A data partitioning method for increasing ensemble diversity of an eSVM-based P300 speller

•An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same distance to increase diversity.•The proposed method improves the letter-typing speed in a P300 speller. A P300 speller is a device for typing...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 39; pp. 53 - 63
Main Authors Lee, Yu-Ri, Kim, Hyoung-Nam
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2018
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2017.07.025

Cover

Abstract •An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same distance to increase diversity.•The proposed method improves the letter-typing speed in a P300 speller. A P300 speller is a device for typing words by analysing the electroencephalogram (EEG) caused by visual stimuli. Among classifying methods used for the P300 speller, the ensemble of support vector machines (eSVM) is well known for achieving considerable classification accuracy. The eSVM is composed of linear support vector machines trained by each small part of the divided training data. To obtain an ensemble model with good accuracy, it is generally important that each classifier be as accurate and diverse as possible; diverse classifiers have different errors on a dataset. However, the conventional eSVM considers only an accuracy viewpoint of an individual classifier by clustering the homogeneous training data with similar noisy components. With such a viewpoint of diversity, we propose a dataset manipulation method to divide a training dataset into several groups with different characteristics for training each classifier. We reveal that the distance between a letter on which a subject is concentrating, and an intensified line on a visual keyboard, can generate EEG signals with different characteristics in a P300 speller. Based on this property, we partition the training data into groups with the same distance. If each individual SVM is trained using each of these groups, the trained classifiers have the increased diversity. The experimental results of a P300 speller show that the proposed eSVM with higher diversity improves the letter typing speed of the P300 speller. Specifically, the proposed method shows an average of 70% accuracy (verbal communication with the Language Support Program is possible at that level) by repeating the dataset for a single letter only four times.
AbstractList •An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same distance to increase diversity.•The proposed method improves the letter-typing speed in a P300 speller. A P300 speller is a device for typing words by analysing the electroencephalogram (EEG) caused by visual stimuli. Among classifying methods used for the P300 speller, the ensemble of support vector machines (eSVM) is well known for achieving considerable classification accuracy. The eSVM is composed of linear support vector machines trained by each small part of the divided training data. To obtain an ensemble model with good accuracy, it is generally important that each classifier be as accurate and diverse as possible; diverse classifiers have different errors on a dataset. However, the conventional eSVM considers only an accuracy viewpoint of an individual classifier by clustering the homogeneous training data with similar noisy components. With such a viewpoint of diversity, we propose a dataset manipulation method to divide a training dataset into several groups with different characteristics for training each classifier. We reveal that the distance between a letter on which a subject is concentrating, and an intensified line on a visual keyboard, can generate EEG signals with different characteristics in a P300 speller. Based on this property, we partition the training data into groups with the same distance. If each individual SVM is trained using each of these groups, the trained classifiers have the increased diversity. The experimental results of a P300 speller show that the proposed eSVM with higher diversity improves the letter typing speed of the P300 speller. Specifically, the proposed method shows an average of 70% accuracy (verbal communication with the Language Support Program is possible at that level) by repeating the dataset for a single letter only four times.
Author Lee, Yu-Ri
Kim, Hyoung-Nam
Author_xml – sequence: 1
  givenname: Yu-Ri
  surname: Lee
  fullname: Lee, Yu-Ri
– sequence: 2
  givenname: Hyoung-Nam
  surname: Kim
  fullname: Kim, Hyoung-Nam
  email: hnkim@pusan.ac.kr
BookMark eNp9kNtKAzEQhoNUsFZfwKu8wK5J9pAseFOKJ6goeLjwJmSTiaZss0sSCn17d6neeFEYmGH4v4H5ztHM9x4QuqIkp4TW15u8jYPOGaE8J2Ox6gTNKS_rTFAiZn8zacozdB7jhpBScFrO0ecSG5UUHlRILrneO_-Ft5C-e4NtH7DzOoCK0xZ8hG3bATZuByG6tMe9xcpjeP14yloVweCXghAcB-g6CBfo1KouwuVvX6D3u9u31UO2fr5_XC3XmR7DKSupKBRlLRBFDAMrWKE0t6q2jFnNBXBVsXIM2Jrrqmlr3hhVNpWoWdEWVVEsEDvc1aGPMYCVQ3BbFfaSEjnZkRs52ZGTHUnGYtUIiX-QdklNAlJQrjuO3hxQGJ_aOQgyagdeg3EBdJKmd8fwH6Jego8
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2905669
crossref_primary_10_1016_j_bbe_2019_08_001
crossref_primary_10_1016_j_bspc_2019_101645
crossref_primary_10_1016_j_cmpb_2022_107324
crossref_primary_10_1007_s12652_020_01980_6
crossref_primary_10_1007_s12652_020_01986_0
crossref_primary_10_1088_1741_2552_abe20f
crossref_primary_10_1016_j_neucom_2022_06_089
crossref_primary_10_1109_THMS_2022_3168421
crossref_primary_10_1016_j_bspc_2021_102648
crossref_primary_10_1109_TNSRE_2018_2864119
crossref_primary_10_1016_j_dajour_2023_100218
crossref_primary_10_3390_electronics14030447
Cites_doi 10.1109/TBME.2004.836505
10.1016/0013-4694(94)90003-5
10.1053/apmr.2001.26621
10.1109/TBME.2008.915728
10.1016/0013-4694(88)90149-6
10.1109/34.58871
10.1109/TNSRE.2007.912816
10.1109/TNSRE.2006.875642
10.1007/BF00058655
10.1109/TBME.2004.826698
10.1023/A:1022859003006
10.1016/j.jspi.2006.06.002
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2017.07.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
EndPage 63
ExternalDocumentID 10_1016_j_bspc_2017_07_025
S174680941730157X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-4183a12be0a0d2ef823ac7fa6f22fc78e7a52412bf67c59b679da4958623b3533
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 01:34:03 EDT 2025
Fri Feb 23 02:28:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords P300 speller
Ensemble of SVMs
EEG
Ensemble diversity
Brain–computer interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-4183a12be0a0d2ef823ac7fa6f22fc78e7a52412bf67c59b679da4958623b3533
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_bspc_2017_07_025
crossref_citationtrail_10_1016_j_bspc_2017_07_025
elsevier_sciencedirect_doi_10_1016_j_bspc_2017_07_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kuncheva, Whitaker (bib0125) 2003; 51
Salvaris, Sepulveda (bib0040) 2009
Blankertz (bib0030) 2004
Zhou (bib0055) 2012
Mirghasemi, Fazel-Rezai, Shamsollahi (bib0060) 2006
Lenhardt, Kaper, Ritter (bib0020) 2008; 16
Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0035) 2006; 14
Friedman, Hall (bib0130) 2007; 137
Farwell, Donchin (bib0005) 1988; 70
Rakotomamonjy, Guigue (bib0025) 2008; 55
Boussemart, Hemery, Lecoutre, Sais (bib0095) 2004
Rugg, Coles (bib0010) 1995
El Dabbagh, Fakhr (bib0050) 2011
Zanda (bib0115) 2010
Ng (bib0080) 2011
Mirghasemi, Shamsollahi, Fazel-Rezai (bib0070) 2006
Krogh, Vedelsby (bib0120) 1995; 7
Hansen, Salamon (bib0090) 1990; 12
Perseh, Kiamini (bib0045) 2013; 2013
Breiman (bib0105) 1996; 24
Yuan (bib0085) 2008
Kuang (bib0110) 2009
Slater, Wu, Honig, Ramsay, Morgan (bib0015) 1994; 90
Kaper, Meinicke, Grossekathoefer, Lingner, Ritter (bib0075) 2004; 51
Tregoubov, Birbaumer (bib0065) 2005; 52
Kübler, Neumann, Kaiser, Kotchoubey, Hinterberger, Birbaumer (bib0135) 2001; 82
Büchlmann, Yu (bib0100) 2002
Perseh (10.1016/j.bspc.2017.07.025_bib0045) 2013; 2013
Krogh (10.1016/j.bspc.2017.07.025_bib0120) 1995; 7
El Dabbagh (10.1016/j.bspc.2017.07.025_bib0050) 2011
Kübler (10.1016/j.bspc.2017.07.025_bib0135) 2001; 82
Farwell (10.1016/j.bspc.2017.07.025_bib0005) 1988; 70
Friedman (10.1016/j.bspc.2017.07.025_bib0130) 2007; 137
Zhou (10.1016/j.bspc.2017.07.025_bib0055) 2012
Zanda (10.1016/j.bspc.2017.07.025_bib0115) 2010
Kaper (10.1016/j.bspc.2017.07.025_bib0075) 2004; 51
Kuang (10.1016/j.bspc.2017.07.025_bib0110) 2009
Slater (10.1016/j.bspc.2017.07.025_bib0015) 1994; 90
Ng (10.1016/j.bspc.2017.07.025_bib0080) 2011
Kuncheva (10.1016/j.bspc.2017.07.025_bib0125) 2003; 51
Lenhardt (10.1016/j.bspc.2017.07.025_bib0020) 2008; 16
Tregoubov (10.1016/j.bspc.2017.07.025_bib0065) 2005; 52
Rakotomamonjy (10.1016/j.bspc.2017.07.025_bib0025) 2008; 55
Blankertz (10.1016/j.bspc.2017.07.025_bib0030) 2004
Salvaris (10.1016/j.bspc.2017.07.025_bib0040) 2009
Rugg (10.1016/j.bspc.2017.07.025_bib0010) 1995
Büchlmann (10.1016/j.bspc.2017.07.025_bib0100) 2002
Mirghasemi (10.1016/j.bspc.2017.07.025_bib0060) 2006
Breiman (10.1016/j.bspc.2017.07.025_bib0105) 1996; 24
Blankertz (10.1016/j.bspc.2017.07.025_bib0035) 2006; 14
Mirghasemi (10.1016/j.bspc.2017.07.025_bib0070) 2006
Yuan (10.1016/j.bspc.2017.07.025_bib0085) 2008
Hansen (10.1016/j.bspc.2017.07.025_bib0090) 1990; 12
Boussemart (10.1016/j.bspc.2017.07.025_bib0095) 2004
References_xml – volume: 52
  start-page: 300
  year: 2005
  end-page: 305
  ident: bib0065
  article-title: On the building of binary spelling interfaces for augmentative communication
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 231
  year: 1995
  end-page: 238
  ident: bib0120
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Adv. Neural Inform. Process. Syst.
– year: 2009
  ident: bib0110
  article-title: Comparative Study on Feature Selection Methods and Their Applications in Causal Inference
– start-page: 927
  year: 2002
  end-page: 961
  ident: bib0100
  article-title: Analyzing bagging
  publication-title: Ann. Stat.
– start-page: 6205
  year: 2006
  end-page: 6208
  ident: bib0060
  article-title: Analysis of P300 classifiers in brain computer interface speller
  publication-title: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, EMBS’06
– volume: 51
  start-page: 181
  year: 2003
  end-page: 207
  ident: bib0125
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Mach. Learn.
– start-page: 339
  year: 2009
  end-page: 342
  ident: bib0040
  article-title: Wavelets and ensemble of FLDs for P300 classification
  publication-title: 4th International IEEE/EMBS Conference on Neural Engineering, 2009, NER’09
– year: 2011
  ident: bib0080
  article-title: CS229 Lecture Notes on Machine Learning, Technical Report
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib0035
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: bib0090
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1319
  year: 2006
  end-page: 1322
  ident: bib0070
  article-title: Assessment of preprocessing on classifiers used in the P300 speller paradigm
  publication-title: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, EMBS’06
– year: 2012
  ident: bib0055
  article-title: Ensemble Methods: Foundations and Algorithms
– volume: 2013
  year: 2013
  ident: bib0045
  article-title: Optimizing feature vectors and removal unnecessary channels in BCI speller application
  publication-title: J. Biomed. Sci. Eng.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0105
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 82
  start-page: 1533
  year: 2001
  end-page: 1539
  ident: bib0135
  article-title: Brain-computer communication: self-regulation of slow cortical potentials for verbal communication
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 55
  start-page: 1147
  year: 2008
  end-page: 1154
  ident: bib0025
  article-title: BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 51
  start-page: 1073
  year: 2004
  end-page: 1076
  ident: bib0075
  article-title: BCI competition 2003-data set IIB: support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2008
  ident: bib0085
  article-title: Image-Based Gesture Recognition With Support Vector Machines
– volume: 90
  start-page: 114
  year: 1994
  end-page: 122
  ident: bib0015
  article-title: Neural network analysis of the P300 event-related potential in multiple sclerosis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 16
  start-page: 121
  year: 2008
  end-page: 130
  ident: bib0020
  article-title: An adaptive P300-based online brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2004
  ident: bib0030
  article-title: BCI Competition III Website
– start-page: 146
  year: 2004
  end-page: 150
  ident: bib0095
  article-title: Boosting systematic search by weighting constraints
  publication-title: Proceedings of the 16th European Conference on Artificial Intelligence
– year: 1995
  ident: bib0010
  article-title: Electrophysiology of Mind: Event-Related Brain Potentials and Cognition
– year: 2010
  ident: bib0115
  article-title: A Probabilistic Perspective on Ensemble Diversity (Ph.D. thesis)
– volume: 70
  start-page: 510
  year: 1988
  end-page: 523
  ident: bib0005
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– start-page: 393
  year: 2011
  end-page: 396
  ident: bib0050
  article-title: Multiple classification algorithms for the BCI P300 speller diagram using ensemble of SVMs
  publication-title: 2011 IEEE on GCC Conference and Exhibition (GCC)
– volume: 137
  start-page: 669
  year: 2007
  end-page: 683
  ident: bib0130
  article-title: On bagging and nonlinear estimation
  publication-title: J. Stat. Plann. Inference
– volume: 52
  start-page: 300
  year: 2005
  ident: 10.1016/j.bspc.2017.07.025_bib0065
  article-title: On the building of binary spelling interfaces for augmentative communication
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.836505
– volume: 90
  start-page: 114
  year: 1994
  ident: 10.1016/j.bspc.2017.07.025_bib0015
  article-title: Neural network analysis of the P300 event-related potential in multiple sclerosis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(94)90003-5
– start-page: 146
  year: 2004
  ident: 10.1016/j.bspc.2017.07.025_bib0095
  article-title: Boosting systematic search by weighting constraints
– volume: 7
  start-page: 231
  year: 1995
  ident: 10.1016/j.bspc.2017.07.025_bib0120
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 82
  start-page: 1533
  year: 2001
  ident: 10.1016/j.bspc.2017.07.025_bib0135
  article-title: Brain-computer communication: self-regulation of slow cortical potentials for verbal communication
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2001.26621
– volume: 2013
  year: 2013
  ident: 10.1016/j.bspc.2017.07.025_bib0045
  article-title: Optimizing feature vectors and removal unnecessary channels in BCI speller application
  publication-title: J. Biomed. Sci. Eng.
– volume: 55
  start-page: 1147
  year: 2008
  ident: 10.1016/j.bspc.2017.07.025_bib0025
  article-title: BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.915728
– start-page: 1319
  year: 2006
  ident: 10.1016/j.bspc.2017.07.025_bib0070
  article-title: Assessment of preprocessing on classifiers used in the P300 speller paradigm
– volume: 70
  start-page: 510
  year: 1988
  ident: 10.1016/j.bspc.2017.07.025_bib0005
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(88)90149-6
– volume: 12
  start-page: 993
  year: 1990
  ident: 10.1016/j.bspc.2017.07.025_bib0090
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– year: 2010
  ident: 10.1016/j.bspc.2017.07.025_bib0115
– volume: 16
  start-page: 121
  year: 2008
  ident: 10.1016/j.bspc.2017.07.025_bib0020
  article-title: An adaptive P300-based online brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.912816
– year: 2011
  ident: 10.1016/j.bspc.2017.07.025_bib0080
– start-page: 339
  year: 2009
  ident: 10.1016/j.bspc.2017.07.025_bib0040
  article-title: Wavelets and ensemble of FLDs for P300 classification
– volume: 14
  start-page: 153
  year: 2006
  ident: 10.1016/j.bspc.2017.07.025_bib0035
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– year: 2009
  ident: 10.1016/j.bspc.2017.07.025_bib0110
– year: 1995
  ident: 10.1016/j.bspc.2017.07.025_bib0010
– start-page: 6205
  year: 2006
  ident: 10.1016/j.bspc.2017.07.025_bib0060
  article-title: Analysis of P300 classifiers in brain computer interface speller
– start-page: 393
  year: 2011
  ident: 10.1016/j.bspc.2017.07.025_bib0050
  article-title: Multiple classification algorithms for the BCI P300 speller diagram using ensemble of SVMs
– start-page: 927
  year: 2002
  ident: 10.1016/j.bspc.2017.07.025_bib0100
  article-title: Analyzing bagging
  publication-title: Ann. Stat.
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.bspc.2017.07.025_bib0105
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– year: 2008
  ident: 10.1016/j.bspc.2017.07.025_bib0085
– volume: 51
  start-page: 1073
  year: 2004
  ident: 10.1016/j.bspc.2017.07.025_bib0075
  article-title: BCI competition 2003-data set IIB: support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826698
– year: 2012
  ident: 10.1016/j.bspc.2017.07.025_bib0055
– volume: 51
  start-page: 181
  year: 2003
  ident: 10.1016/j.bspc.2017.07.025_bib0125
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022859003006
– year: 2004
  ident: 10.1016/j.bspc.2017.07.025_bib0030
– volume: 137
  start-page: 669
  year: 2007
  ident: 10.1016/j.bspc.2017.07.025_bib0130
  article-title: On bagging and nonlinear estimation
  publication-title: J. Stat. Plann. Inference
  doi: 10.1016/j.jspi.2006.06.002
SSID ssj0048714
Score 2.218057
Snippet •An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms Brain–computer interface
EEG
Ensemble diversity
Ensemble of SVMs
P300 speller
Title A data partitioning method for increasing ensemble diversity of an eSVM-based P300 speller
URI https://dx.doi.org/10.1016/j.bspc.2017.07.025
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60XvQgPrG-2IM3WZvsI5seiyhVUQQfFC9hn1DRWLRe_e3ONhtREA9CLkl2YBkmM99sZr4BOJDSlYJrQ13wmgpXWloyK6gossC8wojHY3Py5VUxvBPnIzmag-O2FyaWVSbf3_j0mbdOT3pJm73JeNy7QSxdlJid5NFIpRrNwwLj_UJ2YGFwdjG8ah0yQvIZxXdcT6NA6p1pyrzM2yQyGeZqxuEZJ2b_Fp--xZzTFVhOYJEMmv2swpyv12DpG4XgOjwMSCzyJJO46XS4Spqx0ATxKBnXERbGAwGCCat_Nk-euLYWg7wEomvib-4vaQxnjlzzLCNv8Y-Mf92Au9OT2-MhTfMSqMWXUyrw89Q5Mz7TmWM-lIxrq4IuAmPBqtIrLTFgMxMKZWXfFKrvNCZImNRwwxH3bUKnfqn9FhDDdd_IwnHhMmFDMD53pQ8mYMzzQtku5K2WKpvIxONMi6eqrRp7rKJmq6jZKsOLyS4cfslMGiqNP1fLVvnVD4Oo0Nf_Ibf9T7kdWMS7sjld2YXO9PXd7yHemJp9mD_6yPeTVX0CZjTU2g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MS3e_Ama5N9ZNNjEaU-KoIPipewT6jUWLRe_e3ONIkoiAchp-wuLMNk5pvJNzOEHCrlcymMZT4Gw6TPHcu5k0xmSeRBg8cTWJzcv8569_JioAYz5KSphUFaZW37K5s-tdb1m3YtzfZ4OGzfApbOcohOUlRSpQezZE4qoZHXd_zxxfMAQD5t8I27GW6vK2cqkpd9G2Mfw1RPO3jivOzfvNM3j3O2TJZqqEi71W1WyEwoV8nitwaCa-SxS5HiScd45Tq1Squh0BTQKB2WCAoxHUAhXA3PdhSob5gY9CVSU9Jw-9Bn6Mw8vRFJQt_wf0x4XSf3Z6d3Jz1WT0tgDhYnTMLHaVJuQ2ISz0PMuTBOR5NFzqPTedBGgbvmNmbaqY7NdMcbCI8gpBFWAOrbIK3ypQybhFphOlZlXkifSBejDanPQ7QRPF6Q2m2RtJFS4epW4jjRYlQ0nLGnAiVboGSLBB6utsjR15lx1Ujjz92qEX7xQx0KsPR_nNv-57kDMt-7618VV-fXlztkAVbyKs-yS1qT1_ewB8hjYvenmvUJLnfVpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+partitioning+method+for+increasing+ensemble+diversity+of+an+eSVM-based+P300+speller&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Lee%2C+Yu-Ri&rft.au=Kim%2C+Hyoung-Nam&rft.date=2018-01-01&rft.issn=1746-8094&rft.volume=39&rft.spage=53&rft.epage=63&rft_id=info:doi/10.1016%2Fj.bspc.2017.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2017_07_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon