A modified cell-centered nodal integral scheme for the convection-diffusion equation

The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM) is a simplified variant of the NIMs that has recently shown its efficiency in solving fluid flow problems but has been hampered by issues su...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 80; p. 102320
Main Authors Ahmed, Nadeem, Singh, Suneet
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Subjects
Online AccessGet full text
ISSN1877-7503
1877-7511
DOI10.1016/j.jocs.2024.102320

Cover

Loading…
Abstract The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM) is a simplified variant of the NIMs that has recently shown its efficiency in solving fluid flow problems but has been hampered by issues such as inapplicability to one-dimensional problems, complexities in handling Neumann boundary conditions and the formulation of a system of differential-algebraic equations (DAEs) for discrete unknowns. Here, we present a modified version of the CCNIM designed to overcome the challenges associated with its previous version. Our novel development retains the essence of CCNIM while resolving these issues. The proposed scheme, grounded in the nodal framework, achieves second-order accuracy in both spatial and temporal dimensions. Unlike its precursor, the proposed method formulates algebraic equations for discrete variables per node, eliminating the cumbersome DAE system. Neumann boundary conditions are seamlessly incorporated through a straightforward flux definition, and applicability to one-dimensional problems is now feasible. We successfully apply our approach to one and two-dimensional convection-diffusion problems with known analytical solutions to validate our approach. The simplicity and robustness of the approach lay the foundation for its seamless extension to more complex fluid flow problems. •Introducing modified cell-centered nodal integral method (MCCNIM), an advancement over the previous CCNIM approach.•Resolving intrinsic issues with the prior CCNIM system, improving computational accuracy and efficiency.•Utilization of a nodal framework for discretization in both temporal and spatial domains.•Achieving second order accuracy in spatial and temporal dimensions.•Demonstrated computational efficiency surpassing previous CCNIM, highlighting practical viability and effectiveness.
AbstractList The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM) is a simplified variant of the NIMs that has recently shown its efficiency in solving fluid flow problems but has been hampered by issues such as inapplicability to one-dimensional problems, complexities in handling Neumann boundary conditions and the formulation of a system of differential-algebraic equations (DAEs) for discrete unknowns. Here, we present a modified version of the CCNIM designed to overcome the challenges associated with its previous version. Our novel development retains the essence of CCNIM while resolving these issues. The proposed scheme, grounded in the nodal framework, achieves second-order accuracy in both spatial and temporal dimensions. Unlike its precursor, the proposed method formulates algebraic equations for discrete variables per node, eliminating the cumbersome DAE system. Neumann boundary conditions are seamlessly incorporated through a straightforward flux definition, and applicability to one-dimensional problems is now feasible. We successfully apply our approach to one and two-dimensional convection-diffusion problems with known analytical solutions to validate our approach. The simplicity and robustness of the approach lay the foundation for its seamless extension to more complex fluid flow problems. •Introducing modified cell-centered nodal integral method (MCCNIM), an advancement over the previous CCNIM approach.•Resolving intrinsic issues with the prior CCNIM system, improving computational accuracy and efficiency.•Utilization of a nodal framework for discretization in both temporal and spatial domains.•Achieving second order accuracy in spatial and temporal dimensions.•Demonstrated computational efficiency surpassing previous CCNIM, highlighting practical viability and effectiveness.
ArticleNumber 102320
Author Singh, Suneet
Ahmed, Nadeem
Author_xml – sequence: 1
  givenname: Nadeem
  surname: Ahmed
  fullname: Ahmed, Nadeem
– sequence: 2
  givenname: Suneet
  surname: Singh
  fullname: Singh, Suneet
  email: suneet.singh@iitb.ac.in
BookMark eNp9kE1LAzEQhoNUsNb-AU_7B7bmY78CXkrxCwpe6jmkk4nNst1osi34781a8eChc8k7A88wea7JpPc9EnLL6IJRVt21i9ZDXHDKizTggtMLMmVNXed1ydjkL1NxReYxtjSVaBrJxJRsltneG2cdmgyw63LAfsCQut4b3WUude8hhQg73GNmfciGHWbg-yPC4HyfJ9oeYkoZfh70OLohl1Z3Eee_74y8PT5sVs_5-vXpZbVc5yAoHfKCMwqlMZUWsMWtNIbXhiMvpCykqIqiRCuhpFhJW1dQcmBWa4vADcCWMTEjzWkvBB9jQKvADT8XDEG7TjGqRkGqVaMgNQpSJ0EJ5f_Qj-D2Onydh-5PEKZPHR0GFcFhD2hcSDKU8e4c_g1bj4LR
CitedBy_id crossref_primary_10_1016_j_camwa_2024_12_027
Cites_doi 10.1002/fld.5236
10.1016/j.camwa.2024.02.009
10.1016/j.anucene.2021.108659
10.1002/num.1690040306
10.1016/j.ijheatmasstransfer.2018.01.087
10.1016/j.anucene.2015.10.023
10.1016/j.anucene.2021.108550
10.1016/j.ijheatmasstransfer.2022.122559
10.1016/j.anucene.2023.109858
10.13182/NSE93-A24011
10.1002/(SICI)1098-2426(199703)13:2<113::AID-NUM1>3.0.CO;2-S
10.1016/j.camwa.2019.09.001
10.1002/fld.1949
10.1080/10407790.2013.784124
10.1002/num.20025
10.1016/0021-9991(85)90120-2
10.1016/0021-9991(86)90134-8
10.1016/S0021-9991(03)00093-7
10.1016/j.jcp.2022.111589
10.13182/NSE77-A27392
10.13182/NSE01-A2239
10.1016/S0045-7930(96)00039-4
10.1007/s00024-022-03160-3
10.1080/10407790.2013.784125
10.13182/NSE137-380
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2024.102320
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2024_102320
S1877750324001133
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-4210c5dd6a3cbeb9dd27d2e24994936445ef9c50e69f76c52c1faafec2dccb113
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Tue Jul 01 03:46:14 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Tue Jun 18 08:51:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords PDE
Nodal integral method
MCCNIM
ODE
NIM
DAEs
Cell-centered nodal integral method
Coarse-mesh method
CCNIM
Differential-algebraic equations
Convection-diffusion equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4210c5dd6a3cbeb9dd27d2e24994936445ef9c50e69f76c52c1faafec2dccb113
ParticipantIDs crossref_citationtrail_10_1016_j_jocs_2024_102320
crossref_primary_10_1016_j_jocs_2024_102320
elsevier_sciencedirect_doi_10_1016_j_jocs_2024_102320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References E.P.E. Michael, J.J. Dorning, A primitive-variable nodal method for the time-dependent Navier–Stokes equations, in: Proceedings of the American Nuclear Society International Meeting on Mathematical Methods for Nuclear Applications, American Nuclear Society, Illinois, USA, 2001.
Y.Y. Azmy, A nodal integral approach to the numerical solution of partial differential equations, in: Advances in Reactor Computations, LaGrange Park, IL, 1983.
Wang, Rizwan-Uddin (bib18) 2003; 187
Kumar, Shekar, Singh (bib29) 2022; 179
Kumar, Singh, Doshi (bib21) 2013; 64
Horak, Dorning (bib16) 1985; 59
Jarrah, Rizwan–uddin (bib31) 2024; 158
Shober, Sims, Henry (bib34) 1977; 64
Rizwan-Uddin (bib11) 1997; 26
Y.Y. Azmy, Nodal methods for problems in fluid mechanics and neutron transport, University of Illinois at Urbana-Champaign, 1985. PhD Thesis.
Raj, Ahmed, Singh (bib24) 2022; 165
Wang, Liu, Espedal, Ewing (bib37) 2005; 21
Finnemann, Bennewitz (bib5) 1977; 30
Korczak, Patera (bib8) 1986; 62
Rizwan-Uddin (bib17) 1997; 13
Michael, Dorning, Rizwan-Uddin (bib19) 2001; 137
Wang, Rizwan-Uddin (bib26) 2018; 122
Kumar, Majumdar, Singh (bib32) 2020; 79
Nezami, Singh, Sobh, Rizwan-Uddin (bib20) 2009; 61
Ahmed, Singh, Kumar (bib27) 2024; 96
Hennart (bib7) 1988; 4
Esser, Witt (bib12) 1993; 114
J.J. Dorning, Modern coarse-mesh methods-A development of the 70’s, in: Proc. Conf. Computational Methods in Nuclear Engineering, American Nuclear Society, Williamsburg, VA, 1979.
Jarrah, Rizwan-Uddin (bib23) 2021; 163
Gander, Kumar (bib30) 2024; 149
Esser, Witt (bib3) 1993; 114
Ahmed, Maurya, Singh (bib25) 2023; 189
Jarrah, Rizwan-Uddin (bib28) 2022; 187
T.J. Burns, The Partial Current Balance Method: A Local Green’s Function Technique for the Numerical Solution of Multidimensional Diffusion Problems, University of Illinois, 1975. PhD Thesis.
Ahmed, Kumar, Singh (bib33) 2021
W.C. Horak, Local green’s functions techniques for the solution of heat conduction and incompressible fluid flow problems, University of Illinois, 1980. PhD Thesis.
Kumar, Singh, Doshi (bib22) 2013; 64
Zhou, Guo, Li (bib38) 2016; 88
Nakao, Chen, Qiu (bib39) 2022; 470
Y. Maday, A.T. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in: State-of-the-Art Surveys on Computational Mechanics, American Society of Mechanical Engineering, New York, 1989: pp. 71–143.
Elnawawy, Valocchi, Ougouag (bib36) 1990; 26
Wilson, Rydin (bib10) 1990
D.L. Delp, J.M. Harriman, M.J. Stedwell, A three-dimensional boiling water reactor simulator. FLARE, 1964. Scientific Report.
Wescott, Rizwan-uddin (bib35) 2001; 139
Wilson (10.1016/j.jocs.2024.102320_bib10) 1990
10.1016/j.jocs.2024.102320_bib1
10.1016/j.jocs.2024.102320_bib2
10.1016/j.jocs.2024.102320_bib4
10.1016/j.jocs.2024.102320_bib6
Jarrah (10.1016/j.jocs.2024.102320_bib23) 2021; 163
10.1016/j.jocs.2024.102320_bib9
Esser (10.1016/j.jocs.2024.102320_bib12) 1993; 114
Wang (10.1016/j.jocs.2024.102320_bib37) 2005; 21
Shober (10.1016/j.jocs.2024.102320_bib34) 1977; 64
Raj (10.1016/j.jocs.2024.102320_bib24) 2022; 165
Wescott (10.1016/j.jocs.2024.102320_bib35) 2001; 139
Esser (10.1016/j.jocs.2024.102320_bib3) 1993; 114
Finnemann (10.1016/j.jocs.2024.102320_bib5) 1977; 30
Ahmed (10.1016/j.jocs.2024.102320_bib33) 2021
Wang (10.1016/j.jocs.2024.102320_bib18) 2003; 187
Ahmed (10.1016/j.jocs.2024.102320_bib27) 2024; 96
Jarrah (10.1016/j.jocs.2024.102320_bib28) 2022; 187
Michael (10.1016/j.jocs.2024.102320_bib19) 2001; 137
Kumar (10.1016/j.jocs.2024.102320_bib22) 2013; 64
Korczak (10.1016/j.jocs.2024.102320_bib8) 1986; 62
Wang (10.1016/j.jocs.2024.102320_bib26) 2018; 122
Rizwan-Uddin (10.1016/j.jocs.2024.102320_bib11) 1997; 26
Rizwan-Uddin (10.1016/j.jocs.2024.102320_bib17) 1997; 13
Jarrah (10.1016/j.jocs.2024.102320_bib31) 2024; 158
Hennart (10.1016/j.jocs.2024.102320_bib7) 1988; 4
Gander (10.1016/j.jocs.2024.102320_bib30) 2024; 149
Nakao (10.1016/j.jocs.2024.102320_bib39) 2022; 470
Elnawawy (10.1016/j.jocs.2024.102320_bib36) 1990; 26
10.1016/j.jocs.2024.102320_bib13
10.1016/j.jocs.2024.102320_bib14
Ahmed (10.1016/j.jocs.2024.102320_bib25) 2023; 189
10.1016/j.jocs.2024.102320_bib15
Kumar (10.1016/j.jocs.2024.102320_bib21) 2013; 64
Kumar (10.1016/j.jocs.2024.102320_bib29) 2022; 179
Kumar (10.1016/j.jocs.2024.102320_bib32) 2020; 79
Nezami (10.1016/j.jocs.2024.102320_bib20) 2009; 61
Zhou (10.1016/j.jocs.2024.102320_bib38) 2016; 88
Horak (10.1016/j.jocs.2024.102320_bib16) 1985; 59
References_xml – reference: E.P.E. Michael, J.J. Dorning, A primitive-variable nodal method for the time-dependent Navier–Stokes equations, in: Proceedings of the American Nuclear Society International Meeting on Mathematical Methods for Nuclear Applications, American Nuclear Society, Illinois, USA, 2001.
– volume: 4
  start-page: 233
  year: 1988
  end-page: 254
  ident: bib7
  article-title: On the numerical analysis of analytical nodal methods
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 26
  start-page: 233
  year: 1997
  end-page: 247
  ident: bib11
  article-title: A second-order space and time nodal method for the one-dimensional convection-diffusion equation
  publication-title: Comput. Fluids
– volume: 165
  year: 2022
  ident: bib24
  article-title: Analytical nodal method for solution of neutron diffusion equation in polar coordinates
  publication-title: Ann. Nucl. Energy
– volume: 114
  start-page: 20
  year: 1993
  end-page: 35
  ident: bib12
  article-title: An upwind nodal integral method for incompressible fluid flow
  publication-title: Nucl. Sci. Eng.
– volume: 64
  start-page: 1
  year: 2013
  end-page: 21
  ident: bib21
  article-title: Nodal integral method using quadrilateral elements for transport equations: Part 1-convection-diffusion equation
  publication-title: Numer. Heat. Transf., Part B: Fundam.
– reference: J.J. Dorning, Modern coarse-mesh methods-A development of the 70’s, in: Proc. Conf. Computational Methods in Nuclear Engineering, American Nuclear Society, Williamsburg, VA, 1979.
– volume: 163
  year: 2021
  ident: bib23
  article-title: Nodal integral method for 3D time-dependent anisotropic convection-diffusion equation
  publication-title: Ann. Nucl. Energy
– volume: 59
  start-page: 405
  year: 1985
  end-page: 440
  ident: bib16
  article-title: A nodal coarse-mesh method for the efficient numerical solution of laminar flow problems
  publication-title: J. Comput. Phys.
– volume: 158
  start-page: 219
  year: 2024
  end-page: 243
  ident: bib31
  article-title: Nodal integral method to solve the two-dimensional, time-dependent, incompressible Navier-Stokes equations in curvilinear coordinates
  publication-title: Comput. Math. Appl.
– start-page: 561
  year: 1990
  end-page: 568
  ident: bib10
  article-title: Summary of modern nodal integral methods in fluid flow and heat transfer
  publication-title: in: Boundary Element Methods in Engineering
– volume: 62
  start-page: 361
  year: 1986
  end-page: 382
  ident: bib8
  article-title: An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry
  publication-title: J. Comput. Phys.
– reference: Y.Y. Azmy, A nodal integral approach to the numerical solution of partial differential equations, in: Advances in Reactor Computations, LaGrange Park, IL, 1983.
– volume: 187
  start-page: 168
  year: 2003
  end-page: 196
  ident: bib18
  article-title: A modified nodal scheme for the time-dependent, incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
– reference: Y.Y. Azmy, Nodal methods for problems in fluid mechanics and neutron transport, University of Illinois at Urbana-Champaign, 1985. PhD Thesis.
– volume: 13
  start-page: 113
  year: 1997
  end-page: 145
  ident: bib17
  article-title: An improved coarse-mesh nodal integral method for partial differential equations
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 189
  year: 2023
  ident: bib25
  article-title: A novel cell-centered nodal integral method for the convection-diffusion equation
  publication-title: Ann. Nucl. Energy
– volume: 187
  year: 2022
  ident: bib28
  article-title: Nodal integral methods in general 2D curvilinear coordinates - applied to convection–diffusion equation in domains discretized using quadrilateral elements
  publication-title: Int J. Heat. Mass Transf.
– volume: 149
  start-page: 199
  year: 2024
  end-page: 206
  ident: bib30
  article-title: A new nodal integral method for helmholtz problems based on domain decomposition techniques
  publication-title: Domain Decomposition Methods in Science and Engineering XXVII (DD 2022)
– volume: 64
  start-page: 22
  year: 2013
  end-page: 47
  ident: bib22
  article-title: Nodal integral method using quadrilateral elements for transport equations: Part 2-Navier-Stokes equations
  publication-title: Numer. Heat. Transf., Part B: Fundam.
– reference: W.C. Horak, Local green’s functions techniques for the solution of heat conduction and incompressible fluid flow problems, University of Illinois, 1980. PhD Thesis.
– reference: T.J. Burns, The Partial Current Balance Method: A Local Green’s Function Technique for the Numerical Solution of Multidimensional Diffusion Problems, University of Illinois, 1975. PhD Thesis.
– volume: 179
  start-page: 3677
  year: 2022
  end-page: 3691
  ident: bib29
  article-title: A nodal integral scheme for acoustic wavefield simulation
  publication-title: Pure Appl. Geophys
– volume: 21
  start-page: 89
  year: 2005
  end-page: 103
  ident: bib37
  article-title: A characteristic nonoverlapping domain decomposition method for multidimensional convection-diffusion equations
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 26
  start-page: 2705
  year: 1990
  end-page: 2716
  ident: bib36
  article-title: The cell analytical-numerical method for solution of the advection-dispersion equation: two-dimensional problems
  publication-title: Water Resour. Res
– year: 2021
  ident: bib33
  article-title: Node averaged nodal integral method
  publication-title: in: 14th WCCM-ECCOMAS Congress
– volume: 64
  start-page: 582
  year: 1977
  end-page: 592
  ident: bib34
  article-title: Two nodal methods for solving time-dependent group diffusion equations
  publication-title: Nucl. Sci. Eng.
– reference: Y. Maday, A.T. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in: State-of-the-Art Surveys on Computational Mechanics, American Society of Mechanical Engineering, New York, 1989: pp. 71–143.
– volume: 61
  start-page: 144
  year: 2009
  end-page: 164
  ident: bib20
  article-title: A nodal integral method for quadrilateral elements
  publication-title: Int J. Numer. Methods Fluids
– volume: 122
  start-page: 99
  year: 2018
  end-page: 116
  ident: bib26
  article-title: A modified, hybrid nodal-integral/finite-element method for 3D convection-diffusion problems in arbitrary geometries
  publication-title: Int J. Heat. Mass Transf.
– volume: 139
  start-page: 293
  year: 2001
  end-page: 305
  ident: bib35
  article-title: An efficient formulation of the modified nodal integral method and application to the two-dimensional burgers’ equation
  publication-title: Nucl. Sci. Eng.
– volume: 114
  start-page: 20
  year: 1993
  end-page: 35
  ident: bib3
  article-title: An upwind nodal integral method for incompressible fluid flow
  publication-title: Nucl. Sci. Eng.
– volume: 79
  start-page: 1362
  year: 2020
  end-page: 1381
  ident: bib32
  article-title: Predictor–corrector nodal integral method for simulation of high Reynolds number fluid flow using larger time steps in Burgers’ equation
  publication-title: Comput. Math. Appl.
– volume: 88
  start-page: 118
  year: 2016
  end-page: 125
  ident: bib38
  article-title: General nodal expansion method for multi-dimensional steady and transient convection–diffusion equation
  publication-title: Ann. Nucl. Energy
– reference: D.L. Delp, J.M. Harriman, M.J. Stedwell, A three-dimensional boiling water reactor simulator. FLARE, 1964. Scientific Report.
– volume: 30
  start-page: 123
  year: 1977
  end-page: 128
  ident: bib5
  article-title: Interface current techniques for multidimensional reactor calculations
  publication-title: Atomkernenergie
– volume: 470
  year: 2022
  ident: bib39
  article-title: An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations
  publication-title: J. Comput. Phys.
– volume: 137
  start-page: 380
  year: 2001
  end-page: 399
  ident: bib19
  article-title: Studies on nodal integral methods for the convection-diffusion equation
  publication-title: Nucl. Sci. Eng.
– volume: 96
  start-page: 138
  year: 2024
  end-page: 160
  ident: bib27
  article-title: Physics-based preconditioning of Jacobian-free Newton–Krylov solver for Navier–Stokes equations using nodal integral method
  publication-title: Int J. Numer. Methods Fluids
– volume: 96
  start-page: 138
  issue: 2
  year: 2024
  ident: 10.1016/j.jocs.2024.102320_bib27
  article-title: Physics-based preconditioning of Jacobian-free Newton–Krylov solver for Navier–Stokes equations using nodal integral method
  publication-title: Int J. Numer. Methods Fluids
  doi: 10.1002/fld.5236
– volume: 158
  start-page: 219
  year: 2024
  ident: 10.1016/j.jocs.2024.102320_bib31
  article-title: Nodal integral method to solve the two-dimensional, time-dependent, incompressible Navier-Stokes equations in curvilinear coordinates
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2024.02.009
– volume: 165
  year: 2022
  ident: 10.1016/j.jocs.2024.102320_bib24
  article-title: Analytical nodal method for solution of neutron diffusion equation in polar coordinates
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108659
– volume: 4
  start-page: 233
  year: 1988
  ident: 10.1016/j.jocs.2024.102320_bib7
  article-title: On the numerical analysis of analytical nodal methods
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.1690040306
– ident: 10.1016/j.jocs.2024.102320_bib15
– ident: 10.1016/j.jocs.2024.102320_bib13
– volume: 122
  start-page: 99
  year: 2018
  ident: 10.1016/j.jocs.2024.102320_bib26
  article-title: A modified, hybrid nodal-integral/finite-element method for 3D convection-diffusion problems in arbitrary geometries
  publication-title: Int J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.087
– volume: 88
  start-page: 118
  year: 2016
  ident: 10.1016/j.jocs.2024.102320_bib38
  article-title: General nodal expansion method for multi-dimensional steady and transient convection–diffusion equation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.10.023
– ident: 10.1016/j.jocs.2024.102320_bib9
– volume: 163
  year: 2021
  ident: 10.1016/j.jocs.2024.102320_bib23
  article-title: Nodal integral method for 3D time-dependent anisotropic convection-diffusion equation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108550
– start-page: 561
  year: 1990
  ident: 10.1016/j.jocs.2024.102320_bib10
  article-title: Summary of modern nodal integral methods in fluid flow and heat transfer
– ident: 10.1016/j.jocs.2024.102320_bib1
– volume: 187
  year: 2022
  ident: 10.1016/j.jocs.2024.102320_bib28
  article-title: Nodal integral methods in general 2D curvilinear coordinates - applied to convection–diffusion equation in domains discretized using quadrilateral elements
  publication-title: Int J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.122559
– volume: 189
  year: 2023
  ident: 10.1016/j.jocs.2024.102320_bib25
  article-title: A novel cell-centered nodal integral method for the convection-diffusion equation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2023.109858
– volume: 114
  start-page: 20
  year: 1993
  ident: 10.1016/j.jocs.2024.102320_bib12
  article-title: An upwind nodal integral method for incompressible fluid flow
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE93-A24011
– ident: 10.1016/j.jocs.2024.102320_bib14
– volume: 26
  start-page: 2705
  year: 1990
  ident: 10.1016/j.jocs.2024.102320_bib36
  article-title: The cell analytical-numerical method for solution of the advection-dispersion equation: two-dimensional problems
  publication-title: Water Resour. Res
– volume: 13
  start-page: 113
  year: 1997
  ident: 10.1016/j.jocs.2024.102320_bib17
  article-title: An improved coarse-mesh nodal integral method for partial differential equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/(SICI)1098-2426(199703)13:2<113::AID-NUM1>3.0.CO;2-S
– volume: 79
  start-page: 1362
  year: 2020
  ident: 10.1016/j.jocs.2024.102320_bib32
  article-title: Predictor–corrector nodal integral method for simulation of high Reynolds number fluid flow using larger time steps in Burgers’ equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.09.001
– volume: 61
  start-page: 144
  year: 2009
  ident: 10.1016/j.jocs.2024.102320_bib20
  article-title: A nodal integral method for quadrilateral elements
  publication-title: Int J. Numer. Methods Fluids
  doi: 10.1002/fld.1949
– volume: 64
  start-page: 22
  year: 2013
  ident: 10.1016/j.jocs.2024.102320_bib22
  article-title: Nodal integral method using quadrilateral elements for transport equations: Part 2-Navier-Stokes equations
  publication-title: Numer. Heat. Transf., Part B: Fundam.
  doi: 10.1080/10407790.2013.784124
– volume: 21
  start-page: 89
  year: 2005
  ident: 10.1016/j.jocs.2024.102320_bib37
  article-title: A characteristic nonoverlapping domain decomposition method for multidimensional convection-diffusion equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20025
– volume: 30
  start-page: 123
  year: 1977
  ident: 10.1016/j.jocs.2024.102320_bib5
  article-title: Interface current techniques for multidimensional reactor calculations
  publication-title: Atomkernenergie
– volume: 59
  start-page: 405
  year: 1985
  ident: 10.1016/j.jocs.2024.102320_bib16
  article-title: A nodal coarse-mesh method for the efficient numerical solution of laminar flow problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90120-2
– volume: 62
  start-page: 361
  year: 1986
  ident: 10.1016/j.jocs.2024.102320_bib8
  article-title: An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(86)90134-8
– volume: 114
  start-page: 20
  year: 1993
  ident: 10.1016/j.jocs.2024.102320_bib3
  article-title: An upwind nodal integral method for incompressible fluid flow
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE93-A24011
– volume: 187
  start-page: 168
  year: 2003
  ident: 10.1016/j.jocs.2024.102320_bib18
  article-title: A modified nodal scheme for the time-dependent, incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00093-7
– ident: 10.1016/j.jocs.2024.102320_bib6
– volume: 470
  year: 2022
  ident: 10.1016/j.jocs.2024.102320_bib39
  article-title: An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111589
– volume: 64
  start-page: 582
  year: 1977
  ident: 10.1016/j.jocs.2024.102320_bib34
  article-title: Two nodal methods for solving time-dependent group diffusion equations
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE77-A27392
– ident: 10.1016/j.jocs.2024.102320_bib2
– ident: 10.1016/j.jocs.2024.102320_bib4
– volume: 139
  start-page: 293
  year: 2001
  ident: 10.1016/j.jocs.2024.102320_bib35
  article-title: An efficient formulation of the modified nodal integral method and application to the two-dimensional burgers’ equation
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE01-A2239
– year: 2021
  ident: 10.1016/j.jocs.2024.102320_bib33
  article-title: Node averaged nodal integral method
– volume: 26
  start-page: 233
  year: 1997
  ident: 10.1016/j.jocs.2024.102320_bib11
  article-title: A second-order space and time nodal method for the one-dimensional convection-diffusion equation
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(96)00039-4
– volume: 179
  start-page: 3677
  year: 2022
  ident: 10.1016/j.jocs.2024.102320_bib29
  article-title: A nodal integral scheme for acoustic wavefield simulation
  publication-title: Pure Appl. Geophys
  doi: 10.1007/s00024-022-03160-3
– volume: 64
  start-page: 1
  year: 2013
  ident: 10.1016/j.jocs.2024.102320_bib21
  article-title: Nodal integral method using quadrilateral elements for transport equations: Part 1-convection-diffusion equation
  publication-title: Numer. Heat. Transf., Part B: Fundam.
  doi: 10.1080/10407790.2013.784125
– volume: 149
  start-page: 199
  year: 2024
  ident: 10.1016/j.jocs.2024.102320_bib30
  article-title: A new nodal integral method for helmholtz problems based on domain decomposition techniques
– volume: 137
  start-page: 380
  year: 2001
  ident: 10.1016/j.jocs.2024.102320_bib19
  article-title: Studies on nodal integral methods for the convection-diffusion equation
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE137-380
SSID ssj0000388913
Score 2.3315003
Snippet The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102320
SubjectTerms Cell-centered nodal integral method
Coarse-mesh method
Convection-diffusion equation
Differential-algebraic equations
Nodal integral method
Title A modified cell-centered nodal integral scheme for the convection-diffusion equation
URI https://dx.doi.org/10.1016/j.jocs.2024.102320
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfEitirWR9mDB0XWtsnuJnssYqmKvdhCbyH7gpY2qdpe_e3uJJuiID14TNgJYXZ2dmb45huEri1LYyUiS0QomUtQUkpiSy0JhKTKKiqMgAbn1xEfTujzlE1r6KHqhQFYpff9pU8vvLV_0_Ha7Kxms85bD6jsWBcY5ZyRhsD4SWkEVn7_1dvWWYDtRBRTkmE9AQHfO1PCvOa5AtbugBYkBjD2-6_76cedMzhChz5YxP3yfxqoZrIm2q-w6k3U8CfzE994-ujbYzTu42WuZ9bFlhjK8gTwlzCRE2e5dl_zBBEL7PJaszTYRa3YRYG4wJ8XXQ4EpqZsoIyGzXtJBX6CJoPH8cOQ-NkJRIXd7ppQl8oppjVPQyWNFFoHkQ6MS7YEFaELgpixQrGu4cJGXLFA9WyaWqMCrZR06jxF9SzPzBnCPOaSxZyalBtq3OZarsMgMpbKUEgpWqhXaSxRnlgc5lsskgpBNk9AywloOSm13EJ3W5lVSauxczWrNiL5ZRyJ8_s75M7_KXeBDuCpxPldovr6Y2OuXOyxlu3CuNpor__0Mhx9A7gt2SM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60BfUitirW5x48KLK0TXa33WMRS320Fyt4C9kXtLRp1fb_u5NsREE8eE0yIcxOZmeWb74P4NLxtKtlx1EZK-4blJTRrmOORlIx7TSTVuKA83AkBi_s4ZW_bsBtOQuDsMqQ-4ucnmfrcKUZvNlcTibN5zZS2fEWMsr5II3jTagiOxWvQLV3_zgYfR21IOGJzIWS0YSiTRifKZBe04VG4u6I5TwGqPz92xb1bdvp78FuqBdJr_ikGmzYrA5bJVy9DrXwc36Qq8Agfb0P4x6ZL8zE-fKS4Mk8RQgminKSbGH82wJHxIz41tbOLfGFK_GFIMkh6PmgA0XhlDWepBH7VrCBH8BL_258O6BBPoHquNVaUea7Oc2NEWmslVXSmKhjIuv7Lclk7Osgbp3UvGWFdB2heaTbLk2d1ZHRWnmPHkIlW2T2CIjoCsW7gtlUWGb9-jph4qhjHVOxVEo2oF16LNGBWxwlLmZJCSKbJujlBL2cFF5uwM2XzbJg1vjzaV4uRPIjPhKf-v-wO_6n3QVsD8bDp-TpfvR4Ajt4p4D9nUJl9b62Z74UWanzEGqfNmjb1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+cell-centered+nodal+integral+scheme+for+the+convection-diffusion+equation&rft.jtitle=Journal+of+computational+science&rft.au=Ahmed%2C+Nadeem&rft.au=Singh%2C+Suneet&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=80&rft_id=info:doi/10.1016%2Fj.jocs.2024.102320&rft.externalDocID=S1877750324001133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon