0205 article-title: Neuroimaging modality fusion in Alzheimer ’ s classification using convolutional neural networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0225759 – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2022.103500_b0145 article-title: Adam: A method for stochastic optimization – volume: 5 start-page: 143 issue: 2 year: 2001 ident: 10.1016/j.bspc.2022.103500_b0120 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – volume: 13 start-page: 509 issue: May year: 2019 ident: 10.1016/j.bspc.2022.103500_b0100 article-title: Diagnosis of Alzheimer ’ s Disease via Multi-Modality 3D Convolutional Neural Network publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00509 – volume: 5 start-page: 1 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0185 article-title: Neuroimaging Biomarkers for Alzheimer’s Disease publication-title: Mol. Neurodegener. – year: 2019 ident: 10.1016/j.bspc.2022.103500_b0080 article-title: Current status and applications of Artificial Intelligence (AI) in medical field: An overview publication-title: CMRP. – start-page: 1500 year: 2021 ident: 10.1016/j.bspc.2022.103500_b0065 article-title: Volumetric Convolutional Neural Network for Alzheimer Detection publication-title: ICOEI – volume: 52 start-page: 414 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0155 article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.009 – ident: 10.1016/j.bspc.2022.103500_b0035 – year: 2018 ident: 10.1016/j.bspc.2022.103500_b0140 article-title: 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies publication-title: ArXiv – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2022.103500_b0260 article-title: Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction publication-title: ArXiv – ident: 10.1016/j.bspc.2022.103500_b0010 – volume: 54 start-page: 313 issue: 1 year: 2011 ident: 10.1016/j.bspc.2022.103500_b0045 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.033 – volume: Vol. 84 start-page: 51 year: 2016 ident: 10.1016/j.bspc.2022.103500_b0135 publication-title: Neuroimaging Biomarkers in Alzheimer ’ s Disease. In: Biomarkers in Alzheimer’s Disease doi: 10.1016/B978-0-12-804832-0.00003-1 – volume: 23 start-page: 584 issue: 5 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0090 article-title: Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network publication-title: Front. Biosci. – volume: 2 start-page: 24 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0225 article-title: Visualizing Convolutional Networks for MRI-Based Diagnosis of Alzheimer ’ s Disease publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-030-02628-8_3 – volume: I start-page: 16 year: 2016 ident: 10.1016/j.bspc.2022.103500_b0005 article-title: TensorFlow : A System for Large-Scale Machine Learning publication-title: OSD – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.bspc.2022.103500_b0245 article-title: N4ITK : Improved N3 Bias Correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 28 start-page: 987 year: 2013 ident: 10.1016/j.bspc.2022.103500_b0075 article-title: Natural Image Bases to Represent Neuroimaging Data publication-title: ICML – volume: 302 start-page: 14 issue: December year: 2017 ident: 10.1016/j.bspc.2022.103500_b0025 article-title: Random Forest Feature Selection, Fusion and Ensemble Strategy : Combining Multiple Morphological MRI Measures to Discriminate healthy elderly, early / late MCI and Alzheimer ’ s disease Random forest feature selection, fusion and ensemble strategy publication-title: J. Neurosci. Methods – year: 2016 ident: 10.1016/j.bspc.2022.103500_b0095 article-title: Alzheimer’s Disease Diagnostics By Adaptation Of 3D Convolutional Network publication-title: ICIP – volume: 10 start-page: 1175 issue: 3 year: 2021 ident: 10.1016/j.bspc.2022.103500_b0070 article-title: No-reference image blur detection scheme using fuzzy inference publication-title: Adv. Math.: Sci. J. – volume: 208 issue: 2019 year: 2020 ident: 10.1016/j.bspc.2022.103500_b0175 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer ’ s disease publication-title: NeuroImage – ident: 10.1016/j.bspc.2022.103500_b0055 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0180 article-title: Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer’s Disease Diagnosis publication-title: IEEE Trans. Biomed. Eng. – ident: 10.1016/j.bspc.2022.103500_b0015 – ident: 10.1016/j.bspc.2022.103500_b0040 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.bspc.2022.103500_b0235 article-title: Fast Robust Automated Brain Extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 57 start-page: 147 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0110 article-title: Convolutional neural network based Alzheimer ’ s disease classification from magnetic resonance brain images publication-title: Cognit. Syst. Res. doi: 10.1016/j.cogsys.2018.12.015 – volume: 12 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0170 article-title: Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00777 – volume: 341 start-page: 108795 year: 2020 ident: 10.1016/j.bspc.2022.103500_b0250 article-title: Multi-modal Neuroimaging Feature Fusion for Diagnosis of Alzheimer’s Disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108795 – ident: 10.1016/j.bspc.2022.103500_b0125 doi: 10.1016/B978-0-12-804832-0.00005-5 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.bspc.2022.103500_b0115 article-title: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.bspc.2022.103500_b0240 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD / MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 2 issue: 5 year: 2018 ident: 10.1016/j.bspc.2022.103500_b0105 article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks publication-title: Brain Informat. doi: 10.1007/978-3-030-05587-5_34 – volume: Vol. 1 start-page: 103 year: 2016 ident: 10.1016/j.bspc.2022.103500_b0130 article-title: Genetic Biomarkers in Alzheimer ’ s Disease – ident: 10.1016/j.bspc.2022.103500_b0050 – volume: 54 start-page: 4827 issue: 7 year: 2021 ident: 10.1016/j.bspc.2022.103500_b0060 article-title: Deep learning for Alzheimer prediction using brain biomarkers publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10016-0 – volume: 60 start-page: 101625 year: 2019 ident: 10.1016/j.bspc.2022.103500_b0085 article-title: Multi-modal Neuroimaging Feature Selection with Consistent Metric Constraint for Diagnosis of Alzheimer’s Disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101625 – start-page: 1 year: 2014 ident: 10.1016/j.bspc.2022.103500_b0165 article-title: Network In Network publication-title: ArXiv |
SSID | ssj0048714 |
Score | 2.4401908 |
Snippet | •We looked at contemporary status in Alzheimer's categorization using ConvNet & T1w MRI.•A method for analysing Alzheimer three-class categorization with the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103500 |
SubjectTerms | Alzheimer Brain imaging Convolutional neural network Neuroimaging T1w MRI |
Title | AlzVNet: A volumetric convolutional neural network for multiclass classification of Alzheimer’s disease through multiple neuroimaging computational approaches |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103500 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywodA87KRhiyqqAqILFHWLbOciivpSWxYGxN9g47fxS_A5TlUk1IElUSLbinyX85f4u-8IOcedHBFl4EQBMIchzTUWWe6I3OOSxcwDI8dw3w07PXbb5_0KaZW5MEirtLG_iOkmWts7DTubjelg0HjQWDps6q8T3zcqLhiHGYvQyy_flzQPjceNvjc2drC1TZwpOF5yPkUZQ9_H3HOOWW5_LU4rC057h2xbpEiT4mF2SQXGe2RrRT9wn3wlw7enLiyuaEKLMIN6-xSZ5Naj9ACoWGlOhu9NNUilhkWoEDdTc0S6kLEQneRUj_kMgxHMvj8-59Ru4FBbz4eWBEQz7GQwMkWOqDK1Iex_RVrqlMP8gPTa14-tjmNLLjgqcN2Fg4aLcg2L_Fi5AZMZSBkqhF1cQghMcE9wkQmIQck88gA8X3KWCcVy_TaHwSGpjidjOCJUhqFoKhXEwBnLWdaMskDDC4kbv65GTTXilXOdKqtHjmUxhmlJPHtJ0T4p2ict7FMjF8s-00KNY21rXpow_eVTqV4u1vQ7_me_E7KJVwWv55RUF7NXONOQZSHrxifrZCO5uet0fwAavPCT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQOwAD4inK0wMbitokdtKwVRVVSx8LLeoW2c5FFPWltixM_A02fhu_BJ_joCKhDiyJlPisyOecv8TffUfIDe7kiDABJ_SBOQxprpFIUkekLpcsYi4YOYZuL2gO2MOQD7dIPc-FQVqljf1ZTDfR2l4p29Esz0ej8qPG0kFVf514nlFx0XG4iOpUvECKtVa72csDsobkRuIb2ztoYHNnMpqXXM5RydDzMP2cY6LbX-vT2prT2Cd7FizSWvY8B2QLpodkd01C8Ih81sZvTz1Y3dEazSINSu5TJJPbSaU7QNFKczKUb6pxKjVEQoXQmZojMoaMk-gspbrPZxhNYPH1_rGkdg-H2pI-NOcgmm5no4mpc0SVKQ9hfy3SXKoclsdk0Ljv15uOrbrgKL9SWTnouzDVyMiLVMVnMgEpA4XIi0sIgAnuCi4SAREomYYugOtJzhKhWKpf6MA_IYXpbAqnhMogEFWl_Ag4YylLqmHia4Qhce-3ooFTibj5WMfKSpJjZYxxnHPPXmL0T4z-iTP_lMjtj808E-TY2JrnLox_TatYrxgb7M7-aXdNtpv9bifutHrtc7KDdzKazwUprBavcKkRzEpe2Rn6DU5b80Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AlzVNet%3A+A+volumetric+convolutional+neural+network+for+multiclass+classification+of+Alzheimer%E2%80%99s+disease+through+multiple+neuroimaging+computational+approaches&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Goenka%2C+Nitika&rft.au=Tiwari%2C+Shamik&rft.date=2022-04-01&rft.issn=1746-8094&rft.volume=74&rft.spage=103500&rft_id=info:doi/10.1016%2Fj.bspc.2022.103500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |