A modified cell-centered nodal integral scheme for the convection-diffusion equation
The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM) is a simplified variant of the NIMs that has recently shown its efficiency in solving fluid flow problems but has been hampered by issues su...
Saved in:
Published in | Journal of computational science Vol. 80; p. 102320 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-7503 1877-7511 |
DOI | 10.1016/j.jocs.2024.102320 |
Cover
Loading…
Abstract | The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM) is a simplified variant of the NIMs that has recently shown its efficiency in solving fluid flow problems but has been hampered by issues such as inapplicability to one-dimensional problems, complexities in handling Neumann boundary conditions and the formulation of a system of differential-algebraic equations (DAEs) for discrete unknowns. Here, we present a modified version of the CCNIM designed to overcome the challenges associated with its previous version. Our novel development retains the essence of CCNIM while resolving these issues. The proposed scheme, grounded in the nodal framework, achieves second-order accuracy in both spatial and temporal dimensions. Unlike its precursor, the proposed method formulates algebraic equations for discrete variables per node, eliminating the cumbersome DAE system. Neumann boundary conditions are seamlessly incorporated through a straightforward flux definition, and applicability to one-dimensional problems is now feasible. We successfully apply our approach to one and two-dimensional convection-diffusion problems with known analytical solutions to validate our approach. The simplicity and robustness of the approach lay the foundation for its seamless extension to more complex fluid flow problems.
•Introducing modified cell-centered nodal integral method (MCCNIM), an advancement over the previous CCNIM approach.•Resolving intrinsic issues with the prior CCNIM system, improving computational accuracy and efficiency.•Utilization of a nodal framework for discretization in both temporal and spatial domains.•Achieving second order accuracy in spatial and temporal dimensions.•Demonstrated computational efficiency surpassing previous CCNIM, highlighting practical viability and effectiveness. |
---|---|
AbstractList | The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM) is a simplified variant of the NIMs that has recently shown its efficiency in solving fluid flow problems but has been hampered by issues such as inapplicability to one-dimensional problems, complexities in handling Neumann boundary conditions and the formulation of a system of differential-algebraic equations (DAEs) for discrete unknowns. Here, we present a modified version of the CCNIM designed to overcome the challenges associated with its previous version. Our novel development retains the essence of CCNIM while resolving these issues. The proposed scheme, grounded in the nodal framework, achieves second-order accuracy in both spatial and temporal dimensions. Unlike its precursor, the proposed method formulates algebraic equations for discrete variables per node, eliminating the cumbersome DAE system. Neumann boundary conditions are seamlessly incorporated through a straightforward flux definition, and applicability to one-dimensional problems is now feasible. We successfully apply our approach to one and two-dimensional convection-diffusion problems with known analytical solutions to validate our approach. The simplicity and robustness of the approach lay the foundation for its seamless extension to more complex fluid flow problems.
•Introducing modified cell-centered nodal integral method (MCCNIM), an advancement over the previous CCNIM approach.•Resolving intrinsic issues with the prior CCNIM system, improving computational accuracy and efficiency.•Utilization of a nodal framework for discretization in both temporal and spatial domains.•Achieving second order accuracy in spatial and temporal dimensions.•Demonstrated computational efficiency surpassing previous CCNIM, highlighting practical viability and effectiveness. |
ArticleNumber | 102320 |
Author | Singh, Suneet Ahmed, Nadeem |
Author_xml | – sequence: 1 givenname: Nadeem surname: Ahmed fullname: Ahmed, Nadeem – sequence: 2 givenname: Suneet surname: Singh fullname: Singh, Suneet email: suneet.singh@iitb.ac.in |
BookMark | eNp9kE1LAzEQhoNUsNb-AU_7B7bmY78CXkrxCwpe6jmkk4nNst1osi34781a8eChc8k7A88wea7JpPc9EnLL6IJRVt21i9ZDXHDKizTggtMLMmVNXed1ydjkL1NxReYxtjSVaBrJxJRsltneG2cdmgyw63LAfsCQut4b3WUude8hhQg73GNmfciGHWbg-yPC4HyfJ9oeYkoZfh70OLohl1Z3Eee_74y8PT5sVs_5-vXpZbVc5yAoHfKCMwqlMZUWsMWtNIbXhiMvpCykqIqiRCuhpFhJW1dQcmBWa4vADcCWMTEjzWkvBB9jQKvADT8XDEG7TjGqRkGqVaMgNQpSJ0EJ5f_Qj-D2Onydh-5PEKZPHR0GFcFhD2hcSDKU8e4c_g1bj4LR |
CitedBy_id | crossref_primary_10_1016_j_camwa_2024_12_027 |
Cites_doi | 10.1002/fld.5236 10.1016/j.camwa.2024.02.009 10.1016/j.anucene.2021.108659 10.1002/num.1690040306 10.1016/j.ijheatmasstransfer.2018.01.087 10.1016/j.anucene.2015.10.023 10.1016/j.anucene.2021.108550 10.1016/j.ijheatmasstransfer.2022.122559 10.1016/j.anucene.2023.109858 10.13182/NSE93-A24011 10.1002/(SICI)1098-2426(199703)13:2<113::AID-NUM1>3.0.CO;2-S 10.1016/j.camwa.2019.09.001 10.1002/fld.1949 10.1080/10407790.2013.784124 10.1002/num.20025 10.1016/0021-9991(85)90120-2 10.1016/0021-9991(86)90134-8 10.1016/S0021-9991(03)00093-7 10.1016/j.jcp.2022.111589 10.13182/NSE77-A27392 10.13182/NSE01-A2239 10.1016/S0045-7930(96)00039-4 10.1007/s00024-022-03160-3 10.1080/10407790.2013.784125 10.13182/NSE137-380 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jocs.2024.102320 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
ExternalDocumentID | 10_1016_j_jocs_2024_102320 S1877750324001133 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4210c5dd6a3cbeb9dd27d2e24994936445ef9c50e69f76c52c1faafec2dccb113 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Tue Jul 01 03:46:14 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jun 18 08:51:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PDE Nodal integral method MCCNIM ODE NIM DAEs Cell-centered nodal integral method Coarse-mesh method CCNIM Differential-algebraic equations Convection-diffusion equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4210c5dd6a3cbeb9dd27d2e24994936445ef9c50e69f76c52c1faafec2dccb113 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2024_102320 crossref_primary_10_1016_j_jocs_2024_102320 elsevier_sciencedirect_doi_10_1016_j_jocs_2024_102320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | E.P.E. Michael, J.J. Dorning, A primitive-variable nodal method for the time-dependent Navier–Stokes equations, in: Proceedings of the American Nuclear Society International Meeting on Mathematical Methods for Nuclear Applications, American Nuclear Society, Illinois, USA, 2001. Y.Y. Azmy, A nodal integral approach to the numerical solution of partial differential equations, in: Advances in Reactor Computations, LaGrange Park, IL, 1983. Wang, Rizwan-Uddin (bib18) 2003; 187 Kumar, Shekar, Singh (bib29) 2022; 179 Kumar, Singh, Doshi (bib21) 2013; 64 Horak, Dorning (bib16) 1985; 59 Jarrah, Rizwan–uddin (bib31) 2024; 158 Shober, Sims, Henry (bib34) 1977; 64 Rizwan-Uddin (bib11) 1997; 26 Y.Y. Azmy, Nodal methods for problems in fluid mechanics and neutron transport, University of Illinois at Urbana-Champaign, 1985. PhD Thesis. Raj, Ahmed, Singh (bib24) 2022; 165 Wang, Liu, Espedal, Ewing (bib37) 2005; 21 Finnemann, Bennewitz (bib5) 1977; 30 Korczak, Patera (bib8) 1986; 62 Rizwan-Uddin (bib17) 1997; 13 Michael, Dorning, Rizwan-Uddin (bib19) 2001; 137 Wang, Rizwan-Uddin (bib26) 2018; 122 Kumar, Majumdar, Singh (bib32) 2020; 79 Nezami, Singh, Sobh, Rizwan-Uddin (bib20) 2009; 61 Ahmed, Singh, Kumar (bib27) 2024; 96 Hennart (bib7) 1988; 4 Esser, Witt (bib12) 1993; 114 J.J. Dorning, Modern coarse-mesh methods-A development of the 70’s, in: Proc. Conf. Computational Methods in Nuclear Engineering, American Nuclear Society, Williamsburg, VA, 1979. Jarrah, Rizwan-Uddin (bib23) 2021; 163 Gander, Kumar (bib30) 2024; 149 Esser, Witt (bib3) 1993; 114 Ahmed, Maurya, Singh (bib25) 2023; 189 Jarrah, Rizwan-Uddin (bib28) 2022; 187 T.J. Burns, The Partial Current Balance Method: A Local Green’s Function Technique for the Numerical Solution of Multidimensional Diffusion Problems, University of Illinois, 1975. PhD Thesis. Ahmed, Kumar, Singh (bib33) 2021 W.C. Horak, Local green’s functions techniques for the solution of heat conduction and incompressible fluid flow problems, University of Illinois, 1980. PhD Thesis. Kumar, Singh, Doshi (bib22) 2013; 64 Zhou, Guo, Li (bib38) 2016; 88 Nakao, Chen, Qiu (bib39) 2022; 470 Y. Maday, A.T. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in: State-of-the-Art Surveys on Computational Mechanics, American Society of Mechanical Engineering, New York, 1989: pp. 71–143. Elnawawy, Valocchi, Ougouag (bib36) 1990; 26 Wilson, Rydin (bib10) 1990 D.L. Delp, J.M. Harriman, M.J. Stedwell, A three-dimensional boiling water reactor simulator. FLARE, 1964. Scientific Report. Wescott, Rizwan-uddin (bib35) 2001; 139 Wilson (10.1016/j.jocs.2024.102320_bib10) 1990 10.1016/j.jocs.2024.102320_bib1 10.1016/j.jocs.2024.102320_bib2 10.1016/j.jocs.2024.102320_bib4 10.1016/j.jocs.2024.102320_bib6 Jarrah (10.1016/j.jocs.2024.102320_bib23) 2021; 163 10.1016/j.jocs.2024.102320_bib9 Esser (10.1016/j.jocs.2024.102320_bib12) 1993; 114 Wang (10.1016/j.jocs.2024.102320_bib37) 2005; 21 Shober (10.1016/j.jocs.2024.102320_bib34) 1977; 64 Raj (10.1016/j.jocs.2024.102320_bib24) 2022; 165 Wescott (10.1016/j.jocs.2024.102320_bib35) 2001; 139 Esser (10.1016/j.jocs.2024.102320_bib3) 1993; 114 Finnemann (10.1016/j.jocs.2024.102320_bib5) 1977; 30 Ahmed (10.1016/j.jocs.2024.102320_bib33) 2021 Wang (10.1016/j.jocs.2024.102320_bib18) 2003; 187 Ahmed (10.1016/j.jocs.2024.102320_bib27) 2024; 96 Jarrah (10.1016/j.jocs.2024.102320_bib28) 2022; 187 Michael (10.1016/j.jocs.2024.102320_bib19) 2001; 137 Kumar (10.1016/j.jocs.2024.102320_bib22) 2013; 64 Korczak (10.1016/j.jocs.2024.102320_bib8) 1986; 62 Wang (10.1016/j.jocs.2024.102320_bib26) 2018; 122 Rizwan-Uddin (10.1016/j.jocs.2024.102320_bib11) 1997; 26 Rizwan-Uddin (10.1016/j.jocs.2024.102320_bib17) 1997; 13 Jarrah (10.1016/j.jocs.2024.102320_bib31) 2024; 158 Hennart (10.1016/j.jocs.2024.102320_bib7) 1988; 4 Gander (10.1016/j.jocs.2024.102320_bib30) 2024; 149 Nakao (10.1016/j.jocs.2024.102320_bib39) 2022; 470 Elnawawy (10.1016/j.jocs.2024.102320_bib36) 1990; 26 10.1016/j.jocs.2024.102320_bib13 10.1016/j.jocs.2024.102320_bib14 Ahmed (10.1016/j.jocs.2024.102320_bib25) 2023; 189 10.1016/j.jocs.2024.102320_bib15 Kumar (10.1016/j.jocs.2024.102320_bib21) 2013; 64 Kumar (10.1016/j.jocs.2024.102320_bib29) 2022; 179 Kumar (10.1016/j.jocs.2024.102320_bib32) 2020; 79 Nezami (10.1016/j.jocs.2024.102320_bib20) 2009; 61 Zhou (10.1016/j.jocs.2024.102320_bib38) 2016; 88 Horak (10.1016/j.jocs.2024.102320_bib16) 1985; 59 |
References_xml | – reference: E.P.E. Michael, J.J. Dorning, A primitive-variable nodal method for the time-dependent Navier–Stokes equations, in: Proceedings of the American Nuclear Society International Meeting on Mathematical Methods for Nuclear Applications, American Nuclear Society, Illinois, USA, 2001. – volume: 4 start-page: 233 year: 1988 end-page: 254 ident: bib7 article-title: On the numerical analysis of analytical nodal methods publication-title: Numer. Methods Partial Differ. Equ. – volume: 26 start-page: 233 year: 1997 end-page: 247 ident: bib11 article-title: A second-order space and time nodal method for the one-dimensional convection-diffusion equation publication-title: Comput. Fluids – volume: 165 year: 2022 ident: bib24 article-title: Analytical nodal method for solution of neutron diffusion equation in polar coordinates publication-title: Ann. Nucl. Energy – volume: 114 start-page: 20 year: 1993 end-page: 35 ident: bib12 article-title: An upwind nodal integral method for incompressible fluid flow publication-title: Nucl. Sci. Eng. – volume: 64 start-page: 1 year: 2013 end-page: 21 ident: bib21 article-title: Nodal integral method using quadrilateral elements for transport equations: Part 1-convection-diffusion equation publication-title: Numer. Heat. Transf., Part B: Fundam. – reference: J.J. Dorning, Modern coarse-mesh methods-A development of the 70’s, in: Proc. Conf. Computational Methods in Nuclear Engineering, American Nuclear Society, Williamsburg, VA, 1979. – volume: 163 year: 2021 ident: bib23 article-title: Nodal integral method for 3D time-dependent anisotropic convection-diffusion equation publication-title: Ann. Nucl. Energy – volume: 59 start-page: 405 year: 1985 end-page: 440 ident: bib16 article-title: A nodal coarse-mesh method for the efficient numerical solution of laminar flow problems publication-title: J. Comput. Phys. – volume: 158 start-page: 219 year: 2024 end-page: 243 ident: bib31 article-title: Nodal integral method to solve the two-dimensional, time-dependent, incompressible Navier-Stokes equations in curvilinear coordinates publication-title: Comput. Math. Appl. – start-page: 561 year: 1990 end-page: 568 ident: bib10 article-title: Summary of modern nodal integral methods in fluid flow and heat transfer publication-title: in: Boundary Element Methods in Engineering – volume: 62 start-page: 361 year: 1986 end-page: 382 ident: bib8 article-title: An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry publication-title: J. Comput. Phys. – reference: Y.Y. Azmy, A nodal integral approach to the numerical solution of partial differential equations, in: Advances in Reactor Computations, LaGrange Park, IL, 1983. – volume: 187 start-page: 168 year: 2003 end-page: 196 ident: bib18 article-title: A modified nodal scheme for the time-dependent, incompressible Navier-Stokes equations publication-title: J. Comput. Phys. – reference: Y.Y. Azmy, Nodal methods for problems in fluid mechanics and neutron transport, University of Illinois at Urbana-Champaign, 1985. PhD Thesis. – volume: 13 start-page: 113 year: 1997 end-page: 145 ident: bib17 article-title: An improved coarse-mesh nodal integral method for partial differential equations publication-title: Numer. Methods Partial Differ. Equ. – volume: 189 year: 2023 ident: bib25 article-title: A novel cell-centered nodal integral method for the convection-diffusion equation publication-title: Ann. Nucl. Energy – volume: 187 year: 2022 ident: bib28 article-title: Nodal integral methods in general 2D curvilinear coordinates - applied to convection–diffusion equation in domains discretized using quadrilateral elements publication-title: Int J. Heat. Mass Transf. – volume: 149 start-page: 199 year: 2024 end-page: 206 ident: bib30 article-title: A new nodal integral method for helmholtz problems based on domain decomposition techniques publication-title: Domain Decomposition Methods in Science and Engineering XXVII (DD 2022) – volume: 64 start-page: 22 year: 2013 end-page: 47 ident: bib22 article-title: Nodal integral method using quadrilateral elements for transport equations: Part 2-Navier-Stokes equations publication-title: Numer. Heat. Transf., Part B: Fundam. – reference: W.C. Horak, Local green’s functions techniques for the solution of heat conduction and incompressible fluid flow problems, University of Illinois, 1980. PhD Thesis. – reference: T.J. Burns, The Partial Current Balance Method: A Local Green’s Function Technique for the Numerical Solution of Multidimensional Diffusion Problems, University of Illinois, 1975. PhD Thesis. – volume: 179 start-page: 3677 year: 2022 end-page: 3691 ident: bib29 article-title: A nodal integral scheme for acoustic wavefield simulation publication-title: Pure Appl. Geophys – volume: 21 start-page: 89 year: 2005 end-page: 103 ident: bib37 article-title: A characteristic nonoverlapping domain decomposition method for multidimensional convection-diffusion equations publication-title: Numer. Methods Partial Differ. Equ. – volume: 26 start-page: 2705 year: 1990 end-page: 2716 ident: bib36 article-title: The cell analytical-numerical method for solution of the advection-dispersion equation: two-dimensional problems publication-title: Water Resour. Res – year: 2021 ident: bib33 article-title: Node averaged nodal integral method publication-title: in: 14th WCCM-ECCOMAS Congress – volume: 64 start-page: 582 year: 1977 end-page: 592 ident: bib34 article-title: Two nodal methods for solving time-dependent group diffusion equations publication-title: Nucl. Sci. Eng. – reference: Y. Maday, A.T. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in: State-of-the-Art Surveys on Computational Mechanics, American Society of Mechanical Engineering, New York, 1989: pp. 71–143. – volume: 61 start-page: 144 year: 2009 end-page: 164 ident: bib20 article-title: A nodal integral method for quadrilateral elements publication-title: Int J. Numer. Methods Fluids – volume: 122 start-page: 99 year: 2018 end-page: 116 ident: bib26 article-title: A modified, hybrid nodal-integral/finite-element method for 3D convection-diffusion problems in arbitrary geometries publication-title: Int J. Heat. Mass Transf. – volume: 139 start-page: 293 year: 2001 end-page: 305 ident: bib35 article-title: An efficient formulation of the modified nodal integral method and application to the two-dimensional burgers’ equation publication-title: Nucl. Sci. Eng. – volume: 114 start-page: 20 year: 1993 end-page: 35 ident: bib3 article-title: An upwind nodal integral method for incompressible fluid flow publication-title: Nucl. Sci. Eng. – volume: 79 start-page: 1362 year: 2020 end-page: 1381 ident: bib32 article-title: Predictor–corrector nodal integral method for simulation of high Reynolds number fluid flow using larger time steps in Burgers’ equation publication-title: Comput. Math. Appl. – volume: 88 start-page: 118 year: 2016 end-page: 125 ident: bib38 article-title: General nodal expansion method for multi-dimensional steady and transient convection–diffusion equation publication-title: Ann. Nucl. Energy – reference: D.L. Delp, J.M. Harriman, M.J. Stedwell, A three-dimensional boiling water reactor simulator. FLARE, 1964. Scientific Report. – volume: 30 start-page: 123 year: 1977 end-page: 128 ident: bib5 article-title: Interface current techniques for multidimensional reactor calculations publication-title: Atomkernenergie – volume: 470 year: 2022 ident: bib39 article-title: An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations publication-title: J. Comput. Phys. – volume: 137 start-page: 380 year: 2001 end-page: 399 ident: bib19 article-title: Studies on nodal integral methods for the convection-diffusion equation publication-title: Nucl. Sci. Eng. – volume: 96 start-page: 138 year: 2024 end-page: 160 ident: bib27 article-title: Physics-based preconditioning of Jacobian-free Newton–Krylov solver for Navier–Stokes equations using nodal integral method publication-title: Int J. Numer. Methods Fluids – volume: 96 start-page: 138 issue: 2 year: 2024 ident: 10.1016/j.jocs.2024.102320_bib27 article-title: Physics-based preconditioning of Jacobian-free Newton–Krylov solver for Navier–Stokes equations using nodal integral method publication-title: Int J. Numer. Methods Fluids doi: 10.1002/fld.5236 – volume: 158 start-page: 219 year: 2024 ident: 10.1016/j.jocs.2024.102320_bib31 article-title: Nodal integral method to solve the two-dimensional, time-dependent, incompressible Navier-Stokes equations in curvilinear coordinates publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2024.02.009 – volume: 165 year: 2022 ident: 10.1016/j.jocs.2024.102320_bib24 article-title: Analytical nodal method for solution of neutron diffusion equation in polar coordinates publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2021.108659 – volume: 4 start-page: 233 year: 1988 ident: 10.1016/j.jocs.2024.102320_bib7 article-title: On the numerical analysis of analytical nodal methods publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.1690040306 – ident: 10.1016/j.jocs.2024.102320_bib15 – ident: 10.1016/j.jocs.2024.102320_bib13 – volume: 122 start-page: 99 year: 2018 ident: 10.1016/j.jocs.2024.102320_bib26 article-title: A modified, hybrid nodal-integral/finite-element method for 3D convection-diffusion problems in arbitrary geometries publication-title: Int J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.01.087 – volume: 88 start-page: 118 year: 2016 ident: 10.1016/j.jocs.2024.102320_bib38 article-title: General nodal expansion method for multi-dimensional steady and transient convection–diffusion equation publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2015.10.023 – ident: 10.1016/j.jocs.2024.102320_bib9 – volume: 163 year: 2021 ident: 10.1016/j.jocs.2024.102320_bib23 article-title: Nodal integral method for 3D time-dependent anisotropic convection-diffusion equation publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2021.108550 – start-page: 561 year: 1990 ident: 10.1016/j.jocs.2024.102320_bib10 article-title: Summary of modern nodal integral methods in fluid flow and heat transfer – ident: 10.1016/j.jocs.2024.102320_bib1 – volume: 187 year: 2022 ident: 10.1016/j.jocs.2024.102320_bib28 article-title: Nodal integral methods in general 2D curvilinear coordinates - applied to convection–diffusion equation in domains discretized using quadrilateral elements publication-title: Int J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.122559 – volume: 189 year: 2023 ident: 10.1016/j.jocs.2024.102320_bib25 article-title: A novel cell-centered nodal integral method for the convection-diffusion equation publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2023.109858 – volume: 114 start-page: 20 year: 1993 ident: 10.1016/j.jocs.2024.102320_bib12 article-title: An upwind nodal integral method for incompressible fluid flow publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE93-A24011 – ident: 10.1016/j.jocs.2024.102320_bib14 – volume: 26 start-page: 2705 year: 1990 ident: 10.1016/j.jocs.2024.102320_bib36 article-title: The cell analytical-numerical method for solution of the advection-dispersion equation: two-dimensional problems publication-title: Water Resour. Res – volume: 13 start-page: 113 year: 1997 ident: 10.1016/j.jocs.2024.102320_bib17 article-title: An improved coarse-mesh nodal integral method for partial differential equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/(SICI)1098-2426(199703)13:2<113::AID-NUM1>3.0.CO;2-S – volume: 79 start-page: 1362 year: 2020 ident: 10.1016/j.jocs.2024.102320_bib32 article-title: Predictor–corrector nodal integral method for simulation of high Reynolds number fluid flow using larger time steps in Burgers’ equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.09.001 – volume: 61 start-page: 144 year: 2009 ident: 10.1016/j.jocs.2024.102320_bib20 article-title: A nodal integral method for quadrilateral elements publication-title: Int J. Numer. Methods Fluids doi: 10.1002/fld.1949 – volume: 64 start-page: 22 year: 2013 ident: 10.1016/j.jocs.2024.102320_bib22 article-title: Nodal integral method using quadrilateral elements for transport equations: Part 2-Navier-Stokes equations publication-title: Numer. Heat. Transf., Part B: Fundam. doi: 10.1080/10407790.2013.784124 – volume: 21 start-page: 89 year: 2005 ident: 10.1016/j.jocs.2024.102320_bib37 article-title: A characteristic nonoverlapping domain decomposition method for multidimensional convection-diffusion equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20025 – volume: 30 start-page: 123 year: 1977 ident: 10.1016/j.jocs.2024.102320_bib5 article-title: Interface current techniques for multidimensional reactor calculations publication-title: Atomkernenergie – volume: 59 start-page: 405 year: 1985 ident: 10.1016/j.jocs.2024.102320_bib16 article-title: A nodal coarse-mesh method for the efficient numerical solution of laminar flow problems publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(85)90120-2 – volume: 62 start-page: 361 year: 1986 ident: 10.1016/j.jocs.2024.102320_bib8 article-title: An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(86)90134-8 – volume: 114 start-page: 20 year: 1993 ident: 10.1016/j.jocs.2024.102320_bib3 article-title: An upwind nodal integral method for incompressible fluid flow publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE93-A24011 – volume: 187 start-page: 168 year: 2003 ident: 10.1016/j.jocs.2024.102320_bib18 article-title: A modified nodal scheme for the time-dependent, incompressible Navier-Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00093-7 – ident: 10.1016/j.jocs.2024.102320_bib6 – volume: 470 year: 2022 ident: 10.1016/j.jocs.2024.102320_bib39 article-title: An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111589 – volume: 64 start-page: 582 year: 1977 ident: 10.1016/j.jocs.2024.102320_bib34 article-title: Two nodal methods for solving time-dependent group diffusion equations publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE77-A27392 – ident: 10.1016/j.jocs.2024.102320_bib2 – ident: 10.1016/j.jocs.2024.102320_bib4 – volume: 139 start-page: 293 year: 2001 ident: 10.1016/j.jocs.2024.102320_bib35 article-title: An efficient formulation of the modified nodal integral method and application to the two-dimensional burgers’ equation publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE01-A2239 – year: 2021 ident: 10.1016/j.jocs.2024.102320_bib33 article-title: Node averaged nodal integral method – volume: 26 start-page: 233 year: 1997 ident: 10.1016/j.jocs.2024.102320_bib11 article-title: A second-order space and time nodal method for the one-dimensional convection-diffusion equation publication-title: Comput. Fluids doi: 10.1016/S0045-7930(96)00039-4 – volume: 179 start-page: 3677 year: 2022 ident: 10.1016/j.jocs.2024.102320_bib29 article-title: A nodal integral scheme for acoustic wavefield simulation publication-title: Pure Appl. Geophys doi: 10.1007/s00024-022-03160-3 – volume: 64 start-page: 1 year: 2013 ident: 10.1016/j.jocs.2024.102320_bib21 article-title: Nodal integral method using quadrilateral elements for transport equations: Part 1-convection-diffusion equation publication-title: Numer. Heat. Transf., Part B: Fundam. doi: 10.1080/10407790.2013.784125 – volume: 149 start-page: 199 year: 2024 ident: 10.1016/j.jocs.2024.102320_bib30 article-title: A new nodal integral method for helmholtz problems based on domain decomposition techniques – volume: 137 start-page: 380 year: 2001 ident: 10.1016/j.jocs.2024.102320_bib19 article-title: Studies on nodal integral methods for the convection-diffusion equation publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE137-380 |
SSID | ssj0000388913 |
Score | 2.3315003 |
Snippet | The nodal integral methods (NIMs) are very efficient and accurate coarse-mesh methods for solving partial differential equations. The cell-centered NIM (CCNIM)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102320 |
SubjectTerms | Cell-centered nodal integral method Coarse-mesh method Convection-diffusion equation Differential-algebraic equations Nodal integral method |
Title | A modified cell-centered nodal integral scheme for the convection-diffusion equation |
URI | https://dx.doi.org/10.1016/j.jocs.2024.102320 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfEitirWR9mDB0XWtsnuJnssYqmKvdhCbyH7gpY2qdpe_e3uJJuiID14TNgJYXZ2dmb45huEri1LYyUiS0QomUtQUkpiSy0JhKTKKiqMgAbn1xEfTujzlE1r6KHqhQFYpff9pU8vvLV_0_Ha7Kxms85bD6jsWBcY5ZyRhsD4SWkEVn7_1dvWWYDtRBRTkmE9AQHfO1PCvOa5AtbugBYkBjD2-6_76cedMzhChz5YxP3yfxqoZrIm2q-w6k3U8CfzE994-ujbYzTu42WuZ9bFlhjK8gTwlzCRE2e5dl_zBBEL7PJaszTYRa3YRYG4wJ8XXQ4EpqZsoIyGzXtJBX6CJoPH8cOQ-NkJRIXd7ppQl8oppjVPQyWNFFoHkQ6MS7YEFaELgpixQrGu4cJGXLFA9WyaWqMCrZR06jxF9SzPzBnCPOaSxZyalBtq3OZarsMgMpbKUEgpWqhXaSxRnlgc5lsskgpBNk9AywloOSm13EJ3W5lVSauxczWrNiL5ZRyJ8_s75M7_KXeBDuCpxPldovr6Y2OuXOyxlu3CuNpor__0Mhx9A7gt2SM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60BfUitirW5x48KLK0TXa33WMRS320Fyt4C9kXtLRp1fb_u5NsREE8eE0yIcxOZmeWb74P4NLxtKtlx1EZK-4blJTRrmOORlIx7TSTVuKA83AkBi_s4ZW_bsBtOQuDsMqQ-4ucnmfrcKUZvNlcTibN5zZS2fEWMsr5II3jTagiOxWvQLV3_zgYfR21IOGJzIWS0YSiTRifKZBe04VG4u6I5TwGqPz92xb1bdvp78FuqBdJr_ikGmzYrA5bJVy9DrXwc36Qq8Agfb0P4x6ZL8zE-fKS4Mk8RQgminKSbGH82wJHxIz41tbOLfGFK_GFIMkh6PmgA0XhlDWepBH7VrCBH8BL_258O6BBPoHquNVaUea7Oc2NEWmslVXSmKhjIuv7Lclk7Osgbp3UvGWFdB2heaTbLk2d1ZHRWnmPHkIlW2T2CIjoCsW7gtlUWGb9-jph4qhjHVOxVEo2oF16LNGBWxwlLmZJCSKbJujlBL2cFF5uwM2XzbJg1vjzaV4uRPIjPhKf-v-wO_6n3QVsD8bDp-TpfvR4Ajt4p4D9nUJl9b62Z74UWanzEGqfNmjb1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+cell-centered+nodal+integral+scheme+for+the+convection-diffusion+equation&rft.jtitle=Journal+of+computational+science&rft.au=Ahmed%2C+Nadeem&rft.au=Singh%2C+Suneet&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=80&rft_id=info:doi/10.1016%2Fj.jocs.2024.102320&rft.externalDocID=S1877750324001133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |