A data partitioning method for increasing ensemble diversity of an eSVM-based P300 speller
•An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same distance to increase diversity.•The proposed method improves the letter-typing speed in a P300 speller. A P300 speller is a device for typing...
Saved in:
Published in | Biomedical signal processing and control Vol. 39; pp. 53 - 63 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2017.07.025 |
Cover
Abstract | •An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same distance to increase diversity.•The proposed method improves the letter-typing speed in a P300 speller.
A P300 speller is a device for typing words by analysing the electroencephalogram (EEG) caused by visual stimuli. Among classifying methods used for the P300 speller, the ensemble of support vector machines (eSVM) is well known for achieving considerable classification accuracy. The eSVM is composed of linear support vector machines trained by each small part of the divided training data. To obtain an ensemble model with good accuracy, it is generally important that each classifier be as accurate and diverse as possible; diverse classifiers have different errors on a dataset. However, the conventional eSVM considers only an accuracy viewpoint of an individual classifier by clustering the homogeneous training data with similar noisy components. With such a viewpoint of diversity, we propose a dataset manipulation method to divide a training dataset into several groups with different characteristics for training each classifier. We reveal that the distance between a letter on which a subject is concentrating, and an intensified line on a visual keyboard, can generate EEG signals with different characteristics in a P300 speller. Based on this property, we partition the training data into groups with the same distance. If each individual SVM is trained using each of these groups, the trained classifiers have the increased diversity. The experimental results of a P300 speller show that the proposed eSVM with higher diversity improves the letter typing speed of the P300 speller. Specifically, the proposed method shows an average of 70% accuracy (verbal communication with the Language Support Program is possible at that level) by repeating the dataset for a single letter only four times. |
---|---|
AbstractList | •An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same distance to increase diversity.•The proposed method improves the letter-typing speed in a P300 speller.
A P300 speller is a device for typing words by analysing the electroencephalogram (EEG) caused by visual stimuli. Among classifying methods used for the P300 speller, the ensemble of support vector machines (eSVM) is well known for achieving considerable classification accuracy. The eSVM is composed of linear support vector machines trained by each small part of the divided training data. To obtain an ensemble model with good accuracy, it is generally important that each classifier be as accurate and diverse as possible; diverse classifiers have different errors on a dataset. However, the conventional eSVM considers only an accuracy viewpoint of an individual classifier by clustering the homogeneous training data with similar noisy components. With such a viewpoint of diversity, we propose a dataset manipulation method to divide a training dataset into several groups with different characteristics for training each classifier. We reveal that the distance between a letter on which a subject is concentrating, and an intensified line on a visual keyboard, can generate EEG signals with different characteristics in a P300 speller. Based on this property, we partition the training data into groups with the same distance. If each individual SVM is trained using each of these groups, the trained classifiers have the increased diversity. The experimental results of a P300 speller show that the proposed eSVM with higher diversity improves the letter typing speed of the P300 speller. Specifically, the proposed method shows an average of 70% accuracy (verbal communication with the Language Support Program is possible at that level) by repeating the dataset for a single letter only four times. |
Author | Lee, Yu-Ri Kim, Hyoung-Nam |
Author_xml | – sequence: 1 givenname: Yu-Ri surname: Lee fullname: Lee, Yu-Ri – sequence: 2 givenname: Hyoung-Nam surname: Kim fullname: Kim, Hyoung-Nam email: hnkim@pusan.ac.kr |
BookMark | eNp9kNtKAzEQhoNUsFZfwKu8wK5J9pAseFOKJ6goeLjwJmSTiaZss0sSCn17d6neeFEYmGH4v4H5ztHM9x4QuqIkp4TW15u8jYPOGaE8J2Ox6gTNKS_rTFAiZn8zacozdB7jhpBScFrO0ecSG5UUHlRILrneO_-Ft5C-e4NtH7DzOoCK0xZ8hG3bATZuByG6tMe9xcpjeP14yloVweCXghAcB-g6CBfo1KouwuVvX6D3u9u31UO2fr5_XC3XmR7DKSupKBRlLRBFDAMrWKE0t6q2jFnNBXBVsXIM2Jrrqmlr3hhVNpWoWdEWVVEsEDvc1aGPMYCVQ3BbFfaSEjnZkRs52ZGTHUnGYtUIiX-QdklNAlJQrjuO3hxQGJ_aOQgyagdeg3EBdJKmd8fwH6Jego8 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2905669 crossref_primary_10_1016_j_bbe_2019_08_001 crossref_primary_10_1016_j_bspc_2019_101645 crossref_primary_10_1016_j_cmpb_2022_107324 crossref_primary_10_1007_s12652_020_01980_6 crossref_primary_10_1007_s12652_020_01986_0 crossref_primary_10_1088_1741_2552_abe20f crossref_primary_10_1016_j_neucom_2022_06_089 crossref_primary_10_1109_THMS_2022_3168421 crossref_primary_10_1016_j_bspc_2021_102648 crossref_primary_10_1109_TNSRE_2018_2864119 crossref_primary_10_1016_j_dajour_2023_100218 crossref_primary_10_3390_electronics14030447 |
Cites_doi | 10.1109/TBME.2004.836505 10.1016/0013-4694(94)90003-5 10.1053/apmr.2001.26621 10.1109/TBME.2008.915728 10.1016/0013-4694(88)90149-6 10.1109/34.58871 10.1109/TNSRE.2007.912816 10.1109/TNSRE.2006.875642 10.1007/BF00058655 10.1109/TBME.2004.826698 10.1023/A:1022859003006 10.1016/j.jspi.2006.06.002 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2017.07.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
EndPage | 63 |
ExternalDocumentID | 10_1016_j_bspc_2017_07_025 S174680941730157X |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-4183a12be0a0d2ef823ac7fa6f22fc78e7a52412bf67c59b679da4958623b3533 |
IEDL.DBID | AIKHN |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 01:34:03 EDT 2025 Fri Feb 23 02:28:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | P300 speller Ensemble of SVMs EEG Ensemble diversity Brain–computer interface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-4183a12be0a0d2ef823ac7fa6f22fc78e7a52412bf67c59b679da4958623b3533 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2017_07_025 crossref_citationtrail_10_1016_j_bspc_2017_07_025 elsevier_sciencedirect_doi_10_1016_j_bspc_2017_07_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kuncheva, Whitaker (bib0125) 2003; 51 Salvaris, Sepulveda (bib0040) 2009 Blankertz (bib0030) 2004 Zhou (bib0055) 2012 Mirghasemi, Fazel-Rezai, Shamsollahi (bib0060) 2006 Lenhardt, Kaper, Ritter (bib0020) 2008; 16 Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0035) 2006; 14 Friedman, Hall (bib0130) 2007; 137 Farwell, Donchin (bib0005) 1988; 70 Rakotomamonjy, Guigue (bib0025) 2008; 55 Boussemart, Hemery, Lecoutre, Sais (bib0095) 2004 Rugg, Coles (bib0010) 1995 El Dabbagh, Fakhr (bib0050) 2011 Zanda (bib0115) 2010 Ng (bib0080) 2011 Mirghasemi, Shamsollahi, Fazel-Rezai (bib0070) 2006 Krogh, Vedelsby (bib0120) 1995; 7 Hansen, Salamon (bib0090) 1990; 12 Perseh, Kiamini (bib0045) 2013; 2013 Breiman (bib0105) 1996; 24 Yuan (bib0085) 2008 Kuang (bib0110) 2009 Slater, Wu, Honig, Ramsay, Morgan (bib0015) 1994; 90 Kaper, Meinicke, Grossekathoefer, Lingner, Ritter (bib0075) 2004; 51 Tregoubov, Birbaumer (bib0065) 2005; 52 Kübler, Neumann, Kaiser, Kotchoubey, Hinterberger, Birbaumer (bib0135) 2001; 82 Büchlmann, Yu (bib0100) 2002 Perseh (10.1016/j.bspc.2017.07.025_bib0045) 2013; 2013 Krogh (10.1016/j.bspc.2017.07.025_bib0120) 1995; 7 El Dabbagh (10.1016/j.bspc.2017.07.025_bib0050) 2011 Kübler (10.1016/j.bspc.2017.07.025_bib0135) 2001; 82 Farwell (10.1016/j.bspc.2017.07.025_bib0005) 1988; 70 Friedman (10.1016/j.bspc.2017.07.025_bib0130) 2007; 137 Zhou (10.1016/j.bspc.2017.07.025_bib0055) 2012 Zanda (10.1016/j.bspc.2017.07.025_bib0115) 2010 Kaper (10.1016/j.bspc.2017.07.025_bib0075) 2004; 51 Kuang (10.1016/j.bspc.2017.07.025_bib0110) 2009 Slater (10.1016/j.bspc.2017.07.025_bib0015) 1994; 90 Ng (10.1016/j.bspc.2017.07.025_bib0080) 2011 Kuncheva (10.1016/j.bspc.2017.07.025_bib0125) 2003; 51 Lenhardt (10.1016/j.bspc.2017.07.025_bib0020) 2008; 16 Tregoubov (10.1016/j.bspc.2017.07.025_bib0065) 2005; 52 Rakotomamonjy (10.1016/j.bspc.2017.07.025_bib0025) 2008; 55 Blankertz (10.1016/j.bspc.2017.07.025_bib0030) 2004 Salvaris (10.1016/j.bspc.2017.07.025_bib0040) 2009 Rugg (10.1016/j.bspc.2017.07.025_bib0010) 1995 Büchlmann (10.1016/j.bspc.2017.07.025_bib0100) 2002 Mirghasemi (10.1016/j.bspc.2017.07.025_bib0060) 2006 Breiman (10.1016/j.bspc.2017.07.025_bib0105) 1996; 24 Blankertz (10.1016/j.bspc.2017.07.025_bib0035) 2006; 14 Mirghasemi (10.1016/j.bspc.2017.07.025_bib0070) 2006 Yuan (10.1016/j.bspc.2017.07.025_bib0085) 2008 Hansen (10.1016/j.bspc.2017.07.025_bib0090) 1990; 12 Boussemart (10.1016/j.bspc.2017.07.025_bib0095) 2004 |
References_xml | – volume: 52 start-page: 300 year: 2005 end-page: 305 ident: bib0065 article-title: On the building of binary spelling interfaces for augmentative communication publication-title: IEEE Trans. Biomed. Eng. – volume: 7 start-page: 231 year: 1995 end-page: 238 ident: bib0120 article-title: Neural network ensembles, cross validation, and active learning publication-title: Adv. Neural Inform. Process. Syst. – year: 2009 ident: bib0110 article-title: Comparative Study on Feature Selection Methods and Their Applications in Causal Inference – start-page: 927 year: 2002 end-page: 961 ident: bib0100 article-title: Analyzing bagging publication-title: Ann. Stat. – start-page: 6205 year: 2006 end-page: 6208 ident: bib0060 article-title: Analysis of P300 classifiers in brain computer interface speller publication-title: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, EMBS’06 – volume: 51 start-page: 181 year: 2003 end-page: 207 ident: bib0125 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Mach. Learn. – start-page: 339 year: 2009 end-page: 342 ident: bib0040 article-title: Wavelets and ensemble of FLDs for P300 classification publication-title: 4th International IEEE/EMBS Conference on Neural Engineering, 2009, NER’09 – year: 2011 ident: bib0080 article-title: CS229 Lecture Notes on Machine Learning, Technical Report – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: bib0035 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: bib0090 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1319 year: 2006 end-page: 1322 ident: bib0070 article-title: Assessment of preprocessing on classifiers used in the P300 speller paradigm publication-title: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, EMBS’06 – year: 2012 ident: bib0055 article-title: Ensemble Methods: Foundations and Algorithms – volume: 2013 year: 2013 ident: bib0045 article-title: Optimizing feature vectors and removal unnecessary channels in BCI speller application publication-title: J. Biomed. Sci. Eng. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0105 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 82 start-page: 1533 year: 2001 end-page: 1539 ident: bib0135 article-title: Brain-computer communication: self-regulation of slow cortical potentials for verbal communication publication-title: Arch. Phys. Med. Rehabil. – volume: 55 start-page: 1147 year: 2008 end-page: 1154 ident: bib0025 article-title: BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller publication-title: IEEE Trans. Biomed. Eng. – volume: 51 start-page: 1073 year: 2004 end-page: 1076 ident: bib0075 article-title: BCI competition 2003-data set IIB: support vector machines for the P300 speller paradigm publication-title: IEEE Trans. Biomed. Eng. – year: 2008 ident: bib0085 article-title: Image-Based Gesture Recognition With Support Vector Machines – volume: 90 start-page: 114 year: 1994 end-page: 122 ident: bib0015 article-title: Neural network analysis of the P300 event-related potential in multiple sclerosis publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 16 start-page: 121 year: 2008 end-page: 130 ident: bib0020 article-title: An adaptive P300-based online brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2004 ident: bib0030 article-title: BCI Competition III Website – start-page: 146 year: 2004 end-page: 150 ident: bib0095 article-title: Boosting systematic search by weighting constraints publication-title: Proceedings of the 16th European Conference on Artificial Intelligence – year: 1995 ident: bib0010 article-title: Electrophysiology of Mind: Event-Related Brain Potentials and Cognition – year: 2010 ident: bib0115 article-title: A Probabilistic Perspective on Ensemble Diversity (Ph.D. thesis) – volume: 70 start-page: 510 year: 1988 end-page: 523 ident: bib0005 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalogr. Clin. Neurophysiol. – start-page: 393 year: 2011 end-page: 396 ident: bib0050 article-title: Multiple classification algorithms for the BCI P300 speller diagram using ensemble of SVMs publication-title: 2011 IEEE on GCC Conference and Exhibition (GCC) – volume: 137 start-page: 669 year: 2007 end-page: 683 ident: bib0130 article-title: On bagging and nonlinear estimation publication-title: J. Stat. Plann. Inference – volume: 52 start-page: 300 year: 2005 ident: 10.1016/j.bspc.2017.07.025_bib0065 article-title: On the building of binary spelling interfaces for augmentative communication publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.836505 – volume: 90 start-page: 114 year: 1994 ident: 10.1016/j.bspc.2017.07.025_bib0015 article-title: Neural network analysis of the P300 event-related potential in multiple sclerosis publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90003-5 – start-page: 146 year: 2004 ident: 10.1016/j.bspc.2017.07.025_bib0095 article-title: Boosting systematic search by weighting constraints – volume: 7 start-page: 231 year: 1995 ident: 10.1016/j.bspc.2017.07.025_bib0120 article-title: Neural network ensembles, cross validation, and active learning publication-title: Adv. Neural Inform. Process. Syst. – volume: 82 start-page: 1533 year: 2001 ident: 10.1016/j.bspc.2017.07.025_bib0135 article-title: Brain-computer communication: self-regulation of slow cortical potentials for verbal communication publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2001.26621 – volume: 2013 year: 2013 ident: 10.1016/j.bspc.2017.07.025_bib0045 article-title: Optimizing feature vectors and removal unnecessary channels in BCI speller application publication-title: J. Biomed. Sci. Eng. – volume: 55 start-page: 1147 year: 2008 ident: 10.1016/j.bspc.2017.07.025_bib0025 article-title: BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.915728 – start-page: 1319 year: 2006 ident: 10.1016/j.bspc.2017.07.025_bib0070 article-title: Assessment of preprocessing on classifiers used in the P300 speller paradigm – volume: 70 start-page: 510 year: 1988 ident: 10.1016/j.bspc.2017.07.025_bib0005 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(88)90149-6 – volume: 12 start-page: 993 year: 1990 ident: 10.1016/j.bspc.2017.07.025_bib0090 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – year: 2010 ident: 10.1016/j.bspc.2017.07.025_bib0115 – volume: 16 start-page: 121 year: 2008 ident: 10.1016/j.bspc.2017.07.025_bib0020 article-title: An adaptive P300-based online brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.912816 – year: 2011 ident: 10.1016/j.bspc.2017.07.025_bib0080 – start-page: 339 year: 2009 ident: 10.1016/j.bspc.2017.07.025_bib0040 article-title: Wavelets and ensemble of FLDs for P300 classification – volume: 14 start-page: 153 year: 2006 ident: 10.1016/j.bspc.2017.07.025_bib0035 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – year: 2009 ident: 10.1016/j.bspc.2017.07.025_bib0110 – year: 1995 ident: 10.1016/j.bspc.2017.07.025_bib0010 – start-page: 6205 year: 2006 ident: 10.1016/j.bspc.2017.07.025_bib0060 article-title: Analysis of P300 classifiers in brain computer interface speller – start-page: 393 year: 2011 ident: 10.1016/j.bspc.2017.07.025_bib0050 article-title: Multiple classification algorithms for the BCI P300 speller diagram using ensemble of SVMs – start-page: 927 year: 2002 ident: 10.1016/j.bspc.2017.07.025_bib0100 article-title: Analyzing bagging publication-title: Ann. Stat. – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.bspc.2017.07.025_bib0105 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – year: 2008 ident: 10.1016/j.bspc.2017.07.025_bib0085 – volume: 51 start-page: 1073 year: 2004 ident: 10.1016/j.bspc.2017.07.025_bib0075 article-title: BCI competition 2003-data set IIB: support vector machines for the P300 speller paradigm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826698 – year: 2012 ident: 10.1016/j.bspc.2017.07.025_bib0055 – volume: 51 start-page: 181 year: 2003 ident: 10.1016/j.bspc.2017.07.025_bib0125 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Mach. Learn. doi: 10.1023/A:1022859003006 – year: 2004 ident: 10.1016/j.bspc.2017.07.025_bib0030 – volume: 137 start-page: 669 year: 2007 ident: 10.1016/j.bspc.2017.07.025_bib0130 article-title: On bagging and nonlinear estimation publication-title: J. Stat. Plann. Inference doi: 10.1016/j.jspi.2006.06.002 |
SSID | ssj0048714 |
Score | 2.218057 |
Snippet | •An ensemble method with increased diversity is applied to a P300 speller to achieve higher accuracy.•We partition the training data into groups with the same... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 53 |
SubjectTerms | Brain–computer interface EEG Ensemble diversity Ensemble of SVMs P300 speller |
Title | A data partitioning method for increasing ensemble diversity of an eSVM-based P300 speller |
URI | https://dx.doi.org/10.1016/j.bspc.2017.07.025 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60XvQgPrG-2IM3WZvsI5seiyhVUQQfFC9hn1DRWLRe_e3ONhtREA9CLkl2YBkmM99sZr4BOJDSlYJrQ13wmgpXWloyK6gossC8wojHY3Py5VUxvBPnIzmag-O2FyaWVSbf3_j0mbdOT3pJm73JeNy7QSxdlJid5NFIpRrNwwLj_UJ2YGFwdjG8ah0yQvIZxXdcT6NA6p1pyrzM2yQyGeZqxuEZJ2b_Fp--xZzTFVhOYJEMmv2swpyv12DpG4XgOjwMSCzyJJO46XS4Spqx0ATxKBnXERbGAwGCCat_Nk-euLYWg7wEomvib-4vaQxnjlzzLCNv8Y-Mf92Au9OT2-MhTfMSqMWXUyrw89Q5Mz7TmWM-lIxrq4IuAmPBqtIrLTFgMxMKZWXfFKrvNCZImNRwwxH3bUKnfqn9FhDDdd_IwnHhMmFDMD53pQ8mYMzzQtku5K2WKpvIxONMi6eqrRp7rKJmq6jZKsOLyS4cfslMGiqNP1fLVvnVD4Oo0Nf_Ibf9T7kdWMS7sjld2YXO9PXd7yHemJp9mD_6yPeTVX0CZjTU2g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MS3e_Ama5N9ZNNjEaU-KoIPipewT6jUWLRe_e3ONIkoiAchp-wuLMNk5pvJNzOEHCrlcymMZT4Gw6TPHcu5k0xmSeRBg8cTWJzcv8569_JioAYz5KSphUFaZW37K5s-tdb1m3YtzfZ4OGzfApbOcohOUlRSpQezZE4qoZHXd_zxxfMAQD5t8I27GW6vK2cqkpd9G2Mfw1RPO3jivOzfvNM3j3O2TJZqqEi71W1WyEwoV8nitwaCa-SxS5HiScd45Tq1Squh0BTQKB2WCAoxHUAhXA3PdhSob5gY9CVSU9Jw-9Bn6Mw8vRFJQt_wf0x4XSf3Z6d3Jz1WT0tgDhYnTMLHaVJuQ2ISz0PMuTBOR5NFzqPTedBGgbvmNmbaqY7NdMcbCI8gpBFWAOrbIK3ypQybhFphOlZlXkifSBejDanPQ7QRPF6Q2m2RtJFS4epW4jjRYlQ0nLGnAiVboGSLBB6utsjR15lx1Ujjz92qEX7xQx0KsPR_nNv-57kDMt-7618VV-fXlztkAVbyKs-yS1qT1_ewB8hjYvenmvUJLnfVpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+partitioning+method+for+increasing+ensemble+diversity+of+an+eSVM-based+P300+speller&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Lee%2C+Yu-Ri&rft.au=Kim%2C+Hyoung-Nam&rft.date=2018-01-01&rft.issn=1746-8094&rft.volume=39&rft.spage=53&rft.epage=63&rft_id=info:doi/10.1016%2Fj.bspc.2017.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2017_07_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |