LASSO based stimulus frequency recognition model for SSVEP BCIs
Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsi...
Saved in:
Published in | Biomedical signal processing and control Vol. 7; no. 2; pp. 104 - 111 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction of more discriminative features of SSVEP, and then we propose a LASSO model using the linear regression between electroencephalogram (EEG) recordings and the standard square-wave signals of different frequencies to recognize SSVEP without the training stage. In this study, we verified the proposed LASSO model offline with the EEG data of nine healthy subjects in contrast to canonical correlation analysis (CCA). In the experiment, when a shorter time window was used, we found that the LASSO model yielded better performance in extracting robust and detectable features of SSVEP, and the information transfer rate obtained by the LASSO model was significantly higher than that of the CCA. Our proposed method can assist to reduce the recording time without sacrificing the classification accuracy and is promising for a high-speed SSVEP-based BCI. |
---|---|
AbstractList | Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction of more discriminative features of SSVEP, and then we propose a LASSO model using the linear regression between electroencephalogram (EEG) recordings and the standard square-wave signals of different frequencies to recognize SSVEP without the training stage. In this study, we verified the proposed LASSO model offline with the EEG data of nine healthy subjects in contrast to canonical correlation analysis (CCA). In the experiment, when a shorter time window was used, we found that the LASSO model yielded better performance in extracting robust and detectable features of SSVEP, and the information transfer rate obtained by the LASSO model was significantly higher than that of the CCA. Our proposed method can assist to reduce the recording time without sacrificing the classification accuracy and is promising for a high-speed SSVEP-based BCI. |
Author | Wang, Bei Wang, Xingyu Qing, Xiangyun Zhang, Yu Jin, Jing |
Author_xml | – sequence: 1 givenname: Yu surname: Zhang fullname: Zhang, Yu – sequence: 2 givenname: Jing surname: Jin fullname: Jin, Jing – sequence: 3 givenname: Xiangyun surname: Qing fullname: Qing, Xiangyun – sequence: 4 givenname: Bei surname: Wang fullname: Wang, Bei – sequence: 5 givenname: Xingyu surname: Wang fullname: Wang, Xingyu email: xywang@ecust.edu.cn |
BookMark | eNp90EFLwzAUwPEcJrhNv4CnfIHWlzTLMhBkjqmDwYSq15Cmr5LRNTNphX17W-bJw07v9Hu8_5uQUeMbJOSOQcqAyft9WsSjTTkwlgJPAfiIjNlcyETBQlyTSYx7AKHmTIzJ43aZ5ztamIglja07dHUXaRXwu8PGnmhA678a1zrf0IMvsaaVDzTPP9dv9Gm1iTfkqjJ1xNu_OSUfz-v31Wuy3b1sVsttYjOANhFCGWnAFMZIy1BwYTNlBZurIkNktlBloTJmy9ksM1JaKVVPFoqBmjG-wGxK1HmvDT7GgJW2rjXDWW0wrtYM9BCv93qI10O8Bq77-J7yf_QY3MGE02X0cEbYR_04DDpa138ES9e_pNWld5f4L9oodjo |
CitedBy_id | crossref_primary_10_3389_fninf_2021_750839 crossref_primary_10_1016_j_bspc_2014_07_009 crossref_primary_10_1109_TNSRE_2018_2874975 crossref_primary_10_1142_S0129065716500325 crossref_primary_10_1007_s10278_012_9547_6 crossref_primary_10_1007_s11042_018_6643_8 crossref_primary_10_1109_TNSRE_2017_2673242 crossref_primary_10_37391_ijeer_110213 crossref_primary_10_1016_j_bbe_2017_10_004 crossref_primary_10_1016_j_bspc_2023_104629 crossref_primary_10_1177_09544119221140752 crossref_primary_10_1016_j_jneumeth_2015_08_004 crossref_primary_10_1109_TNNLS_2015_2476656 crossref_primary_10_1109_TNSRE_2015_2496184 crossref_primary_10_1515_bmt_2017_0082 crossref_primary_10_1016_j_neucom_2016_11_008 crossref_primary_10_1186_s44147_023_00291_9 crossref_primary_10_1108_IJICC_01_2022_0002 crossref_primary_10_1155_2014_908719 crossref_primary_10_1016_j_bspc_2018_06_010 crossref_primary_10_1007_s00521_018_3836_z crossref_primary_10_1063_5_0064807 crossref_primary_10_1016_j_jneumeth_2016_12_010 crossref_primary_10_1109_TNSRE_2016_2519350 crossref_primary_10_1007_s11280_018_0622_x crossref_primary_10_1016_S1874_1029_13_60023_3 crossref_primary_10_1371_journal_pone_0172578 crossref_primary_10_1109_TNSRE_2019_2940712 crossref_primary_10_1016_j_patrec_2018_06_029 crossref_primary_10_1016_j_bspc_2012_03_004 crossref_primary_10_1016_j_bspc_2013_11_003 crossref_primary_10_1109_THMS_2015_2513014 crossref_primary_10_1142_S0129065717500393 crossref_primary_10_1007_s11042_018_6488_1 crossref_primary_10_1016_j_jneumeth_2020_108686 crossref_primary_10_1155_2019_2361282 crossref_primary_10_1007_s40815_016_0248_z crossref_primary_10_1016_j_compbiomed_2018_08_011 crossref_primary_10_1016_j_jneumeth_2015_05_014 crossref_primary_10_1109_ACCESS_2018_2886759 crossref_primary_10_1007_s10055_021_00600_8 crossref_primary_10_1088_1741_2552_aaca6e crossref_primary_10_1109_TMRB_2019_2949865 crossref_primary_10_1016_j_bbe_2020_05_007 crossref_primary_10_3390_s21165308 crossref_primary_10_1088_1741_2560_12_5_056009 crossref_primary_10_1088_1741_2552_ab6a67 crossref_primary_10_1109_TAMD_2015_2434951 crossref_primary_10_1016_j_neunet_2018_10_006 crossref_primary_10_1038_s41598_017_06509_0 crossref_primary_10_1080_2326263X_2023_2166651 crossref_primary_10_1007_s11063_020_10297_6 crossref_primary_10_1109_JBHI_2016_2546311 crossref_primary_10_3389_fnhum_2018_00201 |
Cites_doi | 10.1109/TNSRE.2005.847369 10.1088/1741-2560/5/1/004 10.1088/1741-2560/2/4/008 10.1109/TBME.2006.889160 10.1155/2009/864564 10.1155/ASP.2005.3156 10.1016/j.acha.2005.03.005 10.1016/j.neuroimage.2008.04.246 10.1214/07-AOS582 10.1093/biomet/28.3-4.321 10.1162/089976604773717586 10.1109/TPAMI.2008.79 10.1088/0967-3334/27/1/006 10.1109/86.712231 10.1109/TBME.2007.897815 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-# 10.1023/A:1008146126392 10.1109/86.847819 10.1109/TNSRE.2003.814449 10.1016/j.clinph.2007.09.121 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S1388-2457(02)00057-3 10.1109/TBME.2006.886577 10.1088/1741-2560/6/4/046002 10.1109/TBME.2002.803536 10.1111/j.1467-9868.2007.00627.x 10.1109/TNN.2005.863424 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd |
Copyright_xml | – notice: 2011 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2011.02.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 111 |
ExternalDocumentID | 10_1016_j_bspc_2011_02_002 S1746809411000073 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-448a6a0abaa6c1e424c38c4178b3ee1cb8db831cd553a66c668448981085129e3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 05:30:48 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Mon Nov 18 09:13:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Brain–computer interfaces (BCIs) Steady-state visual evoked potential (SSVEP) Electroencephalogram (EEG) Least absolute shrinkage and selection operator (LASSO) Time window (TW) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-448a6a0abaa6c1e424c38c4178b3ee1cb8db831cd553a66c668448981085129e3 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2011_02_002 crossref_primary_10_1016_j_bspc_2011_02_002 elsevier_sciencedirect_doi_10_1016_j_bspc_2011_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Meier, Geer, Bühlmann (bib0130) 2008; 70 Nigham, Aggarwal (bib0135) 2005 Cheng, Gao, Gao, Xu (bib0065) 2002; 49 Haufe, Nikulin, Ziehe, Müller, Nolte (bib0090) 2008; 42 Zass, Shashua (bib0110) 2006; 19 Schittkowski (bib0160) 1985; 11 Lin, Zhang, Wu, Gao (bib0025) 2006; 53 Wright, Yang, Ganesh, Sastry, Ma (bib0120) 2009; 31 Huang, Aviyente (bib0185) 2006; vol. 19 Elad, Aharon (bib0190) 2006 Lalor, Kelly, Finucane, Burke, Smith, Reilly, McDarby (bib0050) 2005; 19 Li, Cichocki, Amari (bib0095) 2006; 17 Shanon, Weaver (bib0140) 1964 Allison, McFarland, Schalk, Zheng, Jackson, Wolpaw (bib0010) 2008; 119 Kelly, Lalor, Reilly, Foxe (bib0070) 2005; 13 Anderson (bib0170) 1984 Geiger, Liu, Donahue (bib0105) 1999; 33 Friman, Volosyak, Gräser (bib0045) 2007; 54 Meinshausen, Yu (bib0155) 2009; 37 Müller-Putz, Scherer, Brauneis, Pfurtscheller (bib0005) 2005; 2 Li, Cichocki, Amari (bib0100) 2004; 16 Bin, Gao, Yan, Hong, Gao (bib0015) 2009; 6 Hotelling (bib0165) 1936; 28 Naseem, Togneri, Bennamoun (bib0115) 2009; 5558 Friman, Lüth, Volosyak, Gräser (bib0020) 2007 Mukesh, Jaganathan, Reddy (bib0055) 2006; 27 Elad, Starck, Querre, Donoho (bib0195) 2005; 19 Tibshirani (bib0125) 1996; 58 Gao, Xu, Cheng, Gao (bib0035) 2003; 11 Von Storch, Zwiers (bib0180) 1999 Middendorf, McMillan, Calhoun, Jones (bib0040) 2000; 8 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib0150) 2002; 113 Wu, Yao (bib0080) 2008; 5 Wang, Zhang, Gao, Gao (bib0075) 2005 Müller-Putz, Pfurtscheller (bib0060) 2008; 55 Elad (bib0085) 2010 Friman, Cedefamn, Lundberg, Borga, Knutsson (bib0175) 2001; 45 Parini, Maggi, Turconi, Andreoni (bib0030) 2009; 2009 Wolpaw, Ramoser, McFarland, Pfurtscheller (bib0145) 1998; 6 Lalor (10.1016/j.bspc.2011.02.002_bib0050) 2005; 19 Wolpaw (10.1016/j.bspc.2011.02.002_bib0150) 2002; 113 Müller-Putz (10.1016/j.bspc.2011.02.002_bib0005) 2005; 2 Meier (10.1016/j.bspc.2011.02.002_bib0130) 2008; 70 Wright (10.1016/j.bspc.2011.02.002_bib0120) 2009; 31 Wolpaw (10.1016/j.bspc.2011.02.002_bib0145) 1998; 6 Lin (10.1016/j.bspc.2011.02.002_bib0025) 2006; 53 Mukesh (10.1016/j.bspc.2011.02.002_bib0055) 2006; 27 Tibshirani (10.1016/j.bspc.2011.02.002_bib0125) 1996; 58 Friman (10.1016/j.bspc.2011.02.002_bib0020) 2007 Haufe (10.1016/j.bspc.2011.02.002_bib0090) 2008; 42 Von Storch (10.1016/j.bspc.2011.02.002_bib0180) 1999 Cheng (10.1016/j.bspc.2011.02.002_bib0065) 2002; 49 Hotelling (10.1016/j.bspc.2011.02.002_bib0165) 1936; 28 Li (10.1016/j.bspc.2011.02.002_bib0100) 2004; 16 Geiger (10.1016/j.bspc.2011.02.002_bib0105) 1999; 33 Anderson (10.1016/j.bspc.2011.02.002_bib0170) 1984 Shanon (10.1016/j.bspc.2011.02.002_bib0140) 1964 Schittkowski (10.1016/j.bspc.2011.02.002_bib0160) 1985; 11 Müller-Putz (10.1016/j.bspc.2011.02.002_bib0060) 2008; 55 Huang (10.1016/j.bspc.2011.02.002_bib0185) 2006; vol. 19 Elad (10.1016/j.bspc.2011.02.002_bib0085) 2010 Bin (10.1016/j.bspc.2011.02.002_bib0015) 2009; 6 Friman (10.1016/j.bspc.2011.02.002_bib0175) 2001; 45 Naseem (10.1016/j.bspc.2011.02.002_bib0115) 2009; 5558 Nigham (10.1016/j.bspc.2011.02.002_bib0135) 2005 Friman (10.1016/j.bspc.2011.02.002_bib0045) 2007; 54 Wu (10.1016/j.bspc.2011.02.002_bib0080) 2008; 5 Kelly (10.1016/j.bspc.2011.02.002_bib0070) 2005; 13 Parini (10.1016/j.bspc.2011.02.002_bib0030) 2009; 2009 Gao (10.1016/j.bspc.2011.02.002_bib0035) 2003; 11 Middendorf (10.1016/j.bspc.2011.02.002_bib0040) 2000; 8 Allison (10.1016/j.bspc.2011.02.002_bib0010) 2008; 119 Elad (10.1016/j.bspc.2011.02.002_bib0195) 2005; 19 Li (10.1016/j.bspc.2011.02.002_bib0095) 2006; 17 Elad (10.1016/j.bspc.2011.02.002_bib0190) 2006 Meinshausen (10.1016/j.bspc.2011.02.002_bib0155) 2009; 37 Zass (10.1016/j.bspc.2011.02.002_bib0110) 2006; 19 Wang (10.1016/j.bspc.2011.02.002_bib0075) 2005 |
References_xml | – volume: 6 start-page: 046002 year: 2009 ident: bib0015 article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method publication-title: J. Neural Eng. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib0120 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pat. Anal. Mach. Intell. – year: 2010 ident: bib0085 article-title: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing – volume: vol. 19 year: 2006 ident: bib0185 article-title: Sparse representation for signal classification publication-title: Proc. Neural Information Processing Systems – start-page: 354 year: 2007 end-page: 357 ident: bib0020 article-title: Spelling with steady-state visual evoked potentials publication-title: Proc. 3rd International IEEE EMBS Conference on Neural Engineering (CNE’07) – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0125 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. – volume: 28 start-page: 321 year: 1936 end-page: 377 ident: bib0165 article-title: Relations between two sets of variates publication-title: Biometrika – volume: 54 start-page: 742 year: 2007 end-page: 750 ident: bib0045 article-title: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 45 start-page: 323 year: 2001 end-page: 330 ident: bib0175 article-title: Detection of neural activity in functional MRI using canonical correlation analysis publication-title: Magn. Reson. Med. – volume: 13 start-page: 172 year: 2005 end-page: 178 ident: bib0070 article-title: Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 5 start-page: 36 year: 2008 end-page: 43 ident: bib0080 article-title: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs publication-title: J. Neural Eng. – volume: 17 start-page: 419 year: 2006 end-page: 431 ident: bib0095 article-title: Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach publication-title: IEEE Trans. Neural Networks – volume: 37 start-page: 246 year: 2009 end-page: 270 ident: bib0155 article-title: Lasso-type recovery of sparse representations for high-dimensional data publication-title: Ann. Stat. – year: 1984 ident: bib0170 article-title: An Introduction to Multivariate Statistical Analysis – volume: 5558 start-page: 219 year: 2009 end-page: 228 ident: bib0115 article-title: Sparse representation for video-based face recognition publication-title: ICB 2009, LNCS – volume: 119 start-page: 399 year: 2008 end-page: 408 ident: bib0010 article-title: Towards an independent brain–computer interface using steady state visual evoked potentials publication-title: Clin. Neurophysiol. – volume: 33 start-page: 139 year: 1999 end-page: 156 ident: bib0105 article-title: Sparse representations for image decompositions publication-title: Int. J. Comput. Vision – volume: 8 start-page: 211 year: 2000 end-page: 214 ident: bib0040 article-title: Brain–computer interfaces based on the steady-state visual-evoked response publication-title: IEEE Trans. Rehabil. Eng. – volume: 49 start-page: 1181 year: 2002 end-page: 1186 ident: bib0065 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. – volume: 70 start-page: 53 year: 2008 end-page: 71 ident: bib0130 article-title: The group lasso for logistic regression publication-title: J. R. Stat. Soc. B. – volume: 42 start-page: 726 year: 2008 end-page: 738 ident: bib0090 article-title: Combining sparsity and rotational invariance in EEG/MEG source reconstruction publication-title: NeuroImage – year: 1964 ident: bib0140 article-title: The Mathematical Theory of Communication – volume: 11 start-page: 137 year: 2003 end-page: 140 ident: bib0035 article-title: A BCI-based environmental controller for the motion-disabled publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 53 start-page: 2610 year: 2006 end-page: 2614 ident: bib0025 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. – start-page: 17 year: 2006 end-page: 22 ident: bib0190 article-title: Image denoising via learned dictionaries and sparse representation publication-title: Proc. IEEE Computer Vision and pattern Recognition (CVPR) – volume: 55 start-page: 361 year: 2008 end-page: 364 ident: bib0060 article-title: Control of an electrical prosthesis with an SSVEP-based BCI publication-title: IEEE Trans. Biomed. Eng. – volume: 11 start-page: 485 year: 1985 end-page: 500 ident: bib0160 article-title: NLQPL: a FORTRAN subroutine solving constrained nonlinear programming problems publication-title: Ann. Oper. Res. – volume: 6 start-page: 326 year: 1998 end-page: 333 ident: bib0145 article-title: EEG-based communication: improved accuracy by response verification publication-title: IEEE Trans. Rehabil. Eng. – year: 1999 ident: bib0180 article-title: Statistical Analysis in Climate Research – volume: 19 start-page: 1561 year: 2006 end-page: 1568 ident: bib0110 article-title: Nonnegative Sparse PCA publication-title: Proc. Neural Info. Proc. Syst. – volume: 2 start-page: 123 year: 2005 end-page: 130 ident: bib0005 article-title: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components publication-title: J. Neural Eng. – volume: 27 start-page: 61 year: 2006 end-page: 71 ident: bib0055 article-title: A novel multiple frequency stimulation method for steady state VEP based brain–computer interfaces publication-title: Physiol. Meas. – year: 2005 ident: bib0135 article-title: The LPASSO Method for Regression Regularization, Technical Report – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib0150 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 19 start-page: 340 year: 2005 end-page: 358 ident: bib0195 article-title: Simultaneous cartoon and texture image in painting using morphological component analysis (MCA) publication-title: Appl. Comput. Harmon. Anal. – start-page: 75 year: 2005 end-page: 78 ident: bib0075 article-title: Lead selection for SSVEP-based binocular rivalry publication-title: 1st Int. Conf. on Neural Interface and Control Proceeding – volume: 16 start-page: 1193 year: 2004 end-page: 1234 ident: bib0100 article-title: Analysis of sparse representation and blind source separation publication-title: Neural Comput. – volume: 2009 start-page: 1 year: 2009 end-page: 11 ident: bib0030 article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication publication-title: Comput. Intell. Neurosci. – volume: 19 start-page: 3156 year: 2005 end-page: 3164 ident: bib0050 article-title: Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment publication-title: EURASIP J. Appl. Signal. Process. – volume: 13 start-page: 172 year: 2005 ident: 10.1016/j.bspc.2011.02.002_bib0070 article-title: Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.847369 – volume: 5 start-page: 36 year: 2008 ident: 10.1016/j.bspc.2011.02.002_bib0080 article-title: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2560/5/1/004 – volume: 2 start-page: 123 year: 2005 ident: 10.1016/j.bspc.2011.02.002_bib0005 article-title: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/008 – start-page: 354 year: 2007 ident: 10.1016/j.bspc.2011.02.002_bib0020 article-title: Spelling with steady-state visual evoked potentials – volume: 54 start-page: 742 year: 2007 ident: 10.1016/j.bspc.2011.02.002_bib0045 article-title: Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889160 – volume: 2009 start-page: 1 year: 2009 ident: 10.1016/j.bspc.2011.02.002_bib0030 article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication publication-title: Comput. Intell. Neurosci. doi: 10.1155/2009/864564 – volume: 19 start-page: 3156 year: 2005 ident: 10.1016/j.bspc.2011.02.002_bib0050 article-title: Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment publication-title: EURASIP J. Appl. Signal. Process. doi: 10.1155/ASP.2005.3156 – year: 2005 ident: 10.1016/j.bspc.2011.02.002_bib0135 – volume: 19 start-page: 340 year: 2005 ident: 10.1016/j.bspc.2011.02.002_bib0195 article-title: Simultaneous cartoon and texture image in painting using morphological component analysis (MCA) publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2005.03.005 – volume: 5558 start-page: 219 year: 2009 ident: 10.1016/j.bspc.2011.02.002_bib0115 article-title: Sparse representation for video-based face recognition – volume: 42 start-page: 726 year: 2008 ident: 10.1016/j.bspc.2011.02.002_bib0090 article-title: Combining sparsity and rotational invariance in EEG/MEG source reconstruction publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.04.246 – year: 2010 ident: 10.1016/j.bspc.2011.02.002_bib0085 – volume: 37 start-page: 246 year: 2009 ident: 10.1016/j.bspc.2011.02.002_bib0155 article-title: Lasso-type recovery of sparse representations for high-dimensional data publication-title: Ann. Stat. doi: 10.1214/07-AOS582 – year: 1999 ident: 10.1016/j.bspc.2011.02.002_bib0180 – volume: 19 start-page: 1561 year: 2006 ident: 10.1016/j.bspc.2011.02.002_bib0110 article-title: Nonnegative Sparse PCA publication-title: Proc. Neural Info. Proc. Syst. – year: 1964 ident: 10.1016/j.bspc.2011.02.002_bib0140 – volume: 28 start-page: 321 year: 1936 ident: 10.1016/j.bspc.2011.02.002_bib0165 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – volume: 16 start-page: 1193 year: 2004 ident: 10.1016/j.bspc.2011.02.002_bib0100 article-title: Analysis of sparse representation and blind source separation publication-title: Neural Comput. doi: 10.1162/089976604773717586 – volume: 31 start-page: 210 year: 2009 ident: 10.1016/j.bspc.2011.02.002_bib0120 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pat. Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 27 start-page: 61 year: 2006 ident: 10.1016/j.bspc.2011.02.002_bib0055 article-title: A novel multiple frequency stimulation method for steady state VEP based brain–computer interfaces publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/1/006 – volume: 6 start-page: 326 issue: 3 year: 1998 ident: 10.1016/j.bspc.2011.02.002_bib0145 article-title: EEG-based communication: improved accuracy by response verification publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.712231 – volume: 11 start-page: 485 year: 1985 ident: 10.1016/j.bspc.2011.02.002_bib0160 article-title: NLQPL: a FORTRAN subroutine solving constrained nonlinear programming problems publication-title: Ann. Oper. Res. – volume: 55 start-page: 361 year: 2008 ident: 10.1016/j.bspc.2011.02.002_bib0060 article-title: Control of an electrical prosthesis with an SSVEP-based BCI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.897815 – volume: 45 start-page: 323 year: 2001 ident: 10.1016/j.bspc.2011.02.002_bib0175 article-title: Detection of neural activity in functional MRI using canonical correlation analysis publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-# – volume: 33 start-page: 139 year: 1999 ident: 10.1016/j.bspc.2011.02.002_bib0105 article-title: Sparse representations for image decompositions publication-title: Int. J. Comput. Vision doi: 10.1023/A:1008146126392 – volume: 8 start-page: 211 year: 2000 ident: 10.1016/j.bspc.2011.02.002_bib0040 article-title: Brain–computer interfaces based on the steady-state visual-evoked response publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.847819 – volume: 11 start-page: 137 year: 2003 ident: 10.1016/j.bspc.2011.02.002_bib0035 article-title: A BCI-based environmental controller for the motion-disabled publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814449 – volume: vol. 19 year: 2006 ident: 10.1016/j.bspc.2011.02.002_bib0185 article-title: Sparse representation for signal classification – start-page: 17 year: 2006 ident: 10.1016/j.bspc.2011.02.002_bib0190 article-title: Image denoising via learned dictionaries and sparse representation – volume: 119 start-page: 399 year: 2008 ident: 10.1016/j.bspc.2011.02.002_bib0010 article-title: Towards an independent brain–computer interface using steady state visual evoked potentials publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.09.121 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.bspc.2011.02.002_bib0125 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 113 start-page: 767 year: 2002 ident: 10.1016/j.bspc.2011.02.002_bib0150 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 53 start-page: 2610 year: 2006 ident: 10.1016/j.bspc.2011.02.002_bib0025 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886577 – volume: 6 start-page: 046002 year: 2009 ident: 10.1016/j.bspc.2011.02.002_bib0015 article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/4/046002 – volume: 49 start-page: 1181 year: 2002 ident: 10.1016/j.bspc.2011.02.002_bib0065 article-title: Design and implementation of a brain–computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.803536 – start-page: 75 year: 2005 ident: 10.1016/j.bspc.2011.02.002_bib0075 article-title: Lead selection for SSVEP-based binocular rivalry – volume: 70 start-page: 53 year: 2008 ident: 10.1016/j.bspc.2011.02.002_bib0130 article-title: The group lasso for logistic regression publication-title: J. R. Stat. Soc. B. doi: 10.1111/j.1467-9868.2007.00627.x – volume: 17 start-page: 419 year: 2006 ident: 10.1016/j.bspc.2011.02.002_bib0095 article-title: Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2005.863424 – year: 1984 ident: 10.1016/j.bspc.2011.02.002_bib0170 |
SSID | ssj0048714 |
Score | 2.24777 |
Snippet | Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104 |
SubjectTerms | Brain–computer interfaces (BCIs) Electroencephalogram (EEG) Least absolute shrinkage and selection operator (LASSO) Steady-state visual evoked potential (SSVEP) Time window (TW) |
Title | LASSO based stimulus frequency recognition model for SSVEP BCIs |
URI | https://dx.doi.org/10.1016/j.bspc.2011.02.002 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4k7qmadP0JHNsbCpDmJPdSpMmMJnd2MfBi3-7L21aJsIOHlveg_Jr8j7CL7-H0C3sGCp0qp1Ea-aYcRZOxLR2pNFilzyStGBbDFl_7D9NgkkNdcq7MIZWaWN_EdPzaG3ftCyarcV02hpBLc04dCckP6IOjeKn74dmld9_VzQPqMdzfW9j7Bhre3Gm4HiJ1UJaGU-vOlr5k5y2Ek7vCB3aShG3i485RjWVnaCDLf3AU_TwYlQZsclEKYa9-rmZbVZYLwt69Beu2EHzDOcjbzCUqHg0eu--4sfOYHWGxr3uW6fv2IkIgJ3rrh3opRKWuIlIEiaJ8j1fUi59EnJBlSJS8FRwSmQaBDRhTDLGwSXi5ooBJHZFz1E9m2fqAmHIXlrQlPgyVbCJaeRqQlVIEmhAqPBpA5ESilhauXAztWIWl7ywj9jAFxv4YteLAb4Guqt8FoVYxk7roEQ4_vXLY4jmO_wu_-l3hfbhySsIZNeovl5u1A1UFGvRzJdME-21B8_94Q_7_8hw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD-rB-BnxswdvZrKuo2wnowQCisQEMNyatWsTDA7Cx8GLf7uvW7dgTDh43fqS5be-jza_93sI3YLHUKFj7URaM8eMs3BCprUjjRa7DEJJM7ZFj7WH_vOoNiqhRt4LY2iVNvZnMT2N1vZJ1aJZnY3H1T7U0iyA0wlJr6jrdAtt--C-ZozB_XfB84CCPBX4Nqsds9x2zmQkL7GYSavj6RV3K3-y01rGaR2gfVsq4sfsaw5RSSVHaG9NQPAYPXSNLCM2qSjG4Kyfq8lqgfU840d_4YIeNE1wOvMGQ42K-_335ht-anQWJ2jYag4abceORADwXHfpwGEqYpEbiShikijf8yUNpE_qgaBKESmCWASUyLhWoxFjkrEATMLA9BhAZlf0FJWTaaLOEIb0pQWNiS9jBV5MQ1cTquokghMIFT6tIJJDwaXVCzdjKyY8J4Z9cAMfN_Bx1-MAXwXdFTazTC1j4-pajjD_9c85hPMNduf_tLtBO-3Ba5d3O72XC7QLb7yMTXaJysv5Sl1BebEU1-n2-QHJ9sn- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LASSO+based+stimulus+frequency+recognition+model+for+SSVEP+BCIs&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Yu&rft.au=Jin%2C+Jing&rft.au=Qing%2C+Xiangyun&rft.au=Wang%2C+Bei&rft.date=2012-03-01&rft.issn=1746-8094&rft.volume=7&rft.issue=2&rft.spage=104&rft.epage=111&rft_id=info:doi/10.1016%2Fj.bspc.2011.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2011_02_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |