LASSO based stimulus frequency recognition model for SSVEP BCIs

Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsi...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 7; no. 2; pp. 104 - 111
Main Authors Zhang, Yu, Jin, Jing, Qing, Xiangyun, Wang, Bei, Wang, Xingyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction of more discriminative features of SSVEP, and then we propose a LASSO model using the linear regression between electroencephalogram (EEG) recordings and the standard square-wave signals of different frequencies to recognize SSVEP without the training stage. In this study, we verified the proposed LASSO model offline with the EEG data of nine healthy subjects in contrast to canonical correlation analysis (CCA). In the experiment, when a shorter time window was used, we found that the LASSO model yielded better performance in extracting robust and detectable features of SSVEP, and the information transfer rate obtained by the LASSO model was significantly higher than that of the CCA. Our proposed method can assist to reduce the recording time without sacrificing the classification accuracy and is promising for a high-speed SSVEP-based BCI.
AbstractList Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction of more discriminative features of SSVEP, and then we propose a LASSO model using the linear regression between electroencephalogram (EEG) recordings and the standard square-wave signals of different frequencies to recognize SSVEP without the training stage. In this study, we verified the proposed LASSO model offline with the EEG data of nine healthy subjects in contrast to canonical correlation analysis (CCA). In the experiment, when a shorter time window was used, we found that the LASSO model yielded better performance in extracting robust and detectable features of SSVEP, and the information transfer rate obtained by the LASSO model was significantly higher than that of the CCA. Our proposed method can assist to reduce the recording time without sacrificing the classification accuracy and is promising for a high-speed SSVEP-based BCI.
Author Wang, Bei
Wang, Xingyu
Qing, Xiangyun
Zhang, Yu
Jin, Jing
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 2
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
– sequence: 3
  givenname: Xiangyun
  surname: Qing
  fullname: Qing, Xiangyun
– sequence: 4
  givenname: Bei
  surname: Wang
  fullname: Wang, Bei
– sequence: 5
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
  email: xywang@ecust.edu.cn
BookMark eNp90EFLwzAUwPEcJrhNv4CnfIHWlzTLMhBkjqmDwYSq15Cmr5LRNTNphX17W-bJw07v9Hu8_5uQUeMbJOSOQcqAyft9WsSjTTkwlgJPAfiIjNlcyETBQlyTSYx7AKHmTIzJ43aZ5ztamIglja07dHUXaRXwu8PGnmhA678a1zrf0IMvsaaVDzTPP9dv9Gm1iTfkqjJ1xNu_OSUfz-v31Wuy3b1sVsttYjOANhFCGWnAFMZIy1BwYTNlBZurIkNktlBloTJmy9ksM1JaKVVPFoqBmjG-wGxK1HmvDT7GgJW2rjXDWW0wrtYM9BCv93qI10O8Bq77-J7yf_QY3MGE02X0cEbYR_04DDpa138ES9e_pNWld5f4L9oodjo
CitedBy_id crossref_primary_10_3389_fninf_2021_750839
crossref_primary_10_1016_j_bspc_2014_07_009
crossref_primary_10_1109_TNSRE_2018_2874975
crossref_primary_10_1142_S0129065716500325
crossref_primary_10_1007_s10278_012_9547_6
crossref_primary_10_1007_s11042_018_6643_8
crossref_primary_10_1109_TNSRE_2017_2673242
crossref_primary_10_37391_ijeer_110213
crossref_primary_10_1016_j_bbe_2017_10_004
crossref_primary_10_1016_j_bspc_2023_104629
crossref_primary_10_1177_09544119221140752
crossref_primary_10_1016_j_jneumeth_2015_08_004
crossref_primary_10_1109_TNNLS_2015_2476656
crossref_primary_10_1109_TNSRE_2015_2496184
crossref_primary_10_1515_bmt_2017_0082
crossref_primary_10_1016_j_neucom_2016_11_008
crossref_primary_10_1186_s44147_023_00291_9
crossref_primary_10_1108_IJICC_01_2022_0002
crossref_primary_10_1155_2014_908719
crossref_primary_10_1016_j_bspc_2018_06_010
crossref_primary_10_1007_s00521_018_3836_z
crossref_primary_10_1063_5_0064807
crossref_primary_10_1016_j_jneumeth_2016_12_010
crossref_primary_10_1109_TNSRE_2016_2519350
crossref_primary_10_1007_s11280_018_0622_x
crossref_primary_10_1016_S1874_1029_13_60023_3
crossref_primary_10_1371_journal_pone_0172578
crossref_primary_10_1109_TNSRE_2019_2940712
crossref_primary_10_1016_j_patrec_2018_06_029
crossref_primary_10_1016_j_bspc_2012_03_004
crossref_primary_10_1016_j_bspc_2013_11_003
crossref_primary_10_1109_THMS_2015_2513014
crossref_primary_10_1142_S0129065717500393
crossref_primary_10_1007_s11042_018_6488_1
crossref_primary_10_1016_j_jneumeth_2020_108686
crossref_primary_10_1155_2019_2361282
crossref_primary_10_1007_s40815_016_0248_z
crossref_primary_10_1016_j_compbiomed_2018_08_011
crossref_primary_10_1016_j_jneumeth_2015_05_014
crossref_primary_10_1109_ACCESS_2018_2886759
crossref_primary_10_1007_s10055_021_00600_8
crossref_primary_10_1088_1741_2552_aaca6e
crossref_primary_10_1109_TMRB_2019_2949865
crossref_primary_10_1016_j_bbe_2020_05_007
crossref_primary_10_3390_s21165308
crossref_primary_10_1088_1741_2560_12_5_056009
crossref_primary_10_1088_1741_2552_ab6a67
crossref_primary_10_1109_TAMD_2015_2434951
crossref_primary_10_1016_j_neunet_2018_10_006
crossref_primary_10_1038_s41598_017_06509_0
crossref_primary_10_1080_2326263X_2023_2166651
crossref_primary_10_1007_s11063_020_10297_6
crossref_primary_10_1109_JBHI_2016_2546311
crossref_primary_10_3389_fnhum_2018_00201
Cites_doi 10.1109/TNSRE.2005.847369
10.1088/1741-2560/5/1/004
10.1088/1741-2560/2/4/008
10.1109/TBME.2006.889160
10.1155/2009/864564
10.1155/ASP.2005.3156
10.1016/j.acha.2005.03.005
10.1016/j.neuroimage.2008.04.246
10.1214/07-AOS582
10.1093/biomet/28.3-4.321
10.1162/089976604773717586
10.1109/TPAMI.2008.79
10.1088/0967-3334/27/1/006
10.1109/86.712231
10.1109/TBME.2007.897815
10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-#
10.1023/A:1008146126392
10.1109/86.847819
10.1109/TNSRE.2003.814449
10.1016/j.clinph.2007.09.121
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2006.886577
10.1088/1741-2560/6/4/046002
10.1109/TBME.2002.803536
10.1111/j.1467-9868.2007.00627.x
10.1109/TNN.2005.863424
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2011.02.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 111
ExternalDocumentID 10_1016_j_bspc_2011_02_002
S1746809411000073
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-448a6a0abaa6c1e424c38c4178b3ee1cb8db831cd553a66c668448981085129e3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 05:30:48 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Mon Nov 18 09:13:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Brain–computer interfaces (BCIs)
Steady-state visual evoked potential (SSVEP)
Electroencephalogram (EEG)
Least absolute shrinkage and selection operator (LASSO)
Time window (TW)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-448a6a0abaa6c1e424c38c4178b3ee1cb8db831cd553a66c668448981085129e3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2011_02_002
crossref_primary_10_1016_j_bspc_2011_02_002
elsevier_sciencedirect_doi_10_1016_j_bspc_2011_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Meier, Geer, Bühlmann (bib0130) 2008; 70
Nigham, Aggarwal (bib0135) 2005
Cheng, Gao, Gao, Xu (bib0065) 2002; 49
Haufe, Nikulin, Ziehe, Müller, Nolte (bib0090) 2008; 42
Zass, Shashua (bib0110) 2006; 19
Schittkowski (bib0160) 1985; 11
Lin, Zhang, Wu, Gao (bib0025) 2006; 53
Wright, Yang, Ganesh, Sastry, Ma (bib0120) 2009; 31
Huang, Aviyente (bib0185) 2006; vol. 19
Elad, Aharon (bib0190) 2006
Lalor, Kelly, Finucane, Burke, Smith, Reilly, McDarby (bib0050) 2005; 19
Li, Cichocki, Amari (bib0095) 2006; 17
Shanon, Weaver (bib0140) 1964
Allison, McFarland, Schalk, Zheng, Jackson, Wolpaw (bib0010) 2008; 119
Kelly, Lalor, Reilly, Foxe (bib0070) 2005; 13
Anderson (bib0170) 1984
Geiger, Liu, Donahue (bib0105) 1999; 33
Friman, Volosyak, Gräser (bib0045) 2007; 54
Meinshausen, Yu (bib0155) 2009; 37
Müller-Putz, Scherer, Brauneis, Pfurtscheller (bib0005) 2005; 2
Li, Cichocki, Amari (bib0100) 2004; 16
Bin, Gao, Yan, Hong, Gao (bib0015) 2009; 6
Hotelling (bib0165) 1936; 28
Naseem, Togneri, Bennamoun (bib0115) 2009; 5558
Friman, Lüth, Volosyak, Gräser (bib0020) 2007
Mukesh, Jaganathan, Reddy (bib0055) 2006; 27
Elad, Starck, Querre, Donoho (bib0195) 2005; 19
Tibshirani (bib0125) 1996; 58
Gao, Xu, Cheng, Gao (bib0035) 2003; 11
Von Storch, Zwiers (bib0180) 1999
Middendorf, McMillan, Calhoun, Jones (bib0040) 2000; 8
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib0150) 2002; 113
Wu, Yao (bib0080) 2008; 5
Wang, Zhang, Gao, Gao (bib0075) 2005
Müller-Putz, Pfurtscheller (bib0060) 2008; 55
Elad (bib0085) 2010
Friman, Cedefamn, Lundberg, Borga, Knutsson (bib0175) 2001; 45
Parini, Maggi, Turconi, Andreoni (bib0030) 2009; 2009
Wolpaw, Ramoser, McFarland, Pfurtscheller (bib0145) 1998; 6
Lalor (10.1016/j.bspc.2011.02.002_bib0050) 2005; 19
Wolpaw (10.1016/j.bspc.2011.02.002_bib0150) 2002; 113
Müller-Putz (10.1016/j.bspc.2011.02.002_bib0005) 2005; 2
Meier (10.1016/j.bspc.2011.02.002_bib0130) 2008; 70
Wright (10.1016/j.bspc.2011.02.002_bib0120) 2009; 31
Wolpaw (10.1016/j.bspc.2011.02.002_bib0145) 1998; 6
Lin (10.1016/j.bspc.2011.02.002_bib0025) 2006; 53
Mukesh (10.1016/j.bspc.2011.02.002_bib0055) 2006; 27
Tibshirani (10.1016/j.bspc.2011.02.002_bib0125) 1996; 58
Friman (10.1016/j.bspc.2011.02.002_bib0020) 2007
Haufe (10.1016/j.bspc.2011.02.002_bib0090) 2008; 42
Von Storch (10.1016/j.bspc.2011.02.002_bib0180) 1999
Cheng (10.1016/j.bspc.2011.02.002_bib0065) 2002; 49
Hotelling (10.1016/j.bspc.2011.02.002_bib0165) 1936; 28
Li (10.1016/j.bspc.2011.02.002_bib0100) 2004; 16
Geiger (10.1016/j.bspc.2011.02.002_bib0105) 1999; 33
Anderson (10.1016/j.bspc.2011.02.002_bib0170) 1984
Shanon (10.1016/j.bspc.2011.02.002_bib0140) 1964
Schittkowski (10.1016/j.bspc.2011.02.002_bib0160) 1985; 11
Müller-Putz (10.1016/j.bspc.2011.02.002_bib0060) 2008; 55
Huang (10.1016/j.bspc.2011.02.002_bib0185) 2006; vol. 19
Elad (10.1016/j.bspc.2011.02.002_bib0085) 2010
Bin (10.1016/j.bspc.2011.02.002_bib0015) 2009; 6
Friman (10.1016/j.bspc.2011.02.002_bib0175) 2001; 45
Naseem (10.1016/j.bspc.2011.02.002_bib0115) 2009; 5558
Nigham (10.1016/j.bspc.2011.02.002_bib0135) 2005
Friman (10.1016/j.bspc.2011.02.002_bib0045) 2007; 54
Wu (10.1016/j.bspc.2011.02.002_bib0080) 2008; 5
Kelly (10.1016/j.bspc.2011.02.002_bib0070) 2005; 13
Parini (10.1016/j.bspc.2011.02.002_bib0030) 2009; 2009
Gao (10.1016/j.bspc.2011.02.002_bib0035) 2003; 11
Middendorf (10.1016/j.bspc.2011.02.002_bib0040) 2000; 8
Allison (10.1016/j.bspc.2011.02.002_bib0010) 2008; 119
Elad (10.1016/j.bspc.2011.02.002_bib0195) 2005; 19
Li (10.1016/j.bspc.2011.02.002_bib0095) 2006; 17
Elad (10.1016/j.bspc.2011.02.002_bib0190) 2006
Meinshausen (10.1016/j.bspc.2011.02.002_bib0155) 2009; 37
Zass (10.1016/j.bspc.2011.02.002_bib0110) 2006; 19
Wang (10.1016/j.bspc.2011.02.002_bib0075) 2005
References_xml – volume: 6
  start-page: 046002
  year: 2009
  ident: bib0015
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: J. Neural Eng.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib0120
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pat. Anal. Mach. Intell.
– year: 2010
  ident: bib0085
  article-title: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
– volume: vol. 19
  year: 2006
  ident: bib0185
  article-title: Sparse representation for signal classification
  publication-title: Proc. Neural Information Processing Systems
– start-page: 354
  year: 2007
  end-page: 357
  ident: bib0020
  article-title: Spelling with steady-state visual evoked potentials
  publication-title: Proc. 3rd International IEEE EMBS Conference on Neural Engineering (CNE’07)
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0125
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.
– volume: 28
  start-page: 321
  year: 1936
  end-page: 377
  ident: bib0165
  article-title: Relations between two sets of variates
  publication-title: Biometrika
– volume: 54
  start-page: 742
  year: 2007
  end-page: 750
  ident: bib0045
  article-title: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 45
  start-page: 323
  year: 2001
  end-page: 330
  ident: bib0175
  article-title: Detection of neural activity in functional MRI using canonical correlation analysis
  publication-title: Magn. Reson. Med.
– volume: 13
  start-page: 172
  year: 2005
  end-page: 178
  ident: bib0070
  article-title: Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 5
  start-page: 36
  year: 2008
  end-page: 43
  ident: bib0080
  article-title: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs
  publication-title: J. Neural Eng.
– volume: 17
  start-page: 419
  year: 2006
  end-page: 431
  ident: bib0095
  article-title: Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach
  publication-title: IEEE Trans. Neural Networks
– volume: 37
  start-page: 246
  year: 2009
  end-page: 270
  ident: bib0155
  article-title: Lasso-type recovery of sparse representations for high-dimensional data
  publication-title: Ann. Stat.
– year: 1984
  ident: bib0170
  article-title: An Introduction to Multivariate Statistical Analysis
– volume: 5558
  start-page: 219
  year: 2009
  end-page: 228
  ident: bib0115
  article-title: Sparse representation for video-based face recognition
  publication-title: ICB 2009, LNCS
– volume: 119
  start-page: 399
  year: 2008
  end-page: 408
  ident: bib0010
  article-title: Towards an independent brain–computer interface using steady state visual evoked potentials
  publication-title: Clin. Neurophysiol.
– volume: 33
  start-page: 139
  year: 1999
  end-page: 156
  ident: bib0105
  article-title: Sparse representations for image decompositions
  publication-title: Int. J. Comput. Vision
– volume: 8
  start-page: 211
  year: 2000
  end-page: 214
  ident: bib0040
  article-title: Brain–computer interfaces based on the steady-state visual-evoked response
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 49
  start-page: 1181
  year: 2002
  end-page: 1186
  ident: bib0065
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 70
  start-page: 53
  year: 2008
  end-page: 71
  ident: bib0130
  article-title: The group lasso for logistic regression
  publication-title: J. R. Stat. Soc. B.
– volume: 42
  start-page: 726
  year: 2008
  end-page: 738
  ident: bib0090
  article-title: Combining sparsity and rotational invariance in EEG/MEG source reconstruction
  publication-title: NeuroImage
– year: 1964
  ident: bib0140
  article-title: The Mathematical Theory of Communication
– volume: 11
  start-page: 137
  year: 2003
  end-page: 140
  ident: bib0035
  article-title: A BCI-based environmental controller for the motion-disabled
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 53
  start-page: 2610
  year: 2006
  end-page: 2614
  ident: bib0025
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 17
  year: 2006
  end-page: 22
  ident: bib0190
  article-title: Image denoising via learned dictionaries and sparse representation
  publication-title: Proc. IEEE Computer Vision and pattern Recognition (CVPR)
– volume: 55
  start-page: 361
  year: 2008
  end-page: 364
  ident: bib0060
  article-title: Control of an electrical prosthesis with an SSVEP-based BCI
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 11
  start-page: 485
  year: 1985
  end-page: 500
  ident: bib0160
  article-title: NLQPL: a FORTRAN subroutine solving constrained nonlinear programming problems
  publication-title: Ann. Oper. Res.
– volume: 6
  start-page: 326
  year: 1998
  end-page: 333
  ident: bib0145
  article-title: EEG-based communication: improved accuracy by response verification
  publication-title: IEEE Trans. Rehabil. Eng.
– year: 1999
  ident: bib0180
  article-title: Statistical Analysis in Climate Research
– volume: 19
  start-page: 1561
  year: 2006
  end-page: 1568
  ident: bib0110
  article-title: Nonnegative Sparse PCA
  publication-title: Proc. Neural Info. Proc. Syst.
– volume: 2
  start-page: 123
  year: 2005
  end-page: 130
  ident: bib0005
  article-title: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components
  publication-title: J. Neural Eng.
– volume: 27
  start-page: 61
  year: 2006
  end-page: 71
  ident: bib0055
  article-title: A novel multiple frequency stimulation method for steady state VEP based brain–computer interfaces
  publication-title: Physiol. Meas.
– year: 2005
  ident: bib0135
  article-title: The LPASSO Method for Regression Regularization, Technical Report
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib0150
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 19
  start-page: 340
  year: 2005
  end-page: 358
  ident: bib0195
  article-title: Simultaneous cartoon and texture image in painting using morphological component analysis (MCA)
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 75
  year: 2005
  end-page: 78
  ident: bib0075
  article-title: Lead selection for SSVEP-based binocular rivalry
  publication-title: 1st Int. Conf. on Neural Interface and Control Proceeding
– volume: 16
  start-page: 1193
  year: 2004
  end-page: 1234
  ident: bib0100
  article-title: Analysis of sparse representation and blind source separation
  publication-title: Neural Comput.
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 11
  ident: bib0030
  article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication
  publication-title: Comput. Intell. Neurosci.
– volume: 19
  start-page: 3156
  year: 2005
  end-page: 3164
  ident: bib0050
  article-title: Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment
  publication-title: EURASIP J. Appl. Signal. Process.
– volume: 13
  start-page: 172
  year: 2005
  ident: 10.1016/j.bspc.2011.02.002_bib0070
  article-title: Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.847369
– volume: 5
  start-page: 36
  year: 2008
  ident: 10.1016/j.bspc.2011.02.002_bib0080
  article-title: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/1/004
– volume: 2
  start-page: 123
  year: 2005
  ident: 10.1016/j.bspc.2011.02.002_bib0005
  article-title: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/008
– start-page: 354
  year: 2007
  ident: 10.1016/j.bspc.2011.02.002_bib0020
  article-title: Spelling with steady-state visual evoked potentials
– volume: 54
  start-page: 742
  year: 2007
  ident: 10.1016/j.bspc.2011.02.002_bib0045
  article-title: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889160
– volume: 2009
  start-page: 1
  year: 2009
  ident: 10.1016/j.bspc.2011.02.002_bib0030
  article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2009/864564
– volume: 19
  start-page: 3156
  year: 2005
  ident: 10.1016/j.bspc.2011.02.002_bib0050
  article-title: Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment
  publication-title: EURASIP J. Appl. Signal. Process.
  doi: 10.1155/ASP.2005.3156
– year: 2005
  ident: 10.1016/j.bspc.2011.02.002_bib0135
– volume: 19
  start-page: 340
  year: 2005
  ident: 10.1016/j.bspc.2011.02.002_bib0195
  article-title: Simultaneous cartoon and texture image in painting using morphological component analysis (MCA)
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2005.03.005
– volume: 5558
  start-page: 219
  year: 2009
  ident: 10.1016/j.bspc.2011.02.002_bib0115
  article-title: Sparse representation for video-based face recognition
– volume: 42
  start-page: 726
  year: 2008
  ident: 10.1016/j.bspc.2011.02.002_bib0090
  article-title: Combining sparsity and rotational invariance in EEG/MEG source reconstruction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.04.246
– year: 2010
  ident: 10.1016/j.bspc.2011.02.002_bib0085
– volume: 37
  start-page: 246
  year: 2009
  ident: 10.1016/j.bspc.2011.02.002_bib0155
  article-title: Lasso-type recovery of sparse representations for high-dimensional data
  publication-title: Ann. Stat.
  doi: 10.1214/07-AOS582
– year: 1999
  ident: 10.1016/j.bspc.2011.02.002_bib0180
– volume: 19
  start-page: 1561
  year: 2006
  ident: 10.1016/j.bspc.2011.02.002_bib0110
  article-title: Nonnegative Sparse PCA
  publication-title: Proc. Neural Info. Proc. Syst.
– year: 1964
  ident: 10.1016/j.bspc.2011.02.002_bib0140
– volume: 28
  start-page: 321
  year: 1936
  ident: 10.1016/j.bspc.2011.02.002_bib0165
  article-title: Relations between two sets of variates
  publication-title: Biometrika
  doi: 10.1093/biomet/28.3-4.321
– volume: 16
  start-page: 1193
  year: 2004
  ident: 10.1016/j.bspc.2011.02.002_bib0100
  article-title: Analysis of sparse representation and blind source separation
  publication-title: Neural Comput.
  doi: 10.1162/089976604773717586
– volume: 31
  start-page: 210
  year: 2009
  ident: 10.1016/j.bspc.2011.02.002_bib0120
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pat. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 27
  start-page: 61
  year: 2006
  ident: 10.1016/j.bspc.2011.02.002_bib0055
  article-title: A novel multiple frequency stimulation method for steady state VEP based brain–computer interfaces
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/1/006
– volume: 6
  start-page: 326
  issue: 3
  year: 1998
  ident: 10.1016/j.bspc.2011.02.002_bib0145
  article-title: EEG-based communication: improved accuracy by response verification
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.712231
– volume: 11
  start-page: 485
  year: 1985
  ident: 10.1016/j.bspc.2011.02.002_bib0160
  article-title: NLQPL: a FORTRAN subroutine solving constrained nonlinear programming problems
  publication-title: Ann. Oper. Res.
– volume: 55
  start-page: 361
  year: 2008
  ident: 10.1016/j.bspc.2011.02.002_bib0060
  article-title: Control of an electrical prosthesis with an SSVEP-based BCI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897815
– volume: 45
  start-page: 323
  year: 2001
  ident: 10.1016/j.bspc.2011.02.002_bib0175
  article-title: Detection of neural activity in functional MRI using canonical correlation analysis
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-#
– volume: 33
  start-page: 139
  year: 1999
  ident: 10.1016/j.bspc.2011.02.002_bib0105
  article-title: Sparse representations for image decompositions
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1008146126392
– volume: 8
  start-page: 211
  year: 2000
  ident: 10.1016/j.bspc.2011.02.002_bib0040
  article-title: Brain–computer interfaces based on the steady-state visual-evoked response
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.847819
– volume: 11
  start-page: 137
  year: 2003
  ident: 10.1016/j.bspc.2011.02.002_bib0035
  article-title: A BCI-based environmental controller for the motion-disabled
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814449
– volume: vol. 19
  year: 2006
  ident: 10.1016/j.bspc.2011.02.002_bib0185
  article-title: Sparse representation for signal classification
– start-page: 17
  year: 2006
  ident: 10.1016/j.bspc.2011.02.002_bib0190
  article-title: Image denoising via learned dictionaries and sparse representation
– volume: 119
  start-page: 399
  year: 2008
  ident: 10.1016/j.bspc.2011.02.002_bib0010
  article-title: Towards an independent brain–computer interface using steady state visual evoked potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.09.121
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.bspc.2011.02.002_bib0125
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 113
  start-page: 767
  year: 2002
  ident: 10.1016/j.bspc.2011.02.002_bib0150
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 53
  start-page: 2610
  year: 2006
  ident: 10.1016/j.bspc.2011.02.002_bib0025
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886577
– volume: 6
  start-page: 046002
  year: 2009
  ident: 10.1016/j.bspc.2011.02.002_bib0015
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/4/046002
– volume: 49
  start-page: 1181
  year: 2002
  ident: 10.1016/j.bspc.2011.02.002_bib0065
  article-title: Design and implementation of a brain–computer interface with high transfer rates
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.803536
– start-page: 75
  year: 2005
  ident: 10.1016/j.bspc.2011.02.002_bib0075
  article-title: Lead selection for SSVEP-based binocular rivalry
– volume: 70
  start-page: 53
  year: 2008
  ident: 10.1016/j.bspc.2011.02.002_bib0130
  article-title: The group lasso for logistic regression
  publication-title: J. R. Stat. Soc. B.
  doi: 10.1111/j.1467-9868.2007.00627.x
– volume: 17
  start-page: 419
  year: 2006
  ident: 10.1016/j.bspc.2011.02.002_bib0095
  article-title: Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2005.863424
– year: 1984
  ident: 10.1016/j.bspc.2011.02.002_bib0170
SSID ssj0048714
Score 2.24777
Snippet Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Brain–computer interfaces (BCIs)
Electroencephalogram (EEG)
Least absolute shrinkage and selection operator (LASSO)
Steady-state visual evoked potential (SSVEP)
Time window (TW)
Title LASSO based stimulus frequency recognition model for SSVEP BCIs
URI https://dx.doi.org/10.1016/j.bspc.2011.02.002
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4k7qmadP0JHNsbCpDmJPdSpMmMJnd2MfBi3-7L21aJsIOHlveg_Jr8j7CL7-H0C3sGCp0qp1Ea-aYcRZOxLR2pNFilzyStGBbDFl_7D9NgkkNdcq7MIZWaWN_EdPzaG3ftCyarcV02hpBLc04dCckP6IOjeKn74dmld9_VzQPqMdzfW9j7Bhre3Gm4HiJ1UJaGU-vOlr5k5y2Ek7vCB3aShG3i485RjWVnaCDLf3AU_TwYlQZsclEKYa9-rmZbVZYLwt69Beu2EHzDOcjbzCUqHg0eu--4sfOYHWGxr3uW6fv2IkIgJ3rrh3opRKWuIlIEiaJ8j1fUi59EnJBlSJS8FRwSmQaBDRhTDLGwSXi5ooBJHZFz1E9m2fqAmHIXlrQlPgyVbCJaeRqQlVIEmhAqPBpA5ESilhauXAztWIWl7ywj9jAFxv4YteLAb4Guqt8FoVYxk7roEQ4_vXLY4jmO_wu_-l3hfbhySsIZNeovl5u1A1UFGvRzJdME-21B8_94Q_7_8hw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD-rB-BnxswdvZrKuo2wnowQCisQEMNyatWsTDA7Cx8GLf7uvW7dgTDh43fqS5be-jza_93sI3YLHUKFj7URaM8eMs3BCprUjjRa7DEJJM7ZFj7WH_vOoNiqhRt4LY2iVNvZnMT2N1vZJ1aJZnY3H1T7U0iyA0wlJr6jrdAtt--C-ZozB_XfB84CCPBX4Nqsds9x2zmQkL7GYSavj6RV3K3-y01rGaR2gfVsq4sfsaw5RSSVHaG9NQPAYPXSNLCM2qSjG4Kyfq8lqgfU840d_4YIeNE1wOvMGQ42K-_335ht-anQWJ2jYag4abceORADwXHfpwGEqYpEbiShikijf8yUNpE_qgaBKESmCWASUyLhWoxFjkrEATMLA9BhAZlf0FJWTaaLOEIb0pQWNiS9jBV5MQ1cTquokghMIFT6tIJJDwaXVCzdjKyY8J4Z9cAMfN_Bx1-MAXwXdFTazTC1j4-pajjD_9c85hPMNduf_tLtBO-3Ba5d3O72XC7QLb7yMTXaJysv5Sl1BebEU1-n2-QHJ9sn-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LASSO+based+stimulus+frequency+recognition+model+for+SSVEP+BCIs&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Yu&rft.au=Jin%2C+Jing&rft.au=Qing%2C+Xiangyun&rft.au=Wang%2C+Bei&rft.date=2012-03-01&rft.issn=1746-8094&rft.volume=7&rft.issue=2&rft.spage=104&rft.epage=111&rft_id=info:doi/10.1016%2Fj.bspc.2011.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2011_02_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon